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Abstract

Solving NP-hard problems traditionally relies
on heuristics, yet manually designing effec-
tive heuristics for complex problems remains
a significant challenge. While recent advance-
ments like FunSearch have shown that large
language models (LLMs) can be integrated
into evolutionary algorithms (EAs) for heuris-
tic design, their potential is hindered by lim-
itations in balancing exploitation and explo-
ration. We introduce Quality-Uncertainty Bal-
anced Evolution (QUBE), a novel approach that
enhances LLM+EA methods by redefining the
priority criterion within the FunSearch frame-
work. QUBE employs the Quality-Uncertainty
Trade-off Criterion (QUTC), based on our pro-
posed Uncertainty-Inclusive Quality metric, to
evaluate and guide the evolutionary process.
Through extensive experiments on challeng-
ing NP-complete problems, QUBE demon-
strates significant performance improvements
over FunSearch and baseline methods. Our
code will be made public upon acceptance.

1 Introduction

Many mathematical science problems are NP-
complete, making them extremely challenging to
solve but easy to evaluate (Romera-Paredes et al.,
2024). Evolutionary Algorithms (EAs) are widely
used to optimize heuristics for such problems (Liu
et al., 2023; Mei et al., 2023). Recently, large
language models (LLMs) have demonstrated re-
markable capabilities in code generation (Austin
et al., 2021; Chen et al., 2021; Li et al., 2023),
opening up new avenues for hyper-heuristic algo-
rithms. These methods, termed “LLM+EA" meth-
ods, leverage LLMs as variation operators within
EAs, achieving promising results across diverse do-
mains (Chen et al., 2024; Zheng et al., 2023; Nasir
et al., 2024; Wang et al., 2024). A notable example
is FunSearch (Romera-Paredes et al., 2024), which
discovers high-quality heuristics through approx-
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Figure 1: Experiment results of our method on online
bin packing, the performance is evaluated with “Excess
Ratio" and the lower the better. Our method can steadily
find better heuristics than all baselines.
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imately 2.5 million evolutionary steps in a multi-
population EA framework.

Theoretically, to optimize heuristics in a “func-
tion space"”, a method should excel in two key as-
pects: exploitation (deepening search in promis-
ing regions) and exploration (broadening search in
unknown regions). However, achieving this bal-
ance long remains an open challenge (Weng, 2020).
Through analysis, we observe that the priority crite-
rion behind FunSearch’s evolution process hinders
it from exploiting upon current status and perform-
ing useful exploration within the function space,
resulting its struggle.

To address these issues, we propose Quality-
Uncertainty Balanced Evolution (QUBE), a novel
approach that enhances the heuristic evolution in
FunSearch by redefining the priority criterion of
the evolutionary process. Central to QUBE is the
Quality-Uncertainty Trade-off Criterion (QUTC),
which is based on our proposed Uncertainty-
Inclusive Quality (UIQ) metric, with inspiration
drawn from the Upper Confidence Bound (Lai
and Robbins, 1985; Auer, 2002). QUBE is ex-
perimented on both standard combinatorial opti-
mization problems and complex challenges like the
cap set problem. As shown in Figure 1, it shows
significant superiority over baseline methods'.

'We only show results for online bin packing here, please



We summarize our contributions as follows:

1. We identify that FunSearch’s priority criterion
limits its search performance, stemming from
an insufficient balance between exploitation
and exploration in heuristic evolution.

2. We propose QUBE, an LLM+EA method that
employs our propriety criterion QUTC to auto-
matically balance exploitation and exploration
throughout the evolutionary process.

3. Experimental results across multiple NP-
complete problems demonstrate significant
improvements: reduction in excess bin usage
for online bin packing (OBP), enhanced so-
lution quality for traveling salesman problem
(TSP), and larger cap set discoveries.

2 Related Work

2.1 Heuristics for Math Problems

Heuristics are typically used to search solutions
for NP-hard problems such as the Traveling Sales-
man Problem (TSP) (Liu et al., 2023), online bin
packing (OBP) (Coffman Jr et al., 1984), cap set
problem (Grochow, 2019; Tao and Vu, 20006) etc.
They guide the search direction to find relatively
good solutions within a reasonable time. While it’s
hard to hand craft a good heuristic, hyper-heuristics
algorithms (Burke et al., 2003) like EA can auto-
matically optimize heuristics from a trivial on (Jia
et al., 2023; Mei et al., 2023). Since the boost of
deep learning, various relevant methods have been
used to assist EA (Bengio et al., 2021; Hudson
et al., 2022; Hottung et al., 2020).

2.2 LLM+EA

The effectiveness of EA heavily relies on the abil-
ity of variation operators to generate diverse and
promising new candidates, a process that typically
demands substantial domain-specific knowledge
(O’Neill et al., 2010). Recent research has ex-
plored the integration of EAs with LLLM’s genera-
tive potential, termed LLM+EA methods (Lehman
et al., 2024). These methods leverage the few-shot
generation capabilities of LLMs as variation op-
erators, extending their applications to diverse do-
mains such as neural architecture search (Chen
et al., 2024), text-based tasks (Meyerson et al.,
2023), optimization (Brahmachary et al., 2024),
and molecular design (Wang et al., 2024).
Subsequent studies have focused on refining
LLM+EA methodologies by enhancing prompt-

refer to Appendix Bfor more results. See Section 5 for experi-
mental details.

ing and generation strategies. For instance, EoH
(Liu et al., 2024) introduces five distinct prompts
tailored for exploration and modification, moving
beyond the single fixed prompt used in earlier ap-
proaches. Additionally, EoH suggests that LLMs
should first generate a textual description before
implementing code. Similarly, ReEvo (Ye et al.,
2024) incorporates LLM reflection into the process,
enabling the model to generate improved samples
based on insights derived from historical data. De-
spite these advancements, existing LLM+EA meth-
ods still face challenges in scalability, efficiency,
and their applicability to more complex problems.

2.3 FunSearch and Beyond

Existing LLM+EA methods have predominantly
operated on a limited scale, typically generating
fewer than 10,000 samples throughout the evolu-
tionary process. These approaches have not yet
fully leveraged the generative potential of LLMs
or the evolution power of EAs. As a result, their
applications have largely been confined to conven-
tional combinatorial optimization problems, such
as the TSP and OBP, which require relatively few
evolutionary steps to yield meaningful results.

In contrast, FunSearch (Romera-Paredes et al.,
2024) represents a significant leap in scaling
LLM+EA methods, generating approximately 2.5
million samples during its evolutionary process.
FunSearch extends beyond theoretical and mathe-
matical domains, addressing complex and signif-
icant challenges such as the cap set and admis-
sible set problems. By significantly scaling up
the generation of sample, FunSearch has demon-
strated that LLM+EA algorithms can achieve state-
of-the-art (SOTA) solutions to exceptionally dif-
ficult problems, surpassing the capabilities of all
prior LLM+EA methods.

