

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 TASKFORCE: COOPERATIVE MULTI-AGENT REINFORCEMENT LEARNING FOR MULTI-TASK OPTIMIZATION

Anonymous authors

Paper under double-blind review

ABSTRACT

Multi-task learning (MTL) involves the simultaneous optimization of multiple task-specific losses, often leading to gradient conflicts and scale imbalances that result in negative transfer. While existing multi-task optimization methods attempt to mitigate these challenges, they either lack the stochasticity needed to escape poor local minima or fail to explicitly address conflicts at the gradient level. In this work, we propose TaskForce, a novel multi-task optimization framework incorporating cooperative multi-agent reinforcement learning (MARL), where agents learn to find an effective joint optimization strategy based on their respective task gradients and losses. To keep the optimization process compact yet informative, agents observe a summary of the training dynamics that consists of the gradient Gram matrix—capturing both gradient magnitudes and pairwise alignments—and task loss values. Each agent then predicts the balancing parameters that determine the weight of their contribution to the final gradient update. Crucially, we design a hybrid reward function that incorporates both gradient-based signals and loss improvement dynamics, enabling agents to effectively resolve gradient conflicts and avoid poor convergence by considering both direct gradient information and the resulting impact on loss reduction. TaskForce achieves consistent improvements over state-of-the-art MTL baselines on NYU-v2, Cityscapes, and QM9, demonstrating the promise of cooperative MARL in complex multi-task scenarios.

1 INTRODUCTION

Multi-task learning (MTL) (Caruana, 1997) is a paradigm in machine learning where a single model is trained to solve multiple tasks simultaneously. By sharing representations across tasks, MTL encourages knowledge transfer and leverages commonalities between related tasks. This shared representation can lead to improved generalization (Zhang & Yang, 2021), particularly when some tasks suffer from limited labeled data. Furthermore, MTL has the potential to reduce computational cost and memory footprint by consolidating multiple models into a unified architecture. Building on these advantages, MTL has shown promise in enhancing both performance and robustness across various benchmarks, such as several vision tasks (Ye & Xu, 2022a;b; Choi et al., 2024) and natural language processing (Hashimoto et al., 2016; McCann et al., 2018).

Despite its advantages, MTL often causes negative transfer (Crawshaw, 2020)—an ill-posed problem that arises when jointly learning unrelated or weakly correlated tasks, leading to one task impairing the learning of others. A major contributor to negative transfer is gradient conflict (Yu et al., 2020; Wang et al., 2020; Liu et al., 2021a), where the gradient directions derived from different task losses point in opposing or diverging directions in parameter space. This can lead to unstable updates or biased convergence toward tasks with dominant gradients (Navon et al., 2022), limiting the effectiveness of MTL frameworks deployed in real-world systems.

To alleviate these challenges, previous studies have explored various strategies, including architectural modifications that adjust the sharing ratio of parameters (Misra et al., 2016; Sun et al., 2020; Choi & Im, 2023) and task grouping strategies that cluster related tasks (Zamir et al., 2018; Fifty et al., 2021). Among these, multi-task optimization (MTO) methods have shown strong performance by effectively addressing core issues such as gradient conflicts and scale dominance, which are ma-

054
 055
 056
 057
 058
 059
 060
 061
 062
 063
 064
 065
 066
 067
 068
 069
 070
 071
 072
 073
 074
 075
 076
 077
 078
 079
 080
 081
 082
 083
 084
 085
 086
 087
 088
 089
 090
 091
 092
 093
 094
 095
 096
 097
 098
 099
 100
 101
 102
 103
 104
 105
 106
 107
 jor causes of negative transfer. These MTO methods can be broadly categorized into two families: gradient-based methods (Yu et al., 2020; Sener & Koltun, 2018; Navon et al., 2022) and loss-based methods (Liu et al., 2019; Guo et al., 2018). Gradient-based methods utilize aggregation heuristics to combine task gradients into a suitable joint direction. However, these methods often lack stochasticity (Baijiong et al., 2021; Chen et al., 2020; Liu & Vicente, 2024; Xin et al., 2022) and possess a larger convergence set (Kurin et al., 2022) compared to conventional optimization, leading to an increased risk of getting stuck in poor local minima. Conversely, loss-based methods apply direct transformations to the task losses (Baijiong et al., 2021; Kendall et al., 2018) or exploit loss-level information—such as convergence rates (Liu et al., 2019) or task difficulty (Guo et al., 2018)—to guide optimization. While these approaches are often more intuitive, they generally underperform compared to gradient-based methods, as they do not directly address gradient conflicts, which are the primary source of negative transfer.

We propose TaskForce, a novel MTO framework that overcomes the limitations of existing approaches by leveraging cooperative Multi-Agent Reinforcement Learning (MARL) (Lowe et al., 2017). TaskForce frames the MTO problem as a cooperative Markov game (Littman, 1994), where each task-specific agent learns to select aggregation weights for task gradients to minimize the overall loss most effectively. Our approach learns appropriate policies by effectively combining gradient-based and loss-based methods to adapt to the current optimization state.

To address the excessive computational cost of feeding high-dimensional task gradients $\mathbf{g} \in \mathbb{R}^{T \times |\theta|}$ directly into agents, as in standard gradient-based methods, TaskForce instead represents them using the Gram matrix of task gradients, $\mathbf{g}\mathbf{g}^\top \in \mathbb{R}^{T \times T}$. Since the number of tasks $T \ll |\theta|$ is far smaller than the dimensionality of the task gradient, this representation makes the training of multi-agent reinforcement learning computationally feasible. Moreover, it preserves essential optimization signals: the diagonal entries capture the magnitude of each task’s gradient, while the off-diagonal entries encode pairwise alignment between tasks. By leveraging this compact yet informative structure, TaskForce enables scalable agent training (see Section E in the appendix) while maintaining the crucial information required to resolve gradient conflicts.

To effectively guide our agents toward learning desirable policies within this novel MARL framework, we carefully construct a reward function that strategically integrates the strengths of established gradient- and loss-based methodologies. Specifically, it combines well-established convex minimization objectives commonly used in provably convergent gradient-based methods (Désidéri, 2012; Sener & Koltun, 2018) with loss convergence rates drawn from loss-based methods (Liu et al., 2019; Guo et al., 2018). By maximizing these rewards, each agent learns to resolve the gradient conflict and scale dominance problem and cooperatively determine update directions, while effectively minimizing the losses across all tasks. As a result, TaskForce bridges the gap between MARL and existing MTO schemes, enabling more effective and robust multi-task learning. We summarize our main contributions as follows:

- We propose TaskForce, a novel multi-task optimization framework that adaptively combines task gradients by using cooperative MARL policies.
- We design a compact yet expressive agent observation based on the Gram matrix of task gradients, capturing both magnitude and pairwise alignment with minimal overhead.
- We introduce a hybrid reward function to leverage both gradient-based and loss-based multi-task optimization for effective update strategies.
- Our method outperforms strong baselines across indoor, outdoor, and molecular benchmarks, demonstrating robust generalization across varied loss types, gradient scales, and task interactions.

2 RELATED WORK

2.1 MULTI-TASK OPTIMIZATION

General multi-task optimization methods (Sener & Koltun, 2018; Yu et al., 2020; Navon et al., 2022; Senushkin et al., 2023) formulate the MTL training process as a parameterized multi-objective optimization (MOO) problems and aim to directly address the gradient conflict and scale dominance problem that arise during joint training.

108 **Gradient-based methods:** A prominent category within this paradigm is gradient-based methods (Sener & Koltun, 2018; Chen et al., 2020; Yu et al., 2020; Liu et al., 2021a; Navon et al., 109 2022), which aggregate task-specific gradients into a unified update direction. These methods 110 attempt to mitigate gradient conflicts by projecting gradients into conflict-free subspaces (Yu et al., 111 2020; Liu et al., 2021a), reweighting gradients to balance task influence (Navon et al., 2022), or 112 seeking Pareto-stationary solutions in the gradient space (Sener & Koltun, 2018). Most of these 113 approaches are provably convergent and effective in many MTL scenarios, but due to their limited 114 capacity for exploration and reliance on heuristic aggregation rules, they can still converge to sub- 115 optimal solutions (Kurin et al., 2022; Xin et al., 2022), particularly under high-conflict conditions. 116

117 **Loss-based methods:** Loss-based methods (Baijiong et al., 2021; Liu et al., 2019; Kendall et al., 118 2018; Guo et al., 2018) take a different approach by modifying the loss functions themselves. This 119 includes reweighting task losses (Baijiong et al., 2021; Kendall et al., 2018) or leveraging additional 120 loss-level signals such as convergence rates (Liu et al., 2019) and task difficulty (Guo et al., 2018). 121 However, these methods are myopic because they do not leverage the gradient-level information, 122 leading to suboptimal results compared to the gradient-based methods.

123 **Hybrid methods:** More recently, hybrid methods (Liu et al., 2021b; Senushkin et al., 2023; Lin 124 et al., 2023) have emerged, combining both loss-level and gradient-level signals to guide multi- 125 task optimization more holistically. These approaches demonstrate that incorporating both levels 126 of information can effectively reduce scale dominance and mitigate gradient conflict, improving 127 overall optimization performance. Similar to gradient-based methods, these existing techniques also 128 face the problem of potentially becoming stuck in local minima due to their reliance on deterministic 129 heuristic weighting policies. Our methodology can reduce this risk by leveraging the stochasticity 130 inherent in the exploration processes of MARL to enhance the chances of escaping local minima.

131 2.2 REINFORCEMENT LEARNING

132 Reinforcement learning (RL) (Sutton et al., 1998) has shown significant success in sequential 133 decision-making problems by learning policies that maximize long-term rewards through trial and 134 error. As many real-world applications involve multiple agents, multi-agent reinforcement learning 135 (MARL) (Lowe et al., 2017; Foerster et al., 2018; Gupta et al., 2017) has emerged as a prominent 136 area of research. A key challenge in MARL is the non-stationarity (Lowe et al., 2017) introduced 137 by simultaneously learning agents, which breaks the Markov assumption and hinders convergence. 138 To mitigate this problem, multi-agent deep deterministic policy gradient (MADDPG) (Lowe et al., 139 2017) extends DDPG (Lillicrap et al., 2015) to the multi-agent setting. This method leverages the 140 centralized training with decentralized execution (CTDE) by equipping each agent with a central- 141 ized critic that has access to the observations and actions of all agents. This setup improves training 142 stability and enables agents to learn cooperative policies in both cooperative and mixed settings. 143

144 On the other hand, among the multi-task optimization literature, IGBv2 (Dai et al., 2023) is the first 145 to attempt to use single-agent RL to balance the loss weights. However, this method still operates 146 solely at the loss level and, like other loss-based approaches (Baijiong et al., 2021; Liu et al., 2019; 147 Guo et al., 2018), fails to explicitly account for gradient-level conflicts and dominance, limiting 148 the overall performance. In contrast, our approach introduces a multi-task optimization framework 149 leveraging cooperative MARL that directly considers both gradient and loss signals when determin- 150 ing gradient aggregation strategies.

