
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

TASKFORCE: COOPERATIVE MULTI-AGENT
REINFORCEMENT LEARNING FOR MULTI-TASK
OPTIMIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Multi-task learning (MTL) involves the simultaneous optimization of multiple
task-specific losses, often leading to gradient conflicts and scale imbalances that
result in negative transfer. While existing multi-task optimization methods attempt
to mitigate these challenges, they either lack the stochasticity needed to escape
poor local minima or fail to explicitly address conflicts at the gradient level. In this
work, we propose TaskForce, a novel multi-task optimization framework incor-
porating cooperative multi-agent reinforcement learning (MARL), where agents
learn to find an effective joint optimization strategy based on their respective task
gradients and losses. To keep the optimization process compact yet informative,
agents observe a summary of the training dynamics that consists of the gradient
Gram matrix—capturing both gradient magnitudes and pairwise alignments—and
task loss values. Each agent then predicts the balancing parameters that determine
the weight of their contribution to the final gradient update. Crucially, we design a
hybrid reward function that incorporates both gradient-based signals and loss im-
provement dynamics, enabling agents to effectively resolve gradient conflicts and
avoid poor convergence by considering both direct gradient information and the
resulting impact on loss reduction. TaskForce achieves consistent improvements
over state-of-the-art MTL baselines on NYU-v2, Cityscapes, and QM9, demon-
strating the promise of cooperative MARL in complex multi-task scenarios.

1 INTRODUCTION

Multi-task learning (MTL) (Caruana, 1997) is a paradigm in machine learning where a single model
is trained to solve multiple tasks simultaneously. By sharing representations across tasks, MTL en-
courages knowledge transfer and leverages commonalities between related tasks. This shared repre-
sentation can lead to improved generalization (Zhang & Yang, 2021), particularly when some tasks
suffer from limited labeled data. Furthermore, MTL has the potential to reduce computational cost
and memory footprint by consolidating multiple models into a unified architecture. Building on these
advantages, MTL has shown promise in enhancing both performance and robustness across various
benchmarks, such as several vision tasks (Ye & Xu, 2022a;b; Choi et al., 2024) and natural language
processing (Hashimoto et al., 2016; McCann et al., 2018).

Despite its advantages, MTL often causes negative transfer (Crawshaw, 2020)–an ill-posed problem
that arises when jointly learning unrelated or weakly correlated tasks, leading to one task impair-
ing the learning of others. A major contributor to negative transfer is gradient conflict (Yu et al.,
2020; Wang et al., 2020; Liu et al., 2021a), where the gradient directions derived from different
task losses point in opposing or diverging directions in parameter space. This can lead to unstable
updates or biased convergence toward tasks with dominant gradients (Navon et al., 2022), limiting
the effectiveness of MTL frameworks deployed in real-world systems.

To alleviate these challenges, previous studies have explored various strategies, including architec-
tural modifications that adjust the sharing ratio of parameters (Misra et al., 2016; Sun et al., 2020;
Choi & Im, 2023) and task grouping strategies that cluster related tasks (Zamir et al., 2018; Fifty
et al., 2021). Among these, multi-task optimization (MTO) methods have shown strong performance
by effectively addressing core issues such as gradient conflicts and scale dominance, which are ma-

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

jor causes of negative transfer. These MTO methods can be broadly categorized into two families:
gradient-based methods (Yu et al., 2020; Sener & Koltun, 2018; Navon et al., 2022) and loss-based
methods (Liu et al., 2019; Guo et al., 2018). Gradient-based methods utilize aggregation heuristics
to combine task gradients into a suitable joint direction. However, these methods often lack stochas-
ticity (Baijiong et al., 2021; Chen et al., 2020; Liu & Vicente, 2024; Xin et al., 2022) and possess
a larger convergence set (Kurin et al., 2022) compared to conventional optimization, leading to an
increased risk of getting stuck in poor local minima. Conversely, loss-based methods apply direct
transformations to the task losses (Baijiong et al., 2021; Kendall et al., 2018) or exploit loss-level
information—such as convergence rates (Liu et al., 2019) or task difficulty (Guo et al., 2018)—to
guide optimization. While these approaches are often more intuitive, they generally underperform
compared to gradient-based methods, as they do not directly address gradient conflicts, which are
the primary source of negative transfer.