3 Thoroughout Examining Exploration
and Exploitation in FunSearch

In this section, we first provide an overview of
FunSearch and elaborate on two important details:
parent selection during each evolution step, and
island reset that periodically takes place. A prior-
ity criterion affects these core details is identified.
Then, we define exploitation and exploration in
FunSearch and analyze how the priority criterion
affects the balance between exploitation and explo-
ration. Finally, we empirically show FunSearch’s
deficiency in both exploitation and exploration.
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Figure 2: Illustration of QUBE. We manipulate the parent selection procedure in FunSearch’s evolution process.
Left: The overall evolution process of our method and FunSearch. Right: At each timestep, FunSearch selects
parents based on the score of each sample. Our method selects parents based on our quality measure, UIQ. The
uncertainty of a sample’s quality is acquired from the number of times it is selected as parents.

3.1 Overview of FunSearch

FunSearch is an LLM+EA method designed to
evolve heuristics of some problems, represented
as Python functions. It employs a frozen LLM
as a variation operator within an EA framework
that utilizes multiple populations, or "islands.” An
overview of FunSearch’s evolutionary process is
illustrated in the left part of Figure 2.

At each step, a randomly selected island under-
goes the evolution process. Two parent samples are
chosen from this island, and the LLLM is prompted
to generate new samples using the parents as few-
shot examples. These newly generated samples
are evaluated for performance, and only those
that execute without Python exceptions or time-
outs are retained on the island. Periodically, Fun-
Search resets underperforming islands by deleting
all their samples and reinitializing them with the
best-performing sample from a high-performing
island. Specifically, half of the islands with the
lowest performance are reset in this manner.

Central to FunSearch is a priority criterion that
determines the selection of parent samples and iden-
tifies islands requiring a reset. FunSearch defines
this priority criterion as the samples’ scores. Specif-
ically, the probability of a sample being selected
as a parent is proportional to the exponential of its
score. Similarly, an island is reset at each island
reset interval if its highest-scored sample underper-
forms at least half of the other islands. The priority
criterion of FunSearch ensures that the evolutionary
process prioritizes high-performing samples while
maintaining some diversity across populations.

3.2 Exploration and Exploitation in
FunSearch

The primary objective of FunSearch is to identify
high-performance heuristics through iterative sam-
pling. To achieve this, the method must effec-
tively exploit the known function space by con-
tinuously generating new samples with improved
performance. However, restricting the search to
a limited region of the function space makes it
challenging to discover highly effective heuristics.
Therefore, in addition to exploiting well-known re-
gions, the method must also explore less-explored
areas, even if they initially appear unpromising, by
generating diverse samples. These two complemen-
tary strategies are referred to as exploitation and
exploration, respectively.

We show how the priority criterion influences
the balance between exploitation and exploration,
which in turn affects the overall performance of
LLM+EA methods such as FunSearch. At each
evolutionary step, the priority criterion is used to
select two parent samples to guide a frozen LLM
sampler in generating new samples. To maximize
exploitation, the criterion should prioritize parents
likely to produce high-performance offspring. Con-
versely, to encourage exploration, it should also
consider parents with uncertain outcomes, enabling
the discovery of novel regions in the function space.

For methods that incorporate island reset mecha-
nisms, such as FunSearch, the priority criterion also
plays a critical role in determining which islands
to reset. Islands that have extensively explored
their regions but consistently produce heuristics
with relatively low scores should be reset to pri-
oritize exploitation. Conversely, islands with low
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Figure 3: The “Recent Best Score" of FunSearch ex-
hibits plateaus in later stages, indicating challenges in
effectively exploiting known regions. In contrast, our
method consistently generates higher-scoring samples,
demonstrating superior exploitation capabilities.

performance but incomplete exploration should be
preserved to encourage further exploration.

Ultimately, the priority criterion must strike a
careful balance between exploitation and explo-
ration, as overemphasis on either strategy can com-
promise the effectiveness of the other.

3.3 Quantitative Assessment of Exploration
and Exploitation

To quantify exploitation and exploration, we intro-
duced two evaluation metrics: "Recent Best Score"
and "Recent Proportion of Change". In practice,
we set K=500 for both metrics.

Recent Best Score: It measures the highest score
among the K most recently generated samples, re-
flecting the method’s ability to exploit known re-
gions effectively. A higher "Recent Best Score" in-
dicates successful exploitation of high-performing
regions in the function space.

Recent Proportion of Change: It computes the
average “proportion of change" observed in cor-
rect programs across the most recent K samples.
The “proportion of change" is quantified as the
token-level edit distance between a generated sam-
ple and its nearest parent, normalized by the length
of the sample. This metric indicates exploration,
as a higher "Recent Proportion of Change" indi-
cates the generation of novel and diverse samples,
suggesting the discovery of previously unexplored
regions in the function space.

In Figure 3, the "Recent Best Score" of Fun-
Search is visualized in red. The presence of
plateaus in the curve indicates slow improvements
during the later stages of evolution, suggesting that
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Figure 4: FunSearch has a consistently low “Recent
Proportion of Change", reflecting its limited overall ex-
ploration of the function space. In contrast, our method
demonstrates both a broader scope and a more intelli-
gent exploration strategy, enabling more effective dis-
covery of promising regions.
it struggles to effectively exploit known regions.
This limitation arises because it uses score priori-
tization as the priority criterion during evolution,
which does not necessarily correlate with the per-
formance of newly generated samples.
Furthermore, despite employing techniques such
as multi-population evolution, FunSearch’s explo-
ration strategy is indiscriminate, as it randomly
explores the function space without considering
whether the current region is promising. This is
evident in Figure 4, where FunSearch’s exploration
remains constant and relatively low throughout
the evolutionary process. A more intelligent ex-
ploration strategy should prioritize regions with a
higher likelihood of containing high-scoring sam-
ples while reducing exploration in less promising
areas. Such a strategy would naturally emphasize
exploration in the early stages when most regions
remain unexplored, and gradually shift focus to-
ward exploitation as fewer promising regions are
left undiscovered. This adaptive approach would
allow for a better balance, ultimately increasing the
likelihood of generating higher-scoring samples.

4 Quality-Uncertainty Balanced
Evolution of Heuristics

To balance exploration and exploitation in hubris-
tic evolution, we propose Quality-Uncertainty Bal-
anced Evolution (QUBE). In the following, we
first outline the overall framework of our method.
Next, we introduce our priority criterion Quality-
Uncertainty Trade-off Criterion (QUTC), which
is based on our proposed Uncertainty-Inclusive
Quality (UIQ) for evaluating samples. Finally, we



demonstrate how QUBE integrates QUTC into key
components of the evolutionary process, including
parent selection and the island reset procedure.

4.1 Overall Framework

At a macro level, the overall structure of our
method (Figure 2’s left) aligns with that of Fun-
Search. Both approaches aim to evolve a Python
function that serves as a heuristic within a search
algorithm. The performance of each function sam-
ple c is evaluated deterministically by executing
the search algorithm on a predefined set of test
instances, yielding a score s(c). All samples are
stored in a database ID, which consists of n > 1
islands. Each island I maintains an independent
population for evolution, with no communication
between islands except during island resets. Fur-
thermore, each island is organized into multiple
clusters. Within a cluster C, program samples
that yield identical results on all test instances are
grouped together. Consequently, all samples within
a cluster share the same score, denoted as s(C), re-
purposing the function notation for clarity.

