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Abstract

Solving NP-hard problems traditionally relies001
on heuristics, yet manually designing effec-002
tive heuristics for complex problems remains003
a significant challenge. While recent advance-004
ments like FunSearch have shown that large005
language models (LLMs) can be integrated006
into evolutionary algorithms (EAs) for heuris-007
tic design, their potential is hindered by lim-008
itations in balancing exploitation and explo-009
ration. We introduce Quality-Uncertainty Bal-010
anced Evolution (QUBE), a novel approach that011
enhances LLM+EA methods by redefining the012
priority criterion within the FunSearch frame-013
work. QUBE employs the Quality-Uncertainty014
Trade-off Criterion (QUTC), based on our pro-015
posed Uncertainty-Inclusive Quality metric, to016
evaluate and guide the evolutionary process.017
Through extensive experiments on challeng-018
ing NP-complete problems, QUBE demon-019
strates significant performance improvements020
over FunSearch and baseline methods. Our021
code will be made public upon acceptance.022

1 Introduction023

Many mathematical science problems are NP-024

complete, making them extremely challenging to025

solve but easy to evaluate (Romera-Paredes et al.,026

2024). Evolutionary Algorithms (EAs) are widely027

used to optimize heuristics for such problems (Liu028

et al., 2023; Mei et al., 2023). Recently, large029

language models (LLMs) have demonstrated re-030

markable capabilities in code generation (Austin031

et al., 2021; Chen et al., 2021; Li et al., 2023),032

opening up new avenues for hyper-heuristic algo-033

rithms. These methods, termed “LLM+EA" meth-034

ods, leverage LLMs as variation operators within035

EAs, achieving promising results across diverse do-036

mains (Chen et al., 2024; Zheng et al., 2023; Nasir037

et al., 2024; Wang et al., 2024). A notable example038

is FunSearch (Romera-Paredes et al., 2024), which039

discovers high-quality heuristics through approx-040

Figure 1: Experiment results of our method on online
bin packing, the performance is evaluated with “Excess
Ratio" and the lower the better. Our method can steadily
find better heuristics than all baselines.

imately 2.5 million evolutionary steps in a multi- 041

population EA framework. 042

Theoretically, to optimize heuristics in a “func- 043

tion space", a method should excel in two key as- 044

pects: exploitation (deepening search in promis- 045

ing regions) and exploration (broadening search in 046

unknown regions). However, achieving this bal- 047

ance long remains an open challenge (Weng, 2020). 048

Through analysis, we observe that the priority crite- 049

rion behind FunSearch’s evolution process hinders 050

it from exploiting upon current status and perform- 051

ing useful exploration within the function space, 052

resulting its struggle. 053

To address these issues, we propose Quality- 054

Uncertainty Balanced Evolution (QUBE), a novel 055

approach that enhances the heuristic evolution in 056

FunSearch by redefining the priority criterion of 057

the evolutionary process. Central to QUBE is the 058

Quality-Uncertainty Trade-off Criterion (QUTC), 059

which is based on our proposed Uncertainty- 060

Inclusive Quality (UIQ) metric, with inspiration 061

drawn from the Upper Confidence Bound (Lai 062

and Robbins, 1985; Auer, 2002). QUBE is ex- 063

perimented on both standard combinatorial opti- 064

mization problems and complex challenges like the 065

cap set problem. As shown in Figure 1, it shows 066

significant superiority over baseline methods1. 067

1We only show results for online bin packing here, please

1



We summarize our contributions as follows:068

1. We identify that FunSearch’s priority criterion069

limits its search performance, stemming from070

an insufficient balance between exploitation071

and exploration in heuristic evolution.072

2. We propose QUBE, an LLM+EA method that073

employs our propriety criterion QUTC to auto-074

matically balance exploitation and exploration075

throughout the evolutionary process.076

3. Experimental results across multiple NP-077

complete problems demonstrate significant078

improvements: reduction in excess bin usage079

for online bin packing (OBP), enhanced so-080

lution quality for traveling salesman problem081

(TSP), and larger cap set discoveries.082

2 Related Work083

2.1 Heuristics for Math Problems084

Heuristics are typically used to search solutions085

for NP-hard problems such as the Traveling Sales-086

man Problem (TSP) (Liu et al., 2023), online bin087

packing (OBP) (Coffman Jr et al., 1984), cap set088

problem (Grochow, 2019; Tao and Vu, 2006) etc.089

They guide the search direction to find relatively090

good solutions within a reasonable time. While it’s091

hard to hand craft a good heuristic, hyper-heuristics092

algorithms (Burke et al., 2003) like EA can auto-093

matically optimize heuristics from a trivial on (Jia094

et al., 2023; Mei et al., 2023). Since the boost of095

deep learning, various relevant methods have been096

used to assist EA (Bengio et al., 2021; Hudson097

et al., 2022; Hottung et al., 2020).098

2.2 LLM+EA099

The effectiveness of EA heavily relies on the abil-100

ity of variation operators to generate diverse and101

promising new candidates, a process that typically102

demands substantial domain-specific knowledge103

(O’Neill et al., 2010). Recent research has ex-104

plored the integration of EAs with LLM’s genera-105

tive potential, termed LLM+EA methods (Lehman106

et al., 2024). These methods leverage the few-shot107

generation capabilities of LLMs as variation op-108

erators, extending their applications to diverse do-109

mains such as neural architecture search (Chen110

et al., 2024), text-based tasks (Meyerson et al.,111

2023), optimization (Brahmachary et al., 2024),112

and molecular design (Wang et al., 2024).113

Subsequent studies have focused on refining114

LLM+EA methodologies by enhancing prompt-115

refer to Appendix Bfor more results. See Section 5 for experi-
mental details.

ing and generation strategies. For instance, EoH 116

(Liu et al., 2024) introduces five distinct prompts 117

tailored for exploration and modification, moving 118

beyond the single fixed prompt used in earlier ap- 119

proaches. Additionally, EoH suggests that LLMs 120

should first generate a textual description before 121

implementing code. Similarly, ReEvo (Ye et al., 122

2024) incorporates LLM reflection into the process, 123

enabling the model to generate improved samples 124

based on insights derived from historical data. De- 125

spite these advancements, existing LLM+EA meth- 126

ods still face challenges in scalability, efficiency, 127

and their applicability to more complex problems. 128

2.3 FunSearch and Beyond 129

Existing LLM+EA methods have predominantly 130

operated on a limited scale, typically generating 131

fewer than 10,000 samples throughout the evolu- 132

tionary process. These approaches have not yet 133

fully leveraged the generative potential of LLMs 134

or the evolution power of EAs. As a result, their 135

applications have largely been confined to conven- 136

tional combinatorial optimization problems, such 137

as the TSP and OBP, which require relatively few 138

evolutionary steps to yield meaningful results. 139

In contrast, FunSearch (Romera-Paredes et al., 140

2024) represents a significant leap in scaling 141

LLM+EA methods, generating approximately 2.5 142

million samples during its evolutionary process. 143

FunSearch extends beyond theoretical and mathe- 144

matical domains, addressing complex and signif- 145

icant challenges such as the cap set and admis- 146

sible set problems. By significantly scaling up 147

the generation of sample, FunSearch has demon- 148

strated that LLM+EA algorithms can achieve state- 149

of-the-art (SOTA) solutions to exceptionally dif- 150

ficult problems, surpassing the capabilities of all 151

prior LLM+EA methods. 152

3 Thoroughout Examining Exploration 153

and Exploitation in FunSearch 154

In this section, we first provide an overview of 155

FunSearch and elaborate on two important details: 156

parent selection during each evolution step, and 157

island reset that periodically takes place. A prior- 158

ity criterion affects these core details is identified. 159

Then, we define exploitation and exploration in 160

FunSearch and analyze how the priority criterion 161

affects the balance between exploitation and explo- 162

ration. Finally, we empirically show FunSearch’s 163

deficiency in both exploitation and exploration. 164
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Figure 2: Illustration of QUBE. We manipulate the parent selection procedure in FunSearch’s evolution process.
Left: The overall evolution process of our method and FunSearch. Right: At each timestep, FunSearch selects
parents based on the score of each sample. Our method selects parents based on our quality measure, UIQ. The
uncertainty of a sample’s quality is acquired from the number of times it is selected as parents.