We propose TaskForce, a novel MTO framework that overcomes the limitations of existing ap-
proaches by leveraging cooperative Multi-Agent Reinforcement Learning (MARL) (Lowe et al.,
2017). TaskForce frames the MTO problem as a cooperative Markov game (Littman, 1994), where
each task-specific agent learns to select aggregation weights for task gradients to minimize the over-
all loss most effectively. Our approach learns appropriate policies by effectively combining gradient-
based and loss-based methods to adapt to the current optimization state.

To address the excessive computational cost of feeding high-dimensional task gradients g ∈ RT×|θ|

directly into agents, as in standard gradient-based methods, TaskForce instead represents them us-
ing the Gram matrix of task gradients, gg⊤ ∈ RT×T . Since the number of tasks T ≪ |θ| is far
smaller than the dimensionality of the task gradient, this representation makes the training of multi-
agent reinforcement learning computationally feasible. Moreover, it preserves essential optimization
signals: the diagonal entries capture the magnitude of each task’s gradient, while the off-diagonal
entries encode pairwise alignment between tasks. By leveraging this compact yet informative struc-
ture, TaskForce enables scalable agent training (see Section E in the appendix) while maintaining
the crucial information required to resolve gradient conflicts.

To effectively guide our agents toward learning desirable policies within this novel MARL frame-
work, we carefully construct a reward function that strategically integrates the strengths of estab-
lished gradient- and loss-based methodologies. Specifically, it combines well-established convex
minimization objectives commonly used in provably convergent gradient-based methods (Désidéri,
2012; Sener & Koltun, 2018) with loss convergence rates drawn from loss-based methods (Liu et al.,
2019; Guo et al., 2018). By maximizing these rewards, each agent learns to resolve the gradient con-
flict and scale dominance problem and cooperatively determine update directions, while effectively
minimizing the losses across all tasks. As a result, TaskForce bridges the gap between MARL and
existing MTO schemes, enabling more effective and robust multi-task learning. We summarize our
main contributions as follows:

• We propose TaskForce, a novel multi-task optimization framework that adaptively combines task
gradients by using cooperative MARL policies.

• We design a compact yet expressive agent observation based on the Gram matrix of task gradients,
capturing both magnitude and pairwise alignment with minimal overhead.

• We introduce a hybrid reward function to leverage both gradient-based and loss-based multi-task
optimization for effective update strategies.

• Our method outperforms strong baselines across indoor, outdoor, and molecular benchmarks,
demonstrating robust generalization across varied loss types, gradient scales, and task interactions.

2 RELATED WORK

2.1 MULTI-TASK OPTIMIZATION

General multi-task optimization methods (Sener & Koltun, 2018; Yu et al., 2020; Navon et al.,
2022; Senushkin et al., 2023) formulate the MTL training process as a parameterized multi-objective
optimization (MOO) problems and aim to directly address the gradient conflict and scale dominance
problem that arise during joint training.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Gradient-based methods: A prominent category within this paradigm is gradient-based meth-
ods (Sener & Koltun, 2018; Chen et al., 2020; Yu et al., 2020; Liu et al., 2021a; Navon et al.,
2022), which aggregate task-specific gradients into a unified update direction. These methods at-
tempt to mitigate gradient conflicts by projecting gradients into conflict-free subspaces (Yu et al.,
2020; Liu et al., 2021a), reweighting gradients to balance task influence (Navon et al., 2022), or
seeking Pareto-stationary solutions in the gradient space (Sener & Koltun, 2018). Most of these
approaches are provably convergent and effective in many MTL scenarios, but due to their limited
capacity for exploration and reliance on heuristic aggregation rules, they can still converge to sub-
optimal solutions (Kurin et al., 2022; Xin et al., 2022), particularly under high-conflict conditions.

Loss-based methods: Loss-based methods (Baijiong et al., 2021; Liu et al., 2019; Kendall et al.,
2018; Guo et al., 2018) take a different approach by modifying the loss functions themselves. This
includes reweighting task losses (Baijiong et al., 2021; Kendall et al., 2018) or leveraging additional
loss-level signals such as convergence rates (Liu et al., 2019) and task difficulty (Guo et al., 2018).
However, these methods are myopic because they do not leverage the gradient-level information,
leading to suboptimal results compared to the gradient-based methods.

