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Abstract—Electrocardiogram (ECG) is a crucial non-invasive
method for measuring the electrical activities of the heart and de-
tecting cardiovascular diseases. While deep learning approaches
for cardiovascular disease classification have gained popularity,
creating labeled data remains expensive. Contrastive and gen-
erative self-supervised learning methods, particularly with the
vision transformer (ViT) neural network architecture, have been
introduced as leading solutions to this challenge. Although the
[CLS] token, which is one of the most important components
of ViT, is frequently utilized for aggregate representation in
supervised learning scenarios, such as diagnosis, its exploitation
in self-supervised tasks has not been extensively explored. This
study proposed a method to incorporate multiple pretraining
tasks for better representation learning via utilizing the [CLS]
token more effectively. Based on this method, we introduced two
novel combined self-supervised learning frameworks for ECG
analysis, namely MAE-MoCo and MAE-Nextclip. The MAE-
MoCo framework combines generative and contrastive self-
supervised learning by incorporating a masked autoencoder with
a momentum encoder. On the other hand, MAE-Nextclip is a
generative method that reconstructs not only masked patches
but also Nextclip data with the assistance of the [CLS] token. We
validated our methods on a joint database of China Physiological
Signal Challenge in 2018, Physikalisch-Technische Bundesanstalt
XL, and Chapman datasets. The fine-tuned models outperformed
the state-of-the-art models in the Chapman dataset with macro-
F1 of 0.96 and the area under the curve of receiver operating
characteristic of 0.99. The outstanding performance on down-
stream tasks demonstrates the potential of combining pretraining
tasks, especially generative and contrastive tasks, in the field of
automatic ECG interpretation.

Index Terms—classification token, electrocardiogram,
generative-contrastive learning, self-supervised learning, vision
transformer

I. INTRODUCTION

Electrocardiogram (ECG) is a non-invasive method that
records activities by measuring the electrical signals of the
heart [1]. Diseases related to the heart, also known as cardio-
vascular diseases, hold significant importance among causes of
death [2]. ECG stands as one of the most effective and preva-
lent tools used in the diagnosis of cardiovascular diseases due
to its ability to promptly generate results, non-invasiveness,
and capability to measure the activities of the heart, the most
vital organ. Due to probes attached to different points of the
body, ECG signals consisting of 12 leads encapsulate the
electrical activity of the heart and this is done for a certain

period of time. Due to these attributes, ECG signals can be
treated both as a time series and as a two-dimensional medical
image.

ECG data has been identified as a compelling area of
study within the field of machine learning (ML) research.
ML models have gained significant value in recent years,
showcasing impressive performances in various fields such as
computer vision (CV) [3], natural language processing (NLP)
[4], [5]. The successful operation of non-linear algorithms with
ECG signals signifies the potential effectiveness of ML-based
models in the field of ECG. The performance of traditional ML
algorithms such as Gaussian Naive Bayes and random forest
stands out in heart disease classification [6], while the impact
of deep learning models in arrhythmia beat classification has
also been demonstrated by numerous studies [7]. Especially
from the CV perspective, convolutional neural network (CNN)
based architectures such as ResNet [8], InceptionTime [9]
and from the time series perspective, recurent neural network
(RNN) based long short-term memory (LSTM) serve as highly
important backbone candidates [10], [11].

Supervised learning in ECG analysis requires extensive
labeled data, often necessitating significant time and exper-
tise, particularly from cardiologists, to label such medical
data accurately. Due to the widespread use of ECGs, large
volumes of unlabeled data are available, yet labeling these
for supervised learning is labor-intensive. In contrast, self-
supervised learning leverages unlabeled data, enabling models
to generate their own labels, thus addressing the limitations
of supervised learning. Self-supervised learning is particularly
beneficial when labeled data is scarce and may outperform the
models trained solely on supervised data [12]. Self-supervised
learning methods, categorized into generative, contrastive, and
adversarial learning [13], produce pretrained encoders that
serve as robust feature extractors for downstream tasks, high-
lighting the growing importance of self-supervised learning in
ECG analysis.

In the field of ECG, there exist frameworks derived from
the two primary branches of self-supervised learning, namely
contrastive and generative learning perspectives, demonstrat-
ing exceptional performance. Within the contrastive learning
perspective, it has been shown that simple contrastive meth-
ods, including end-to-end trained SimCLR [14] are effective.



