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ABSTRACT

Despite widespread adoption of machine learning throughout industry, many firms
face a common challenge: relevant datasets are typically distributed amongst mar-
ket competitors that are reluctant to share information. Recent works propose data
markets to provide monetary incentives for collaborative machine learning, where
agents share features with each other and are rewarded based on their contribution
to improving the predictions others. These contributions are determined by their
relative Shapley value, which is computed by treating features as players and their
interactions as a characteristic function game. However, in its standard form, this
setup further provides an incentive for agents to replicate their data and act under
multiple false identities in order to increase their own revenue and diminish that
of others, restricting their use in practice. In this work, we develop a replication-
robust data market for supervised learning problems. We adopt Pearl’s do-calculus
from causal reasoning to refine the characteristic function game by differentiating
between observational and interventional conditional probabilities. By doing this,
we derive Shapley value-based rewards that are robust to this malicious replication
by design, whilst preserving desirable market properties.

1 INTRODUCTION

When faced with machine learning task, it can often be the case that a firm would benefit from using
the data of others. For example, rival distributors of similar goods may improve supply forecasts by
sharing sales data, hoteliers could find value in data from airline companies for anticipating demand,
hospitals could reduce social biases from diagnostic support systems by sharing patient details, and
so forth. In this work, we consider the example of renewable energy producers exposed to uncertain
levels of production and therefore require reliable forecasts to competitively participate in electricity
markets, with their revenue a function of predictive performance. It is well-studied that, with access
to distributed data, in both a geographic and ownership sense, these agents could exploit spatial and
temporal correlations between sites to improve their forecasts (Tastu et al., 2013).

In practice, firms may be reluctant to share information due to privacy concerns or perceived conflicts
of interest. Whilst methods from the field of federated learning (Lalitha et al., 2018) could indeed be
used to train models on local servers without the need to centralize any data, this relies on altruistic
sharing of information amongst market competitors. An alternative approach is to provide incentives
for data sharing—recent works propose data markets (Bergemann & Bonatti, 2019), where agents
can collaborate by sharing features with each other to improve the predictions of others, without
transferring any raw data between them (Pinson et al., 2022). With foundations in informational ef-
ficiency of financial markets (Hayek, 1986), data markets have similar economic roots as prediction
markets (Waggoner et al., 2015), mechanisms designed to consolidate information with the goal of
forecasting outcomes of future events (Frongillo & Waggoner, 2018).

Whilst prediction markets can also be used to crowdsource data for machine learning (Abernethy &
Frongillo, 2011), data owners themselves need to decide which tasks to contribute to a priori, when
the relevance of their dataset is unknown. In contrast, data markets serve as real-time mechanism that
match features to machine learning tasks based their capacity to improve predictive performance.
Market revenue is a function of the value this brings to the task owner, and each feature owned by a
distributed agent is rewarded based on its marginal contribution to the improvement.

Challenges Marginal contributions are hard to quantify when features are correlated. For example,
if features are valued sequentially, it has been shown that agents would eventually sell their data for
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less than their own costs as the information becomes redundant (Acemoglu et al., 2022). Whilst
this is not the case if valuation occurs in parallel, the value of overlapping information is inherently
combinatorial. To address this issue, recent works propose to adopt concepts from cooperative game
theory, treating features as players and their interactions as a characteristic function game (Ghorbani
& Zou, 2019). For many practitioners, the Shapley value (Shapley, 1997) is the solution concept of
choice for such a game, which allocates each player its expected marginal contribution towards a set
(or coalition) of other players, satisfying a collection of axioms that yield several desirable market
properties by design (Agarwal et al., 2019). However, when computing this expectation, these works
make implicit assumptions about the distribution of in- and out-of-coalition feautres, which creates
incentives that result in grossly undesirable outcomes.