3.1 Overview of FunSearch165

FunSearch is an LLM+EA method designed to166

evolve heuristics of some problems, represented167

as Python functions. It employs a frozen LLM168

as a variation operator within an EA framework169

that utilizes multiple populations, or "islands." An170

overview of FunSearch’s evolutionary process is171

illustrated in the left part of Figure 2.172

At each step, a randomly selected island under-173

goes the evolution process. Two parent samples are174

chosen from this island, and the LLM is prompted175

to generate new samples using the parents as few-176

shot examples. These newly generated samples177

are evaluated for performance, and only those178

that execute without Python exceptions or time-179

outs are retained on the island. Periodically, Fun-180

Search resets underperforming islands by deleting181

all their samples and reinitializing them with the182

best-performing sample from a high-performing183

island. Specifically, half of the islands with the184

lowest performance are reset in this manner.185

Central to FunSearch is a priority criterion that186

determines the selection of parent samples and iden-187

tifies islands requiring a reset. FunSearch defines188

this priority criterion as the samples’ scores. Specif-189

ically, the probability of a sample being selected190

as a parent is proportional to the exponential of its191

score. Similarly, an island is reset at each island192

reset interval if its highest-scored sample underper-193

forms at least half of the other islands. The priority194

criterion of FunSearch ensures that the evolutionary195

process prioritizes high-performing samples while196

maintaining some diversity across populations.197

3.2 Exploration and Exploitation in 198

FunSearch 199

The primary objective of FunSearch is to identify 200

high-performance heuristics through iterative sam- 201

pling. To achieve this, the method must effec- 202

tively exploit the known function space by con- 203

tinuously generating new samples with improved 204

performance. However, restricting the search to 205

a limited region of the function space makes it 206

challenging to discover highly effective heuristics. 207

Therefore, in addition to exploiting well-known re- 208

gions, the method must also explore less-explored 209

areas, even if they initially appear unpromising, by 210

generating diverse samples. These two complemen- 211

tary strategies are referred to as exploitation and 212

exploration, respectively. 213

We show how the priority criterion influences 214

the balance between exploitation and exploration, 215

which in turn affects the overall performance of 216

LLM+EA methods such as FunSearch. At each 217

evolutionary step, the priority criterion is used to 218

select two parent samples to guide a frozen LLM 219

sampler in generating new samples. To maximize 220

exploitation, the criterion should prioritize parents 221

likely to produce high-performance offspring. Con- 222

versely, to encourage exploration, it should also 223

consider parents with uncertain outcomes, enabling 224

the discovery of novel regions in the function space. 225

For methods that incorporate island reset mecha- 226

nisms, such as FunSearch, the priority criterion also 227

plays a critical role in determining which islands 228

to reset. Islands that have extensively explored 229

their regions but consistently produce heuristics 230

with relatively low scores should be reset to pri- 231

oritize exploitation. Conversely, islands with low 232
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Figure 3: The “Recent Best Score" of FunSearch ex-
hibits plateaus in later stages, indicating challenges in
effectively exploiting known regions. In contrast, our
method consistently generates higher-scoring samples,
demonstrating superior exploitation capabilities.

performance but incomplete exploration should be233

preserved to encourage further exploration.234

Ultimately, the priority criterion must strike a235

careful balance between exploitation and explo-236

ration, as overemphasis on either strategy can com-237

promise the effectiveness of the other.238

3.3 Quantitative Assessment of Exploration239

and Exploitation240

To quantify exploitation and exploration, we intro-241

duced two evaluation metrics: "Recent Best Score"242

and "Recent Proportion of Change". In practice,243

we set K=500 for both metrics.244

Recent Best Score: It measures the highest score245

among the K most recently generated samples, re-246

flecting the method’s ability to exploit known re-247

gions effectively. A higher "Recent Best Score" in-248

dicates successful exploitation of high-performing249

regions in the function space.250

Recent Proportion of Change: It computes the251

average “proportion of change" observed in cor-252

rect programs across the most recent K samples.253

The “proportion of change" is quantified as the254

token-level edit distance between a generated sam-255

ple and its nearest parent, normalized by the length256

of the sample. This metric indicates exploration,257

as a higher "Recent Proportion of Change" indi-258

cates the generation of novel and diverse samples,259

suggesting the discovery of previously unexplored260

regions in the function space.261

In Figure 3, the "Recent Best Score" of Fun-262

Search is visualized in red. The presence of263

plateaus in the curve indicates slow improvements264

during the later stages of evolution, suggesting that265

Figure 4: FunSearch has a consistently low “Recent
Proportion of Change", reflecting its limited overall ex-
ploration of the function space. In contrast, our method
demonstrates both a broader scope and a more intelli-
gent exploration strategy, enabling more effective dis-
covery of promising regions.
it struggles to effectively exploit known regions. 266

This limitation arises because it uses score priori- 267

tization as the priority criterion during evolution, 268

which does not necessarily correlate with the per- 269

formance of newly generated samples. 270

Furthermore, despite employing techniques such 271

as multi-population evolution, FunSearch’s explo- 272

ration strategy is indiscriminate, as it randomly 273

explores the function space without considering 274

whether the current region is promising. This is 275

evident in Figure 4, where FunSearch’s exploration 276

remains constant and relatively low throughout 277

the evolutionary process. A more intelligent ex- 278

ploration strategy should prioritize regions with a 279

higher likelihood of containing high-scoring sam- 280

ples while reducing exploration in less promising 281

areas. Such a strategy would naturally emphasize 282

exploration in the early stages when most regions 283

remain unexplored, and gradually shift focus to- 284

ward exploitation as fewer promising regions are 285

left undiscovered. This adaptive approach would 286

allow for a better balance, ultimately increasing the 287

likelihood of generating higher-scoring samples. 288

4 Quality-Uncertainty Balanced 289

Evolution of Heuristics 290

To balance exploration and exploitation in hubris- 291

tic evolution, we propose Quality-Uncertainty Bal- 292

anced Evolution (QUBE). In the following, we 293

first outline the overall framework of our method. 294

Next, we introduce our priority criterion Quality- 295

Uncertainty Trade-off Criterion (QUTC), which 296

is based on our proposed Uncertainty-Inclusive 297

Quality (UIQ) for evaluating samples. Finally, we 298
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demonstrate how QUBE integrates QUTC into key299