Additionally, models like MoCo [15] and BYOL [16], which
use gradient descent for generating query and key represen-
tations in one branch and momentum updates in another,
also demonstrate significant performance. Although SimCLR,
MoCo, and BYOL are effective contrastive self-supervised
learning methods, none of them are designed specifically for
ECG. One of the most effective contrastive learning methods
designed specifically for ECG is ISL, as it is tailored for
multivariate cardiac signals [17]. This advanced contrastive
learning method combines intra-subject and inter-subject self-
supervised techniques. The intra-subject approach examines
temporal dependencies in ECG signals from the same patient,
while the inter-subject approach computes contrastive loss by
treating augmented signals from the same patient as positive
pairs and signals from different patients as negative pairs.

From the generative learning perspective, the models pre-
sented in the ECG domain are primarily based on masked
autoencoding (MAE) [18]. Models such as masked time au-
toencoder (MTAE) [19], which is pretrained to find the masked
ECG patches in the time axis, masked lead autoencoder
(MLAE) [19], which reconstructs masked patches along the
lead axis, are among the state-of-the-art performing models
utilizing masking in the ECG classification domain. In addi-
tion, MassMIB, another method based on masking technique,
encompasses an encoder-decoder pair that encodes a signal
masked in the time domain and reconstructs the masked
tokens in time, alongside an additional encoder-decoder pair
that performs the same task in the frequency domain. Lastly,
Nextclip [20] reconstructs the next semi-cardiac cycle by
removing ECG data after any given time point as a pretraining
task.

Recent advancements in contrastive self-supervised learning
for ECG data, such as SimCLR, MoCo, and BYOL, have
been significant but the rise of transformer-based architectures
coupled with methods like MAE has led to state-of-the-art
performance in generative self-supervised learning methods.
The backbone architecture of the encoder is crucial for perfor-
mance, with vision transformer (ViT) outperforming ResNet
[21] in many ECG-specific pretraining tasks [19]. A notable
feature of ViT is the inclusion of the [CLS] token, which,
as seen in BERT, is beneficial for aggregate representation.
However, in ECG pretraining tasks, the [CLS] token does
not leverage its characteristic of carrying aggregate represen-
tation effectively, suggesting the potential for more optimal
approaches in pretraining.

This paper introduces a novel approach that combines
pretext tasks in generative and contrastive learning perspective
using the [CLS] token to enhance ECG signal representation.
The primary objective is to create a robust pretraining task by
incorporating the [CLS] token of ViT into a hybrid learning
framework for ECG signal representation. In this context, two
approaches are explored: adding a contrastive projection head
to the [CLS] token output of a MAE framework using 1D-
ViT called as MAE-MoCo, and incorporating a new Nextclip
decoder to create a combined generative self-supervised learn-
ing framework named as MAE-Nextclip. MAE-MoCo aims

to develop an encoder that targets both the reconstruction
of the ECG signal and the differentiation of positive and
negative pairs, while MAE-Nextclip reconstructs the masked
patches as well as the ECG data in the next semi-cardiac
cycle, outperforming current state-of-the-art techniques. In
addition, the novel loss functions tailored to these combined
pretraining tasks are introduced. The experimental results
highlight the effectiveness of the proposed MAE-MoCo and
MAE-Nextclip frameworks, demonstrating their potential to
set new benchmarks in self-supervised learning methods for
ECG signal analysis.

II. METHOD

The proposed methodology includes two novel pretraining
techniques, namely MAE-MoCo and MAE-Nextclip, which
are later fine-tunable on specific datasets. Both models effec-
tively utilize the [CLS] token of ViT in their pretraining tasks.
The MAE-MoCo model merges generative and contrastive
learning perspectives, whereas MAE-Nextclip combines two
distinct generative learning tasks.

Fig. 1. Rough graphical illustration of an overall methodology for this paper:
A novel approach to pretraining an ECG encoder. Blue patches represent
unmasked, gray patches represent masked patches.

A. Model Architectures

1) MAE-MoCo: The MAE-MoCo model consists of three
main blocks as encoder, decoder, and momentum encoder.