Specifically, these works model observational conditional probabilities for out-of-coalition features,
which we show allows agents to replicate their data and act under multiple false identities to increase
their revenue. For instance, if an agent’s feature is highly correlated with that of another agent, they
can simply submit many replicates of their feature under different identities, increasing their overall
revenue and driving that of the other agents to zero. This stems from the fact that data, unlike mate-
rial commodities, can be replicated at no additional cost. Whilst several attempts have been made to
remedy this problem, doing so typically requires a trade-off. For instance, Ohrimenko et al. (2019)
propose a more elaborate mechanism design, necessitating that each seller also owns a machine
learning task, which has practical limitations. Agarwal et al. (2019) propose a modification to the
Shapley value which penalizes similar features, thereby preventing replication, yet foregoes budget
balance and remains vulnerable to spiteful agents—those who seek to minimize the revenue of other
agents whilst maximizing their own profits. A similar shortcoming is observed in the proposal of
Han et al. (2023), as both natural correlations and deliberate replications are penalized.

Contributions The main contributions of our paper are as follows: (i) we propose a general data
market design for supervised learning problems that subsumes many existing proposals in literature;
(ii) we show that there are many ways in which Shapley values can be used to derive rewards and
that the differences between them can be explained from a caused perspective; (iii) we leverage
Pearl’s seminal work on causality (Pearl, 2012) to show that by replacing the conventional approach
of conditioning by observation with conditioning by intervention, we can design a data market in a
way that is replication-robust whilst also accounting for spiteful agents, thereby taking a step toward
practical application of these markets; finally (iv) we demonstrate our findings using a real-world
case study—out of many potential applications, we choose to study wind power forecasting due to
data availability, the known value of sharing distributed data, and the fact it is a sandbox that can be
easily shared and used by others.

The remainder of this paper is structured as follows: Section 2 presents our general market design
framework. In Section 3 we derive variants of the characteristic function and analyse each from a
causal perspective. In Section 4 we discuss the implications of these to replication-robustness of the
market. Section 5 then illustrates our findings on a real-world case study. Finally, Section 6 gathers
a set of conclusions and perspectives for future work.

2 PRELIMINARIES

Throughout our work, we consider regression models to be used for forecasting, however our setup
can readily be extended to general supervised learning problems. We build upon prior work on data
acquisition for machine learning tasks from both strategic (Dekel et al., 2010) and privacy-conscious
(Cummings et al., 2015) agents. In particular, we characterize an owner of a regression task by their
valuation for a marginal improvement in predictive performance, which sets the price of the data of
the distributed agents, whom in turn propose their own data as features and are eventually rewarded
based on their relative marginal contributions. We denote this valuation λ ∈ R≥0, the value of which
we assume to be known. The reader is referred to Ravindranath et al. (2024) for a recent proposal
of how λ may be learnt in practice.

Market Agents The set A is the market agents, one of which c ∈ A is a central agent seeking to
improve their predictions, whilst the remaining agents a ∈ A−c are support agents, whom propose
their own data as features, whereby A−c = A \ {c}. Let yt ∈ R+ be the target signal recorded by
the central agent at time t, a sample from the stochastic process {Yt}∀t. We write xI,t as the vector
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of all features at time t, indexed by the ordered set I. Each agent a ∈ A owns a subset Ia ⊆ I
of indices. For each subset of features C ⊆ I we write DC,t = {xC,t′ , yt′}∀t′≤t to be the set of
observations up until time t.

Regression Framework To model the target signal, Yt, we use a parametric Bayesian regression
framework, formulating the likelihood as a deviation from a deterministic mapping under an inde-
pendent Gaussian noise process, the variance of which is treated as a hyperparameter. The mapping,
f , is a linear interpolant parameterized by a vector of coefficients, w, and represents the conditional
expectation of the target signal, such that the interpolant corresponding to the grand coalition (i.e.,
using all available input features) at any particular time step can be decomposed as follows:

f(xt,w) = w0 +
∑
i∈|Ic|

wixi,t

Terms belonging
to the central agent.

+
∑

a∈A−c

∑
j∈|Ia|

wjxj,t

Terms belonging
to the support agents.

.