At each evolutionary step, our method randomly
selects an island I to generate new samples uni-
formly. Two parent samples are chosen from I
using our priority criterion, QUTC. These parent
samples are then provided as few-shot examples
to the LLM, which generates new samples. After
evaluation, the newly generated samples are stored
back into the same island [. Periodically, after ev-
ery T eser sample generation, our method identifies
and resets half of the underperforming islands with
same procedure as FunSearch. This reset mecha-
nism ensures a balance between exploration and ex-
ploitation by revitalizing underperforming regions
of the search space.

4.2 Quality-Uncertainty Trade-off Criterion

To effectively balance exploitation and exploration,
our priority criterion QUTC must identify sam-
ples that offer evolutionary advantages, specifically
those likely to produce high scores in newly gener-
ated samples, while also considering less-explored
regions of the search space, represented by samples
that have been visited less frequently. In practice,
we observed significant similarity among samples
within the same cluster. Thus, QUTC prioritizes
clusters as a whole rather than individual samples,
ensuring a more efficient and scalable approach to
guiding the evolutionary process.

We first introduce UIQ, the metric we used to

assess the quality of samples within a cluster. At
each timestep ¢, we compute for each cluster C the
mean score of all offspring generated using samples
from C as parents. This is formally expressed as:

(0 = = mz > sl (1)
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where P, ; is a collection of all samples generated
with ¢ as a parent before timestep t. Q;(C) esti-
mates the expected performance of offspring pro-
duced by samples in C, enabling the identification
of clusters that exhibit evolutionary advantages.

Inspired by Upper Confidence Bound (UCB),
we incorporate uncertainty into Q¢ (C), resulting in
UIQ. Let N¢(C) be the number of times samples
in cluster C are used as parents before timestep .
We define UIQ as:

Int
Ni(C)

Qi(C) = Qi(C) + k

where k is a hyperparameter.

As evident from its formulation, UIQ combines
an estimate of a cluster’s evolutionary quality with
the uncertainty of that estimate. Thus QUTC
can automatically balance the exploitation of high-
performing regions and the exploration of less-
explored promising areas in the search space by
prioritizing clusters with higher UIQ values.

2

4.3 Quality-Uncertainty Balanced Evolution

Our method QUBE incorporates QUTC into the
parent selection at each evolution step and the eval-
uation of islands at each island reset.

As illustrated in the right part of Figure 2. After
an island T is selected to evolve new samples at
each timestep ¢, we identify 2 clusters in I with
the highest UIQ according to QUTC. We select
one sample per cluster to serve as parents for this
step. Specifically, let [. be the length of sam-

ple ¢ measured by the number of characters, and
maxgec{la}—lc
mingcc{la }+1e=6"

¢ within a cluster is proportionate to exp(
where T},.,4 > 0 is a hyperparameter.

At each island reset interval, we evaluate the
quality of each island using the cluster with the
highest UIQ within that island. Islands whose high-
est UIQ falls below the median among all islands
are selected for reset. For each reset island, reini-
tialization is performed by selecting a random sam-
ple from the best cluster of a randomly chosen
remaining island, ensuring a promising restart for
further evolution.

The probability of chosen
<)

le =

p7"0(1



S Experiments
5.1 Implementation Details

We implement an asynchronous system on a single
server with 8 NVIDIA A100 GPUs and 2 Intel(R)
Xeon(R) Platinum 8358 CPUs. On each GPU, an
LLM inference service is set up locally using the
SGLang (Zheng et al., 2024) framework. This
segregates LLLM inference from the entire system,
maximizing the advantages of asynchronous con-
currency. We use OpenCoder-8B-Instruct (Huang
et al., 2024) throughout our experiment, while also
experiment with Deepseek-coder (Guo et al., 2024)
to ablate the influence of LLM. We provide our
prompt for LLM in Appendix F.

The remaining components of our implementa-
tion operate in parallel through multiprocessing.
The database is shared and accessible to all pro-
cesses. Our samplers iteratively retrieve parent
samples (examples) from the database and submit
requests to the backend LLM services. Upon the
generation of new samples, evaluators are called by
the samplers to assess these samples before their
storage in the database. Other hyperparameter set-
tings are shown in Table 4 in Appendix. Note for
TSP, a very small amount of sample is required
to get relatively good result. Thus we use only 1
island and removed the island reset for TSP.

5.2 Experiment problems

We assessed the performance of our method on
three NP-complete problems:

Online Bin Packing: We focus on its online sce-
nario, where each item is packed as it arrives. We
conduct experiments on the OR-Library (Beasley,
1990), which comprises four datasets of online bin
packing instances (OR1 to OR4). We also tested
our method on generated instances from Weibull
distribution. Identical to FunSearch (Romera-
Paredes et al., 2024), our method evolves the heuris-
tics within a local-search algorithm. We evaluate
the methods using the fraction of excess bins used
over the L2 lower bound (Martello and Toth, 1990)
of the optimal offline bin packing solution, a metric
we refer to as the “excess ratio".

Cap Set: The cap set problem finds the largest “cap
set", which is a set of vectors in Z7 such that the
sum of any three vectors is not zero. As with Fun-
Search (Romera-Paredes et al., 2024), our method
evolves a priority function that assigns a rank to
each vector in Z7, which guides a greedy construc-
tion of cap sets. We carry out experiments for
n = §, and use the size of the largest cap sets

found as performance.

Traveling Salesman Problem: TSP is a combina-
torial optimization problem, which finds shortest
routes that visit all given locations once and re-
turn to the starting point. We experimented with
our method on 3 settings, namely TSP20, TSP50
and TSP100, following previous works (Kool et al.,
2018; Liu et al., 2024). Identical to (Liu et al.,
2024), our method is used to evolve the objective
function in the perturbation stage of a guided local
search algorithm (Voudouris et al., 2010). The rela-
tive distance between the acquired solution and the
optimal solution calculated by Concorde 2 is used
to assess the performance of each method, which
we also termed as “excess ratio".

Each experiment is run 10 times, and the best
result among all is reported unless otherwise speci-
fied. In the ablation study, we include the average
performance as well as the standard deviation to
examine if the results are robust. Please refer to
Appendix A.1 for more details on how the data for
each problem are generated. The code specification
of each task is available at Appendix D.

5.3 Baselines

We compared our method with extensive baselines,
including: (1) FunSearch: For comparison, we use
directly the performance on online bin packing and
cap set reported in FunSearch (Romera-Paredes
et al., 2024). Since we are not using the same LLM
and hardware compared with FunSearch (Romera-
Paredes et al., 2024), we reproduced the FunSearch
method on our GPU server according to our im-
plementation details, denoted as FunSearch*. (2)
EoH: For online Bin Packing and TSP, we also
compared the result of our method with the result
of EoH (Liu et al., 2024; Zhang et al., 2024).