The encoder is based on a 1D-ViT structure and comprises
two parts for MAE and MoCo. The MAE part of the encoder
takes the original ECG data without any data augmentation
and first passes it through a patch embedding block. This
block, which is a 1D CNN block with kernel size and stride
equal to the patch size, divides the ECG data into patches
of a specified size and maps each patch to the hidden size.
Next, positional embedding is added to each patch to ensure
that positional information is not lost. Although a fixed sine-
cosine embedding is used for positional embedding in [18],
this study opts for learnable positional embedding parameters
since the encoder is used for both MAE and MoCo. Following
this, a certain percentage of patches are masked using random
masking. It should be noted that, only the unmasked patches
are used afterwards. Finally, the masked encoded ECG signal
is obtained by passing through six consecutive stacked trans-
former blocks and a layer normalization block.



The MoCo part of the encoder first processes the ECG
input with a randomly selected data augmentation technique. It
passes through the patch embedding and positional embedding
layers without masking, in a similar manner with MAE part.
Instead of masking, a learnable parameter called [CLS] token
is added to represent the overall structure of the ECG signal.
The signal then goes through the transformer block and
layer normalization block. Finally, only the [CLS] token is
extracted and passes through the Linear+Batch Normaliza-
tion+ReLU block to obtain the encoded MoCo output. The
block diagram of the encoder of the MAE-MoCo model is
given in Fig. 2.

Fig. 2. The encoder block diagram of the MAE-MoCo model is depicted.
In figure, xorg represents the original ECG data, xgenerative represents
the masked latent representation used for generative learning (MAE), and
xcontrastive represents the latent representation used for contrastive learning
(MoCo). The parameters marked in red are learnable parameters, while the
green blocks represent learnable blocks. Masked patches are represented in
gray, while unmasked patches are represented in blue.

The purpose of the decoder network is to reconstruct the
masked parts with the least error by replacing them with
learnable parameters based on the encoded output for gen-
erative learning (xgenerative) in the encoder. The decoder
block takes the xgenerative and first passes it through a patch
embedding block. This block is structurally different from the
encoder’s patch embedding block because the decoder does
not perform patch separation; instead, patches are mapped
to a different dimension using a linear layer. Subsequently,
a learnable [mask] token is placed at the position of the
masked patches resulting from random masking in the encoder,
and positional embedding is added to each patch. Next, similar
to the encoder, the decoder employs transformer and layer
normalization blocks. Finally, another linear layer is used to
match the output dimension with the original ECG, aiming to
reconstruct the masked ECG patches with minimum error. The
overall structure of the decoder is given in Fig. 3.

The momentum encoder in the MAE-MoCo framework
uses the same architecture but ignores the output xgenerative.
Additionally, the data augmentation technique used is different
from that in the encoder. Similar to MoCo, the parameters of
the momentum encoder are trained with the momentum update
of the encoder, not with the gradient descent. With each batch,
the oldest batch in the queue is removed, and a new batch is
added, following the principles of MoCo training.

Fig. 3. The overall structure of the decoder. To reconstruct the masked
patches, a learnable [mask] token is placed in their place.

A summarized working scheme of the MAE-MoCo frame-
work is given in Fig. 4 and detailed hyperparameters of the
encoder, decoder, and momentum encoder are described in
Table I, II and III, respectively. The architectural hyperparam-
eters of the momentum encoder are exactly the same as the
encoder.

Fig. 4. The summarized working scheme of the MAE-MoCo framework. It
should be noted that although the encoder and momentum encoder have the
same architecture, they use different data augmentation techniques.

TABLE I
HYPERPARAMETERS OF THE ENCODER OF MAE-MOCO FRAMEWORK

Encoder Hyperparameters
Data augmentation techniques Erase, time out, partial

noise, drop and RRC
Type of patch embedding 1D Convolution
Output channels of patch embedding 512
Kernel size of patch embedding 25
Stride of patch embedding 25
Size of positional embedding (145, 512)
Size of [CLS] token (1,512)
Type of transformer block Attention and linear
Dimension of transformer 512
#Transformer blocks 6
#Attention head 16
MLP ratio of transformer 2
Activation of transformer GELU
Output features of layer normalization 512
Type of the projection head Linear and 1D BatchNorm
#Blocks in projection head 3
Output features of MLP in projection head 128
Output features of projection head 128

2) MAE-Nextclip: The MAE-Nextclip framework consists
of a shared encoder and two separate decoders for the tasks
of MAE and Nextclip reconstruction, respectively. Architec-
turally and functionally, this model bears significant resem-
blance to the MAE-MoCo model.