components of the evolutionary process, including300

parent selection and the island reset procedure.301

4.1 Overall Framework302

At a macro level, the overall structure of our303

method (Figure 2’s left) aligns with that of Fun-304

Search. Both approaches aim to evolve a Python305

function that serves as a heuristic within a search306

algorithm. The performance of each function sam-307

ple c is evaluated deterministically by executing308

the search algorithm on a predefined set of test309

instances, yielding a score s(c). All samples are310

stored in a database D, which consists of n ≥ 1311

islands. Each island I maintains an independent312

population for evolution, with no communication313

between islands except during island resets. Fur-314

thermore, each island is organized into multiple315

clusters. Within a cluster C, program samples316

that yield identical results on all test instances are317

grouped together. Consequently, all samples within318

a cluster share the same score, denoted as s(C), re-319

purposing the function notation for clarity.320

At each evolutionary step, our method randomly321

selects an island I to generate new samples uni-322

formly. Two parent samples are chosen from I323

using our priority criterion, QUTC. These parent324

samples are then provided as few-shot examples325

to the LLM, which generates new samples. After326

evaluation, the newly generated samples are stored327

back into the same island I. Periodically, after ev-328

ery Treset sample generation, our method identifies329

and resets half of the underperforming islands with330

same procedure as FunSearch. This reset mecha-331

nism ensures a balance between exploration and ex-332

ploitation by revitalizing underperforming regions333

of the search space.334

4.2 Quality-Uncertainty Trade-off Criterion335

To effectively balance exploitation and exploration,336

our priority criterion QUTC must identify sam-337

ples that offer evolutionary advantages, specifically338

those likely to produce high scores in newly gener-339

ated samples, while also considering less-explored340

regions of the search space, represented by samples341

that have been visited less frequently. In practice,342

we observed significant similarity among samples343

within the same cluster. Thus, QUTC prioritizes344

clusters as a whole rather than individual samples,345

ensuring a more efficient and scalable approach to346

guiding the evolutionary process.347

We first introduce UIQ, the metric we used to348

assess the quality of samples within a cluster. At 349

each timestep t, we compute for each cluster C the 350

mean score of all offspring generated using samples 351

from C as parents. This is formally expressed as: 352

Qt(C) =
1∑

c∈C
|Pc,t|

∑
c∈C

∑
a∈Pc,t

s(a) (1) 353

where Pc,t is a collection of all samples generated 354

with c as a parent before timestep t. Qt(C) esti- 355

mates the expected performance of offspring pro- 356

duced by samples in C, enabling the identification 357

of clusters that exhibit evolutionary advantages. 358

Inspired by Upper Confidence Bound (UCB), 359

we incorporate uncertainty into Qt(C), resulting in 360

UIQ. Let Nt(C) be the number of times samples 361

in cluster C are used as parents before timestep t. 362

We define UIQ as: 363

Q̃t(C) = Qt(C) + k

√
ln t

Nt(C)
(2) 364

where k is a hyperparameter. 365

As evident from its formulation, UIQ combines 366

an estimate of a cluster’s evolutionary quality with 367

the uncertainty of that estimate. Thus QUTC 368

can automatically balance the exploitation of high- 369

performing regions and the exploration of less- 370

explored promising areas in the search space by 371

prioritizing clusters with higher UIQ values. 372

4.3 Quality-Uncertainty Balanced Evolution 373

Our method QUBE incorporates QUTC into the 374

parent selection at each evolution step and the eval- 375

uation of islands at each island reset. 376

As illustrated in the right part of Figure 2. After 377

an island I is selected to evolve new samples at 378

each timestep t, we identify 2 clusters in I with 379

the highest UIQ according to QUTC. We select 380

one sample per cluster to serve as parents for this 381

step. Specifically, let lc be the length of sam- 382

ple c measured by the number of characters, and 383

l̃c = maxa∈C{la}−lc
mina∈C{la}+1e−6 . The probability of chosen 384

c within a cluster is proportionate to exp( l̃c
Tprog

), 385

where Tprog > 0 is a hyperparameter. 386

At each island reset interval, we evaluate the 387

quality of each island using the cluster with the 388

highest UIQ within that island. Islands whose high- 389

est UIQ falls below the median among all islands 390

are selected for reset. For each reset island, reini- 391

tialization is performed by selecting a random sam- 392

ple from the best cluster of a randomly chosen 393

remaining island, ensuring a promising restart for 394

further evolution. 395
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5 Experiments396