(1)

Market Clearing As in Pinson et al. (2022), we consider a two-stage (i.e., in-sample and out-of-
sample) batch market, but relax the assumption that features are independent, yet still assume that
any redundant features owned by the support agents (i.e., those that are highly correlated with the
central agent’s features) are removed via the detailed feature selection process. An important step in
the market clearing procedure is parameter inference—to mitigate bias we opt for a centred isotropic
Gaussian prior, which is conjugate for our likelihood, resulting in a tractable Gaussian posterior that
summarizes our updated beliefs, which, for a particular subset of features is given by

p(wC |DC,t) ∝ p(DC,t|wC)p(wC |DC,t−1), ∀t,
where recall DC,t is the set of input-output pairs observed up until time t. We note that adoption of
a Gaussian framework is merely for mathematical convenience, and our framework can be readily
extended to more general hypotheses. Market revenue is a function of the exogenous valuation, λ,
and the extent to which model-fitting is improved, which we measure using the negative logarithm
of the predictive density (i.e., the convolution of the likelihood with the posterior), denoted by ℓt =
− log[p(yt|xt)], ∀t, such that for a batch of observations, the market revenue is π = λ(E[ℓt]Ic

−
E[ℓt]I), which equals the payment collected from the central agent.

Revenue Allocation To allocate market revenue amongst support agents, we define an attribution
policy based on the Shapley value. We let v : C ∈ P(I) 7→ R be a characteristic function that maps
the power set of indices of all the features to a real-valued scalar—the set C represents a coalition in
the cooperative game. If we let Θ be the set of all possible permutation of indices in I−c, the Shapley
value is ϕi = 1/|I−c|!

∑
θ∈Θ ∆i(θ), ∀i ∈ I−c, where ∆i(θ) = v(Ic ∪ {j : j ≺θ i})− v(Ic ∪ {j :

j ⪯θ i}), where j ≺θ i means j precedes i in permutation θ. The reward for each support agent can
be written as πa =

∑
i∈Ia

λE[ϕi], ∀a ∈ A−c. Therefore, all of the revenue is contained within the
market, that is, π =

∑
a∈A−c

πa, and hence budget balance is attained.

We acknowledge that this formulation of the Shapley value endures a time complexity of O(2|I−c|),
hence in practice one must rely on approximation methods (Castro et al., 2009; Mitchell et al., 2022;
Zhang et al., 2023). For instance, we can take a uniform sample of permutations, P ⊂ Θ, and then
compute a Monte Carlo estimate which, by the Central Limit Theorem, converges asymptotically at
a rate of O(1/

√
P). Still though, evaluating the loss function using each subset of features is not that

straightforward in general—once trained, machine learning models typically require an input vector
containing a value for each feature to avoid matrix dimension mismatch. Hence, the characteristic
function must lift the original loss to simulate removal of features (Merrill et al., 2019).

Recall that our loss function, ℓ, relates to the mapping f : R|I| 7→ R described in (1), and is therefore
itself only defined on R|I|. To calculate the Shapley value, a value for each of the 2|I| subsets of
input features is needed. Accordingly, we lift the loss function to the space of all subsets of features
by formulating the characteristic function mapping as v(C) : R|I| × 2|I| 7→ R, ∀C. For the grand
coalition, v(I) = E[ℓI,t|xt]. The Shapley value is hence not well-defined in general, as there exists
many methods to formulate the lift, and hence the characteristic function itself (Sundararajan &
Najmi, 2020). In the following section, we shall explore these possible methods and their differences
from a causal perspective.
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3 CHARACTERISTIC FUNCTION

Commonly adopted lifts can broadly be categorized as either observational or interventional, which
affect the characteristic function that underpins the cooperative game. The former is typically found
in work related to data markets (e.g, Agarwal et al., 2019; Pinson et al., 2022). The observational
lift uses the observational conditional expectation, the expectation of the loss over the conditional
density of out-of-coalition features, given in-coalition take on their observed values, such that

vobs(C) =
∫

E
[
ℓt|xC,t,xC,t

]
p(xC,t|xC,t)dxC,t, (2)

where C = I \ C denotes the out-of-coalition features.

We propose to instead use the interventional lift, which uses the interventional conditional expec-
tation, where features in the coalition are manually fixed to their observed values to manipulate the
data generating process, expressed mathematically using Pearl’s do-calculus (Pearl, 2012), such that

vint(C) =
∫

E
[
ℓt|xC,t,xC,t

]
p(xC,t|do(xC,t))dxC,t. (3)

The difference between (2) and (3) is that in the latter, dependence between out-of-coalition features
and those within the coalition is broken. In theory, observing xC,t would change the distribution of
the out-of-coalition features if the random variables were connected through latent effects. However,
by intervening on a coalition, this distribution is unaffected. To illustrate this, consider two random
variables, X and Y , with the causal relationship in Figure 1.