The MAE component of the encoder is identical to that
described in Section II-A1. For the Nextclip part, the original
ECG data is first transformed into Nextclip data. In this



TABLE II
HYPERPARAMETERS OF THE DECODER OF MAE-MOCO FRAMEWORK

Decoder Hyperparameters
Type of patch embedding Linear
Output channels of patch embedding 256
Size of [mask] token (1,256)
Size of positional embedding (144, 256)
Type of transformer block Attention and linear
Dimension of transformer 256
#Transformer blocks 1
#Attention head 8
MLP ratio of transformer 2
Activation of transformer GELU
Output features of layer normalization 256
Type of size matcher network Linear
Output channels of size matcher network 25*12

TABLE III
HYPERPARAMETERS OF THE MOMENTUM ENCODER OF MAE-MOCO

FRAMEWORK

Momentum Encoder Hyperparameters
Momentum constant 0.99
Temperature of logits 0.2
Queue size 65536

context, a random starting point is selected within a patch
of the ECG data. A semi-cardiac cycle is then extracted from
this randomly selected point and used as the ground truth data,
and the ECG data from this point onward is set to zero for
use in the rest of the encoder. The prepared ECG data for
Nextclip is embedded with patch embedding and positional
encoding. Additionally, a [CLS] token is appended for use
in the Nextclip decoder. Finally, the resulting signal under-
goes encoding through stacked transformer blocks and layer
normalization. The operational schematic of MAE-Nextclip
encoder is provided in Fig. 5.

Fig. 5. The working scheme of the MAE-Nextclip encoder. yNextclip

represents the ground truth ECG cycle intended for reconstruction after the
Nextclip decoder and xgenerative,Nextclip and xgenerative,MAE respec-
tively denote the signals encoded for Nextclip and MAE.

The MAE decoder is identical to the one depicted in
Fig. 3. However, the Nextclip decoder initially extracts the
[CLS] information from the xgenerative,Nextclip signal and
then proceeds with patch embedding. Afterward, without in-
troducing a [mask] token, it sequentially traverses through
transformer, layer normalization, and linear layer to recon-
struct the Nextclip signal. A summary of the decoders used
separately for MAE and Nextclip is provided in Fig. 6.

The overall block diagram of the MAE-Nextclip model
is given in Fig. 7. Since the hyperparameters of the MAE-
Nextclip model exhibit substantial similarities with those of

Fig. 6. The summary of the MAE-Nextclip decoders.

MAE-MoCo, it is more efficient to focus solely on the points
of differentiation. Specifically, the hyperparameters of the
MAE-Nextclip encoder, including patch embedding, positional
embedding, [CLS] token, transformer, and layer normal-
ization, uses those detailed in Table I. It should be noted
that the encoder of MAE-Nextclip model does not employ
data augmentation techniques and lacks the projection head
presented in MoCo. The hyperparameters of the MAE decoder
in MAE-Nextclip correspond exactly to those delineated in
Table II, with each element in active use. The hyperparameters
specific to the Nextclip decoder of MAE-Nextclip are provided
in Table IV. Furthermore, the logic behind the selection of the
9 in the size matcher network is rooted in the attempt to predict
a cardiac cycle of length 9 patches, starting from where the
data is cropped during the creation of Nextclip data.

Fig. 7. The overall block diagram of the MAE-Nextclip model.

TABLE IV
HYPERPARAMETERS OF THE NEXTCLIP DECODER OF MAE-NEXTCLIP

MODEL

Nextclip Decoder Hyperparameters
Type of patch embedding Linear
Output channels of patch embedding 256
Size of positional embedding (1, 256)
Type of transformer block Attention and linear
Dimension of transformer 256
#Transformer blocks 1
#Attention head 8
MLP ratio of transformer 2
Activation of transformer GELU
Output features of layer normalization 256
Type of size matcher network Linear
Output channels of size matcher 9*25*12

B. Training Strategies

The pretraining and fine-tuning of the models utilized an
Intel(R) Core(TM) i7-11800H @ 2.30GHz CPU, 16GB RAM,
and an NVIDIA GeForce RTX 3060 GPU.