151 3 PRELIMINARIES

152 3.1 GENERAL MULTI-TASK OPTIMIZATION FOR MTL

153 Given N data points $\{\mathbf{x}^i, \mathbf{y}_1^i, \dots, \mathbf{y}_T^i\}_{1 \leq i \leq N}$, where $\mathbf{x}^i \in \mathbf{X}$ and $\mathbf{y}_t^i \in \mathbf{Y}_t$ are input data and label 154 collection of T tasks, respectively, the goal of general multi-task optimization is to find the optimal 155 parameters θ^* of network $\mathcal{F}(\cdot; \theta)$ that minimizes empirical losses. Suppose that there are t -th task 156 loss function $\bar{\mathcal{L}}_t(\cdot, \cdot) : \mathbf{Y}_t \times \mathbf{Y}_t \rightarrow \mathbb{R}^+$, we can define the t -th empirical loss $\mathcal{L}_t(\theta)$ as follows:

$$157 \mathcal{L}_t(\theta) := \frac{1}{N} \sum_{i=1}^N \bar{\mathcal{L}}_t(\mathcal{F}(\mathbf{x}^i; \theta), \mathbf{y}_t^i). \quad (1)$$

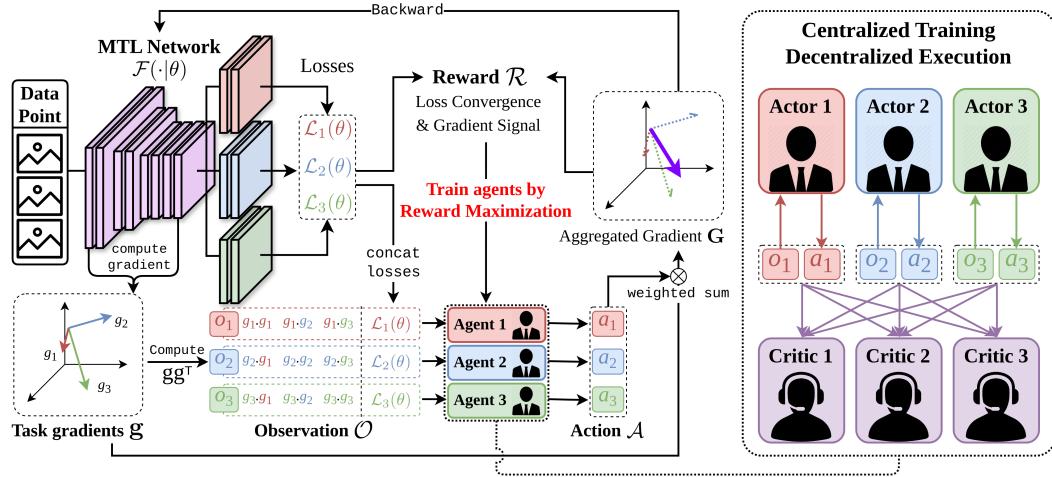


Figure 1: Overall pipeline of TaskForce. Each agent observes task-specific loss and a compact gradient summary via the Gram matrix, predicts a balancing weight for its task gradient, and is guided by a hybrid reward signal that reflects both gradient alignment and loss reduction. Centralized training, decentralized execution allows to learn coordinated policies while reducing computational efficiency by combining global training signals with local, task-specific decision-making.

Then, we can form the given empirical risk minimization into the following multi-objective optimization:

$$\min_{\theta} (\mathcal{L}_1(\theta), \dots, \mathcal{L}_T(\theta))^{\top}. \quad (2)$$

Gradient-based Methods Gradient-based multi-task optimization schemes typically begin by computing the task gradient set $\mathbf{g} = \{g_1, \dots, g_T\}$ from the empirical loss set $\mathcal{L}(\theta) = \{\mathcal{L}_1(\theta), \dots, \mathcal{L}_T(\theta)\}$, where $g_t = \nabla_{\theta} \mathcal{L}_t(\theta)$ for each task $t \in \{1, \dots, T\}$. Each gradient-based method employs its own gradient aggregation algorithm $\Gamma : \mathbb{R}^{|\theta| \times T} \rightarrow \mathbb{R}^{|\theta|}$ to compute an aggregated gradient \mathbf{G} . Consequently, the model parameters are then updated as follows:

$$\theta \leftarrow \theta - \eta \mathbf{G}, \text{ where } \mathbf{G} = \Gamma(g_1, g_2, \dots, g_T). \quad (3)$$

Loss-based Methods In contrast, loss-based methods do not explicitly compute task-wise gradients. Instead, they rely on a loss aggregation algorithm $\Lambda : \mathbb{R}^T \rightarrow \mathbb{R}$ that combines the empirical task losses into a single weighted loss $\mathbf{L}(\theta)$. The parameters are then updated by taking the gradient of this aggregated loss as follows:

$$\theta \leftarrow \theta - \eta \nabla_{\theta} \mathbf{L}(\theta), \text{ where } \mathbf{L}(\theta) = \Lambda(\mathcal{L}_1(\theta), \mathcal{L}_2(\theta), \dots, \mathcal{L}_T(\theta)). \quad (4)$$

4 METHOD

Similar to other optimization methods, the proposed TaskForce aims to find the optimal parameter θ^* of the MTL model $\mathcal{F}(\cdot; \theta)$ that minimizes the empirical risk as defined in Equation 2, by leveraging a MARL framework. To this end, TaskForce learns a policy that performs effective gradient aggregation—similar to conventional multi-task optimization methods—based on the empirical loss set \mathcal{L} and task gradients \mathbf{g} computed from each mini-batch.

Realizing this goal requires a precise problem definition and implementation. We begin by casting the multi-task optimization problem as a cooperative Markov game, wherein the game's core components are specifically adapted for this new context (Section 4.1). Subsequently, we leverage this environment to train task-wise agents that learn a cooperative policy to steer the main network's optimization process (Section 4.2). The overall pipeline of our approach is illustrated in Figure 1.

216 4.1 CORE COMPONENTS DESIGN OF MARL
217

218 To tightly couple MARL with multi-task optimization, we formulate a cooperative Markov
219 game (Littman, 1994) in which the MTL model itself serves as the interactive, evolving environment,
220 and we assign an individual agent to each task to collaboratively optimize multiple tasks. In
221 the following, we elaborate on how we design the three essential components—(1) observations \mathcal{O} ,
222 (2) actions \mathcal{A} , and (3) rewards \mathcal{R} —to formulate a Markov game within the MARL framework.

223 **Observation \mathcal{O} :** Following typical multi-task optimization settings, we construct the observation
224 using the **empirical loss set** $\mathcal{L}(\theta) \in \mathbb{R}^{T \times 1}$ and the corresponding **task gradient set** $\mathbf{g} \in \mathbb{R}^{T \times |\theta|}$,
225 both derived from the i -th data point $\{\mathbf{x}^i, \mathbf{y}_1^i, \dots, \mathbf{y}_T^i\}$ using Equation 1. However, since the gradient
226 dimension $|\theta|$ directly scales with the MTL model’s parameters, passing the raw gradients to the
227 reinforcement learning agents would incur significant computational cost (see Table 3). To address
228 this, we leverage the Gram matrix of the task gradient set $\mathbf{g}\mathbf{g}^\top$ and define the observation as:

$$229 \mathcal{O} = \left\{ \begin{array}{c} o_1 \\ \vdots \\ o_T \end{array} \right\} = \{\mathbf{g}\mathbf{g}^\top | \mathcal{L}(\theta)\} = \left\{ \begin{array}{ccc|c} g_1 \cdot g_1 & \cdots & g_1 \cdot g_T & \mathcal{L}_1(\theta) \\ \vdots & \ddots & \vdots & \vdots \\ g_T \cdot g_1 & \cdots & g_T \cdot g_T & \mathcal{L}_T(\theta) \end{array} \right\}. \quad (5)$$

234 Our novel agent’s observation $o_t \in \mathbb{R}^{T+1}$, constructed from the Gram matrix $\mathbf{g}\mathbf{g}^\top$ and loss \mathcal{L} ,
235 offers a significantly more compact representation than the complete set of empirical losses and task
236 gradients $\{\mathbf{g} | \mathcal{L}\} \in \mathbb{R}^{T \times (|\theta|+1)}$, since $T \ll |\theta|$. This observation exclusively encapsulates the agent’s
237 local gradient magnitude and its alignment with other task gradients, thereby facilitating efficient,
238 localized decision-making.

239 **Action \mathcal{A} :** The primary objective of each task-specific agent is to infer a balancing parameter
240 that determines its contribution to the final gradient update. We follow the convex combination
241 scheme (Boyd & Vandenberghe, 2004) commonly used in existing gradient-based methods, and
242 obtain the aggregated gradient \mathbf{G} as follows:

$$243 \mathbf{G} = \sum_{t=1}^T w_t g_t, \quad w_t = \frac{\exp(a_t)}{\sum_{k=1}^T \exp(a_k)}, \quad a_t = \mu_t(o_t; \phi_t) \in \mathcal{A}, \quad (6)$$

247 where $\mathcal{A} = \{a_1, \dots, a_T\}$ denotes the continuous action set from each agent’s policy network
248 $\mu_t(\cdot; \phi_t)$, and $w_t \in \mathbb{R}^+$ is the normalized weight obtained via the softmax function to ensure the
249 convexity constraint. Similar to other weight balancing methods (Sener & Koltun, 2018; Liu et al.,
250 2021b), this formulation allows the final update direction to lie within the convex hull of the task
251 gradients, enabling flexible gradient mixing while requiring each agent to output only a constant.

252 **Next Observation \mathcal{O}' :** To reflect the effect of the action \mathcal{A} on the MTL model $\mathcal{F}(\cdot | \theta)$, we first per-
253 form a single gradient descent step to update the network parameters as $\theta' \leftarrow \theta - \eta \mathbf{G}$. After that, two
254 main strategies exist to define the next observation. The first strategy uses the same i -th data point
255 $\{\mathbf{x}^i, \mathbf{y}_1^i, \dots, \mathbf{y}_T^i\}$ to compute a new empirical loss set $\mathcal{L}(\theta')$ and the corresponding task gradient
256 set \mathbf{g}' . These are then used to generate the next observation via equation 5. However, this approach
257 incurs significant computational overhead, requiring two forward and backward passes for every up-
258 date step. The second strategy utilizes the subsequent $(i+1)$ -th data point $\{\mathbf{x}^{i+1}, \mathbf{y}_1^{i+1}, \dots, \mathbf{y}_T^{i+1}\}$
259 to generate the next observation \mathcal{O}' . This method obviates the need for additional forward-backward
260 steps, which are inherent to the first strategy. Consequently, it significantly reduces training time
261 compared to the first strategy, and thus, we adopt this latter approach.