5.4 Main Results

In Table 1, we report the performance of the best
heuristics acquired by each method. Our method
significantly outperforms all baseline methods in
all datasets of OBP. The fraction of excess bins
cost by our methods is 9.36% ~ 41.73% lower
than “FunSearch*" and 10.98% ~ 42.44% lower
compared with results reported in FunSearch on
OR datasets. Despite the high performance of base-
line methods on generated Weibull distribution in-
stances, our method can still outperform baseline
methods. For TSP, even though all methods are
very close to the optimal solution, our method still

*https://www.math.uwaterloo.ca/tsp/concorde.html



Online Bin Packing (]) Cap Set (1) TSP (})
OR1 OR2 OR3 OR4  Weibull 1k  Weibull Sk Weibull 10k n=8 TSP20 TSP50  TSP100
Ours 4.06% 3.73% 1.79% 1.75% 1.54% 0.41% 0.29% 480 0.000% 0.000% 0.023%
FunSearch* | 4.48% 4.07% 3.02% 2.06%  1.99% 0.55% 031% 464 0.000% 0.000% 0.029%
FunSearch 530% 4.19% 3.11% 2.47% - 0.68% 0.32% 512 - - -
EoH - - - - 2.24% 0.80% 0.61% - 0.000% 0.000% 0.025%

Table 1: Main experiment results on each task. The best result for each setting is in bold. Our method outperforms
"FunSearch*", our reproduction of FunSearch on all problems, and is better than FunSearch on online bin packing

as well as EoH on TSP.

performs better than other baseline methods, with
the gap with the optimal route 20.69% smaller than
“FunSearch*" and 8.00% than EoH. Both result
demonstrates the quality of heuristics acquired us-
ing our method, with non-trivial performance im-
provement in these tasks despite already high per-
forming baselines.

Our method outperforms “FunSearch*" in the
cap sets problem, where we find a cap set that is
greater than “FunSearch*" by 16 for n=8. Although
we are not able to surpass the performance reported
in FunSearch (Romera-Paredes et al., 2024), we ar-
gue it’s too hard to reproduce their results due to
the extremely high time and computational cost of
a complete cap set experiment, making it impos-
sible for us to run as many times as FunSearch 3.
Yet, our method can find larger cap sets than “Fun-
Search*". We believe it is sufficient to demonstrate
the superiority of our method even on extremely
difficult tasks against baseline methods.

5.5 Discussion

Since the performance of the best run might be
influenced by randomness, we carry out some ex-
periments to prove the performance gain is due to
our method’s efficacy in both exploitation and ex-
ploration. We use the OR library of OBP as the
target problem in this section.

In Figure 5, we show the performance progress
of our method compared with “FunSearch*", our
replica of FunSearch, as only the final score is
available for the original FunSearch. The solid
lines represent the average progress of each method,
with the shaded regions indicating the range from
the best to the worst run. On average, our method
(blue) outperforms both FunSearch (dashed black)
and FunSearch* (red) at an early stage.

As shown in Figure 3, the “Recent Best Score"

*Running a cap set experiment requires generating and
evaluating 2.5 million programs, it takes more than 3 days on
our GPU server. As stated in (Romera-Paredes et al., 2024):
among 140 experiments they ran on cap set problem with n=8,
less than 5% yield cap set larger than 480. It is extremely com-
putationally heavy to try to reproduce the result they reported.
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Figure 5: Performance progress on online bin packing.
The solid line shows the average score among 10 exper-
iments at each timestep. The shadow shows the range
of best and worst experiments. FunSearch is shown in
dash line since only a final score is available.

of our method consistently surpasses that of “Fun-
Search*". Our method demonstrates significant
performance improvements even in later stages,
whereas “FunSearch*" encounters plateaus. This
indicates that our method can steadily exploit the
current state to achieve further gains, while Fun-
Search struggles to do so. We attribute this advan-
tage to our priority criterion, which aligns more
closely with the goal of exploitation.

In Figure 4, we present the ‘“Recent Proportion
of Change" for both “FunSearch*" and our method.
The new samples generated by our method con-
sistently exhibit lower similarity to their parents
compared to those of FunSearch, indicating that
our method explores a broader region of the func-
tion space overall. Furthermore, our method gradu-
ally reduces exploration over time, allowing more
opportunities for exploitation, consistent with our
analysis in Section 3.3. In contrast, FunSearch
demonstrates relatively low and indiscriminate ex-
ploration, which is less effective.

At the same time, the pace of improvement of
the best sample’s score in our method is higher than
the baseline, with a relatively significant increase
in the later stages. This suggests that our method



‘ | Parent [ UIIS | Best Avggg

Ours QP(C, t) True 1.79 % 2.76%()_0016
Parent Selection Only QP(C t) | False | 2.65% | 2.89%q.0018
Quality Only Q:(C) | False | 2.74% | 2.98%q.0012
FunSearch* s(C) False | 3.02% | 3.07%¢.0008

Table 2: Ablation of our method on online bin packing
OR3. “Best” stands for the smallest excess rate acquired
among 10 runs. “Avg.q" stands for the average score,
with standard deviation shown as the suffix.

can balance exploitation and exploration, which in
all leads to stable performance improvements, and
eventually outperforms baselines in the long term.

5.6 Ablation Study

We carried out an ablation study to provide a deeper
understanding of QUBE. Experiments are carried
on the OR3 dataset of OBP. Unless otherwise spec-
ified, all methods (variants) share the same imple-
mentation as Section 5.1. Several variants of our
method experimented with are:

Parent Selection Only: “Parent Selection Only"
adopts the same parent selection as our method,
with clusters with top-2 Q;(C) are chosen for par-
ents at each timestep. Its island reset strategy is the
same as FunSearch.

Quality Only: “Quality Only" selects clusters with
top-2 Q;(C) for parents at each timestep. This mea-
sure of sample quality does not involve uncertainty.
Its island reset strategy is the same as FunSearch.

We report the best as well as average excess rate
(along with standard deviation) among 10 runs for
each variant in Table 2.

The performance gap between ‘“FunSearch*"
and "Quality Only" showcases the importance of
using Q;(C) instead of s(C) as the evaluation of
the sample’s quality. The reason behind this result
is that Q+(C) is an unbiased estimate of the ex-
pected outcome with offspring samples in C serv-
ing as parents, while s(C) is not despite being more
intuitively straightforward. This leads to better ex-
ploitation of our method than FunSearch.

Comparing the results of “Quality Only" and
“Parent Selection Only", we see further perfor-
mance gains. The integration of uncertainty into
UIQ allows samples within rarely chosen clusters
to be selected as parents. This allows our method
to explore areas in the “function spaces" that may
evolve better samples despite not seeming promis-
ing at present. Therefore, our method automatically
balances between exploration and exploitation and
eventually benefits the long-term performance.

[ LLM Method Best Run Avged
FunSearch* 3.02% 3.07%0.000s
OpenCoder | () 1.79% | 2.76%0 0016
FunSearch* 3.09% 3.19%.0011
Deepseek | (s 2.69% | 2.89%0 0017

Table 3: Different LLM’s result on online bin packing
OR3. Our method steadily performs better than Fun-
Search, regardless of alternations in LLM.