1) Pretraining: The pretraining of the models utilized
a combination of three different datasets namely China



Physiological Signal Challenge in 2018 (CPSC2018) [22],
Physikalisch-Technische Bundesanstalt XL (PTB-XL) [23],
and Chapman [24]. Due to the high number of ECG samples
and the diversity of data collected from various hospitals, the
dataset exhibits significant diversity. Therefore, it is highly
valuable for pretraining.

In order to enhance the stability of the outputs obtained
from the models with the provided input data, the inputs are
Z-score normalized. In other words, the mean of the input data
is subtracted and divided by its standard deviation.

xnormalized =
xorg − σ

s
(1)

Due to the composition of the MAE-MoCo and MAE-
Nextclip models from two different pretraining techniques,
conventional loss functions cannot be directly utilized. Instead,
a combination of these loss functions is employed. The MAE-
MoCo model comprises a combination of generative and con-
trastive loss functions. The generative loss function calculates
the MSE between the original data and the reconstructed data
of masked patches. The generative loss is illustrated by (2)
[19].

LMAE =
1

n

n∑
i=1

(xorg,i − xreconstructed,i)
2 (2)

For the contrastive loss, the instance discrimination method
is utilized. Thus, if the encoded keys and queries originate
from the same ECG, they are considered as positive pairs;
otherwise, they are treated as negative pairs. The contrastive
loss is mathematically described in (5) [15], where ℓpos and
ℓneg represent the positive and negative logits, respectively,
[] denotes concatenation operation, and CE stands for cross-
entropy loss function.

ℓpos = xcont,q ∗ xcont,k (3)
ℓneg = xcont,q ∗ queue (4)

LMoCo = CE([ℓpos, ℓneg], labels) (5)

After the computation of the generative and contrastive
losses, these two loss functions are combined for the MAE-
MoCo model as depicted in (6).

LMAE−MoCo = LMoCo + αLMAE (6)

Similarly, the MAE-Nextclip model employs (2), where
the variable xreconstructed,i is substituted with the output
xreconstructed,MAE of the MAE-Nextclip model. Since the
MAE-Nextclip model is a combination of two different gen-
erative methods, it utilizes the Nextclip loss instead of the
contrastive loss. As demonstrated in (7), the Nextclip loss is
computed as the MSE between the reconstructed cardiac cycle
and the ground truth. The overall MAE-Nextclip loss function
is illustrated in (8).

LNextclip =
1

n

n∑
i=1

(yNextclip − xreconstructed,Nextclip)
2 (7)

LMAE−Nextclip = LNextclip + αLMAE (8)

The α parameter in the loss function of both models is a
hyperparameter and experiments are conducted with different
α values. However, in the initial case, the α is set to 40 for
MAE-MoCo and 2 for MAE-Nextclip. The reason for this is
to bring both losses to the same scale. Additionally, training
has been conducted for MAE-MoCo with α values of 20 and
10, while for MAE-Nextclip, configurations with α values of
1 and 0.5 have been employed.

Both models update their own weights to minimize their
respective combined batch-wise losses during training. Warm-
up epochs are applied by linearly increasing the learning rate
for the initial specified number of epochs. Warm-up epochs
serve to stabilize the training process and accelerate conver-
gence [25]. Throughout the training process, the learning rate
is reduced as epochs progress with the aid of learning rate
schedulers. If there is no improvement in the validation loss
after a certain number of epochs, the learning rate decreases
by a specified rate. The detailed configuration of the models
used for pretraining is provided in Table V.

TABLE V
PRETRAINING CONFIGURATION

Epochs of MAE-MoCo 710
Epochs of MAE-Nextclip 620
Batch size 64
Optimizer Adam
Learning rate 2 ∗ 10−4

Warm-up epochs 20
Learning rate schedular: reduce rate 0.9
Learning rate schedular: number of bad epoch 15

It should be noted that in addition to the hyperparameters
and pretraining configuration parameters of models, there are
certain fixed parameters used in models as well. The length
of the ECG data is 3600, with 12 channels. The length of
patches used by ViT is chosen as 25 and 75% of the patches
are masked in MAE. Therefore, the models have 144 tokens,
excluding the [CLS] token. The fixed parameters are listed
in Table VI.