Hybrid methods: More recently, hybrid methods (Liu et al., 2021b; Senushkin et al., 2023; Lin
et al., 2023) have emerged, combining both loss-level and gradient-level signals to guide multi-
task optimization more holistically. These approaches demonstrate that incorporating both levels
of information can effectively reduce scale dominance and mitigate gradient conflict, improving
overall optimization performance. Similar to gradient-based methods, these existing techniques also
face the problem of potentially becoming stuck in local minima due to their reliance on deterministic
heuristic weighting policies. Our methodology can reduce this risk by leveraging the stochasticity
inherent in the exploration processes of MARL to enhance the chances of escaping local minima.

2.2 REINFORCEMENT LEARNING

Reinforcement learning (RL) (Sutton et al., 1998) has shown significant success in sequential
decision-making problems by learning policies that maximize long-term rewards through trial and
error. As many real-world applications involve multiple agents, multi-agent reinforcement learning
(MARL) (Lowe et al., 2017; Foerster et al., 2018; Gupta et al., 2017) has emerged as a prominent
area of research. A key challenge in MARL is the non-stationarity (Lowe et al., 2017) introduced
by simultaneously learning agents, which breaks the Markov assumption and hinders convergence.
To mitigate this problem, multi-agent deep deterministic policy gradient (MADDPG) (Lowe et al.,
2017) extends DDPG (Lillicrap et al., 2015) to the multi-agent setting. This method leverages the
centralized training with decentralized execution (CTDE) by equipping each agent with a central-
ized critic that has access to the observations and actions of all agents. This setup improves training
stability and enables agents to learn cooperative policies in both cooperative and mixed settings.

On the other hand, among the multi-task optimization literature, IGBv2 (Dai et al., 2023) is the first
to attempt to use single-agent RL to balance the loss weights. However, this method still operates
solely at the loss level and, like other loss-based approaches (Baijiong et al., 2021; Liu et al., 2019;
Guo et al., 2018), fails to explicitly account for gradient-level conflicts and dominance, limiting
the overall performance. In contrast, our approach introduces a multi-task optimization framework
leveraging cooperative MARL that directly considers both gradient and loss signals when determin-
ing gradient aggregation strategies.

3 PRELIMINARIES

3.1 GENERAL MULTI-TASK OPTIMIZATION FOR MTL

Given N data points {xi,yi
1, · · · ,yi

T }1≤i≤N , where xi ∈ X and yi
t ∈ Yt are input data and label

collection of T tasks, respectively, the goal of general multi-task optimization is to find the optimal
parameters θ∗ of network F(·; θ) that minimizes empirical losses. Suppose that there are t-th task
loss function L̄t(·, ·) : Yt ×Yt → R+, we can define the t-th empirical loss Lt(θ) as follows:

Lt(θ) :=
1

N

N∑
i=1

L̄t(F(xi; θ),yi
t). (1)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Figure 1: Overall pipeline of TaskForce. Each agent observes task-specific loss and a compact gradi-
ent summary via the Gram matrix, predicts a balancing weight for its task gradient, and is guided by
a hybrid reward signal that reflects both gradient alignment and loss reduction. Centralized training,
decentralized execution allows to learn coordinated policies while reducing computational efficiency
by combining global training signals with local, task-specific decision-making.

Then, we can form the given empirical risk minimization into the following multi-objective opti-
mization:

min
θ

(L1(θ), · · · ,LT (θ))
⊤. (2)

Gradient-based Methods Gradient-based multi-task optimization schemes typically begin by
computing the task gradient set g = {g1, · · · , gT } from the empirical loss set L(θ) =
{L1(θ), · · · ,LT (θ)}, where gt = ∇θLt(θ) for each task t ∈ {1, · · · , T}. Each gradient-based
method employs its own gradient aggregation algorithm Γ : R|θ|×T → R|θ| to compute an aggre-
gated gradient G. Consequently, the model parameters are then updated as follows:

θ ← θ − ηG, where G = Γ(g1, g2, · · · , gT). (3)