5.1 Implementation Details397

We implement an asynchronous system on a single398

server with 8 NVIDIA A100 GPUs and 2 Intel(R)399

Xeon(R) Platinum 8358 CPUs. On each GPU, an400

LLM inference service is set up locally using the401

SGLang (Zheng et al., 2024) framework. This402

segregates LLM inference from the entire system,403

maximizing the advantages of asynchronous con-404

currency. We use OpenCoder-8B-Instruct (Huang405

et al., 2024) throughout our experiment, while also406

experiment with Deepseek-coder (Guo et al., 2024)407

to ablate the influence of LLM. We provide our408

prompt for LLM in Appendix F.409

The remaining components of our implementa-410

tion operate in parallel through multiprocessing.411

The database is shared and accessible to all pro-412

cesses. Our samplers iteratively retrieve parent413

samples (examples) from the database and submit414

requests to the backend LLM services. Upon the415

generation of new samples, evaluators are called by416

the samplers to assess these samples before their417

storage in the database. Other hyperparameter set-418

tings are shown in Table 4 in Appendix. Note for419

TSP, a very small amount of sample is required420

to get relatively good result. Thus we use only 1421

island and removed the island reset for TSP.422

5.2 Experiment problems423

We assessed the performance of our method on424

three NP-complete problems:425

Online Bin Packing: We focus on its online sce-426

nario, where each item is packed as it arrives. We427

conduct experiments on the OR-Library (Beasley,428

1990), which comprises four datasets of online bin429

packing instances (OR1 to OR4). We also tested430

our method on generated instances from Weibull431

distribution. Identical to FunSearch (Romera-432

Paredes et al., 2024), our method evolves the heuris-433

tics within a local-search algorithm. We evaluate434

the methods using the fraction of excess bins used435

over the L2 lower bound (Martello and Toth, 1990)436

of the optimal offline bin packing solution, a metric437

we refer to as the “excess ratio".438

Cap Set: The cap set problem finds the largest “cap439

set", which is a set of vectors in Zn
3 such that the440

sum of any three vectors is not zero. As with Fun-441

Search (Romera-Paredes et al., 2024), our method442

evolves a priority function that assigns a rank to443

each vector in Zn
3 , which guides a greedy construc-444

tion of cap sets. We carry out experiments for445

n = 8, and use the size of the largest cap sets446

found as performance. 447

Traveling Salesman Problem: TSP is a combina- 448

torial optimization problem, which finds shortest 449

routes that visit all given locations once and re- 450

turn to the starting point. We experimented with 451

our method on 3 settings, namely TSP20, TSP50 452

and TSP100, following previous works (Kool et al., 453

2018; Liu et al., 2024). Identical to (Liu et al., 454

2024), our method is used to evolve the objective 455

function in the perturbation stage of a guided local 456

search algorithm (Voudouris et al., 2010). The rela- 457

tive distance between the acquired solution and the 458

optimal solution calculated by Concorde 2 is used 459

to assess the performance of each method, which 460

we also termed as “excess ratio". 461

Each experiment is run 10 times, and the best 462

result among all is reported unless otherwise speci- 463

fied. In the ablation study, we include the average 464

performance as well as the standard deviation to 465

examine if the results are robust. Please refer to 466

Appendix A.1 for more details on how the data for 467

each problem are generated. The code specification 468

of each task is available at Appendix D. 469

5.3 Baselines 470

We compared our method with extensive baselines, 471

including: (1) FunSearch: For comparison, we use 472

directly the performance on online bin packing and 473

cap set reported in FunSearch (Romera-Paredes 474

et al., 2024). Since we are not using the same LLM 475

and hardware compared with FunSearch (Romera- 476

Paredes et al., 2024), we reproduced the FunSearch 477

method on our GPU server according to our im- 478

plementation details, denoted as FunSearch*. (2) 479

EoH: For online Bin Packing and TSP, we also 480

compared the result of our method with the result 481

of EoH (Liu et al., 2024; Zhang et al., 2024). 482

5.4 Main Results 483

In Table 1, we report the performance of the best 484

heuristics acquired by each method. Our method 485

significantly outperforms all baseline methods in 486

all datasets of OBP. The fraction of excess bins 487

cost by our methods is 9.36% ∼ 41.73% lower 488

than “FunSearch*" and 10.98% ∼ 42.44% lower 489

compared with results reported in FunSearch on 490

OR datasets. Despite the high performance of base- 491

line methods on generated Weibull distribution in- 492

stances, our method can still outperform baseline 493

methods. For TSP, even though all methods are 494

very close to the optimal solution, our method still 495

2https://www.math.uwaterloo.ca/tsp/concorde.html
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Online Bin Packing (↓) Cap Set (↑) TSP (↓)
OR1 OR2 OR3 OR4 Weibull 1k Weibull 5k Weibull 10k n=8 TSP20 TSP50 TSP100

Ours 4.06% 3.73% 1.79% 1.75% 1.54% 0.41% 0.29% 480 0.000% 0.000% 0.023%
FunSearch* 4.48% 4.07% 3.02% 2.06% 1.99% 0.55% 0.31% 464 0.000% 0.000% 0.029%
FunSearch 5.30% 4.19% 3.11% 2.47% - 0.68% 0.32% 512 - - -
EoH - - - - 2.24% 0.80% 0.61% - 0.000% 0.000% 0.025%

Table 1: Main experiment results on each task. The best result for each setting is in bold. Our method outperforms
"FunSearch*", our reproduction of FunSearch on all problems, and is better than FunSearch on online bin packing
as well as EoH on TSP.

performs better than other baseline methods, with496

the gap with the optimal route 20.69% smaller than497

“FunSearch*" and 8.00% than EoH. Both result498

demonstrates the quality of heuristics acquired us-499

ing our method, with non-trivial performance im-500

provement in these tasks despite already high per-501

forming baselines.502

Our method outperforms “FunSearch*" in the503

cap sets problem, where we find a cap set that is504

greater than “FunSearch*" by 16 for n=8. Although505

we are not able to surpass the performance reported506

in FunSearch (Romera-Paredes et al., 2024), we ar-507

gue it’s too hard to reproduce their results due to508

the extremely high time and computational cost of509

a complete cap set experiment, making it impos-510

sible for us to run as many times as FunSearch 3.511

Yet, our method can find larger cap sets than “Fun-512

Search*". We believe it is sufficient to demonstrate513

the superiority of our method even on extremely514

difficult tasks against baseline methods.515

5.5 Discussion516

Since the performance of the best run might be517

influenced by randomness, we carry out some ex-518

periments to prove the performance gain is due to519

our method’s efficacy in both exploitation and ex-520

ploration. We use the OR library of OBP as the521

target problem in this section.522

In Figure 5, we show the performance progress523

of our method compared with “FunSearch*", our524

replica of FunSearch, as only the final score is525

available for the original FunSearch. The solid526

lines represent the average progress of each method,527

with the shaded regions indicating the range from528

the best to the worst run. On average, our method529

(blue) outperforms both FunSearch (dashed black)530

and FunSearch* (red) at an early stage.531

As shown in Figure 3, the “Recent Best Score"532

3Running a cap set experiment requires generating and
evaluating 2.5 million programs, it takes more than 3 days on
our GPU server. As stated in (Romera-Paredes et al., 2024):
among 140 experiments they ran on cap set problem with n=8,
less than 5% yield cap set larger than 480. It is extremely com-
putationally heavy to try to reproduce the result they reported.

Figure 5: Performance progress on online bin packing.
The solid line shows the average score among 10 exper-
iments at each timestep. The shadow shows the range
of best and worst experiments. FunSearch is shown in
dash line since only a final score is available.

of our method consistently surpasses that of “Fun- 533

Search*". Our method demonstrates significant 534

performance improvements even in later stages, 535

whereas “FunSearch*" encounters plateaus. This 536

indicates that our method can steadily exploit the 537

current state to achieve further gains, while Fun- 538

Search struggles to do so. We attribute this advan- 539

tage to our priority criterion, which aligns more 540

closely with the goal of exploitation. 541

In Figure 4, we present the “Recent Proportion 542

of Change" for both “FunSearch*" and our method. 543

The new samples generated by our method con- 544

sistently exhibit lower similarity to their parents 545

compared to those of FunSearch, indicating that 546

our method explores a broader region of the func- 547

tion space overall. Furthermore, our method gradu- 548

ally reduces exploration over time, allowing more 549

opportunities for exploitation, consistent with our 550

analysis in Section 3.3. In contrast, FunSearch 551

demonstrates relatively low and indiscriminate ex- 552

ploration, which is less effective. 553

At the same time, the pace of improvement of 554

the best sample’s score in our method is higher than 555

the baseline, with a relatively significant increase 556

in the later stages. This suggests that our method 557
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Parent UIIS Best Avgstd

Ours Q̃p(C, t) True 1.79% 2.76%0.0016

Parent Selection Only Q̃p(C, t) False 2.65% 2.89%0.0018

Quality Only Qt(C) False 2.74% 2.98%0.0012

FunSearch* s(C) False 3.02% 3.07%0.0008

Table 2: Ablation of our method on online bin packing
OR3. “Best” stands for the smallest excess rate acquired
among 10 runs. “Avgstd" stands for the average score,
with standard deviation shown as the suffix.

can balance exploitation and exploration, which in558

all leads to stable performance improvements, and559

eventually outperforms baselines in the long term.560

5.6 Ablation Study561

We carried out an ablation study to provide a deeper562

understanding of QUBE. Experiments are carried563

on the OR3 dataset of OBP. Unless otherwise spec-564

ified, all methods (variants) share the same imple-565

mentation as Section 5.1. Several variants of our566

method experimented with are:567

Parent Selection Only: “Parent Selection Only"568

adopts the same parent selection as our method,569

with clusters with top-2 Q̃t(C) are chosen for par-570

ents at each timestep. Its island reset strategy is the571

same as FunSearch.572

Quality Only: “Quality Only" selects clusters with573

top-2 Qt(C) for parents at each timestep. This mea-574

sure of sample quality does not involve uncertainty.575

Its island reset strategy is the same as FunSearch.576

We report the best as well as average excess rate577

(along with standard deviation) among 10 runs for578

each variant in Table 2.579

The performance gap between “FunSearch*"580

and "Quality Only" showcases the importance of581

using Qt(C) instead of s(C) as the evaluation of582

the sample’s quality. The reason behind this result583

is that Qt(C) is an unbiased estimate of the ex-584

pected outcome with offspring samples in C serv-585

ing as parents, while s(C) is not despite being more586

intuitively straightforward. This leads to better ex-587

ploitation of our method than FunSearch.588

Comparing the results of “Quality Only" and589

“Parent Selection Only", we see further perfor-590

mance gains. The integration of uncertainty into591

UIQ allows samples within rarely chosen clusters592

to be selected as parents. This allows our method593

to explore areas in the “function spaces" that may594

evolve better samples despite not seeming promis-595

ing at present. Therefore, our method automatically596

balances between exploration and exploitation and597

eventually benefits the long-term performance.598

LLM Method Best Run Avgstd

OpenCoder
FunSearch* 3.02% 3.07%0.0008

Ours 1.79% 2.76%0.0016

Deepseek
FunSearch* 3.09% 3.19%0.0011

Ours 2.69% 2.89%0.0017

Table 3: Different LLM’s result on online bin packing
OR3. Our method steadily performs better than Fun-
Search, regardless of alternations in LLM.