TABLE VI
FIXED PARAMETERS

ECG signal length 3600
#Leads of ECG data 12
Patch size 25
Masking rate 75%
#Tokens (without [CLS] token) 144

Training of MAE-MoCo and MAE-Nextclip take approxi-
mately 77 hours and 42 hours, respectively. Additionally, while
MAE-MoCo has 27M parameters, the number of trainable
parameters in MAE-Nextclip is 15M.

2) Fine-tuning: The pretrained models, using all three
datasets mentioned in Section II-B1, are fine-tuned on Chap-
man dataset. After pretraining, the encoders of the models
are retained, while the remaining components (momentum



encoder and decoder for MAE-MoCo, two decoders for MAE-
Nextclip) are discarded. It should also be noted that the
projection head of the MAE-MoCo encoder is not utilized
for fine-tuning purposes.

A linear network with a sufficient number of output nodes
capable of classifying the appropriate dataset is connected to
the [CLS] tokens of the pretrained encoders. The resulting
architecture is tuned using two distinct techniques, namely the
linear probe and fine-tuning methods. In the linear probe
approach, all trainable parameters of the pretrained encoder
are frozen, and only the parameters of the new linear network
connected to the [CLS] token are updated during task-specific
training. Consequently, in this mode, the success of pretraining
is more accurately assessed since the encoder functions as
a feature extractor, while the linear layer acts as a linear
classifier. Conversely, in the fine-tuning mode, the encoder
is initialized with pretrained parameters, but both the encoder
and linear layer parameters are trained end-to-end during task-
specific training.

The objective of the models in fine-tuning is to minimize
the cross-entropy loss between the one-hot encoded ground
truth category labels and the probabilities outputted by the
model. In fine-tuning, as in pretraining, warm-up epochs and
learning rate schedulers are utilized for similar purposes.
Additionally, early stopping is employed during fine-tuning. If
no improvement in validation loss is observed over a certain
number of epochs, the fine-tuning training is terminated. The
model with the best performance in terms of validation loss
is selected and used for testing. The detailed configuration of
the fine-tuning is provided in Table VII

TABLE VII
FINE-TUNING CONFIGURATION

Batch size 64
Optimizer Adam
Learning rate 1 ∗ 10−3

Warm-up epochs 20
Early stopping epochs 15
Learning rate schedular: reduce rate 0.9
Learning rate schedular: number of bad epoch 5

C. Definition of the Metrics
Accuracy is a metric commonly encountered in nearly all

classification tasks, shedding light on the model’s classification
ability. Accuracy is calculated by the ratio of correctly pre-
dicted individual samples to the total number of test samples
[26].

It is noteworthy that the calculation of accuracy does not
account for any imbalance in the data distribution among the
classes in the test dataset. Thus, macro-F1 score and area under
curve of receiver operating characteristic (AUC) come into
play. The macro-F1 score is computed as the harmonic mean
of precision and recall [26]. Precision measures the classifier’s
ability to not misclassify negative examples as positive, while
recall represents the ability to find all positive examples [26].

AUC, on the other hand, is a metric that demonstrates the
classifier’s performance at different thresholds and aims to

measure how well positive and negative examples are sepa-
rated. AUC is a metric defined for binary classifiers; hence,
in this study, since the classifiers are multi-label classifiers,
one-vs-one AUC is employed. One-vs-one AUC computes the
AUC metric by averaging over all possible class pairs.

III. RESULTS

The proposed models need to be compared with previous
and state-of-the-art self-supervised learning methods in terms
of metrics to demonstrate the effectiveness of the models.
Metrics commonly used in model comparison, such as ac-
curacy, macro-F1 score, and AUC, are utilized in comparison.
The MAE-MoCo and MAE-Nextclip models fine-tuned with
Chapman dataset are initially compared with the state-of-
the-art on published benchmark that are specific to the field
of ECG. Subsequently, MAE-MoCo and MAE-Nextclip are
compared with previous prominent self-supervised learning
methods such as MTAE [19], Nextclip [20], MoCo [15], and
SimCLR [14].

A. Comparison with State-of-the-art on Published Bench-
marks

MAE-MoCo and MAE-Nextclip are compared with Mass-
MIB [27], a leading method in generative self-supervised
learning demonstrating state-of-the-art performance on Chap-
man dataset, and ISL [17], representing the contrastive learn-
ing aspect in the field of ECG. Comparison results on the
Chapman dataset is presented in Tables VIII. MassMIB and
ISL utilize the higher-level classes of the Chapman dataset;
hence, the comparisons are conducted with 4 classes, and the
AUC metric is included. The configuration of Chapman dataset
with 4 classes is called as Chapman-Reduced for clearance.