X Y

Figure 1: Causal graph indicating a direct effect
between two random variables, X and Y .

Suppose we observe X = x, the observational
conditional distribution describes: the distribu-
tion of Y given that X is observed to take on
the value x, written as p(y|x) = p(x, y)/p(x).
The interventional conditional distribution de-
scribes instead: the distribution of Y given that
we artificially set the value of X to x, denoted
p(y|do(x)), obtained by assuming that Y is dis-
tributed by the original data generating process. Graphically, an intervention will remove all of the
edges going into the corresponding variable. Consequently, we get that, p(y|do(x)) = p(y|x) but
p(x|do(y)) = p(x). This means that the distribution of y under the intervention X = x is equivalent
to y conditioned on X = x, yet for Y = y, X and Y become disconnected, hence x has no effect
on y, which is simply sampled from its marginal distribution.

Computation These two lifts also differ in their relative computational expenditure (Lundberg &
Lee, 2017). In particular, it is generally intractable to evaluate the conditional expectation of the loss
function, requiring complex and costly methods for approximation (Covert et al., 2021). Conversely,
cheap and simple methods exist to intervene on features (Sundararajan & Najmi, 2020). Whilst
the most suitable method for evaluating the conditional expectation is disputed in literature (Chen
et al., 2022), one such method requires training separate models for each subset of features; if each
model is optimal with respect to the loss, then this is equivalent to marginalizing out features using
their conditional distribution. In our linear regression setup, fitting a model for each coalition and
evaluating the loss have running times of O(T · |C|2+ |C|3) and O(T · |C|), respectively, hence whilst
this approach is common, it scales poorly to high dimensions (Covert et al., 2021). In contrast, the
interventional lift can be computed much faster by simply imputing out-of-coalition features, which
requires training a single model (i.e., the grand coalition) so each permutation is computed in linear
time. Note that, both lifts preserve the axioms of the original Shapley value, and subsequently the
market properties provided, albeit in expectation. Furthermore, using Monte-Carlo estimation to
approximate the Shapley values preserves the original form of the marginal contribution, ∆i(θ), for
each permutation, thus effects of each lift generalize to arbitrary problem sizes.

Causal Perspectives Observe that, if features are independent, both lifts are equivalent. Specifi-
cally, Janzing et al. (2020) showed that by distinguishing between the true features and those actually
used as input to the model, we get that p(xC,t|do(xC,t)) = p(xC,t). We can then calculate (3) from
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(2) by simply replacing p(xC,t|xC,t) with the marginal distribution, which would be equivalent when
features are independent. With this in mind, we can use the following theorem to analyse these lifts
from a causal perspective.
Theorem 3.1. Marginal contributions derived using the observational conditional expectation for-
mulation for v(·) as defined in (2) can be decomposed into indirect and direct causal effects.

Proof. Following (2), the marginal contribution of the i-th feature for a single permutation θ ∈ Θ
derived using the observational lift can be written as

∆i(θ) = vobs(C)− vobs(C ∪ i),

=

∫
E
[
ℓt|xC,t,xC∪i,t

]
p(xC∪i,t|xC,t)dxC∪i,t −

∫
E
[
ℓt|xC∪i,t,xC,t

]
p(xC,t|xC∪i,t)dxC,t,

=

∫
E
[
ℓt|xC,t,xC∪i,t

]
p(xC∪i,t|xC,t)dxC∪i,t −

∫
E
[
ℓt|xC∪i,t,xC,t

]
p(xC,t|xC,t)dxC,t

Direct effect

+

∫
E
[
ℓt|xC∪i,t,xC,t

]
p(xC,t|xC,t)dxC,t −

∫
E
[
ℓt|xC∪i,t,xC,t

]
p(xC,t|xC∪i,t)dxC,t

Indirect effect

,

where C = {j : j ≺θ i} and C = {j : j ≻θ i}. This is the difference in the loss function when: (i)
the value of the i-th feature is observed and the distribution of the remaining out-of-coalition features
is unchanged (i.e., direct effect) and (ii) the distribution of the other out-of-coalition features does
changed as a result of observing the i-th feature (i.e., indirect effect).