262 **Reward \mathcal{R} :** One key strength of reinforcement learning is its flexibility in handling non-
263 differentiable and highly controllable reward functions. We leverage this to design a reward that
264 combines both loss-based feedback for immediate progress and gradient-based signals for long-
265 term task balancing. In our MTL setting, RL agents are trained alongside the shared network \mathcal{F} ,
266 and must quickly adapt at each training step. To provide immediate feedback, we define a simple
267 loss-based reward that measures the relative improvement in log-transformed task losses:

$$268 269 r_{\mathcal{L}} = \sum_{t=1}^T \log(1 + \mathcal{L}_t(\theta)) - \sum_{t=1}^T \log(1 + \mathcal{L}_t(\theta')), \quad (7)$$

270 where $\mathcal{L}_t(\theta)$ and $\mathcal{L}_t(\theta')$ represent the t -th empirical loss before and after the update, respectively. Note that the logarithmic transform provides scale-invariant measurement of loss improvement (Navon et al., 2022; Lin et al., 2023), making the reward more robust across different scales of task losses.

274 While $r_{\mathcal{L}}$ captures per-iteration loss convergence progress, it does not consider interactions between
275 gradients, which are known to affect general MTL performance significantly. To address this, we de-
276 sign a gradient-based reward term $r_{\mathcal{G}}$ that evaluates the value of the aggregated gradient \mathbf{G} . Specifi-
277 cally, $r_{\mathcal{G}}$ leverages a convex minimization problem (Désidéri, 2012; Sener & Koltun, 2018), widely
278 used in multi-objective optimization to find a common descent direction that simultaneously mini-
279 mizes all objective functions and converges to a Pareto optimal point.

$$281 \quad \underset{w_1, \dots, w_T}{\text{minimize}} \quad \left\| \sum_{t=1}^T w_t g_t \right\|_2^2, \quad \text{subject to} \quad \sum_{t=1}^T w_t = 1, \quad w_t \geq 0. \quad (8)$$

284 Our gradient-based reward $r_{\mathcal{G}}$ reformulates the convex minimization problem into a reward-level
285 maximization problem suitable for a Markov game as follows:

$$286 \quad r_{\mathcal{G}} = -\left\| \sum_{t=1}^T w_t g_t \right\|_2^2 = -\left\| \sum_{t=1}^T \mathbf{G} \right\|_2^2. \quad (9)$$

289 This allows the agent to learn and select a policy that aligns with a provably convergent direction,
290 thereby improving the overall stability and performance of the multi-objective learning process.

292 The final reward used for policy learning is a weighted sum of these components:

$$293 \quad \mathcal{R} = \lambda_{\mathcal{L}} r_{\mathcal{L}} + \lambda_{\mathcal{G}} r_{\mathcal{G}}, \quad (10)$$

295 where $\lambda_{\mathcal{L}}$ and $\lambda_{\mathcal{G}}$ are hyperparameters that control the trade-off between per-iteration loss improve-
296 ment $r_{\mathcal{L}}$ and desirable gradient property $r_{\mathcal{G}}$ which is related to Pareto convergence. Note that the
297 reward \mathcal{R} is shared by all agents due to the fully cooperative scenario.

298 4.2 TRAINING OF TASKFORCE

300 In this section, we introduce the training procedure of the proposed TaskForce framework. For the
301 multi-agent reinforcement learning algorithm, we adopt Lowe et al. (2017). We detail the systematic
302 process of this framework in the subsequent discussion. Consider a Markov game in a multi-agent
303 setting, where T task-wise agents interact with a shared environment. The t -th agent receives a local
304 observation o_t and selects an action a_t according to its policy $\mu_t(o_t; \phi_t)$.

306 Following the centralized training and decentralized execution paradigm, each agent is equipped
307 with a decentralized policy $\mu_t(\cdot; \phi_t)$ and a centralized critic $Q_t^{\mu}(\cdot, \cdot; \psi_t)$. In the off-policy training,
308 agents are trained using a replay buffer \mathbf{D} containing transitions $(\mathcal{O}, \mathcal{A}, \mathcal{R}, \mathcal{O}')$, which are collected
309 in advance by executing the current policies μ jointly with the multi-task model in the environment.

310 First, the critic is trained to minimize the temporal difference (TD) loss as follows:

$$311 \quad \mathcal{L}(\psi_t) = \mathbb{E}_{(\mathcal{O}, \mathcal{A}, \mathcal{R}, \mathcal{O}') \sim \mathbf{D}} \left[(Q_t^{\mu}(\mathcal{O}, \mathcal{A}; \psi_t) - (\mathcal{R} + \gamma Q_t^{\mu'}(\mathcal{O}', \mathcal{A}'; \psi_t')))^2 \right], \quad (11)$$

$$313 \quad a_t' = \mu_t(o_t'; \phi_t') \in \mathcal{A}' \quad \forall 1 \leq t \leq T,$$

315 where the target value is computed using the set of target policies $\mu' = \{\mu_1(\cdot; \phi_1'), \dots, \mu_T(\cdot; \phi_T')\}$
316 and target critic $Q_t^{\mu'}$ with delayed parameters (ϕ_t', ψ_t') , and γ is the discount factor, respectively. The
317 actor is then updated via the deterministic policy gradient as follows:

$$318 \quad \nabla_{\phi_t} J(\phi_t) = \mathbb{E}_{(\mathcal{O}, \mathcal{A}) \sim \mathbf{D}} \left[\nabla_{\phi_t} \mu_t(o_t; \phi_t) \nabla_{a_t} Q_t^{\mu}(\mathcal{O}, \mathcal{A}; \psi_t) \Big|_{a_t = \mu_t(o_t; \phi_t)} \right]. \quad (12)$$

321 Lastly, target networks are updated using soft updates with an exponential moving average coeffi-
322 cient $0 < \tau \ll 1$ as follows:

$$323 \quad \phi_t' \leftarrow \tau \phi_t + (1 - \tau) \phi_t', \quad \psi_t' \leftarrow \tau \psi_t + (1 - \tau) \psi_t'. \quad (13)$$

324 **Algorithm 1** Training Process of TaskForce.

325

326 **Input:** data point number N , task number T , data points $\mathbf{X}, \{\mathbf{Y}_t\}_{1 \leq t \leq T}$, MTL model $\mathcal{F}(\cdot; \theta)$, agents
 $\{\mu_t(\cdot; \phi_t), Q_t^\mu(\cdot, \cdot; \psi_t)\}_{1 \leq t \leq T}$, replay buffer \mathbf{D} , batch size of agents b_{agent} .

327 **Output:** trained MTL model $\mathcal{F}(\cdot; \theta^*)$, trained agents $\{\mu_t(\cdot; \phi_t^*), Q_t^\mu(\cdot, \cdot; \psi_t^*)\}_{1 \leq t \leq T}$.

328 1: initialize $\mathcal{O}_{\text{prev}}, \mathcal{A}_{\text{prev}}, \mathcal{R}_{\text{prev}}$ as null matrix or 0.

329 2: **for** $i = 1$ **to** N **do**

330 3: sample data point $\{\mathbf{x}^i, \mathbf{y}_1^i, \dots, \mathbf{y}_T^i\}$.

331 4: compute empirical loss set $\mathcal{L}(\theta)$ and task gradient set \mathbf{g} from data point.

332 5: generate observation \mathcal{O} from $\mathcal{L}(\theta)$, $\mathbf{g}\mathbf{g}^\top$ by Equation 5.

333 6: compute action $\mathcal{A} = \{\mu_1(o_1; \phi_1), \dots, \mu_T(o_T; \phi_T)\}$ from \mathcal{O} .

334 7: compute aggregated gradient \mathbf{G} from \mathbf{g} and \mathcal{A} by Equation 6.

335 8: **if** $i \neq 1$ **then**

336 9: compute reward \mathcal{R} from $\mathcal{L}(\theta), \mathcal{L}_{\text{prev}}$ by Equation 7-10.

337 10: push transition $(\mathcal{O}_{\text{prev}}, \mathcal{A}_{\text{prev}}, \mathcal{R}_{\text{prev}}, \mathcal{O})$ to replay buffer \mathbf{D} .

338 11: **end if**

339 12: $\mathcal{O}_{\text{prev}}, \mathcal{A}_{\text{prev}}, \mathcal{R}_{\text{prev}}, \mathcal{L}_{\text{prev}} \leftarrow \mathcal{O}, \mathcal{A}, \mathcal{R}, \mathcal{L}(\theta)$.

340 13: update MTL model $\mathcal{F}(\cdot; \theta)$ with \mathbf{G} by $\theta \leftarrow \theta - \eta \mathbf{G}$.

341 14: **if** $i > b_{\text{agent}}$ **then**

342 15: sample b_{agent} transitions \mathcal{T} from replay buffer \mathbf{D} .

343 16: update each actor $\mu_t(\cdot; \phi_t)$ and critic $Q_t^\mu(\cdot, \cdot; \psi_t)$ with transitions \mathcal{T} by Equation 11-13.

344 17: **end if**

345 18: **end for**

346 Algorithm 1 summarizes the training process of TaskForce. First, to enable off-policy training with
347 the replay buffer \mathbf{D} , we compute empirical losses and their gradients from a data point and store
348 them as transition tuples $(\mathcal{O}, \mathcal{A}, \mathcal{R}, \mathcal{O}')$. Second, the MTL model parameters are updated using the
349 aggregated gradient \mathbf{G} , derived from the agents’ actions \mathcal{A} . Finally, the agent parameters are updated
350 by sampling transitions from the replay buffer, completing one MTL training iteration. For clarity,
351 we omit implementation details such as exploration noise scaling and reward normalization.

5 EXPERIMENTS

352 **Baselines** Similar to previous works (Navon et al., 2022; Senushkin et al., 2023), we compare
353 our TaskForce with the well-known multi-task optimization approaches: (1) Linear Scalarization
354 (LS) which minimizes $\sum_{t=1}^T \mathcal{L}_t(\theta)$; (2) Random Loss Weighting (RLW) (Baijiong et al., 2021);
355 (3) Dynamic Weight Average (DWA) (Liu et al., 2019); (4) Uncertainty Weighting (UW) (Kendall
356 et al., 2018); (5) Multiple Gradient Descent Algorithm (MGDA) (Sener & Koltun, 2018); (6)
357 GradDrop (Chen et al., 2020); (7) PCGrad (Yu et al., 2020); (8) CAGrad (Liu et al., 2021a);
358 (9) Improvable Gap Balancing (IGBv2) (Dai et al., 2023); (10) IMTL (Liu et al., 2021b); (11)
359 NashMTL (Navon et al., 2022); (12) Aligned-MTL (Senushkin et al., 2023).