TABLE VIII
COMPARISON OF THE MAE-MOCO AND MAE-NEXTCLIP WITH

STATE-OF-THE-ART SELF-SUPERVISED LEARNING FRAMEWORKS ON
CHAPMAN-REDUCED DATASET

Frameworks Linear Probe Fine-tuning
Macro-F1 AUC Macro-F1 AUC

ISL w/o Inter [17] N/A 0.764±0.011 N/A 0.989±0.001
ISL w/o Intra [17] N/A 0.921±0.030 N/A 0.989±0.003

ISL [17] N/A 0.965±0.008 N/A 0.991±0.001
MassMIB [27] N/A N/A 0.950±0.000 N/A

MAE-Nextclip (α = 1) 0.967±0.000 0.995±0.000 0.972±0.001 0.998±0.000
MAE-MoCo (α = 40) 0.961±0.003 0.978±0.003 0.968±0.003 0.998±0.000

When comparing the results, it is observed that in the
Chapman dataset, the proposed models have outperformed
both MassMIB framework using fine-tuning technique in terms
of macro-F1 by 0.02 and ISL models in terms of AUC by 0.03
in linear probing and by 0.007 points in fine-tuning. MassMIB
employs masking in both time and frequency domains to
discover generative features, while ISL employs intra-patient
and inter-patient discrimination to achieve contrastive features.
In proposed models, the extraction of both contrastive and gen-
erative features is the most significant factor in outperforming
ISL and MassMIB.

Furthermore, it is observed that the MAE-Nextclip model
performs better than MAE-MoCo in the Chapman dataset.



One possible reason behind this is that one of the most
important features of the Nextclip model is its successful
detection of atrial fibrillation. Since a significant portion of the
Chapman dataset consists of atrial fibrillation, MAE-Nextclip
outperforms MAE-MoCo in terms of metrics.

B. Methodological Comparison with Other Self-supervised
Learning Strategies

MAE-MoCo and MAE-Nextclip demonstrated robust and
effective performance when compared to state-of-the-art on
published benchmarks, surpassing the compared methods on
Chapman dataset. Moreover, the metric comparisons of MAE-
MoCo and MAE-Nextclip models that are pretrained with
CPSC2018, PTB-XL, and Chapman datasets, with MTAE [19],
Nextclip [20], MoCo [15], and SimCLR [14] utilizing linear
probe and fine-tuning techniques on Chapman dataset, are
presented in Table IX. The compared models are implemented
from scratch with the configuration used by MAE-Nextclip
and MAE-MoCo for a fair comparison. It should be noted
that in this comparison, unlike some literature like MassMIB
and ISL where classes are merged into a higher-level class
to reduce the number of classes to 4, the original Chapman
dataset is utilized without merging the labels. Due to the large
number of classes in the Chapman dataset, AUC is not used
for comparison.

TABLE IX
COMPARISON OF THE MAE-MOCO AND MAE-NEXTCLIP WITH

PREVIOUS SELF-SUPERVISED LEARNING FRAMEWORKS ON CHAPMAN
DATASET

Frameworks Linear Probe Fine-tuning
Accuracy Macro-F1 Accuracy Macro-F1

SimCLR [14] 0.707±0.002 0.508±0.001 0.847±0.011 0.695±0.009
MoCo [15] 0.767±0.008 0.612±0.004 0.848±0.004 0.716±0.021

Nextclip [20] 0.900±0.002 0.751±0.021 0.952±0.003 0.860±0.001
MTAE [19] 0.947±0.001 0.851±0.008 0.958±0.002 0.870±0.024

MAE-Nextclip (α = 2) 0.948±0.000 0.844±0.023 0.956±0.002 0.862±0.009
MAE-Nextclip (α = 1) 0.949±0.001 0.848±0.029 0.955±0.002 0.863±0.007

MAE-Nextclip (α = 0.5) 0.943±0.000 0.830±0.013 0.952±0.002 0.858±0.019
MAE-MoCo (α = 40) 0.943±0.003 0.848±0.006 0.955±0.002 0.862±0.015
MAE-MoCo (α = 20) 0.937±0.002 0.844±0.004 0.955±0.004 0.871±0.012
MAE-MoCo (α = 10) 0.944±0.004 0.835±0.013 0.957±0.001 0.888±0.002