Following Theorem 3.1, we can see that by replacing conditioning by observation with the marginal
distribution as in (2), the indirect effect expression disappears entirely. Hence, using the interven-
tional lift removes consideration of causal effects between features, and subsequently any root causes
with indirect effects (Heskes et al., 2020). As a result, the interventional lift is more effective at cred-
iting features upon which the regression model has an explicit algebraic dependence. In contrast,
the observational lift attributes features in proportion to indirect effects (Frye et al., 2020b), which
some argue is illogical as features not explicitly used by the model have the possibility of receiving
non-zero allocation.

Whilst this dispute has been used to reject the general use of Shapley values for model interoperabil-
ity in machine learning (Kumar et al., 2020) and argue that Lundberg & Lee (2017) were mistaken
to only convey (3) as a cheap approximation of (2) (Janzing et al., 2020), the choice between the
observational and interventional lifts can in fact be viewed as conditional on whether one intends to
be true to the data or true to the model, respectively, meaning the trade-offs of each approach can
be seen as context-specific (Chen et al., 2020).

Interpreting Rewards We can explore this last conjecture by considering how the rewards of the
support agents may differ depending on the choice of lift. We know that the predictive performance
of the regression model out-of-sample is contingent upon the availability of features that were used
during training, which, in practice, requires data of the support agents to be streamed continuously in
a timely fashion, particularly for an online setup. If a feature was missing, the efficacy of the forecast
may drop, the extent to which would relate not to any root causes or indirect effects regarding the
data generating process, but rather the magnitude of direct effects.

Specifically, larger rewards would be made to support agents with features to which the predictive
performance of the model is most sensitive, providing incentives to reduce data being unavailability,
resembling reserve payments in electricity markets, where assets are remunerated for being available
in times of need. For the observational lift, it would instead be unclear as to whether comparatively
larger rewards in the regression market are consequential of features having a sizeable impact on pre-
dictive performance, or merely a result of indirect effects through those that do. The interventional
lift therefore better aligns with desirable intentions of the market.

Risk Implications When features are strongly correlated, conditioning by intervention can lead to
model evaluation on points outwith the true data manifold (Frye et al., 2020a). This can visualized
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with the simple illustration in Figure 2. Intervening on independent features yields samples within
the original data manifold. However, when this is not the case, there is a possibility for extrapolating
far beyond the training distribution, where model behaviour is unknown. In the remainder of this
section we consider what impact this may have on the market outcomes.

Multicollinearity inflates the variance of the coefficients, which can distort the estimated mean when
the number of in-sample observations is limited. The posterior variance of the i-th coefficient can
be written as var(wi) = κi/ξ|Dt|, where ξ is the intrinsic noise precision of the target and κi is
the variance inflation factor, given by κi = e⊤i (

∑
t≤t x

⊤
t xt)

−1ei, ∀i ∈ I, where ei is the i-th basis
vector. Whilst κi ≥ 1, it has no upper bound, meaning κi 7→ ∞, ∀i, with increasing collinearity.

−3 −2 −1 0 1 2 3

Feature 1 (x1)

−3

−2

−1

0

1

2

3

F
ea

tu
re

2
(x

1
)

do(X1 = x1)
do(X2 = x2)

Figure 2: Interventions producing points outwith
the data manifold. Green and red lines are level
sets denoting the 0.99 quantile of the training data
when features are independent and correlated.

From a variance decomposition perspective, the
expected Shapley value of the i-th feature can
be shown to be equivalent to the variance in the
target signal that it explains, such that, E[ϕi] =
E[wi]

2 var(Xi), approximating the behaviour
of the interventional Shapley value when fea-
tures are correlated (Owen & Prieur, 2017).

As the posterior is Gaussian, the Shapley val-
ues follow a noncentral Chi-squared distribu-
tion with one degree of freedom. We can write
the PDF of the distribution of the Shapley value
in closed-form as p(ϕi)/(var(Xi)var(wi)) =∑∞

k=0(1/k!)e
η/2(η/2)k)χ2(1+2k), ∀i, where

the noncentral Chi-squared distribution is seen
to simply be given by a Poisson-weighted
mixture of central Chi-squared distributions,
χ2(·), with noncentrality η = E[wi]

2/var(wi),
for which the moment generating function is
known in closed form.