Furthermore, our island reset procedure resets 599

islands that are unlikely to evolve high-score pro- 600

grams, in contrast to FunSearch that reset islands 601

that have relatively low score at present. Our 602

method keeps islands with the potential of evolving 603

better samples, while FunSearch is short-sighted. 604

The performance difference between “Ours" and 605

“Parent Selection Only" provides evidence of the 606

rationality of our island reset procedure. 607

5.7 Choice of LLMs 608

To check if the performance gain from our method 609

is invariant to unrelated conditions like LLM, we 610

carry out experiment on OR3 dataset of OBP. Apart 611

from OpenCoder-8b-Instruct (Huang et al., 2024) 612

used in experiments before, we select another LLM 613

with a smaller size and possibly lower code gen- 614

eration performance namely Deepseek-coder-6.7b 615

(Guo et al., 2024). We show results in Table 3. 616

The result shows that our method always leads 617

to better performance than FunSearch, even when 618

a LLM with poor performance is used. which jus- 619

tifies it as model agnostic. Moreover, the result 620

acquired from OpenCoder is always better than 621

Deepseek-coder, which is a weaker LLM in com- 622

parison. Such results suggest that utilizing larger or 623

better LLMs, even better results on hard problems 624

like cap set may be possible. 625

6 Conclusion 626

In this paper, we studied FunSearch, a type of 627

LLM+EA method that optimizes heuristics through 628

evolution. We discovered that it has significant 629

drawbacks: not doing well in either exploitation 630

or exploration. Inspired by UCB, we propose our 631

method QUBE that can address this issue. Experi- 632

ment results demonstrate that our method steadily 633

outperforms baseline methods, regardless of the 634

task or unrelated conditions like specific LLM. We 635

are optimistic that, boosted by our method, Fun- 636

Search can fully utilize LLM’s potential and further 637

be able to solve more complex problems in an even 638

wider range of fields. 639
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7 Limitations640

Despite making non-trivial improvements on com-641

binatorial optimization problems like online bin642

packing and TSP, our method fails to outperform643

heuristics searched by FunSearch (Romera-Paredes644

et al., 2024) on the cap set problems. Although645

this may potentially diminish the superiority of our646

method on large-scale complex problems, we have647

made every effort to demonstrate the advantage648

of our method over “FunSearch*" on the cap set649

problem under comparable settings. The perfor-650

mance of the best heuristics discovered is related651

to the choice of LLM, the number of samples gen-652

erated and some random factors. Besides, to the653

best of our knowledge, no research work has ever654

surpassed or even tested the result of FunSearch655

(Romera-Paredes et al., 2024) in the cap set prob-656

lem due to its extremely high computation require-657

ments. We see this as an opportunity to further658

extend the capability and efficiency of LLM+EA659

methods.660

Moreover, our method as well as FunSearch, re-661

quires generating codes using LLMs and running662

these codes on some devices. This might be dan-663

gerous, since the code generated by LLM may be664

unpredictable and hard to explain. In our experi-665

ment, we observed codes generated by LLM trying666

to modify (write and read) local files. We tried our667

best to overcome this risk in our experiments by668

restricting permission to access local disk, running669

codes in safe namespaces, etc.670
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A More Experiment Details826

A.1 Construction of Data827

We list further details of our experiments here.828

For OR datasets of online bin packing, we di-829

rectly run our method and baseline methods on830

the test instances of each subset (OR1 ∼ OR4).831

The offline lower bound for each instance in these832

datasets is available, and the excess ratio for each833

subset is calculated directly using the sum of all834

used bins and the sum of all lower bounds of all835

instances.836

For Weibull datasets of online bin packing, we837

generate 5 test instances for each setting follow-838

ing settings in (Romera-Paredes et al., 2024), with839

1k, 5k, 10k items each for Weibull1k, Weibull5k,840

Weibull10k respectively. Each bin’s capacity is841

set to 100. The size of each item is sampled842

from Weibull(45, 3) distribution, clipped to 0∼100,843

and finally rounded to an integer between 1 and844

100. The offline lower bound for each instance in845

Weibull datasets is calculated following (Martello846

and Toth, 1990).847

The input for the cap set problem is simply the848

number of dimensions n. Since the cap set problem849

is already solved for n ≤ 6, we experimented with850

n = 8. Our method generates a heuristic within a851

guided greedy construction of cap set. Each heuris-852

tic can be evaluated through the size of the cap set853

found using itself.854

The test instances for TSP are generated follow-855

ing the same setting as previous works (Kool et al.,856

2018; Liu et al., 2024). For each setting (TSP20,857

TSP50, TSP100) 1000 test instances are generated,858

each with 20, 50, or 100 locations randomly initial-859

ized from [0, 1]2, respectively.860

A.2 Hyperparameter Setting861

Apart from implementation details mentioned in862

Section 5.1, we list the hyperparameter settings in863

Table 4. One hyperparameter, specifically k used864

in Equation 2 for UIQ, is searched for the optimal865

value since it influences the overall performance866

significantly. We show the results in Appendix C.867

The values of other hyperparameters are either iden-868

tical to FunSearch (Romera-Paredes et al., 2024) or869

carefully chosen to ensure the results are suitable870

for our implementation and hardware while also871

comparable among baselines.872

Figure 6: More experiment results on cap set n=8 and
TSP100. For TSP a smaller excess ratio is better, while
for cap set a larger found set size is better.Our method
still shows superiority over baseline methods.

B More Results for Figure 1 873

In Figure 1 of Section 1, we only show experiment 874

results on online bin packing. We plot more ex- 875

periment results in Figure 6. Our method finds a 876

larger cap set than “FunSearch*" and outperforms 877

all baseline methods on TSP100. Since the result 878

on TSP20 and TSP50 is all 0 for all method, which 879

is equal to the theoretical best, we are not showing 880

them in plots. 881

C Hyperparameter Search Results 882

The value for the hyperparameters used in our 883

method, namely UIQ’s hyperparameter k, is 884

searched. To search the best value for k, we run 885

experiments on “UIQ-only" method as described 886

in Section 5.6. Apart from the cap set problem, 887

each setting is run 10 times to calculate the average 888

performance. 889

For OR dataset of OBP, we investigated that the 890

appropriate value for k should be between 0.01 891

to 0.0001 so as to balance the quality term and 892

uncertainty term well. Experiments are run on 893

OR3 dataset. We provide experiment results for k 894

in Table 5. 895

For Weibull dataset of OBP, we investigated that 896

the appropriate value for k should be between 0.001 897

to 0.00001 so as to balance the quality term and 898

uncertainty term well. Experiments are run on 899

Weibull5k dataset. We provide experiment results 900

for k in Table 6. 901

Similarly, for cap set problem, we experimented 902

kr within the range of 16 to 64. Since it cost heav- 903

ily to run cap set experiments, we only run 5 runs 904

for each setting and show the results in Table ??. 905

11



Hyperparameter OBP Cap Set TSP
OR Weibull

LLM Samplers Number of samplers 16 16 16 16
LLM nucleus sampling p 0.95 0.95 0.95 0.95
LLM sampling temperature t 1.0 1.0 1.0 1.0
Samples generated per prompt: ns 4 4 4 1
Total number of samples 80K 80k 2M 2K

Evaluators Number of evaluators 50 50 50 50
Timeout limit (in seconds) 30 60 90 90

DataBase Number of islands: n 10 10 10 1
UIQ hyperparameter for uncertainty: k 0.0008 0.0001 32.0 10−5

Island reset interval: Treset 32,768 32,768 262,144 -
Temperature for choosing sample: Tprog 1.0 1.0 1.0 1.0

Table 4: Implementation details for our method as well as baseline methods.