Upon examination of Table IX, it is evident that MAE-
MoCo and MAE-Nextclip outperform previous methods. The
proposed models exhibit a noticeably superior performance
across all metrics compared to other self-supervised learning
methods. This is primarily attributed to the optimization of
two different tasks during pretraining. Although the resulting
models from pretraining are capable of performing two tasks
rather than excelling in a single task, the individual tasks
operate with slightly lower performance. The proposed models
achieve a balanced performance between these tasks. There-
fore, the learned representations are less task-specific and more
universal, thereby preserving their potential for fine-tuning.
Consequently, when these pretrained encoders are used in fine-
tuning, they approach the performance of optimal classifiers
more closely.

For different α values, it is seen that the MAE-MoCo
performs better, especially with lower α values, due to its
effective regularization against overfitting in fine-tuning mode,

particularly on the smaller dataset such as Chapman dataset.
For MAE-Nextclip, the model improves performance with
α = 1 due to stronger masking features, as opposed to moving
overfitting region when α increased from 0.5 to 1.

IV. DISCUSSION

A. Limitations

The MAE-MoCo and MAE-Nextclip frameworks are indeed
powerful models that outperform other models, but they have
some limitations such as high computational costs and the
challenge of finding optimal parameter sets.

Due to the fact that MAE-MoCo and MAE-Nextclip frame-
works consist of a combination of two different pretext tasks,
the computational cost required for training is higher compared
to individual pretext tasks. Specifically, contrastive models
have even higher costs compared to generative models due
to the double forward pass. Consequently, MAE-MoCo and
MAE-Nextclip can be considered more costly than other
models.

Another limitation of the proposed frameworks is the in-
crease in the number of non-trainable parameters resulting
from the combination of two different models. The increase in
the number of non-trainable parameters complicates the task of
finding the optimal parameter set compared to other individual
models.

B. Future Work

To further enhance the performance of the proposed frame-
works, future work requires the utilization of different, more
advanced backbones, the combination of different tasks, the
utilization of different types of data to test models and more
hyperparameter tuning.

The convolutional vision transformer (CvT), incorporating
convolutions into the ViT architecture [28], has proven its
efficacy on datasets like ImageNet and different backbones
like CvT, ResNet could serve as a promising candidate for
performing combined tasks more effectively in the ECG
domain.

Additionally, the combined tasks can be altered or enhanced,
with alternative tasks such as Centerclip which reconstructs
randomly selected segments of ECG data rather than the
next segment, SimCLR, BYOL, DINO [29]. Moreover, an-
other strategy to improve the performance of combined self-
supervised learning tasks could be increasing the number of
tasks.

Furthermore, experimenting the models with other physio-
logical signals that have ECG signal characteristics such as
being a time series and a 2D image can better demonstrate
the effect of the combination strategy.

Finally, more optimal fixed parameters can be found with
more computational power since MAE-MoCo and MAE-
Nextclip have many fixed parameters. Although the values
used are the most optimal ones in the original frameworks,
they may not be the most ideal values for MAE-MoCo
and MAE-Nextclip, so the proposed models may have more
optimized versions.



V. CONCLUSION

In this paper, novel pretraining tasks are introduced from
the perspective of self-supervised learning, arising from the
significant problems of obtaining labeled data. The MAE-
MoCo framework is proposed to combine the strengths of
generative self-supervised learning, exemplified by MAE, and
contrastive learning, as seen in MoCo, thus allowing for the
simultaneous utilization of generative and contrastive learning.
Additionally, MAE-Nextclip emerges from the merge of two
distinct generative learning tasks, MAE and Nextclip. The
fundamental factor contributing to the emergence of both
models is the [CLS] token within ViT which serves as
an aggregate representation. While the MAE task inherently
operates at the level of individual patch tokens to reconstruct
masked patches, the utilization of information from the [CLS]
token suffices for Nextclip and MoCo tasks.

The fine-tuning results demonstrate that the proposed mod-
els are achieving new state-of-the-art results on the Chapman
dataset. The primary reason for outperforming other models
lies in the concurrent extraction of generative and contrastive
features with the assistance of the pretrained encoder in the
proposed models.
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