By deriving the second moment, 1
2var(ϕi) =

var(wi)
(
2E[wi]

2 + var(wi)
)
(var(Xi))

2, ∀i,
we see that the variance of the attribution for
any feature is a quadratic function of the vari-
ance of the corresponding coefficient, thus the variance inflation induced by multicollinearity. Nev-
ertheless, this problem vanishes with increasing sample size, as var(wi) 7→ 0, ∀i (Qazaz et al.,
1997). If a limited number of observations are available, distorted revenues could be remedied us-
ing zero-Shapley or absolute-Shapley proposed in Liu (2020), or restricting evaluations to the data
manifold (Taufiq et al., 2023).

4 ROBUSTNESS TO REPLICATION

Although it is natural for datasets to contain some overlapping information, in our analytics market
such redundancy may also arise as a result of replication. The fact that data can be freely replicated
differentiates it from material commodities—a motive for reassessing fundamental mechanism de-
sign concepts (Aiello et al., 2001). For example, a simple second price auction becomes impractical
unless sellers somehow limit the number of replications, which may in turn curtail revenue. In this
section, we demonstrate how the observational lift provides incentives for replication, the downsides
of this, and how these can be remedied by instead adopting the interventional lift.

Definition 4.1. A replicate of the i-th feature is defined as x′
i,t = xi,t+η, where η represents centred

noise with finite variance, conditionally independent of the target given the feature.

Under Definition 4.1, the observational lift described in (2) provides a monetary incentive for support
agents to replicate their data and act under multiple (false) identities. To illustrate this, consider the
causal graph in Figure 3. Suppose that x1,t and x2,t are identical features, such that w1 = w2, and
that each is owned by a unique support agent, a1 and a2, respectively. With Theorem 3.1, the reward
to each support agent before any replication is made will be π/2, where recall π is the total market
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revenue. Now suppose that a2 replicates their feature k times and for ease assume var(η) = 0.
Using the same logic, the revenues of agents a1 and a2 will be π/(2 + k) and

∑
1+k π/(2 + k) =

π(1 + k)/(2 + k), respectively. Hence a malicious agent can simply replicate their data many times
so as to maximize their overall revenue, and diminish that of others.
Definition 4.2. Let x+

t denote the original feature vector augmented to include any additional repli-
cates, with an analogous index set, I+. According to Agarwal et al. (2019), a market is replication-
robust if π+

a ≤ πa, ∀a ∈ A−c, where π+
a is the new revenue derived using x+

t instead.

Yt

X2,tX1,t X ′
2,t X ′...

2,t· · ·
w2w1

Figure 3: Direct effects (solid) and indirect effects
(dashed) induced by replicating X2,t. The prime
superscript denotes a replicated feature.

In attempt to remedy this issue, the authors in
Agarwal et al. (2019) propose Robust-Shapley,
ϕrob
i = ϕi exp(−γ

∑
j s(Xi,t, Xj,t)), where

s(·, ·) is a similarity metric (e.g., cosine similar-
ity). This method penalizes similar features so
as to remove the incentive for replication, satis-
fying Definition 4.2. However, this means that
not only replicated features are penalized, but
also those with naturally occurring correlations
between features. As a result, budget balance is
lost, the extent to which depends on the chosen
similarly metric and the value of γ.

A similar result is presented in Han et al. (2023)
who consider the general set of semivalues, the
class of solution concepts to submodular games
to which the Shapley value belongs (Dubey et al., 1981). The authors show that the way in which
a semivalue weights coalition sizes has an affect on the resultant properties, and that the Banzhaf
value (Lehrer, 1988) is in fact replication-robust by design (i.e., with respect to Definition 4.2),
along with many other semivalues, albeit still penalizing naturally occurring correlations. That being
said, Definition 4.2 leaves the market susceptible to spiteful agents—those willing to sacrifice their
revenue in order to minimize that of others. As such, we refer to this definition as weakly robust.
Proposition 4.3. A Shapley-value based attribution policy based on the interventional lift instead
yields a stricter notion of being replication-robust, such that π+

a ≡ πa, ∀a ∈ A−c.