360 **Datasets & Model Architecture** *NYU-v2* (Silberman et al., 2012) is an indoor scene understanding
361 benchmark with 795 training and 654 testing samples, annotated for three tasks: 13-class semantic
362 segmentation, depth estimation, and surface normal estimation. We use the MTAN (Liu et al., 2019)
363 architecture for evaluation. *Cityscapes* (Cordts et al., 2016) focuses on urban scene understanding
364 and provides 2,975 training and 500 validation images from 50 cities. It supports three tasks: 7-class
365 semantic segmentation, instance segmentation, and depth estimation. We adopt PSPNet (Zhao et al.,
366 2017) for evaluation. *QM9* (Ramakrishnan et al., 2014) is a molecular property prediction dataset
367 with 110K training, 10K validation, and 10K test molecules. It covers 11 regression tasks, each
368 predicting a quantum chemical property. We use the MPNN (Gilmer et al., 2017) architecture.

369 **Metrics & Experimental Setup** We follow the task-specific evaluation metrics used in (Navon
370 et al., 2022) for the NYU-v2 and QM9 datasets, and those in (Senushkin et al., 2023) for the
371 Cityscapes dataset. To assess the overall performance across different metrics and tasks, we adopt
372 the relative performance decrement measures $\Delta\mathbf{m}$ and $\Delta\mathbf{t}$ —Formally, $\Delta\mathbf{m}$ is defined as $\Delta\mathbf{m} =$
373 $1/K \sum_{k=1}^K (-1)^{\delta_k} (M_{\text{MTL},k} - M_{\text{STL},k}) / M_{\text{STL},k}$, where K is the number of metrics, $M_{\text{STL},k}$ and
374 $M_{\text{MTL},k}$ represent the k -th metric for the STL and MTL models, respectively. The indicator δ_k
375 equals 1 if a higher value is better for the k -th metric and 0 otherwise. The overall task-level perfor-

Table 1: Evaluation results of NYU-v2 3-tasks setup. We report MTAN Liu et al. (2019) model performance averaged over 3 random seeds.

Method	Semseg.		Depth			Normal		22.5°	30°	Δm ↓	Δt ↓
	mIoU	PAcc.	Abs.	Rel.	Mean	Median	11.25°				
STL	38.30	63.76	0.68	0.28	25.01	19.21	30.14	57.20	69.15	0.00%	0.00%
LS	39.29	65.33	0.55	0.23	28.15	23.96	22.09	47.50	61.08	+5.46%	-1.07%
RLW	37.17	63.77	0.58	0.24	28.27	24.18	22.26	47.05	60.62	+7.67%	+2.00%
DWA	39.11	65.31	0.55	0.23	27.61	23.18	24.17	50.18	62.39	+3.49%	-2.06%
UW	36.87	63.17	0.54	0.23	27.04	22.61	23.54	49.05	63.65	+4.01%	-0.97%
MGDA	30.47	59.90	0.61	0.26	24.88	19.45	29.18	56.88	69.36	+1.47%	+1.79%
GradDrop	39.39	65.12	0.55	0.23	27.48	22.96	23.38	49.44	62.87	+3.61%	-2.03%
PCGrad	38.06	64.64	0.56	0.23	27.41	22.80	23.86	49.83	63.14	+3.83%	-1.33%
CAGrad	39.79	65.49	0.55	0.23	26.31	21.58	25.61	52.36	65.58	+0.29%	-4.18%
IGBv2	38.53	64.81	0.55	0.23	26.54	22.11	24.90	52.21	66.09	+1.71%	-2.61%
IMTL	39.35	65.60	0.54	0.23	26.02	21.19	26.20	53.13	66.24	-0.59%	-4.76%
NashMTL	40.13	65.93	0.53	0.22	25.26	20.08	28.40	55.47	68.15	-4.04%	-7.56%
Aligned-MTL	40.82	66.33	0.53	0.22	25.19	19.71	28.88	56.23	68.54	-4.93%	-8.40%
TaskForce (Ours)	41.77	66.73	0.51	0.22	24.83	19.19	29.27	56.85	69.29	-6.47%	-9.96%

Table 2: Evaluation results on Cityscapes (3-tasks) and QM9 (11-tasks) setups. We report model performance averaged over 3 random seeds for PSPNet (Cityscapes) and MPNN (QM9).

Method	Cityscapes				QM9
	Semseg. mIoU (%) \uparrow	Instseg. L1 (px.) \downarrow	Disparity MSE \downarrow	$\Delta m \downarrow$	$\Delta m \downarrow$
STL	66.73	10.55	0.33	0.00%	0.00%
LS	52.98	10.89	0.39	+14.30%	+177.6%
RLW	51.26	10.25	0.41	+15.58%	+203.8%
DWA	53.15	10.22	0.40	+13.20%	+175.3%
UW	60.12	9.87	0.33	+1.53%	+108.0%
MGDA	66.72	17.02	0.33	+20.62%	+120.5%
GradDrop	52.98	10.09	0.40	+12.50%	+198.7%
PCGrad	54.06	9.91	0.38	+10.00%	+125.7%
CAGrad	64.33	10.15	0.34	+1.46%	+112.8%
IGBv2	61.14	10.53	0.33	+2.73%	+67.7%
IMTL	65.13	11.58	0.32	+3.10%	+77.2%
NashMTL	64.84	11.90	0.37	+9.38%	+62.0%
Aligned-MTL	67.06	10.63	0.33	-0.02%	+81.9%
TaskForce (Ours)	66.63	10.55	0.32	-0.65%	+59.0%

mance decrement, Δt , is computed as the average of Δm across all tasks. We follow the training protocol of (Senushkin et al., 2023) for NYU-v2 and Cityscapes, and (Navon et al., 2022) for QM9, respectively. Across all experiments, we set $\lambda_L = 1.0$ for the loss-based reward, $\lambda_G = 1 \times 10^{-3}$ for the gradient-based reward. We adopt a standard MADDPG (Lowe et al., 2017) for agents. Due to the space constraints, we describe the implementation details of the RL agents in Appendix Section B.

Evaluation Results on NYU-v2 & Cityscapes Table 1 and Table 2 summarize the performance of TaskForce against baseline methods on the NYU-v2 and Cityscapes datasets, respectively. Across both benchmarks, TaskForce consistently outperforms all baselines according to the relative performance measures Δm and Δt . Notably, our method shows consistent improvement over the strong competitor, Aligned-MTL, across nearly all reported metrics, with the sole exception being the segmentation on the Cityscapes dataset. This robust performance demonstrates that our method successfully navigates the complex multi-task landscape, empowered by its cooperative MARL setup.

Evaluation Results on QM9 QM9 is one of the most challenging datasets in multi-task learning due to its complex and diverse molecular properties across tasks, and the significant scale difference between losses. As shown in Table 2, TaskForce significantly outperforms all competing baseline methods. We observe that strong competitors like Aligned-MTL, while performing well on simpler scene understanding datasets, struggle considerably under the high task complexity of QM9. This outcome demonstrates the resilience of the proposed method, which performs robustly even when faced with an increased number of tasks and more complex gradient interactions.

432 Table 3: Ablation studies on Cooperative MARL components on the NYU-v2 3-tasks setup. We
 433 report the training cost relative to the final configuration of each method on the MTAN Liu et al.
 434 (2019) network architecture. We set $\mathcal{R} = r_{\mathcal{L}}$ of all configuration except r_g ablation. (MA: multi-
 435 agents, CT: centralized training, DE: decentralized execution, *: rough calculation.)

437	gg ^T	MA	CT	DE	rg	438	training cost	Δm ↓	Δt ↓
439	✓						×2.59M*	-	-
440	✓	✓					×0.95	-2.89%	-4.05%
441	✓	✓	✓				×1.16	-4.26%	-7.19%
442	✓	✓	✓	✓			×3.21	-5.23%	-8.31%
443	✓	✓	✓	✓	✓		×1.00	-5.18%	-8.26%
444	✓	✓	✓	✓	✓		×1.00	-6.47%	-9.96%

445 5.1 ABLATION STUDIES ON COOPERATIVE MARL COMPONENTS

446
 447 To evaluate the contribution of each component of our cooperative multi-agent reinforcement learning
 448 framework within TaskForce, we conduct ablation studies by incrementally introducing five key
 449 elements: (1) gram-matrix observation (gg^T); (2) task-specific multiple agents (MA); (3) a central-
 450 ized critic training (CT) that processes joint observations and actions; (4) decentralized execution
 451 (DE); (5) shared \mathcal{R} based on the loss reduction rate across all tasks, instead of each loss reduction
 452 rewards (We detail the experimental setup of this ablation in Appendix section A).

453 As shown in Table 3, we observe consistent performance gains as each key component of coop-
 454 erative MARL is added. Due to the excessively large number of shared parameter $|\theta| \sim= 44.1M$ of
 455 MTAN (Liu et al., 2019), the configuration that does not incorporate the task gradient gram matrix
 456 $gg^T \in \mathbb{R}^{T \times T}$ is not appropriate for the multi-task optimization framework. The multiple agents al-
 457 low task-specific specialization, enabling the model to disentangle conflicting optimization signals
 458 across tasks. The centralized critic improves credit assignment by leveraging global information,
 459 leading to better optimization performance. Meanwhile, decentralized execution, which relies only
 460 on task-specific local observations, enhances training efficiency with minimal compromise in over-
 461 all performance. Lastly, using the gradient-based reward r_g encourages the agents to consistently
 462 align with a provably convergent direction, thereby improving performance. These findings high-
 463 light that the modular and cooperative structure of MARL, particularly when fully integrated, plays
 464 a crucial role in enhancing both convergence stability and overall performance in multi-task learning
 465 scenarios. Notably, our TaskForce substantially reduces the computational cost associated with re-
 466inforcement learning by leveraging the Gram matrix and decentralized execution (DE), resulting in
 467 a training cost that remains comparable to that of conventional methods (See appendix Section E).

468 6 CONCLUSION

469 We have introduced TaskForce, a MARL-based framework for multi-task optimization that reformu-
 470 lates MTL as a cooperative Markov game. Unlike prior approaches that aggregate gradients or rely
 471 on heuristic balancing, TaskForce models each task as an agent equipped with a compact gradient-
 472 based observation and a loss-gradient hybrid reward, enabling cooperative strategies that balance
 473 tradeoffs, resolve conflicts, and adaptively guide optimization toward Pareto-efficient solutions. At
 474 the core of TaskForce is a lightweight agent observation derived from the Gram matrix of task
 475 gradients, capturing both magnitudes and pairwise alignments with minimal computational over-
 476 head. Complementing this, we design a principled gradient-based reward grounded in convex multi-
 477 objective optimization, which provides theoretical convergence guarantees while promoting coop-
 478 erative task interactions. Extensive experiments on NYU-v2, Cityscapes, and QM9 demonstrate that
 479 TaskForce consistently surpasses strong baselines, yielding more stable convergence, stronger gen-
 480 eralization across domains, and improved task-level performance. These results establish TaskForce
 481 as an effective bridge between cooperative MARL and gradient-based optimization for multi-task
 482 learning. Looking ahead, we envision extending TaskForce to larger and more diverse task sets, in-
 483 incorporating richer reward structures, and applying it to real-world domains in vision, language, and
 484 molecular modeling, further expanding the potential of MARL-based optimization in deep learning.