Furthermore, our island reset procedure resets
islands that are unlikely to evolve high-score pro-
grams, in contrast to FunSearch that reset islands
that have relatively low score at present. Our
method keeps islands with the potential of evolving
better samples, while FunSearch is short-sighted.
The performance difference between “Ours" and
“Parent Selection Only" provides evidence of the
rationality of our island reset procedure.

5.7 Choice of LLMs

To check if the performance gain from our method
18 invariant to unrelated conditions like LLM, we
carry out experiment on OR3 dataset of OBP. Apart
from OpenCoder-8b-Instruct (Huang et al., 2024)
used in experiments before, we select another LLM
with a smaller size and possibly lower code gen-
eration performance namely Deepseek-coder-6.7b
(Guo et al., 2024). We show results in Table 3.

The result shows that our method always leads
to better performance than FunSearch, even when
a LLLM with poor performance is used. which jus-
tifies it as model agnostic. Moreover, the result
acquired from OpenCoder is always better than
Deepseek-coder, which is a weaker LLM in com-
parison. Such results suggest that utilizing larger or
better LLMs, even better results on hard problems
like cap set may be possible.

6 Conclusion

In this paper, we studied FunSearch, a type of
LLM+EA method that optimizes heuristics through
evolution. We discovered that it has significant
drawbacks: not doing well in either exploitation
or exploration. Inspired by UCB, we propose our
method QUBE that can address this issue. Experi-
ment results demonstrate that our method steadily
outperforms baseline methods, regardless of the
task or unrelated conditions like specific LLM. We
are optimistic that, boosted by our method, Fun-
Search can fully utilize LLM’s potential and further
be able to solve more complex problems in an even
wider range of fields.



7 Limitations

Despite making non-trivial improvements on com-
binatorial optimization problems like online bin
packing and TSP, our method fails to outperform
heuristics searched by FunSearch (Romera-Paredes
et al., 2024) on the cap set problems. Although
this may potentially diminish the superiority of our
method on large-scale complex problems, we have
made every effort to demonstrate the advantage
of our method over “FunSearch*" on the cap set
problem under comparable settings. The perfor-
mance of the best heuristics discovered is related
to the choice of LLM, the number of samples gen-
erated and some random factors. Besides, to the
best of our knowledge, no research work has ever
surpassed or even tested the result of FunSearch
(Romera-Paredes et al., 2024) in the cap set prob-
lem due to its extremely high computation require-
ments. We see this as an opportunity to further
extend the capability and efficiency of LLM+EA
methods.

Moreover, our method as well as FunSearch, re-
quires generating codes using LLMs and running
these codes on some devices. This might be dan-
gerous, since the code generated by LLM may be
unpredictable and hard to explain. In our experi-
ment, we observed codes generated by LLM trying
to modify (write and read) local files. We tried our
best to overcome this risk in our experiments by
restricting permission to access local disk, running
codes in safe namespaces, etc.
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A More Experiment Details

A.1 Construction of Data

We list further details of our experiments here.

For OR datasets of online bin packing, we di-
rectly run our method and baseline methods on
the test instances of each subset (OR1 ~ OR4).
The offline lower bound for each instance in these
datasets is available, and the excess ratio for each
subset is calculated directly using the sum of all
used bins and the sum of all lower bounds of all
instances.

For Weibull datasets of online bin packing, we
generate 5 test instances for each setting follow-
ing settings in (Romera-Paredes et al., 2024), with
1k, 5k, 10k items each for Weibull1k, Weibull5k,
Weibull10k respectively. Each bin’s capacity is
set to 100. The size of each item is sampled
from Weibull(45, 3) distribution, clipped to 0~100,
and finally rounded to an integer between 1 and
100. The offline lower bound for each instance in
Weibull datasets is calculated following (Martello
and Toth, 1990).

The input for the cap set problem is simply the
number of dimensions n. Since the cap set problem
is already solved for n < 6, we experimented with
n = 8. Our method generates a heuristic within a
guided greedy construction of cap set. Each heuris-
tic can be evaluated through the size of the cap set
found using itself.

The test instances for TSP are generated follow-
ing the same setting as previous works (Kool et al.,
2018; Liu et al., 2024). For each setting (TSP20,
TSP50, TSP100) 1000 test instances are generated,
each with 20, 50, or 100 locations randomly initial-
ized from [0, 1]?, respectively.

A.2 Hyperparameter Setting

Apart from implementation details mentioned in
Section 5.1, we list the hyperparameter settings in
Table 4. One hyperparameter, specifically k£ used
in Equation 2 for UIQ, is searched for the optimal
value since it influences the overall performance
significantly. We show the results in Appendix C.
The values of other hyperparameters are either iden-
tical to FunSearch (Romera-Paredes et al., 2024) or
carefully chosen to ensure the results are suitable
for our implementation and hardware while also
comparable among baselines.
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Figure 6: More experiment results on cap set n=8 and
TSP100. For TSP a smaller excess ratio is better, while
for cap set a larger found set size is better.Our method
still shows superiority over baseline methods.

B More Results for Figure 1

In Figure 1 of Section 1, we only show experiment
results on online bin packing. We plot more ex-
periment results in Figure 6. Our method finds a
larger cap set than “FunSearch*" and outperforms
all baseline methods on TSP100. Since the result
on TSP20 and TSP50 is all O for all method, which
is equal to the theoretical best, we are not showing
them in plots.

C Hyperparameter Search Results

The value for the hyperparameters used in our
method, namely UIQ’s hyperparameter k, is
searched. To search the best value for k, we run
experiments on “UIlQ-only" method as described
in Section 5.6. Apart from the cap set problem,
each setting is run 10 times to calculate the average
performance.

For OR dataset of OBP, we investigated that the
appropriate value for k£ should be between 0.01
to 0.0001 so as to balance the quality term and
uncertainty term well. Experiments are run on
OR3 dataset. We provide experiment results for &
in Table 5.

For Weibull dataset of OBP, we investigated that
the appropriate value for k& should be between 0.001
to 0.00001 so as to balance the quality term and
uncertainty term well. Experiments are run on
Weibull5k dataset. We provide experiment results
for k in Table 6.

Similarly, for cap set problem, we experimented
kr within the range of 16 to 64. Since it cost heav-
ily to run cap set experiments, we only run 5 runs
for each setting and show the results in Table ??.



Hyperparameter OBP Cap Set | TSP
OR  Weibull

LLM Samplers | Number of samplers 16 16 16 16
LLM nucleus sampling p 0.95 0.95 0.95 0.95
LLM sampling temperature ¢ 1.0 1.0 1.0 1.0
Samples generated per prompt: ng 4 4 4 1
Total number of samples 80K 80k 2M 2K

Evaluators Number of evaluators 50 50 50 50
Timeout limit (in seconds) 30 60 90 90

DataBase Number of islands: n 10 10 10 1
UIQ hyperparameter for uncertainty: &k 0.0008  0.0001 32.0 107°
Island reset interval: T}eget 32,768 32,7768 | 262,144 -
Temperature for choosing sample: T4 1.0 1.0 1.0 1.0

Table 4: Implementation details for our method as well as baseline methods.