Proof. With Definition 4.1, each replicate in x+
t only induces an indirect effect on the target. How-

ever, from Theorem 3.1, we know that the interventional lift only captures direct effects. Therefore,
for each of the replicates, we write the marginal contribution for a single permutation θ ∈ Θ as
∆i(θ) = vint(C)− vint(C ∪ i),

=

∫
E
[
ℓt|xC,t,xC∪i,t

]
p(xC∪i,t|xC,t)dxC∪i,t −

∫
E
[
ℓt|xC∪i,t,xC,t

]
p(xC,t|xC,t)dxC,t,

= 0, ∀i ∈ I+
−c \ I−c,

and therefore ϕi ∝
∑

θ∈Θ ∆i(θ) = 0 for each of the replicates. For the original features, any direct
effects will remain unchanged, as visualized in Figure 3. This leads to

π+
a =

∑
i∈Ia

λE[ϕi] +
∑

i∈I+
a \Ia

λE[ϕi]

=0

= πa, ∀a ∈ A−c,

showing that by replacing the conventional observational lift with the interventional lift, the Shapley
value-based attribution policy is strictly robust to both replication and spitefulness by design.

5 EXPERIMENTAL ANALYSIS

We now validate our key findings on a real-world case study. We use an open source dataset to aid
reproduction of our work, namely the Wind Integration National Dataset (WIND) Toolkit, detailed
in Draxl et al. (2015). Our setup is a stylised electricity market setup where agents—in our case,
wind producers—are required to notify the system operator of their expected electricity generation
in a forward stage, one hour ahead of delivery, for which they receive a fixed price per unit. In real-
time, they receive a penalty for deviations from the scheduled production, thus their downstream
revenue is an explicit function of forecast accuracy.

7
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(a) Observational: Revenue of a4 is increased due
to indirect effects induced by the replicates.
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(b) Interventional: Revenue of a4 remains the same
by accounting only for direct effects.

Figure 4: Revenue allocations for each support agent for both (a) observational and (b) interventional
lifts, when agent a4 is honest (//) and malicious (◦), by replicating their feature. The gray and
white bars correspond to in-sample and out-of-sample market stages, respectively. The revenue split
amongst replicates is depicted by the stacked bars highlighted in red.

Methodology The dataset contains wind power measurements simulated for 9 wind farms in South
Carolina, all located within 150 km of each other. Whilst this data is not exactly real, it captures
the spatio-temporal aspects of wind power production, with the benefit of remaining free from any
spurious records, as can often be the case with real-world datasets. For simplicity, we let a1 be the
central agent, however each could assume this role in parallel.

We use the regression framework described in Section 2, with an Auto-Regressive with eXogenous
input model, such that each agent is assumed to own a single feature, namely a 1-hour lag of their
power measurement. We focus on assessing rewards rather than competing with state-of-the-art fore-
casting methods, so we use a very short-term lead time. Nevertheless, our mechanism readily allows
more complex models for those aiming to capture specific intricacies of wind power production, for
instance the bounded extremities of the power curve (Pinson, 2012).

We perform a pre-screening, such that given the redundancy between the lagged measurements of a2
and a3 with that of a1, we remove them from the market in line with our assumptions. The first 50%
of observations are used to clear the in-sample regression market and fit the regression model, whilst
the latter half are used for the out-of-sample market. We clear both markets considering each agent is
honest, that is, they each provide a single report of their true data. Next, we re-clear the markets, but
this time assume agent a4 is malicious, replicating their data, thereby submitting multiple separate
features to the market to increase their revenue. This problem size doesn’t require approximate
Shapley values, but recall findings hold either way, and generalize theoretically to arbitrary numbers
of agents. Each market clearing was solved on CPU hardware (Intel Xeon E5-2686 v4, 2.3 GHz)