486 REFERENCES
487

488 L Baijiong, Y Feiyang, and Z Yu. A closer look at loss weighting in multi-task learning. *arXiv*
489 *preprint arXiv:2111.10603*, 2021.

490 Stephen P Boyd and Lieven Vandenberghe. *Convex optimization*. Cambridge university press, 2004.

491

492 Rich Caruana. Multitask learning. *Machine learning*, 28:41–75, 1997.

493

494 Zhao Chen, Jiquan Ngiam, Yanping Huang, Thang Luong, Henrik Kretzschmar, Yuning Chai, and
495 Dragomir Anguelov. Just pick a sign: Optimizing deep multitask models with gradient sign
496 dropout. *Advances in Neural Information Processing Systems*, 33:2039–2050, 2020.

497

498 Wonhyeok Choi and Sungsoon Im. Dynamic neural network for multi-task learning searching across
499 diverse network topologies. In *Proceedings of the IEEE/CVF Conference on Computer Vision and*
Pattern Recognition, pp. 3779–3788, 2023.

500

501 Wonhyeok Choi, Mingyu Shin, Hyukzae Lee, Jaehoon Cho, Jaehyeon Park, and Sungsoon Im.
502 Multi-task learning for real-time autonomous driving leveraging task-adaptive attention generator.
503 In *2024 IEEE International Conference on Robotics and Automation (ICRA)*, pp. 14732–14739.
504 IEEE, 2024.

505

506 Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus Enzweiler, Rodrigo
507 Benenson, Uwe Franke, Stefan Roth, and Bernt Schiele. The cityscapes dataset for semantic urban
508 scene understanding. In *Proceedings of the IEEE conference on computer vision and pattern*
recognition, pp. 3213–3223, 2016.

509

510 Michael Crawshaw. Multi-task learning with deep neural networks: A survey. *arXiv preprint*
arXiv:2009.09796, 2020.

511

512 Yanqi Dai, Nanyi Fei, and Zhiwu Lu. Improvable gap balancing for multi-task learning. In *Uncer-*
tainty in Artificial Intelligence, pp. 496–506. PMLR, 2023.

513

514 Jean-Antoine Désidéri. Multiple-gradient descent algorithm (mgda) for multiobjective optimization.
Comptes Rendus Mathematique, 350(5-6):313–318, 2012.

515

516 Chris Fifty, Ehsan Amid, Zhe Zhao, Tianhe Yu, Rohan Anil, and Chelsea Finn. Efficiently identify-
517 ing task groupings for multi-task learning. *Advances in Neural Information Processing Systems*,
518 34:27503–27516, 2021.

519

520 Jakob Foerster, Gregory Farquhar, Triantafyllos Afouras, Nantas Nardelli, and Shimon Whiteson.
521 Counterfactual multi-agent policy gradients. In *Proceedings of the AAAI conference on artificial*
intelligence, volume 32, 2018.

522

523 Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
524 message passing for quantum chemistry. In *International conference on machine learning*, pp.
525 1263–1272. PMLR, 2017.

526

527 Michelle Guo, Albert Haque, De-An Huang, Serena Yeung, and Li Fei-Fei. Dynamic task priori-
528 tization for multitask learning. In *Proceedings of the European conference on computer vision*
(ECCV), pp. 270–287, 2018.

529

530 Jayesh K Gupta, Maxim Egorov, and Mykel Kochenderfer. Cooperative multi-agent control using
531 deep reinforcement learning. In *Autonomous Agents and Multiagent Systems: AAMAS 2017 Work-*
shops, Best Papers, São Paulo, Brazil, May 8–12, 2017, Revised Selected Papers 16, pp. 66–83.
532 Springer, 2017.

533

534 Kazuma Hashimoto, Caiming Xiong, Yoshimasa Tsuruoka, and Richard Socher. A joint many-task
535 model: Growing a neural network for multiple nlp tasks. *arXiv preprint arXiv:1611.01587*, 2016.

536

537 Alex Kendall, Yarin Gal, and Roberto Cipolla. Multi-task learning using uncertainty to weigh losses
538 for scene geometry and semantics. In *Proceedings of the IEEE conference on computer vision*
539 *and pattern recognition*, pp. 7482–7491, 2018.

540 Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. *arXiv preprint*
 541 *arXiv:1412.6980*, 2014.

542

543 Vitaly Kurin, Alessandro De Palma, Ilya Kostrikov, Shimon Whiteson, and Pawan K Mudigonda. In
 544 defense of the unitary scalarization for deep multi-task learning. *Advances in Neural Information*
 545 *Processing Systems*, 35:12169–12183, 2022.

546

547 Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
 548 David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. *arXiv*
 549 *preprint arXiv:1509.02971*, 2015.

550

551 Baijong Lin, Weisen Jiang, Feiyang Ye, Yu Zhang, Pengguang Chen, Ying-Cong Chen, Shu Liu,
 552 and James T Kwok. Dual-balancing for multi-task learning. *arXiv preprint arXiv:2308.12029*,
 553 2023.

554

555 Michael L Littman. Markov games as a framework for multi-agent reinforcement learning. In
 556 *Machine learning proceedings 1994*, pp. 157–163. Elsevier, 1994.

557

558 Bo Liu, Xingchao Liu, Xiaojie Jin, Peter Stone, and Qiang Liu. Conflict-averse gradient descent
 559 for multi-task learning. *Advances in Neural Information Processing Systems*, 34:18878–18890,
 560 2021a.

561

562 Liyang Liu, Yi Li, Zhanghui Kuang, Jing-Hao Xue, Yimin Chen, Wenming Yang, Qingmin Liao, and
 563 Wayne Zhang. Towards impartial multi-task learning. In *International Conference on Learning*
 564 *Representations*, 2021b.

565

566 Shikun Liu, Edward Johns, and Andrew J Davison. End-to-end multi-task learning with attention.
 567 In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp.
 568 1871–1880, 2019.

569

570 Suyun Liu and Luis Nunes Vicente. The stochastic multi-gradient algorithm for multi-objective
 571 optimization and its application to supervised machine learning. *Annals of Operations Research*,
 572 339(3):1119–1148, 2024.

573

574 Ryan Lowe, Yi I Wu, Aviv Tamar, Jean Harb, OpenAI Pieter Abbeel, and Igor Mordatch. Multi-
 575 agent actor-critic for mixed cooperative-competitive environments. *Advances in neural information*
 576 *processing systems*, 30, 2017.

577

578 Bryan McCann, Nitish Shirish Keskar, Caiming Xiong, and Richard Socher. The natural language
 579 decathlon: Multitask learning as question answering. *arXiv preprint arXiv:1806.08730*, 2018.

580

581 Ishan Misra, Abhinav Shrivastava, Abhinav Gupta, and Martial Hebert. Cross-stitch networks for
 582 multi-task learning. In *Proceedings of the IEEE conference on computer vision and pattern recog-*
 583 *nition*, pp. 3994–4003, 2016.

584

585 Aviv Navon, Aviv Shamsian, Idan Achituv, Haggai Maron, Kenji Kawaguchi, Gal Chechik, and
 586 Ethan Fetaya. Multi-task learning as a bargaining game. *arXiv preprint arXiv:2202.01017*, 2022.

587

588 Raghunathan Ramakrishnan, Pavlo O Dral, Matthias Rupp, and O Anatole Von Lilienfeld. Quantum
 589 chemistry structures and properties of 134 kilo molecules. *Scientific data*, 1(1):1–7, 2014.

590

591 Ozan Sener and Vladlen Koltun. Multi-task learning as multi-objective optimization. *Advances in*
 592 *neural information processing systems*, 31, 2018.

593

594 Dmitry Senushkin, Nikolay Patakin, Arseny Kuznetsov, and Anton Konushin. Independent compo-
 595 nent alignment for multi-task learning. In *Proceedings of the IEEE/CVF Conference on Computer*
 596 *Vision and Pattern Recognition*, pp. 20083–20093, 2023.

597

598 Nathan Silberman, Derek Hoiem, Pushmeet Kohli, and Rob Fergus. Indoor segmentation and sup-
 599 port inference from rgbd images. In *Computer Vision–ECCV 2012: 12th European Conference*
 600 *on Computer Vision, Florence, Italy, October 7–13, 2012, Proceedings, Part V 12*, pp. 746–760.
 601 Springer, 2012.

594 Ximeng Sun, Rameswar Panda, Rogerio Feris, and Kate Saenko. Adashare: Learning what to share
 595 for efficient deep multi-task learning. *Advances in Neural Information Processing Systems*, 33:
 596 8728–8740, 2020.

597

598 Richard S Sutton, Andrew G Barto, et al. *Reinforcement learning: An introduction*, volume 1. MIT
 599 press Cambridge, 1998.

600 Zirui Wang, Yulia Tsvetkov, Orhan Firat, and Yuan Cao. Gradient vaccine: Investigating and improv-
 601 ing multi-task optimization in massively multilingual models. *arXiv preprint arXiv:2010.05874*,
 602 2020.

603

604 Derrick Xin, Behrooz Ghorbani, Justin Gilmer, Ankush Garg, and Orhan Firat. Do current multi-
 605 task optimization methods in deep learning even help? *Advances in neural information processing*
 606 *systems*, 35:13597–13609, 2022.

607 Hanrong Ye and Dan Xu. Inverted pyramid multi-task transformer for dense scene understanding.
 608 In *European Conference on Computer Vision*, pp. 514–530. Springer, 2022a.

609

610 Hanrong Ye and Dan Xu. Taskprompter: Spatial-channel multi-task prompting for dense scene
 611 understanding. In *The Eleventh International Conference on Learning Representations*, 2022b.

612 Tianhe Yu, Saurabh Kumar, Abhishek Gupta, Sergey Levine, Karol Hausman, and Chelsea Finn.
 613 Gradient surgery for multi-task learning. *Advances in neural information processing systems*, 33:
 614 5824–5836, 2020.

615

616 Amir R Zamir, Alexander Sax, William Shen, Leonidas J Guibas, Jitendra Malik, and Silvio
 617 Savarese. Taskonomy: Disentangling task transfer learning. In *Proceedings of the IEEE con-
 618 ference on computer vision and pattern recognition*, pp. 3712–3722, 2018.

619 Yu Zhang and Qiang Yang. A survey on multi-task learning. *IEEE transactions on knowledge and
 620 data engineering*, 34(12):5586–5609, 2021.

621 Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, Xiaogang Wang, and Jiaya Jia. Pyramid scene parsing
 622 network. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp.
 623 2881–2890, 2017.