D Code Specification for Each Task

In this section, we show the code specifications for
each task. The function decorated with “@evolu-
tion" is evolved in experiments and the score of
each function can be acquired by running the func-
tion decorated with “@run" on each test instance.
For online bin packing, the code specification

k Best Run | Avg

0.01 2.87% 2.97%
0.008 2.84% 3.05%
0.004 2.97% 3.03%
0.002 2.89% 3.12%
0.001 2.74% 2.86%
0.0008 | 2.539% | 2.79%
0.0004 | 2.72% 2.84%
0.0002 | 2.68% 2.82%
0.0001 2.70% 2.89%

Table 5: Hyperparameter search result for £ on OR3
online bin packing. The optimal & is 0.0008.

] k \ Best Run | Avg

0.001 1.73% 1.86%
0.0008 1.65% 1.90%
0.0004 1.67% 1.83%
0.0002 1.62% 1.75%
0.0001 1.54% | 1.72%
0.00008 | 1.59% 1.79%
0.00004 | 1.64% 1.82%
0.00002 | 1.60% 1.78%
0.00001 1.70% 1.88%

Table 6: Hyperparameter search result for k on
Weibull5k online bin packing. The optimal % is 0.0001.
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k | Best Run | Avg
16 464 452.8
32 464 464
48 464 451.2
64 448 448

Table 7: Hyperparameter search result for k& on cap set
n=8. We use UIQ-only for experiment. The optimal
value is 32.

is shown in Table 8. For the cap set problem the
code specification is shown in Table 9. For TSP,
the code specification is shown in Table 10.

E Best Heuristics Discovered

We show the best heuristics discovered by our
method for each task here. The whole part of the
function LLM samplers outputs are shown without
any modification, which is why some part of the
answers might sound nonsense.

For online bin packing OR1 the best heuristic
discovered is shown in Table 11. For OR2, the best
heuristic is shown in Table 12. For OR3, the best
heuristic is shown in Table 13. For OR4, the best
heuristic is shown in Table 14.

For cap set n=8, our best heuristic finds a cap
set of 480 vectors. The corresponding heuristic is
shown in Table 15.

F LLM Prompts

We write task-specific natural instructions for LLM
samplers in MarkDown style, since the LLM we
choose is capable of understanding and generating
in MarkDown style. In all prompts shown below,
“{Parentl}" and “{Parent2}" are replaced with two



import os
import numpy as np

class BinPackProblem:
def __init__(self, id, capacity, n_items, best_answer, items):

self.id = id
self.capacity = capacity
self.n_items = n_items
self.best_answer = best_answer
self.items = np.array(items)
assert len(items) == n_items
bins = [capacity] * n_items
self.bins = np.array(bins)

def get_valid_bin_indices(item, bins: np.ndarray) -> np.ndarray:
return np.nonzero((bins - item) >= 0)[0]

def online_binpack(items: tuple[float, ...], bins: np.ndarray) -> tuple[list[list[
float, ...1, ...J], np.ndarrayl:
packing = [[] for _ in bins]
for item in items:
valid_bin_indices = get_valid_bin_indices(item, bins)
priorities = priority(item, bins[valid_bin_indices])
best_bin = valid_bin_indices[np.argmax(priorities)]
bins[best_bin] -= item
packing[best_bin].append(item)
packing = [bin_items for bin_items in packing if bin_items]
return packing, bins

@run
def evaluate_binpack(problem):
items = problem.items
bins = problem.bins
best_answer = problem.best_answer
capacity = problem.capacity
_, bins_packed = online_binpack(items, bins)
solved_answer = (bins_packed != capacity).sum()
cnt = best_answer - solved_answer

ratio = cnt / best_answer
return ratio

@evolution

def priority(item: float, bins: np.ndarray) -> np.ndarray:
# Returns the priority with which we want to add ’item’ to the bins
return 0.0

Table 8: Code specification for online bin packing.
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nnn

"""Finds large cap sets.
import itertools
import numpy as np

def solve(n: int) -> np.ndarray:
"""Returns a large cap set in ‘n‘ dimensions."""
all_vectors = np.array(list(itertools.product((@, 1, 2), repeat=n)), dtype=np.

int32)
# Powers in decreasing order for compatibility with ‘itertools.product‘, so
# that the relationship ‘i = all_vectors[i] @ powers‘ holds for all ‘i‘.
powers = 3 %% np.arange(n - 1, -1, -1)
# Precompute all priorities.
priorities = np.array([priority(tuple(vector), n) for vector in all_vectors])

# Build ‘capset‘ greedily, using priorities for prioritization.

capset = np.empty(shape=(0, n), dtype=np.int32)

while np.any(priorities != -np.inf):
# Add a vector with maximum priority to ‘capset‘, and set priorities of
# invalidated vectors to ‘-inf‘, so that they never get selected.
max_index = np.argmax(priorities)
vector = all_vectors[None, max_index] # [1, nJ]
blocking = np.einsum(’cn,n->c’, (- capset - vector) % 3, powers) # [C]
priorities[blocking] = -np.inf
priorities[max_index] = -np.inf
capset = np.concatenate([capset, vector], axis=0)

return capset

@run

def evaluate(n: int) -> int:
"""Returns the size of an ‘n‘-dimensional cap set."""
capset = solve(n)
return len(capset)

@evolution

def priority(element: tuple[int, ...], n: int) -> float:
"""Returns the priority with which we want to add ‘element‘ to the cap set.""”
return 0.0

Table 9: Code specification for cap set problem.
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import numpy as np
import random
import math

def euclidean_distance(cityl, city2):
return math.sqrt((city1[0] - city2[@])**2 + (cityl1[1] - city2[1])**2)

def calculate_total_distance(route, distance_matrix):
return sum(distance_matrix[route[i]l][route[i+1]] for i in range(len(route)-1)) +
distance_matrix[route[-1]][route[0@]]

def two_opt(route, distance_matrix):
best_route = route.copy()
improved = True
while improved:
improved = False
for i in range(1, len(route)-2):
for j in range(i+1, len(route)):
if j-i == 1: continue
new_route = route[:i] + route[i:jJ[::-1]1 + routel[j:]
if calculate_total_distance(new_route, distance_matrix) <
calculate_total_distance(
best_route,
distance_matrix):

best_route = new_route
improved = True
route = best_route

return best_route

@run

def guided_local_search(cities, max_iterations=100, alpha=0.1):
num_cities = len(cities)
distance_matrix = np.zeros((num_cities, num_cities))

for i in range(num_cities):
for j in range(i+1, num_cities):
distance_matrix[iJ[j] = distance_matrix[jl[i] = euclidean_distance(
cities[i], cities[j])
init_distance_matrix=copy.deepcopy(distance_matrix)
# Initialize route
route = list(range(num_cities))
best_route=route
# Initialize penalties
penalties = np.zeros((num_cities, num_cities))
for iteration in range(max_iterations):
# Local search with 2-opt
route = two_opt(route, distance_matrix)
# Update route
if calculate_total_distance(route, init_distance_matrix) <
calculate_total_distance(
best_route,init_distance_matrix):
best_route=route
# Evolve distance_matrix
distance_matrix=distance_matrix+update_dist(distance_matrix,best_route)
return best_route, calculate_total_distance(best_route, init_distance_matrix)

@evolution

def update_dist(distance_matrix, current_route):
’?? calculates an update to current distance matrix.
return np.zeros_like(distance_matrix)

’»

Table 10: Code specification for TSP.