D Code Specification for Each Task906

In this section, we show the code specifications for907

each task. The function decorated with “@evolu-908

tion" is evolved in experiments and the score of909

each function can be acquired by running the func-910

tion decorated with “@run" on each test instance.911

For online bin packing, the code specification912

k Best Run Avg
0.01 2.87% 2.97%
0.008 2.84% 3.05%
0.004 2.97% 3.03%
0.002 2.89% 3.12%
0.001 2.74% 2.86%
0.0008 2.59% 2.79%
0.0004 2.72% 2.84%
0.0002 2.68% 2.82%
0.0001 2.70% 2.89%

Table 5: Hyperparameter search result for k on OR3
online bin packing. The optimal k is 0.0008.

k Best Run Avg
0.001 1.73% 1.86%
0.0008 1.65% 1.90%
0.0004 1.67% 1.83%
0.0002 1.62% 1.75%
0.0001 1.54% 1.72%

0.00008 1.59% 1.79%
0.00004 1.64% 1.82%
0.00002 1.60% 1.78%
0.00001 1.70% 1.88%

Table 6: Hyperparameter search result for k on
Weibull5k online bin packing. The optimal k is 0.0001.

k Best Run Avg
16 464 452.8
32 464 464
48 464 451.2
64 448 448

Table 7: Hyperparameter search result for k on cap set
n=8. We use UIQ-only for experiment. The optimal
value is 32.

is shown in Table 8. For the cap set problem the 913

code specification is shown in Table 9. For TSP, 914

the code specification is shown in Table 10. 915

E Best Heuristics Discovered 916

We show the best heuristics discovered by our 917

method for each task here. The whole part of the 918

function LLM samplers outputs are shown without 919

any modification, which is why some part of the 920

answers might sound nonsense. 921

For online bin packing OR1 the best heuristic 922

discovered is shown in Table 11. For OR2, the best 923

heuristic is shown in Table 12. For OR3, the best 924

heuristic is shown in Table 13. For OR4, the best 925

heuristic is shown in Table 14. 926

For cap set n=8, our best heuristic finds a cap 927

set of 480 vectors. The corresponding heuristic is 928

shown in Table 15. 929

F LLM Prompts 930

We write task-specific natural instructions for LLM 931

samplers in MarkDown style, since the LLM we 932

choose is capable of understanding and generating 933

in MarkDown style. In all prompts shown below, 934

“{Parent1}" and “{Parent2}" are replaced with two 935
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import os
import numpy as np

class BinPackProblem:
def __init__(self , id, capacity , n_items , best_answer , items):

self.id = id
self.capacity = capacity
self.n_items = n_items
self.best_answer = best_answer
self.items = np.array(items)
assert len(items) == n_items
bins = [capacity] * n_items
self.bins = np.array(bins)

def get_valid_bin_indices(item , bins: np.ndarray) -> np.ndarray:
return np.nonzero ((bins - item) >= 0)[0]

def online_binpack(items: tuple[float , ...], bins: np.ndarray) -> tuple[list[list[
float , ...], ...], np.ndarray]:

packing = [[] for _ in bins]
for item in items:

valid_bin_indices = get_valid_bin_indices(item , bins)
priorities = priority(item , bins[valid_bin_indices])
best_bin = valid_bin_indices[np.argmax(priorities)]
bins[best_bin] -= item
packing[best_bin].append(item)

packing = [bin_items for bin_items in packing if bin_items]
return packing , bins

@run
def evaluate_binpack(problem):

items = problem.items
bins = problem.bins
best_answer = problem.best_answer
capacity = problem.capacity
_, bins_packed = online_binpack(items , bins)
solved_answer = (bins_packed != capacity).sum()
cnt = best_answer - solved_answer
ratio = cnt / best_answer
return ratio

@evolution
def priority(item: float , bins: np.ndarray) -> np.ndarray:

# Returns the priority with which we want to add ’item’ to the bins
return 0.0

Table 8: Code specification for online bin packing.

13



""" Finds large cap sets."""
import itertools
import numpy as np

def solve(n: int) -> np.ndarray:
""" Returns a large cap set in ‘n‘ dimensions."""
all_vectors = np.array(list(itertools.product ((0, 1, 2), repeat=n)), dtype=np.

int32)
# Powers in decreasing order for compatibility with ‘itertools.product ‘, so
# that the relationship ‘i = all_vectors[i] @ powers ‘ holds for all ‘i‘.
powers = 3 ** np.arange(n - 1, -1, -1)
# Precompute all priorities.
priorities = np.array([priority(tuple(vector), n) for vector in all_vectors])
# Build ‘capset ‘ greedily , using priorities for prioritization.
capset = np.empty(shape=(0, n), dtype=np.int32)
while np.any(priorities != -np.inf):

# Add a vector with maximum priority to ‘capset ‘, and set priorities of
# invalidated vectors to ‘-inf ‘, so that they never get selected.
max_index = np.argmax(priorities)
vector = all_vectors[None , max_index] # [1, n]
blocking = np.einsum(’cn,n->c’, (- capset - vector) % 3, powers) # [C]
priorities[blocking] = -np.inf
priorities[max_index] = -np.inf
capset = np.concatenate([capset , vector], axis=0)

return capset

@run
def evaluate(n: int) -> int:

""" Returns the size of an ‘n‘-dimensional cap set."""
capset = solve(n)
return len(capset)

@evolution
def priority(element: tuple[int , ...], n: int) -> float:

""" Returns the priority with which we want to add ‘element ‘ to the cap set."""
return 0.0

Table 9: Code specification for cap set problem.
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import numpy as np
import random
import math

def euclidean_distance(city1 , city2):
return math.sqrt((city1[0] - city2[0])**2 + (city1[1] - city2[1])**2)

def calculate_total_distance(route , distance_matrix):
return sum(distance_matrix[route[i]][route[i+1]] for i in range(len(route)-1)) +

distance_matrix[route[-1]][route[0]]

def two_opt(route , distance_matrix):
best_route = route.copy()
improved = True
while improved:

improved = False
for i in range(1, len(route)-2):

for j in range(i+1, len(route)):
if j-i == 1: continue
new_route = route[:i] + route[i:j][::-1] + route[j:]
if calculate_total_distance(new_route , distance_matrix) <

calculate_total_distance(
best_route ,
distance_matrix):

best_route = new_route
improved = True

route = best_route
return best_route

@run
def guided_local_search(cities , max_iterations=100 , alpha=0.1):

num_cities = len(cities)
distance_matrix = np.zeros((num_cities , num_cities))
for i in range(num_cities):

for j in range(i+1, num_cities):
distance_matrix[i][j] = distance_matrix[j][i] = euclidean_distance(

cities[i], cities[j])
init_distance_matrix=copy.deepcopy(distance_matrix)
# Initialize route
route = list(range(num_cities))
best_route=route
# Initialize penalties
penalties = np.zeros((num_cities , num_cities))
for iteration in range(max_iterations):