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648 649 650 651 Appendix

652 A EXPERIMENTAL SETUP OF ABLATION STUDIES

653 In the main manuscript, we conducted an ablation study on TaskForce by incrementally integrating
654 five key components: (1) Gram matrix observation (gg^\top), (2) Multi-Agent (MA), (3) Centralized
655 Training (CT), (4) Decentralized Execution (DE), and (5) adding gradient-based reward r_g . This
656 section provides a detailed description of the experimental configurations for each ablation stage,
657 supplementing the explanations in the main manuscript:

658 1. **Gram matrix (gg^\top)**: If we construct the agent observations \mathcal{O} using the raw task gradient set \mathbf{g}
659 and the empirical loss set $\mathcal{L}(\theta)$, the observations are as follows:

$$660 \mathcal{O} = \left\{ \begin{array}{c} o_1 \\ \vdots \\ o_T \end{array} \right\} = \{\mathbf{g} | \mathcal{L}(\theta)\} = \left\{ \begin{array}{c|c} g_1 & \mathcal{L}_1(\theta) \\ \vdots & \vdots \\ g_T & \mathcal{L}_T(\theta) \end{array} \right\} \in \mathbb{R}^{T \times (|\theta|+1)}, \quad (14)$$

664 where $g_t = \nabla_\theta \mathcal{L}_t(\theta)$ for each task $t \in \{1, \dots, T\}$. Since the number of shared parameters $|\theta|$
665 is exceedingly large compared to the number of tasks T ($T \ll |\theta|$), this formulation results in an
666 observation space with prohibitive spatial and temporal complexity. Thus, as reported in Table 3,
667 rendering the multi-task optimization process computationally infeasible.

668 Therefore, we propose TaskForce that designs the compact observation based on Gram matrix of
669 the task gradient set as follows:

$$670 \mathcal{O} = \left\{ \begin{array}{c} o_1 \\ \vdots \\ o_T \end{array} \right\} = \{gg^\top | \mathcal{L}(\theta)\} = \left\{ \begin{array}{ccc|c} g_1 \cdot g_1 & \cdots & g_1 \cdot g_T & \mathcal{L}_1(\theta) \\ \vdots & \ddots & \vdots & \vdots \\ g_T \cdot g_1 & \cdots & g_T \cdot g_T & \mathcal{L}_T(\theta) \end{array} \right\} \in \mathbb{R}^{T \times (T+1)}. \quad (15)$$

674 Note that in setups where Decentralized Execution (DE) is not yet applied, the policy uses the
675 entire observation matrix \mathcal{O} as an input.

676 2. **Multi-agent training (MA)**: The single-agent baseline utilizes the DDPG (Lillicrap et al., 2015).
677 Its policy network, $\mu(\mathcal{O}; \phi)$, takes the entire observation \mathcal{O} and directly outputs the joint action
678 vector \mathcal{A} . Conversely, the multi-agent configuration employs MADDPG (Lowe et al., 2017)
679 as introduced in the main manuscript. We introduce task-specific policies, where each policy
680 $\mu_t(\mathcal{O}; \phi_t)$ takes the shared observation \mathcal{O} but outputs only its corresponding action a_t as follows:

$$681 \mathcal{A} = [a_1, \dots, a_T] = [\mu_t(\mathcal{O}; \phi_t)]_{t=1}^T. \quad (16)$$

682 In this configuration, each critic Q_t^μ is still decentralized in its action evaluation; it takes the
683 shared observation \mathcal{O} and only the action a_t from its own agent to estimate the action value Q as
684 follows:

$$685 Q = Q_t^\mu(\mathcal{O}, a_t; \psi_t). \quad (17)$$

686 3. **Centralized Training (CT)**: A key contribution of MADDPG is its centralized critic, which we
687 introduce in this step. Unlike the previous setup, each critic Q_t^μ now evaluates its action value Q
688 from the entire action \mathcal{A} of all policies $\mu = \{\mu_1, \dots, \mu_T\}$, in addition to the shared observation
689 \mathcal{O} . This allows for more effective credit assignment during training:

$$690 Q = Q_t^\mu(\mathcal{O}, \mathcal{A}; \psi_t). \quad (18)$$

691 4. **Decentralized Execution (DE)**: To accelerate inference and to improve practicality, many
692 MARL algorithms utilize decentralized execution. In this paradigm, each policy network μ_t uses
693 only its local, task-specific observation o_t as input, rather than the full observation matrix \mathcal{O} .
694 The critic, however, continues centralized training manner during training, utilizing the global
695 observation \mathcal{O} and the joint action \mathcal{A} as follows:

$$696 \mathcal{A} = [a_1, \dots, a_T] = [\mu_t(o_t; \phi_t)]_{t=1}^T, \quad (19)$$

$$697 Q = Q_t^\mu(\mathcal{O}, \mathcal{A}; \psi_t). \quad (20)$$

698 5. **Gradient-Based Reward (r_g)**: In the final configuration, we incorporate the proposed gradient-
699 based reward term, r_g . While previous setups relied solely on a loss-based reward, $\mathcal{R} = \lambda_{\mathcal{L}} r_{\mathcal{L}}$,
700 the final reward function is a weighted sum of both components:

$$701 \mathcal{R} = \lambda_{\mathcal{L}} r_{\mathcal{L}} + \lambda_g r_g. \quad (21)$$

702 **B HYPERPARAMETER AND RL AGENT CONFIGURATION OF TASKFORCE**
703

704 As aforementioned, in our work, we adapt the MADDPG (Lowe et al., 2017) algorithm, where the
705 number of actor and critic networks corresponds to the number of agents (the number of tasks in
706 our method). Each actor and critic network is implemented as a three-layer MLP with a hidden
707 dimension of 64. The agents are trained using the Adam optimizer (Kingma & Ba, 2014) with a
708 learning rate of 5×10^{-4} and a transition batch size of 64. The experience replay buffer stores up
709 to 100,000 transitions, allowing the agents to perform off-policy learning effectively. We employ
710 soft target updates (Lillicrap et al., 2015) for stabilizing the critic network, using an exponential
711 moving average coefficient of $\tau = 0.01$. The discount factor for delayed rewards is set to $\gamma = 0.95$.
712 To encourage exploration, we utilize Ornstein-Uhlenbeck (OU) noise (Lillicrap et al., 2015) during
713 training. The noise scale linearly decays from 0.3 to 0.05 over the first 10,000 training iterations.
714 We use the log-transformed empirical loss to ensure scale-invariant conditions across tasks. Also,
715 gradient normalization (Sener & Koltun, 2018) is applied to prevent instability due to the scale
716 dominance problem in the gradient space.

717 **C COMPATIBILITY OF GRADIENT-BASED REWARD WITH OTHER CONVEX
718 MINIMIZATION**
719

720 Beyond the gradient-based reward r_G utilized in this paper, the multi-objective optimization literature
721 presents various approaches for solving convex minimization problems, often grounded in different
722 hypotheses (Liu et al., 2021b; Navon et al., 2022). To investigate whether our gradient-based
723 reward framework is compatible with these alternative formulations, we adapt the minimization
724 problem from a strong baseline, IMTL (Liu et al., 2021b).

725 IMTL encourages a balanced update by equalizing the projection of the aggregated gradient onto
726 each normalized task gradient. This is also framed as a minimization objective, negated into a reward
727 as follows:

$$729 \underset{w_1, \dots, w_T}{\text{minimize}} \sum_{t=2}^T \|\mathbf{G}(g_1/\|g_1\|_2 - g_t/\|g_t\|_2)^\top\|_2^2, \quad \text{subject to } \sum_{t=1}^T w_t = 1, w_t \geq 0, \quad (22)$$

$$732 r_G^{\text{IMTL}} = - \sum_{t=2}^T \|\mathbf{G}(g_1/\|g_1\| - g_t/\|g_t\|)^\top\|_2^2. \quad (23)$$

733 We conduct additional experiments to validate the performance of TaskForce using this IMTL-based
734 reward r_G^{IMTL} , with results presented in Table 7-9. Across all experiments in the appendix, we set
735 $\lambda_L = 1.0$ for the loss-based reward, $\lambda_G = 1 \times 10^{-3}$ for the original gradient-based reward, and
736 $\lambda_G^{\text{IMTL}} = 1.0$ for the IMTL-based reward. As shown in Table 7, when the gradient-based reward is
737 replaced with r_G^{IMTL} , TaskForce maintains its high performance and continues to outperform strong
738 baselines. This result demonstrates the potential extensibility of our methodology, indicating that the
739 gradient-based reward can be effectively constructed from various gradient-level convex minimiza-
740 tion problems proposed in the multi-objective optimization literature.

741 **D SENSITIVITY OF REWARD WEIGHT PARAMETERS OF THE TASKFORCE.**
742

743 Beyond the standard hyperparameters of MADDPG (e.g., replay buffer size, discount factor), our
744 proposed TaskForce introduces two tunable reward weights λ_L and λ_G . Due to the MADDPG utilizing
745 the reward normalization for training stability (Lowe et al., 2017), the relative proportion of λ_L
746 and λ_G only significantly influences the learning outcome. As specified in the upper implementation
747 details section, we used the same reward weights across all experiments. The relative proportions of
748 these lambda values were determined experimentally to ensure a comparable average scale between
749 the loss reward and gradient reward (i.e., $\lambda_L = 1.0$, $\lambda_G = 0.001$, $\lambda_G^{\text{IMTL}} = 1.0$). The consistent
750 performance improvements observed across all datasets experimentally demonstrate that our chosen
751 lambda values can generalize well in practice.

752 Additionally, we conducted a grid search based on the ratio of the reward weight parameters, as
753 shown in Table 4. We incorporate the original gradient-based reward r_G and other gradient-based

reward $r_{\mathcal{G}}^{\text{IMTL}}$ introduced in Section C for this grid search. The results on the Cityscapes dataset show that our method outperforms the current state-of-the-art method, Aligned-MTL (Senushkin et al., 2023) ($\Delta m = -0.01\%$), in most cases except for experiments where loss-based rewards were not leveraged, or where the gradient reward scale became excessively large (i.e., $\lambda_{\mathcal{L}} : \lambda_{\mathcal{G}} = 1 : 1$).

Table 4: Grid search of reward weight parameters $\lambda_{\mathcal{L}}$ and $\lambda_{\mathcal{G}}$ on the Cityscapes dataset. We report PSPNet Zhao et al. (2017) model performance averaged over 3 random seeds.

Reward Ratio ($\lambda_{\mathcal{L}} : \lambda_{\mathcal{G}}$)	$\Delta m (\lambda_{\mathcal{G}})$	$\Delta m (\lambda_{\mathcal{G}}^{\text{IMTL}})$
1:0	-0.33 %	-0.33 %
1:0.01	-0.65 %	-0.41 %
1:1	+0.31 %	-0.66 %
0:1	+10.42 %	+6.10 %

E COMPUTATIONAL OVERHEAD COMPARISON BETWEEN TASKFORCE AND PRIOR METHODS

To evaluate the computational overhead and training efficiency of our proposed TaskForce—which uses multiple RL agents instead of a traditional numerical solver—we measured the per-epoch wall time for our method and baselines across all datasets. All experimental setups are identical to the implementation details provided in the main manuscript and the Appendix. Note that all computational costs were measured on a single A6000 GPU.