Loss-based Methods In contrast, loss-based methods do not explicitly compute task-wise gradients.
Instead, they rely on a loss aggregation algorithm Λ : RT → R that combines the empirical task
losses into a single weighted loss L(θ). The parameters are then updated by taking the gradient of
this aggregated loss as follows:

θ ← θ − η∇θL(θ), where L(θ) = Λ(L1(θ),L2(θ), · · · ,LT (θ)). (4)

4 METHOD

Similar to other optimization methods, the proposed TaskForce aims to find the optimal parameter
θ∗ of the MTL model F(·; θ) that minimizes the empirical risk as defined in Equation 2, by lever-
aging a MARL framework. To this end, TaskForce learns a policy that performs effective gradient
aggregation—similar to conventional multi-task optimization methods—based on the empirical loss
set L and task gradients g computed from each mini-batch.

Realizing this goal requires a precise problem definition and implementation. We begin by casting
the multi-task optimization problem as a cooperative Markov game, wherein the game’s core com-
ponents are specifically adapted for this new context (Section 4.1). Subsequently, we leverage this
environment to train task-wise agents that learn a cooperative policy to steer the main network’s
optimization process (Section 4.2). The overall pipeline of our approach is illustrated in Figure 1.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

4.1 CORE COMPONENTS DESIGN OF MARL

To tightly couple MARL with multi-task optimization, we formulate a cooperative Markov
game (Littman, 1994) in which the MTL model itself serves as the interactive, evolving environ-
ment, and we assign an individual agent to each task to collaboratively optimize multiple tasks. In
the following, we elaborate on how we design the three essential components—(1) observations O,
(2) actions A, and (3) rewardsR—to formulate a Markov game within the MARL framework.

Observation O: Following typical multi-task optimization settings, we construct the observation
using the empirical loss set L(θ) ∈ RT×1 and the corresponding task gradient set g ∈ RT×|θ|,
both derived from the i-th data point {xi,yi

1, · · · ,yi
T } using Equation 1. However, since the gradient

dimension |θ| directly scales with the MTL model’s parameters, passing the raw gradients to the
reinforcement learning agents would incur significant computational cost (see Table 3). To address
this, we leverage the Gram matrix of the task gradient set gg⊤ and define the observation as:

O =


o1
...
oT

 = {gg⊤|L(θ)} =


g1 · g1 · · · g1 · gT L1(θ)

...
. . .

...
...

gT · g1 · · · gT · gT LT (θ)

 . (5)

Our novel agent’s observation ot ∈ RT+1, constructed from the Gram matrix gg⊤ and loss L,
offers a significantly more compact representation than the complete set of empirical losses and task
gradients {g|L} ∈ RT×(θ+1), since T ≪ |θ|. This observation exclusively encapsulates the agent’s
local gradient magnitude and its alignment with other task gradients, thereby facilitating efficient,
localized decision-making.

Action A: The primary objective of each task-specific agent is to infer a balancing parameter
that determines its contribution to the final gradient update. We follow the convex combination
scheme (Boyd & Vandenberghe, 2004) commonly used in existing gradient-based methods, and
obtain the aggregated gradient G as follows:

G =

T∑
t=1

wtgt, wt =
exp(at)∑T

k=1 exp(ak)
, at = µt(ot;ϕt) ∈ A, (6)

where A = {a1, · · · , aT } denotes the continuous action set from each agent’s policy network
µt(·;ϕt), and wt ∈ R+ is the normalized weight obtained via the softmax function to ensure the
convexity constraint. Similar to other weight balancing methods (Sener & Koltun, 2018; Liu et al.,
2021b), this formulation allows the final update direction to lie within the convex hull of the task
gradients, enabling flexible gradient mixing while requiring each agent to output only a constant.

Next Observation O′: To reflect the effect of the action A on the MTL model F(·|θ), we first per-
form a single gradient descent step to update the network parameters as θ′ ← θ−ηG. After that, two
main strategies exist to define the next observation. The first strategy uses the same i-th data point
{xi,yi

1, · · · ,yi
T } to compute a new empirical loss set L(θ′) and the corresponding task gradient

set g′. These are then used to generate the next observation via equation 5. However, this approach
incurs significant computational overhead, requiring two forward and backward passes for every up-
date step. The second strategy utilizes the subsequent (i+ 1)-th data point {xi+1,yi+1

1 , · · · ,yi+1
T }

to generate the next observationO′. This method obviates the need for additional forward-backward
steps, which are inherent to the first strategy. Consequently, it significantly reduces training time
compared to the first strategy, and thus, we adopt this latter approach.