15




def priority(item: float, bins: np.ndarray) -> np.ndarray:
penalty_factor_v3 = 0.7

D_item_val, C_int_fit, B_valid_region, a_of_K2_val = 4.5, 3.5, 2.6, 4.7
item_weight = item / 4650

scores = np.zeros(len(bins))

K_values = np.array([0.28, ©.31, 0.35])

B_values = np.array([@.15, 0.3, 0.25])

b_weights = np.array([2750/4650, 2950/4650, 3050/4650, 3150/46501)

for index, bin_num in enumerate(bins):
quantity_1D = index * bin_num
calc_2D_quantity = bin_num * bin_num

if index <= 3400:
b_weight = b_weights[0]
elif index<=3800:
b_weight = b_weights[1]
else:
b_weight = b_weights[3]

P_item = (index * b_weight) * (quantity_1D / calc_2D_quantity)
# Further improvements here.

improved_P_item = P_item * (index=*%*52) * (item_weight=**67) * (index#*x2.5) * (
item_weight**4.0) * (index#*x3.4) *x (
item_weight**3.2) * (index#**x3.0) * (
item_weight*%*3.3)

valid_region = abs(quantity_1D / calc_2D_quantity - 1)

if index <= 3000:
K = (K_values[@] * penalty_factor_v3) + ((1 - penalty_factor_v3) * K_values[1]

elif index<=3800:
K = K_values[1]
else:
K = K_values[2]

if index <= 3500:
B_val = (B_values[@] * penalty_factor_v3) + ((1 - penalty_factor_v3) =
B_values[11])
elif index<=3800:
B_val = B_values[1]
else:
B_val = B_values[2]

intersection_fit = ((index * item_weight / (abs(bin_num - item)))**42) * K =*
2400000

improved_D_item_val = D_item_val * ((bins[index]/item) =*x 2.8) * (1.0 + index /

95000)
improved_C_int_fit = C_int_fit » (95 / (index+6))
improved_B_valid_region = B_val + (1-B_val) * (valid_region=**2.5)

improved_a_of_K2_val = a_of_K2_val / (1 + index / 95000)

P_final = improved_D_item_val * ((improved_P_item + C_int_fit * intersection_fit
) / (improved_B_valid_region * (
improved_a_of_K2_val + valid_region)))

scores[index] = P_final

return scores

Table 11: The best heuristic searched by our method for OR1 online bin packing.
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def priority(item: float, bins: np.ndarray) -> np.ndarray:
bins_difference = np.abs(bins - item)

low_threshold, high_threshold = 8, 23
diff_mid = (high_threshold + low_threshold) / 2

p_vect4 = np.where(bins_difference <= low_threshold, bins_difference * (-1) % 22,
np.where(bins_difference <= diff_mid, bins_difference * (-1) % 34,
np.where(bins_difference <= high_threshold, bins_difference * (-1)

* 46, bins_difference =*

(=1 * 2)))

p_vect4[np.abs(bins_difference) <= high_threshold / 2] += 35
p_vect4[np.abs(bins_difference) <= diff_mid] += 50
p_vectd4[np.abs(bins_difference) <= low_threshold + high_threshold / 2] += 64

for i, val in enumerate(bins_difference):
if val <= 25:
bins_differencel[i] = bins_differencel[i] * (i + 1) % 72
else:
break

if np.any(np.abs(np.where(bins_difference <= 25, bins_difference *» (-1) * 100,
bins_difference * (-1) * 13)) <= 150):
p_vect4[np.abs(np.where(bins_difference <= 25, bins_difference * (-1) * 95,
bins_difference * (-1) * 13)) <= 150]

+= 42
best_global = sorted(p_vect4)

best_three_values = best_globall[0:3]

worst_bin_index = np.where(p_vect4 == max(best_three_values))[0][0Q]

if worst_bin_index < len(p_vect4d):
p_vect4[worst_bin_index] = min(p_vect4) = 0.98

return p_vect4

Table 12: The best heuristic searched by our method for OR2 online bin packing.
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def priority(item: float, bins: np.ndarray) -> np.ndarray:
probabilities = np.zeros(len(bins), dtype=float)

for i in range(len(bins)):
current_bin_space = bins[i]

if item <= current_bin_space:

remainingSpaceFactor = current_bin_space / (current_bin_space + item)
enhanced_load_factor = item/current_bin_space
# Improved estimation formula: f(x) = a * x **x p * exp(x)

nnn

Non-uniform impact approach based on the load intensity:
Enhance the evaluated importance of loading by approaching loader-bins
outcomes.

nnn

additional_impact_factor = 0.00

if enhanced_load_factor < 0.95:
modified_priority = (0.99 * ((remainingSpaceFactor / (1 -
enhanced_load_factor)) - 2.55 +
additional_impact_factor) * 1500 -
95 / (remainingSpaceFactor =** 1.
25)) * (130 + ©.0095 * i) * np.exp
(-1 * 0.022)
elif enhanced_load_factor < 0.99:
modified_priority = (1.00 * ((remainingSpaceFactor / (1 -
enhanced_load_factor)) - 2.45 +
additional_impact_factor) * 1600 -
45 / (remainingSpaceFactor #*x 1.
30)) * (140 + ©0.0105 * i) * np.exp
(-1 * 0.022)
else:
modified_priority = (1.01 * ((remainingSpaceFactor / (1 -
enhanced_load_factor)) - 2.35 +
additional_impact_factor) * 1700 -
35 / (remainingSpaceFactor =** 1.
35)) * (160 + @0.0115 * i) * np.exp
(-1 * 0.023)

# Added/displaced non-uniform interpolated/smooth kernel-duty system aspects

modified_priority -= 500 + 70 * np.cos(enhanced_load_factor + ©0.07) + 600 * np
.tanh(2.84 * (enhanced_load_factor -
©.93)) + 80 * np.cos(2 * i / len(
bins)) + 880 * np.sin(2 * i / len(
bins))

# Adjust differently for injected non-trivial items using maximum performance
complexity system

modified_priority -= 35 % (1-enhanced_load_factor) #*x 0.98
# Insert updated, optimized weights for different scenarios
probabilities[i] = modified_priority

return probabilities

Table 13: The best heuristic searched by our method for OR3 online bin packing.
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def priority(item: float, bins: np.ndarray) -> np.ndarray:
def improved_prior_func(_value):
if _value < item / 9:

if bins.size > 700:
return 260#*x (35 % item / 350 - 2.5 x _value)

elif bins.size > 350:
return 140+*x (30 * item / 350 - 1 * _value)

else:
return 140#*x(50 % item / 350 - 2.5 * _value) # Colocalization

elif _value < item / 5:
if bins.size > 700:
return 180#*x (35 % item / 350 - 1 * _value)
elif bins.size > 350:
return 110#x (40 * item / 350 - 0.5 * _value) #Quorum sensing
else:
return 140#*x(40 * item / 350 - 0.6 * _value) # Quorum sound BielllLIF

elif _value < item:
if bins.size > 700:
return 95 * item /(145 + item)
elif bins.size > 350:
return 80 * item /(125 + item)

else:
return 80 * item /(130 + item) #Rotulina colleague asymmetrically
restructuring translators
replication achieved in cell-
process
else:
if bins.size > 700:
return 105 * item /(130 + item)
elif bins.size > 350:
return 95 x item /(120 + item)
else:
return 95 x item /(110 + item) #Biulation sncRNA oscillations
return np.vectorize(improved_prior_func)(bins - item)