As shown in Table 5, our experimental results indicate that for the 3-task scenario, **there is no significant difference in wall time** compared to existing gradient- and hybrid-based optimization methods. Furthermore, even in the more challenging 11-task quantum chemistry setup, where task complexity causes a scalability issue, our method demonstrates acceptable training time when compared to conventional approaches.

Table 5: Per-epoch training cost (epoch/sec) comparison between the proposed TaskForce and other baselines.

Method	NYU-v2 3-tasks	Cityscapes 3-tasks	QM9 11-tasks
LS	85	168	85
MGDA	114	261	332
IMTL	112	258	294
NashMTL	109	258	286
Aligned-MTL	111	255	279
Ours	111	257	304

To further analyze the computational cost of TaskForce, which requires additional agent learning, we also measured the contribution of each sub-procedure within TaskForce to the overall computational cost. It's important to note that MTL network inference & loss computation, gradient computation, and model updates are fundamental and essential processes for any gradient-based optimization method.

As shown in Table 6, our analysis reveals that the time consumed by multi-agent learning and inference in TaskForce is significantly smaller in proportion to the time spent on the MTL network's task gradient computation, which typically constitutes the largest portion of gradient-based methods.

F STATISTICAL ANALYSIS OF EVALUATION RESULTS

Given that our methodology employs a Reinforcement Learning agent, discovering a suitable policy may fail. Consequently, we summarize the mean and variance of evaluation results across three trials for all experiments in the main manuscript in Table 7. Our approach, when relying solely on a loss-based reward, exhibits a non-negligible level of variance across trials. However, our method,

Table 6: Computational cost of TaskForce components on the NYU-v2 dataset.

Procedure	Training cost (sample/ms)
MTL Network inference & compute loss	62.02
MTL Network gradient computation	154.01
MTL Network update	4.78
Agents inference & compute loss	27.84
Agents update	17.04

incorporating the provably convergent gradient-based rewards r_g and r_g^{IMTL} , demonstrates a comparatively low variance across the three trials. This suggests that gradient-based rewards can contribute to enhanced training stability.

Table 7: Summary of statistical analysis of evaluation results of main manuscripts. We report the 3-run mean and variance of our method under the different configurations.

Method	NYU-v2	Cityscapes	QM9
STL (single-task learning)	0.00 %	0.00 %	0.00 %
Ours ($r_{\mathcal{L}}$)	-5.46 ± 1.79 %	-0.33 ± 0.06 %	$+64.2 \pm 3.8$ %
Ours ($r_{\mathcal{L}}$ & $r_{\mathcal{G}}$)	-6.47 ± 0.51 %	-0.65 ± 0.01 %	$+59.0 \pm 0.8$ %
Ours ($r_{\mathcal{L}}$ & $r_{\mathcal{G}}^{\text{IMTL}}$)	-6.23 ± 0.83 %	-0.66 ± 0.02 %	$+61.5 \pm 1.7$ %

Performing statistical analysis only on our method makes direct comparisons with other methods challenging. Therefore, we've summarized the results in Table 8 (including both reported and reproduced values with confidence intervals) for several existing methods and ours on the QM9 dataset below, as it represents the most challenging scenario with the highest number of tasks. Note that previous literature often tends to report higher values than what can be reproduced. For this reason, we used reported values for the main paper, and the statistical information for these reported values was sourced from the NashMTL (Navon et al., 2022) and Aligned-MTL (Senushkin et al., 2023).

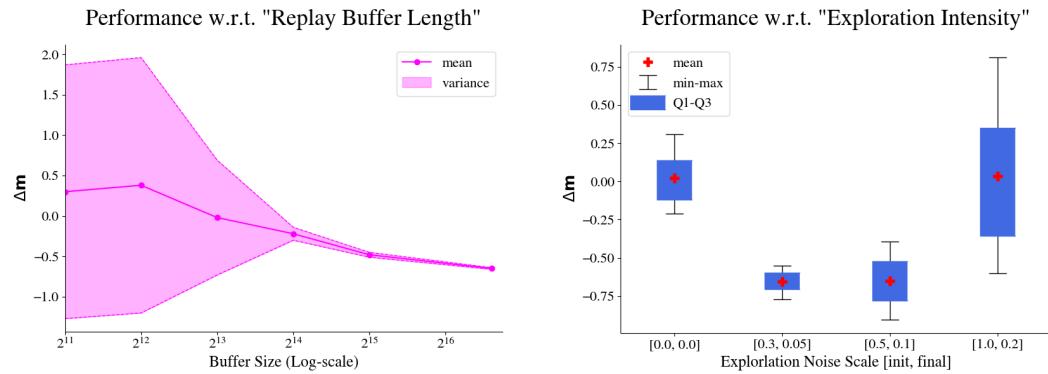
Table 8: Statistical summary of evaluation results on the QM9 dataset. We present the 3-run mean and variance of our proposed method and baseline models, including metrics reported in their original papers and our own reproduced metrics.

Method	Δm (reported)	Δm (reproduced)
STL (single-task learning)	0.00 %	0.00 %
LS	+177.6 ± 3.4 %	+177.1 ± 3.5 %
MGDA	+120.5 ± 2.0 %	+113.1 ± 4.3 %
IMTL	+77.2 ± 9.3 %	+77.9 ± 4.1 %
NashMTL	+62.0 ± 1.4 %	+63.1 ± 1.6 %
Aligned-MTL	N/A	+81.9 ± 2.3 %
Ours (r_L)	+64.2 ± 3.8 %	+64.2 ± 3.8 %
Ours (r_L & r_G)	+59.0 ± 1.0 %	+59.0 ± 1.0 %
Ours (r_L & r_{IMTL}^G)	+61.5 ± 1.7 %	+61.5 ± 1.7 %

F.1 ROBUSTNESS OF THE TASKFORCE W.R.T. HYPERPARAMETERS

TaskForce, which leverages multi-agent reinforcement learning, can exhibit varying performance depending on the agents' hyperparameters. Therefore, we conduct comprehensive experiments on the Cityscapes dataset, systematically varying the values of key components that can influence the agents' learning to observe the resulting performance changes. We focus on two primary components: (1) replay buffer length and (2) exploration noise scale, evaluating the impact of different values on the overall performance metric Δm (where lower is better). Note that, for agent exploration, we progressively decrease the scale of the Ornstein-Uhlenbeck (OU) noise (Lillicrap et al., 2015) applied to the policy during the exploration period, transitioning from an initial scale to a final scale.

864
 865
 866
 867
 868
 869
 870
 Figure 2 illustrates the statistical analysis of evaluation results under different configurations across
 these key components. Firstly, as the replay buffer length increases, the sampling efficiency of stored
 transitions improves, leading to enhanced stability. These also result in both improved performance
 and reduced variance. Regarding the exploration noise scale, we observe that introducing appropriate
 exploration leads to performance gains compared to configurations without exploration (i.e., noise
 scale: [0.0, 0.0]). However, excessive exploration intensity results in decreased performance and
 increased variance, indicating instability.



884
 885
 886
 Figure 2: Performance trade-off of TaskForce on Cityscapes w.r.t. replay buffer size and exploration
 intensity. We report PSPNet (Zhao et al., 2017) model performance averaged over 3 random seeds.

888 F.2 PRACTICAL SPEEDUP OF TASKFORCE

890 Our methodology employs highly compact agents (e.g., a 2-layer MLP with a hidden dimension of
 891 64) to achieve a fast and practical Multi-Task Learning training process. However, the necessity to
 892 update the parameters of both agents and critics at each iteration poses an issue, as it still leads to a
 893 linear increase in training cost with respect to the number of tasks. We can mitigate this scalability
 894 issue by reducing the agent update frequency within TaskForce, which practically accelerates the
 895 Multi-task optimization process. Consequently, we investigate the performance trade-off resulting
 896 from variations in this update frequency.

897 We observe that reducing the agent update frequency leads to an increase in the optimization cost
 898 efficiency of TaskForce (a speedup of $\times 8.73$ for an update frequency of 10). As shown in Figure 3,
 899 while increasing the update frequency tends to decrease performance, our method still outperforms
 900 existing approaches (e.g., $\Delta m=0.01$ for Aligned-MTL (Senushkin et al., 2023)), suggesting the po-
 901 tential for efficient optimization even in scenarios with a larger number of tasks.

902 F.3 ALTERNATIVE FORMULATION OF THE TASKFORCE

904 As mentioned previously in our main manuscript, there are two strategies for interpreting the MTL
 905 training process as a cooperative Markov game:

907 *Strategy 1:* Viewing the entire MTL training process as a single episode (the methodology em-
 908 ployed in the main manuscript).

909 *Strategy 2:* Alternatively, considering each gradient descent step as an individual episode (where
 910 transitions are derived using the same data point after a model update).

912 While *Strategy 1* treats data points as part of a non-stationary environment, *Strategy 2* allows for
 913 the measurement of the loss reduction rate on the same data point, potentially leading to more
 914 stable reward measurement. However, a significant drawback of *Strategy 2* is its requirement for
 915 nearly twice the training cost, as it necessitates measuring the loss and gradients of the network both
 916 before and after each update on the same data point. We provide the algorithmic description for
 917 this alternative formulation in Algorithm 2 and its experimental results on the Cityscapes dataset in
 Table 9. The approach utilizing Algorithm 2 enables the agent to learn more rapidly due to the stable

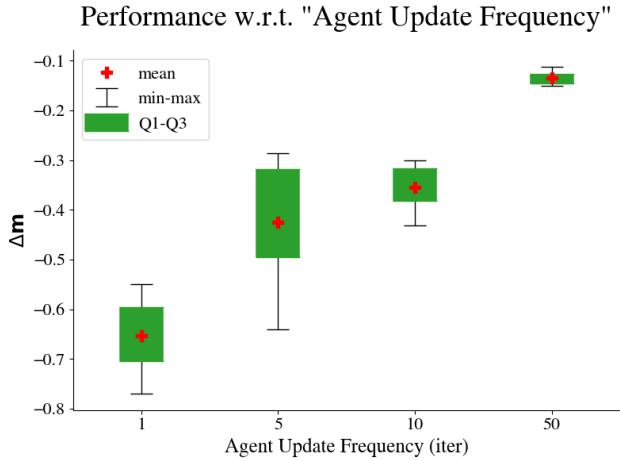


Figure 3: Performance trade-off of TaskForce on Cityscapes w.r.t. agent update frequency. We report PSPNet (Zhao et al., 2017) model performance averaged over 3 random seeds.

Table 9: Comparison between original TaskForce and Alternative formulation. We evaluate both methods on the Cityscapes 3-task setup. We report PSPNet Zhao et al. (2017) model performance averaged over 3 random seeds. We report the relative runtime of MTL training from the original TaskForce using the same computing resources.