Reward R: One key strength of reinforcement learning is its flexibility in handling non-
differentiable and highly controllable reward functions. We leverage this to design a reward that
combines both loss-based feedback for immediate progress and gradient-based signals for long-
term task balancing. In our MTL setting, RL agents are trained alongside the shared network F ,
and must quickly adapt at each training step. To provide immediate feedback, we define a simple
loss-based reward that measures the relative improvement in log-transformed task losses:

rL =

T∑
t=1

log(1 + Lt(θ))−
T∑

t=1

log(1 + Lt(θ
′)), (7)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

where Lt(θ) and Lt(θ
′) represent the t-th empirical loss before and after the update, respec-

tively. Note that the logarithmic transform provides scale-invariant measurement of loss improve-
ment (Navon et al., 2022; Lin et al., 2023), making the reward more robust across different scales of
task losses.

While rL captures per-iteration loss convergence progress, it does not consider interactions between
gradients, which are known to affect general MTL performance significantly. To address this, we de-
sign a gradient-based reward term rG that evaluates the value of the aggregated gradient G. Specifi-
cally, rG leverages a convex minimization problem (Désidéri, 2012; Sener & Koltun, 2018), widely
used in multi-objective optimization to find a common descent direction that simultaneously mini-
mizes all objective functions and converges to a Pareto optimal point.

minimize
w1,··· ,wT

∥
T∑

t=1

wtgt∥22, subject to
T∑

t=1

wt = 1, wt ≥ 0. (8)

Our gradient-based reward rG reformulates the convex minimization problem into a reward-level
maximization problem suitable for a Markov game as follows:

rG = −∥
T∑

t=1

wtgt∥22 = −∥
T∑

t=1

G∥22. (9)

This allows the agent to learn and select a policy that aligns with a provably convergent direction,
thereby improving the overall stability and performance of the multi-objective learning process.

The final reward used for policy learning is a weighted sum of these components:

R = λLrL + λGrG , (10)

where λL and λG are hyperparameters that control the trade-off between per-iteration loss improve-
ment rL and desirable gradient property rG which is related to Pareto convergence. Note that the
rewardR is shared by all agents due to the fully cooperative scenario.

4.2 TRAINING OF TASKFORCE

In this section, we introduce the training procedure of the proposed TaskForce framework. For the
multi-agent reinforcement learning algorithm, we adopt Lowe et al. (2017). We detail the systematic
process of this framework in the subsequent discussion. Consider a Markov game in a multi-agent
setting, where T task-wise agents interact with a shared environment. The t-th agent receives a local
observation ot and selects an action at according to its policy µt(ot;ϕt).

Following the centralized training and decentralized execution paradigm, each agent is equipped
with a decentralized policy µt(·;ϕt) and a centralized critic Qµ

t (·, ·;ψt). In the off-policy training,
agents are trained using a replay buffer D containing transitions (O,A,R,O′), which are collected
in advance by executing the current policies µ jointly with the multi-task model in the environment.

First, the critic is trained to minimize the temporal difference (TD) loss as follows:

L(ψt) = E(O,A,R,O′)∼D

[(
Qµ

t (O,A;ψt)− (R+ γQµ′

t (O′,A′;ψ′
t))

)2]
,

a′t = µt(o
′
t;ϕ

′
t) ∈ A′ ∀1 ≤ t ≤ T,

(11)

where the target value is computed using the set of target policies µ′ = {µ1(·;ϕ′1), · · · , µT (·;ϕ′T)}
and target criticQµ′

t with delayed parameters (ϕ′t, ψ
′
t), and γ is the discount factor, respectively. The

actor is then updated via the deterministic policy gradient as follows:

∇ϕt
J(ϕt) = E(O,A)∼D

[
∇ϕt

µt(ot;ϕt)∇at
Qµ

t (O,A;ψt)
∣∣
at=µt(ot;ϕt)

]
. (12)

Lastly, target networks are updated using soft updates with an exponential moving average coeffi-
cient 0 < τ ≪ 1 as follows:

ϕ′t ← τϕt + (1− τ)ϕ′t, ψ′
t ← τψt + (1− τ)ψ′

t. (13)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Algorithm 1 Training Process of TaskForce.