Results We start by setting the number of replicates k = 4, with valuation λ = 0.5 USD per time
step and per unit improvement in ℓ, for both in-sample and out-of-sample market stages. However,
we are primarily interested in reward allocation rather than the magnitude—see Pinson et al. (2022)
for a complete analysis of the monetary incentive to each agent participating in the market. Overall
the in-sample and out-of-sample losses improved by 10.6% and 13.3% respectively with the help of
the support agents. In Figure 4, we plot the allocation for each agent with and without the malicious
behavior of agent a4, for both lifts. When this agent is honest, we observe that the observational lift
spreads credit relatively evenly amongst most features, suggesting that many of them have similar
indirect effects on the target. The interventional lift favours agent a8, which, as expected, owns the
features with the greatest spatial correlation with the target. In this market, most of the additional
revenue of agent a8 appears to be lost from agent a9 compared with the observational lift, suggesting
that whilst these features are correlated, it is agent a8 with the greatest direct effect.

When agent a4 replicates their data, with the observational lift, agents a5 to a8 earn less, whilst agent
a4 earns more. This shows that this lift indeed spreads rewards proportionally amongst indirect

8
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effects, of which there are four more due to the replicates, and so the malicious agent out-earns the
others. Since the interventional lift only attributes direct effects, each replicate gets zero reward, so
the malicious agent is no better off than before. Rewards were consistent between in-sample and
out-of-sample, likely due to the large batch size and limited nonstationarities within the data.
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Figure 5: Revenue allocation of agent a4.

To compare our work against current literature,
in Figure 5 we plot the allocation of agent a4
with increasing number of replicates. Here,
Robust-Shapley and Banzahf Value refer to both
the penalization approach of Agarwal et al.
(2019) and the use of another semivalue in Han
et al. (2023), respectively. With the observa-
tional lift, the proportion of revenue obtained
increases with the number of replicates, as in
the previous experiment. With Robust-Shapley,
the allocation indeed decreases with the num-
ber of replicates, demonstrating this approach
is weakly replication-robust, but is considerably
less compared with the other approaches since
natural similarities are also penalized. The au-
thors argue this is an incentive for provision of
unique information, but this allows agents to be
spiteful. The Banzahf Value is strictly robust to
replicaiton for k = 0, but only weakly for k ≥ 1. Lastly, unlike these methods, our proposed use of
the interventional lift remains strictly replication-robust throughout as expected, with agent a4 not
able to benefit from replicating their feature, without penalizing the other agents.

6 CONCLUSIONS

Many machine learning tasks could benefit from using the data of others, however convincing firms
to share information, even if privacy is assured, poses a considerable challenge. Rather than relying
on data altruism, data markets are recognized as a promising way of providing incentives for data
sharing, many of which use Shapley values to allocate rewards. Nevertheless, there are a number of
open issues that remain before such mechanisms can be used in practice, one of which is vulnerabil-
ity to replication incentives, which we showed leads to undesirable reward allocation and restricts
the practical viability of these markets.

We introduced a general framework for data markets for supervised learning problems that sub-
sumes many of these existing proposals. We demonstrated that there are several different ways to
formulate a machine learning task as cooperative game and analysed their differences from a causal
perspectives. We showed that use of the observational lift to value a coalition is the source of these
replication incentives, which many works have tried to remedy through penalization methods, which
facilitate only weak robustness. Our main contribution is an alternative algorithm for allocating re-
wards that instead uses interventional conditional probabilities. Our proposal is robust to replication
without comprising market properties such as budget balance. This is a step towards making Shapley
value-based data markets feasible in practice.

From a causal perspective, the interventional lift has additional potential benefits, including reward
allocations that better represent the reliance of the model on each feature, providing an incentive for
timely and reliable data streams for useful features, that is, those with greater influence on predictive
performance. It is also favourable with respect to computational expenditure. There is of course, no
free lunch, as using the interventional conditional expectation can yield undesirable rewards when
feautres are highly correlated and the number of observations is low. Nevertheless, future work could
examine the extent to which the mentioned remedies mitigate this issue, as well as their impact on
the market outcomes. Ultimately, when it comes to data valuation, the Shapley value is not without
its limitations—it is not generally well-defined in a machine learning context and requires strict
assumptions, not to mention its computational complexity. This should also incite future work into
alternative mechanism design frameworks, for example those based on non-cooperative game theory
instead.
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