Method	Semseg. mIoU (%) \uparrow	Instseg. L1 (px.) \downarrow	Disparity MSE \downarrow	$\Delta m \downarrow$	runtime
STL	66.73	10.55	0.33	0.00%	$\times 0.83$
TaskForce (r_L)	66.10	10.49	0.33	-0.33%	$\times 1.00$
TaskForce (r_L & r_G)	66.63	10.55	0.32	-0.65%	$\times 1.00$
TaskForce (r_L & r_G^{IMTL})	66.31	10.48	0.32	-0.66%	$\times 1.00$
TaskForce-ALT (r_L)	66.81	10.51	0.33	-0.41%	$\times 1.86$
TaskForce-ALT (r_L & r_G)	66.70	10.54	0.32	-0.58%	$\times 1.86$
TaskForce-ALT (r_L & r_G^{IMTL})	66.50	10.49	0.32	-0.74%	$\times 1.86$

reward signal obtained from the same data point, resulting in a slight performance improvement of (r_L) and $(r_L \text{ & } r_G^{\text{IMTL}})$ settings. Nevertheless, given the marginal performance gain in Table 9 compared to the doubled computational cost, we adopt the first strategy in the main body of our work.

F.4 VISUALIZE WEIGHT DYNAMICS

In Figure 4, we visualize the task weight dynamics observed during our experiments across the three datasets utilized: NYU-v2, Cityscapes, and QM9. Our method demonstrates the ability to adaptively determine appropriate weights for optimization across these datasets, including NYU-v2 and Cityscapes, as well as the relatively complex QM9 dataset, which presents a scale dominance problem and comprises a large number of tasks.

G DISCUSSION: ADVANTAGES OF COOPERATIVE MULTI-AGENT RL IN MULTI-TASK OPTIMIZATION

In our main manuscript, we conduct ablation studies on key components of Cooperative MARL to evaluate each component's contribution. These results underscore the significant contribution of MARL's modular and cooperative architecture, especially when fully integrated, to improving both the stability of convergence and the overall performance in multi-task learning settings. Based on these results, this section aims to discuss the characteristics of cooperative MARL that may contribute to the observed performance improvements.

972 **Algorithm 2** Alternative Training Process of the TaskForce.
973
974 **Input:** data point number N , task number T , data points $\mathbf{X}, \{\mathbf{Y}_t\}_{1 \leq t \leq T}$, MTL model $\mathcal{F}(\cdot; \theta)$, agents
975 $\{\mu_t(\cdot; \phi_t), Q_t^\mu(\cdot, \cdot; \psi_t)\}_{1 \leq t \leq T}$, replay buffer \mathbf{D} , batch size of agents b_{agent} .
976 **Output:** trained MTL model $\mathcal{F}(\cdot; \theta^*)$, trained agents $\{\mu_t(\cdot; \phi_t^*), Q_t^\mu(\cdot, \cdot; \psi_t^*)\}_{1 \leq t \leq T}$.
977 1: initialize $\mathcal{O}_{\text{prev}}, \mathcal{A}_{\text{prev}}, \mathcal{R}_{\text{prev}}$ as null matrix or 0.
978 2: **for** $i = 1$ **to** N **do**
979 3: sample data point $\{\mathbf{x}^i, \mathbf{y}_1^i, \dots, \mathbf{y}_T^i\}$.
980 4: **# compute the current observation \mathcal{O} , and action \mathcal{A} .**
981 5: compute empirical loss set $\mathcal{L}(\theta)$ and task gradient set \mathbf{g} from data point.
982 6: generate observation \mathcal{O} from $\mathcal{L}(\theta)$, \mathbf{g} by Equation 5.
983 7: compute action $\mathcal{A} = \{\mu_1(o_1; \phi_1), \dots, \mu_T(o_T; \phi_T)\}$ from \mathcal{O} .
984 8: compute aggregated gradient \mathbf{G} from \mathbf{g}, \mathcal{A} by Equation 6.
985 9: update MTL model $\mathcal{F}(\cdot; \theta)$ with \mathbf{G} by $\theta \leftarrow \theta - \eta \mathbf{G}$.
986 10: **# compute the next observation \mathcal{O}' , and reward \mathcal{R} .**
987 11: compute next empirical loss set $\mathcal{L}_{\text{next}}(\theta)$ and next task gradient set \mathbf{g}_{next} from same data point.
988 12: generate next observation $\mathcal{O}_{\text{next}}$ from $\mathcal{L}_{\text{next}}(\theta)$, \mathbf{g}_{next} by Equation 5.
989 13: compute reward \mathcal{R} from $\mathcal{L}(\theta), \mathcal{L}_{\text{next}}$ by Equation 7-10.
990 14: push transition $(\mathcal{O}, \mathcal{A}, \mathcal{R}, \mathcal{O}_{\text{next}})$ to replay buffer \mathbf{D} .
991 15: **if** $i > b_{\text{agent}}$ **then**
992 16: sample b_{agent} transitions \mathcal{T} from replay buffer \mathbf{D} .
993 17: update actor $\mu_i(\cdot; \phi_i)$ and critic $Q_i^\mu(\cdot, \cdot; \psi_i)$ with transitions \mathcal{T} by Equation 11-13.
994 18: **end if**
995 19: **end for**
996
997
998

994 **Problem Decomposition and Specialization** Unlike Single-agent RL, which attempts to learn a
995 unified policy to handle all task dynamics, MARL assigns each task to a dedicated agent. This modular
996 design enables agents to specialize in task-specific behaviors, potentially allowing the learning
997 process to capture diverse optimization dynamics without interference. Such decomposition might
998 be particularly beneficial in multi-task settings where task objectives may be partially conflicting.

999 **Improved Exploration through Distributed Policies** In MARL, agents can explore the optimization
1000 space in parallel, which not only enhances exploration coverage but also reduces the risk of pre-
1001 mature convergence to suboptimal joint strategies. MARL leverages this by allowing task-specific
1002 agents to independently probe different gradient accumulation strategies, ultimately potentially lead-
1003 ing to more effective joint optimization.

1004 **Robustness and Redundancy** Multi-agent systems inherently offer robustness, as the failure or
1005 poor performance of one agent could be compensated by others. This redundancy leads to more
1006 stable learning dynamics, especially in noisy or partially observable environments. In contrast, a
1007 single-agent approach lacks the granularity and flexibility to adapt to individual task needs. It must
1008 implicitly learn to balance conflicting gradients and loss scales, often resulting in suboptimal con-
1009 vergence or instability in complex multi-task scenarios.

1010 Taken together, our findings highlight the suitability of cooperative MARL, particularly MAD-
1011 DPG (Lowe et al., 2017), as a powerful optimization backbone for MTL frameworks. By decompos-
1012 ing task responsibilities and leveraging centralized training signals, MARL could offer both stability
1013 and efficiency, especially when facing task-level gradient conflicts and scale imbalances.

1015 H LIMITATION & FUTURE WORKS

1016 Our method employs MADDPG, an early approach in Multi-Agent Reinforcement Learning
1017 (MARL). Consequently, the robustness of our optimization framework with more advanced MARL
1018 techniques remains unverified, as the optimization outcome can vary depending on the agents' per-
1019 formance. We believe that future research could further enhance multi-task optimization per-
1020 formance by applying more sophisticated MARL methodologies, a direction we leave for future inves-
1021 tigators. Furthermore, while designing TaskForce, we consider a simultaneous training scenario and
1022 thus engineer very compact agents in terms of size and observation space. Nevertheless, a scalability
1023 issue persists, as the number of required agents still increases linearly with the number of tasks.

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

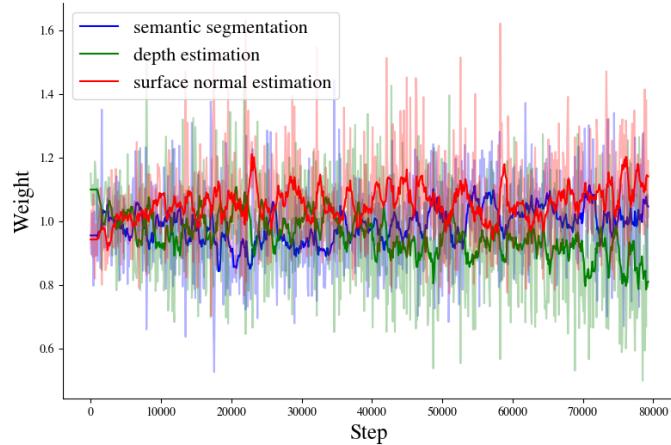
1076

1077

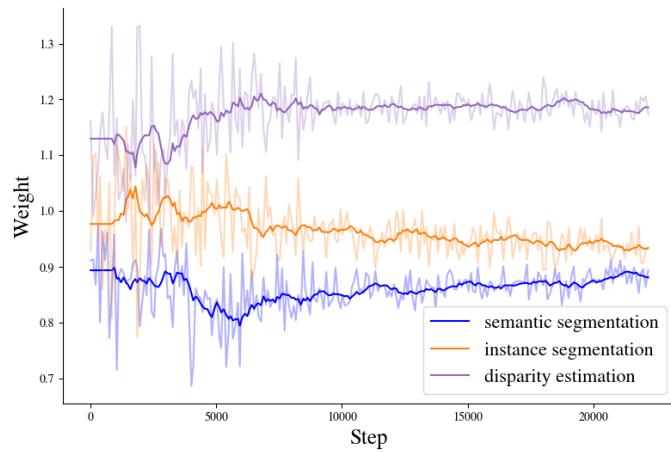
1078

1079

NYU-v2



Cityscapes



QM9

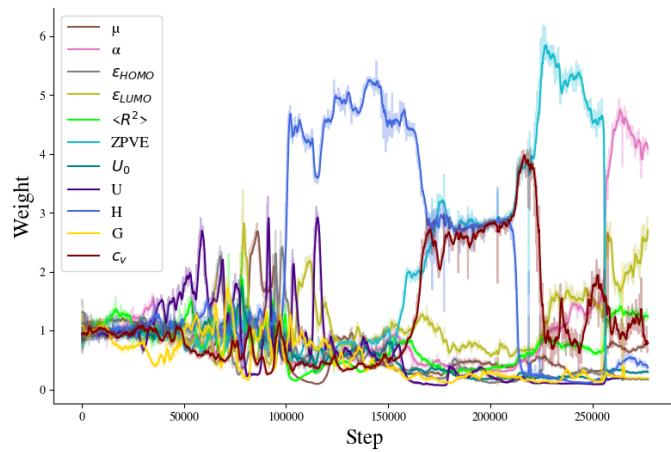


Figure 4: Task weight dynamics of NYU-v2, Cityscapes, and QM9 datasets. For improved visualization, we smooth the weight dynamics by using a moving average with a window size of 10.

1080 **I ETHICS STATEMENT**
1081

1082 Following ICLR 2026 guidelines, we disclose that a Large Language Model (LLM) was utilized
1083 for assistance with grammar correction and text polishing. All research contributions, experimental
1084 results, and scientific claims are entirely the work and responsibility of the authors.
1085

1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133