Table 14: The best heuristic searched by our method for OR4 online bin packing.
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def solve(n: int) -> np.ndarray:
score = np.sum(element) * 220.00 * 3.0
zeros = [idx for idx, val in enumerate(element) if val == 0]
# If there are at least two zeros.
if len(zeros) >= 2:
score = np.abs(np.sum(zeros)) * 230.00 * 2400.0
# If there are at least three zeros.
if len(zeros) >= 3:
d = np.array(zeros)[1:] - np.array(zeros)[:-1]
d_sorted = np.sort(d)
r = d_sorted[-1]
if r % 2 ==
score = np.abs(zeros[@] - zeros[1]) * 250.00 * 3400.0
# If there are at least four zeros.
if len(zeros) >= 4:
score = np.sum(element) * 260.50 * 35.0
# If there are more than three zeros and less than six zeros.
if len(zeros) > 3 and len(zeros) < 6:
score += 35000.0 * np.sum(zeros)
# If there are more than five zeros and less than nine zeros.
if len(zeros) > 5 and len(zeros) < 9:
score += 36000.0 * np.sum(element)
# If there are six or more zeros.
if len(zeros) >= 6:
score *= np.sum(np.array(element))
# Add some score based on the minimum and maximum elements.
score += np.sum(element) * np.min(np.array(element[:2])) * np.max(np.array(element
)) * 100.00
# If there is one zero, multiply the score by 120.
if len(zeros) == 1:
score *= 120.0
# Subtract some value based on the sum of the elements.

score -= np.sum(element) * np.sum(element[:2]1) / 4.5
# If there are no zeros, multiply the score by 115.
if len(zeros) == 0:

score *= 1.15
# Multiply the score by 40.
score *= 40.00
# If there are seven or more zeros, add some value to the score.
if len(zeros) >= 7:
score += np.sum(element) * 250.00 * 120.0
score *= 1.85
if len(zeros) > 9 and len(zeros) < 12:
score += np.sum(element) * 260.50 * 90.0
# If there are twelve or more zeros, add some value to the score.
if len(zeros) >= 12:
score += np.sum(element) * 280.50 * 140.0
if len(zeros) > 14:
score *= np.sum(zeros)
# Multiply the score by the maximum element plus 40.
score *= np.max(np.array(element)) + 40.00
if np.sum(element) <= 12:
score *= 1.75
# If there are five or fewer zeros, multiply the score by 27.
if len(zeros) <= 5:
score *= 27.0
# Add 12000 to the score.
score += 12000.0
# If there are ten or fewer zeros, add 20000 to the score.
if len(zeros) <= 10:
score += 20000.0
# If there are fifteen or fewer zeros, add 30000 to the score.
if len(zeros) <= 15:
score += 30000.0
# Further improved version of ‘priority_v2°‘.
score *= 1.75
# Final improvement of the score.
score *= 1.45
return score

Table 15: The heuristic searched by our method that leads to a cap set of size 480 on n=8.
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parents selected at each time step.

For online bin packing, the prompt we use is
shown in Table 16. For cap set problem, the prompt
we use is shown in Table 17. For TSP, the prompt
we use is shown in Table 18.
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Online 1D bin packing problem is a combinatorial optimization problems. The goal of online bin
packing is to assign each of a series of items into the smallest number of fixed-sized bins. Generally,
heuristics are used to solve online bin packing efficiently. Priority function is defined in heuristic to
help rank and search for best candidates.

You are given two priority functions "priority_v0" and "priority_v1", then you are asked to complete
the following priority function "priority_v2" such that it is an improved version of "priority_v1". This
priority function will be used in heuristic to ranks the priority of bins given incoming item.

Here are the requirements:

1. Just complete the "priority_v2" function and do note answer anything else.

2. Do not use "print" function in your answer.

“‘ python
# Finds good assignment for online 1d bin packing.
import numpy as np

def priority_vO(item: float, bins: np.ndarray) -> np.ndarray:
""" Returns the priority with which we want to add ’item’ to the bins
{Parent1}

nnn

def priority_v1(item: float, bins: np.ndarray) -> np.ndarray:
""" Improved version of priority_v0O """
{Parent2}

def priority_v2(item: float, bins: np.ndarray) -> np.ndarray:
""" Improved version of priority_v1 """

Table 16: Prompt Template for online bin packing
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The cap set problem calculates the largest possible set of vectors in $

mathbb{Z}fi_3$ (known as a cap set) such that no three vectors sum to zero. Geometrically, no three
points of a cap set lie on a line.

Generally, heuristics can be used to solve cap set problem. Priority function for solving the cap set
problem ranks the priority with which we want to add a vector into the cap set.

Given two priority functions "priority_v0" and "priority_v1" where "priority_v1" is an improved version
of "priority_v0", your task is to complete the following function priority_v2 such that it is an improved
version of priority_v1. Just complete the code and do not answer anything else. Do not use any “print*
function in your answer.

Here are the requiremnets:
1. Just complete the "priority_v2" function and do note answer anything else.
2. Do not use "print" function in your answer.

“‘ python
# Find large cap sets
import numpy as np
import itertools
def priority_vO(n: int) -> np.ndarray:
""" Returns a large cap set in 'n’ dimensions.
{Parentl }

nnn

def priority_v1(n: int) -> np.ndarray:
""" Improved version of priority_v0O """
{Parent2 }

def priority_v2(n: int) -> np.ndarray:
""" Improved version of priority_v1 """

Table 17: Prompt Template for cap set problem
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TSP problem finds shortest paths that travels all places and return to the starting point. Guided local
search can be used to iteratively update solution to TSP problems. A function updates the distance
matrix according to current shortest paths, such that further local search on the updated distance matrix
may lead to better answer.

You are given two update functions "update_dist_v0" and "update_dist_v1", then you are asked to
complete the following priority function "update_dist_v2" such that it is an improved version of
"update_dist_v1". This priority function will be used in heuristic to ranks the priority of bins given
incoming item.

Here are the requirements:

1. Just complete the "update_dist_v2" function and do note answer anything else.

2. Do not use "print" function in your answer.

“‘ python

import numpy as np
import random
import math

import copy

def update_dist_vO(distance_matrix ,current_route):
""" Updates the distance matrix according to current best route searched"""
{Parentl }

def update_dist_v1(distance_matrix ,current_route):
""" Improved version of update_dist_v0O """
{Parent2 }

def update_dist_v2(distance_matrix ,current_route):
""" Improved version of update_dist_v1 """

Table 18: Prompt Template for TSP.
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