# Local search with 2-opt
route = two_opt(route , distance_matrix)
# Update route
if calculate_total_distance(route , init_distance_matrix) <

calculate_total_distance(
best_route ,init_distance_matrix):

best_route=route
# Evolve distance_matrix
distance_matrix=distance_matrix+update_dist(distance_matrix ,best_route)

return best_route , calculate_total_distance(best_route , init_distance_matrix)

@evolution
def update_dist(distance_matrix , current_route):

’’’ calculates an update to current distance matrix. ’’’
return np.zeros_like(distance_matrix)

Table 10: Code specification for TSP.
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def priority(item: float , bins: np.ndarray) -> np.ndarray:
penalty_factor_v3 = 0.7

D_item_val , C_int_fit , B_valid_region , a_of_K2_val = 4.5, 3.5, 2.6, 4.7

item_weight = item / 4650

scores = np.zeros(len(bins))

K_values = np.array([0.28, 0.31, 0.35])

B_values = np.array([0.15, 0.3, 0.25])

b_weights = np.array([2750/4650 , 2950/4650 , 3050/4650 , 3150/4650])

for index , bin_num in enumerate(bins):
quantity_1D = index * bin_num
calc_2D_quantity = bin_num * bin_num

if index <= 3400:
b_weight = b_weights[0]

elif index<=3800:
b_weight = b_weights[1]

else:
b_weight = b_weights[3]

P_item = (index * b_weight) * (quantity_1D / calc_2D_quantity)

# Further improvements here.

improved_P_item = P_item * (index ** 52) * (item_weight ** 67) * (index **2.5) * (
item_weight **4.0) * (index **3.4) * (
item_weight **3.2) * (index **3.0) * (
item_weight **3.3)

valid_region = abs(quantity_1D / calc_2D_quantity - 1)

if index <= 3000:
K = (K_values[0] * penalty_factor_v3) + ((1 - penalty_factor_v3) * K_values[1]

)
elif index<=3800:

K = K_values[1]
else:

K = K_values[2]

if index <= 3500:
B_val = (B_values[0] * penalty_factor_v3) + ((1 - penalty_factor_v3) *

B_values[1])
elif index<=3800:

B_val = B_values[1]
else:

B_val = B_values[2]

intersection_fit = ((index * item_weight / (abs(bin_num - item)))** 42) * K *
2400000

improved_D_item_val = D_item_val * ((bins[index]/item) ** 2.8) * (1.0 + index /
95000)

improved_C_int_fit = C_int_fit * (95 / (index+6))
improved_B_valid_region = B_val + (1-B_val) * (valid_region **2.5)
improved_a_of_K2_val = a_of_K2_val / (1 + index / 95000)

P_final = improved_D_item_val * (( improved_P_item + C_int_fit * intersection_fit
) / (improved_B_valid_region * (
improved_a_of_K2_val + valid_region)))

scores[index] = P_final

return scores

Table 11: The best heuristic searched by our method for OR1 online bin packing.
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def priority(item: float , bins: np.ndarray) -> np.ndarray:
bins_difference = np.abs(bins - item)

low_threshold , high_threshold = 8, 23
diff_mid = (high_threshold + low_threshold) / 2

p_vect4 = np.where(bins_difference <= low_threshold , bins_difference * (-1) * 22,
np.where(bins_difference <= diff_mid , bins_difference * (-1) * 34,
np.where(bins_difference <= high_threshold , bins_difference * (-1)

* 46, bins_difference *
(-1) * 2)))

p_vect4[np.abs(bins_difference) <= high_threshold / 2] += 35
p_vect4[np.abs(bins_difference) <= diff_mid] += 50
p_vect4[np.abs(bins_difference) <= low_threshold + high_threshold / 2] += 64

for i, val in enumerate(bins_difference):
if val <= 25:

bins_difference[i] = bins_difference[i] * (i + 1) * 72
else:

break

if np.any(np.abs(np.where(bins_difference <= 25, bins_difference * (-1) * 100 ,
bins_difference * (-1) * 13)) <= 150):

p_vect4[np.abs(np.where(bins_difference <= 25, bins_difference * (-1) * 95,
bins_difference * (-1) * 13)) <= 150]
+= 42

best_global = sorted(p_vect4)
best_three_values = best_global[0:3]
worst_bin_index = np.where(p_vect4 == max(best_three_values))[0][0]

if worst_bin_index < len(p_vect4):
p_vect4[worst_bin_index] = min(p_vect4) * 0.98

return p_vect4

Table 12: The best heuristic searched by our method for OR2 online bin packing.
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def priority(item: float , bins: np.ndarray) -> np.ndarray:
probabilities = np.zeros(len(bins), dtype=float)

for i in range(len(bins)):
current_bin_space = bins[i]

if item <= current_bin_space:
remainingSpaceFactor = current_bin_space / (current_bin_space + item)
enhanced_load_factor = item/current_bin_space

# Improved estimation formula: f(x) = a * x ** p * exp(x)

"""
Non -uniform impact approach based on the load intensity:
Enhance the evaluated importance of loading by approaching loader -bins

outcomes.
"""
additional_impact_factor = 0.00

if enhanced_load_factor < 0.95:
modified_priority = (0.99 * (( remainingSpaceFactor / (1 -

enhanced_load_factor)) - 2.55 +
additional_impact_factor) * 1500 -
95 / (remainingSpaceFactor ** 1.

25)) * (130 + 0.0095 * i) * np.exp
(-i * 0.022)

elif enhanced_load_factor < 0.99:
modified_priority = (1.00 * (( remainingSpaceFactor / (1 -

enhanced_load_factor)) - 2.45 +
additional_impact_factor) * 1600 -
45 / (remainingSpaceFactor ** 1.

30)) * (140 + 0.0105 * i) * np.exp
(-i * 0.022)

else:
modified_priority = (1.01 * (( remainingSpaceFactor / (1 -

enhanced_load_factor)) - 2.35 +
additional_impact_factor) * 1700 -
35 / (remainingSpaceFactor ** 1.

35)) * (160 + 0.0115 * i) * np.exp
(-i * 0.023)

# Added/displaced non -uniform interpolated/smooth kernel -duty system aspects

modified_priority -= 500 + 70 * np.cos(enhanced_load_factor + 0.07) + 600 * np
.tanh(2.84 * (enhanced_load_factor -
0.93)) + 80 * np.cos(2 * i / len(

bins)) + 880 * np.sin(2 * i / len(
bins))

# Adjust differently for injected non -trivial items using maximum performance
complexity system

modified_priority -= 35 * (1-enhanced_load_factor) ** 0.98

# Insert updated , optimized weights for different scenarios

probabilities[i] = modified_priority

return probabilities

Table 13: The best heuristic searched by our method for OR3 online bin packing.
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def priority(item: float , bins: np.ndarray) -> np.ndarray:
def improved_prior_func(_value):

if _value < item / 9:
if bins.size > 700:

return 260 **(35 * item / 350 - 2.5 * _value)
elif bins.size > 350:

return 140 **(30 * item / 350 - 1 * _value)
else:

return 140 **(50 * item / 350 - 2.5 * _value) # Colocalization

elif _value < item / 5:
if bins.size > 700:

return 180 **(35 * item / 350 - 1 * _value)
elif bins.size > 350:

return 110 **(40 * item / 350 - 0.5 * _value) #Quorum sensing
else:

return 140 **(40 * item / 350 - 0.6 * _value) # Quorum sound BiellLIF

elif _value < item:
if bins.size > 700:

return 95 * item /(145 + item)
elif bins.size > 350:

return 80 * item /(125 + item)
else:

return 80 * item /(130 + item) #Rotulina colleague asymmetrically
restructuring translators
replication achieved in cell -
process

else:
if bins.size > 700:

return 105 * item /(130 + item)
elif bins.size > 350:

return 95 * item /(120 + item)
else:

return 95 * item /(110 + item) #Biulation sncRNA oscillations

return np.vectorize(improved_prior_func)(bins - item)

Table 14: The best heuristic searched by our method for OR4 online bin packing.
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def solve(n: int) -> np.ndarray:
score = np.sum(element) * 220.00 * 3.0
zeros = [idx for idx , val in enumerate(element) if val == 0]
# If there are at least two zeros.
if len(zeros) >= 2:

score = np.abs(np.sum(zeros)) * 230.00 * 2400.0
# If there are at least three zeros.
if len(zeros) >= 3:

d = np.array(zeros)[1:] - np.array(zeros)[:-1]
d_sorted = np.sort(d)
r = d_sorted[-1]
if r % 2 == 0:

score = np.abs(zeros[0] - zeros[1]) * 250.00 * 3400.0
# If there are at least four zeros.
if len(zeros) >= 4:

score = np.sum(element) * 260.50 * 35.0
# If there are more than three zeros and less than six zeros.
if len(zeros) > 3 and len(zeros) < 6:

score += 35000.0 * np.sum(zeros)
# If there are more than five zeros and less than nine zeros.
if len(zeros) > 5 and len(zeros) < 9:

score += 36000.0 * np.sum(element)
# If there are six or more zeros.
if len(zeros) >= 6:

score *= np.sum(np.array(element))
# Add some score based on the minimum and maximum elements.
score += np.sum(element) * np.min(np.array(element[:2])) * np.max(np.array(element

)) * 100.00
# If there is one zero , multiply the score by 120.
if len(zeros) == 1:

score *= 120.0
# Subtract some value based on the sum of the elements.
score -= np.sum(element) * np.sum(element[:2]) / 4.5
# If there are no zeros , multiply the score by 115.
if len(zeros) == 0:

score *= 1.15
# Multiply the score by 40.
score *= 40.00
# If there are seven or more zeros , add some value to the score.
if len(zeros) >= 7:

score += np.sum(element) * 250.00 * 120.0
score *= 1.85

if len(zeros) > 9 and len(zeros) < 12:
score += np.sum(element) * 260.50 * 90.0

# If there are twelve or more zeros , add some value to the score.
if len(zeros) >= 12:

score += np.sum(element) * 280.50 * 140.0
if len(zeros) > 14:

score *= np.sum(zeros)
# Multiply the score by the maximum element plus 40.
score *= np.max(np.array(element)) + 40.00
if np.sum(element) <= 12:

score *= 1.75
# If there are five or fewer zeros , multiply the score by 27.
if len(zeros) <= 5:

score *= 27.0
# Add 12000 to the score.
score += 12000.0
# If there are ten or fewer zeros , add 20000 to the score.
if len(zeros) <= 10:

score += 20000.0
# If there are fifteen or fewer zeros , add 30000 to the score.
if len(zeros) <= 15:

score += 30000.0
# Further improved version of ‘priority_v2 ‘.
score *= 1.75
# Final improvement of the score.
score *= 1.45
return score

Table 15: The heuristic searched by our method that leads to a cap set of size 480 on n=8.
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parents selected at each time step.936

For online bin packing, the prompt we use is937

shown in Table 16. For cap set problem, the prompt938

we use is shown in Table 17. For TSP, the prompt939

we use is shown in Table 18.940
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Online 1D bin packing problem is a combinatorial optimization problems. The goal of online bin
packing is to assign each of a series of items into the smallest number of fixed-sized bins. Generally,
heuristics are used to solve online bin packing efficiently. Priority function is defined in heuristic to
help rank and search for best candidates.
You are given two priority functions "priority_v0" and "priority_v1", then you are asked to complete
the following priority function "priority_v2" such that it is an improved version of "priority_v1". This
priority function will be used in heuristic to ranks the priority of bins given incoming item.
Here are the requirements:
1. Just complete the "priority_v2" function and do note answer anything else.
2. Do not use "print" function in your answer.

“‘ python
# Finds good assignment for online 1d bin packing.
import numpy as np

def priority_v0(item: float, bins: np.ndarray) -> np.ndarray:
""" Returns the priority with which we want to add ’item’ to the bins """

{Parent1}

def priority_v1(item: float, bins: np.ndarray) -> np.ndarray:
""" Improved version of priority_v0 """

{Parent2}

def priority_v2(item: float, bins: np.ndarray) -> np.ndarray:
""" Improved version of priority_v1 """

Table 16: Prompt Template for online bin packing
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The cap set problem calculates the largest possible set of vectors in $
mathbb{Z}n̂_3$ (known as a cap set) such that no three vectors sum to zero. Geometrically, no three
points of a cap set lie on a line.
Generally, heuristics can be used to solve cap set problem. Priority function for solving the cap set
problem ranks the priority with which we want to add a vector into the cap set.
Given two priority functions "priority_v0" and "priority_v1" where "priority_v1" is an improved version
of "priority_v0", your task is to complete the following function priority_v2 such that it is an improved
version of priority_v1. Just complete the code and do not answer anything else. Do not use any ‘print‘
function in your answer.

Here are the requiremnets:
1. Just complete the "priority_v2" function and do note answer anything else.
2. Do not use "print" function in your answer.

“‘ python
# Find large cap sets
import numpy as np
import itertools
def priority_v0(n: int) -> np.ndarray:

""" Returns a large cap set in ’n’ dimensions."""
{Parent1}

def priority_v1(n: int) -> np.ndarray:
""" Improved version of priority_v0 """

{Parent2}

def priority_v2(n: int) -> np.ndarray:
""" Improved version of priority_v1 """

Table 17: Prompt Template for cap set problem
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TSP problem finds shortest paths that travels all places and return to the starting point. Guided local
search can be used to iteratively update solution to TSP problems. A function updates the distance
matrix according to current shortest paths, such that further local search on the updated distance matrix
may lead to better answer.
You are given two update functions "update_dist_v0" and "update_dist_v1", then you are asked to
complete the following priority function "update_dist_v2" such that it is an improved version of
"update_dist_v1". This priority function will be used in heuristic to ranks the priority of bins given
incoming item.
Here are the requirements:
1. Just complete the "update_dist_v2" function and do note answer anything else.
2. Do not use "print" function in your answer.

“‘ python
import numpy as np
import random
import math
import copy

def update_dist_v0(distance_matrix ,current_route):
""" Updates the distance matrix according to current best route searched"""

{Parent1}

def update_dist_v1(distance_matrix ,current_route):
""" Improved version of update_dist_v0 """

{Parent2}

def update_dist_v2(distance_matrix ,current_route):
""" Improved version of update_dist_v1 """

Table 18: Prompt Template for TSP.
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