Input: data point number N , task number T , data points X, {Yt}1≤t≤T , MTL model F(·; θ), agents
{µt(·;ϕt), Q

µ
t (·, ·;ψt)}1≤t≤T , replay buffer D, batch size of agents bagent.

Output: trained MTL model F(·; θ∗), trained agents {µt(·;ϕ∗
t), Q

µ
t (·, ·;ψ∗

t)}1≤t≤T .
1: initialize Oprev,Aprev,Rprev as null matrix or 0.
2: for i = 1 to N do
3: sample data point {xi,yi

1, · · · ,yi
T }.

4: compute empirical loss set L(θ) and task gradient set g from data point.
5: generate observation O from L(θ),gg⊤ by Equation 5.
6: compute action A = {µ1(o1;ϕ1), · · · , µT (oT ;ϕT)} from O.
7: compute aggregated gradient G from g and A by Equation 6.
8: if i ̸= 1 then
9: compute rewardR from L(θ),Lprev by Equation 7-10.

10: push transition (Oprev,Aprev,Rprev,O) to replay buffer D.
11: end if
12: Oprev,Aprev,Rprev,Lprev ← O,A,R,L(θ).
13: update MTL model F(·|θ) with G by θ ← θ − ηG.
14: if i > bagent then
15: sample bagent transitions T from replay buffer D.
16: update each actor µt(·;ϕt) and critic Qµ

t (·, ·;ψt) with transitions T by Equation 11-13.
17: end if
18: end for

Algorithm 1 summarizes the training process of TaskForce. First, to enable off-policy training with
the replay buffer D, we compute empirical losses and their gradients from a data point and store
them as transition tuples (O,A,R,O′). Second, the MTL model parameters are updated using the
aggregated gradient G, derived from the agents’ actionsA. Finally, the agent parameters are updated
by sampling transitions from the replay buffer, completing one MTL training iteration. For clarity,
we omit implementation details such as exploration noise scaling and reward normalization.

5 EXPERIMENTS

Baselines Similar to previous works (Navon et al., 2022; Senushkin et al., 2023), we compare
our TaskForce with the well-known multi-task optimization approaches: (1) Linear Scalarization
(LS) which minimizes

∑T
t=1 Lt(θ); (2) Random Loss Weighting (RLW) (Baijiong et al., 2021);

(3) Dynamic Weight Average (DWA) (Liu et al., 2019); (4) Uncertainty Weighting (UW) (Kendall
et al., 2018); (5) Multiple Gradient Descent Algorithm (MGDA) (Sener & Koltun, 2018); (6)
GradDrop (Chen et al., 2020); (7) PCGrad (Yu et al., 2020); (8) CAGrad (Liu et al., 2021a);
(9) Improvable Gap Balancing (IGBv2) (Dai et al., 2023); (10) IMTL (Liu et al., 2021b); (11)
NashMTL (Navon et al., 2022); (12) Aligned-MTL (Senushkin et al., 2023).

Datasets & Model Architecture NYU-v2 (Silberman et al., 2012) is an indoor scene understanding
benchmark with 795 training and 654 testing samples, annotated for three tasks: 13-class semantic
segmentation, depth estimation, and surface normal estimation. We use the MTAN (Liu et al., 2019)
architecture for evaluation. Cityscapes (Cordts et al., 2016) focuses on urban scene understanding
and provides 2,975 training and 500 validation images from 50 cities. It supports three tasks: 7-class
semantic segmentation, instance segmentation, and depth estimation. We adopt PSPNet (Zhao et al.,
2017) for evaluation. QM9 (Ramakrishnan et al., 2014) is a molecular property prediction dataset
with 110K training, 10K validation, and 10K test molecules. It covers 11 regression tasks, each
predicting a quantum chemical property. We use the MPNN (Gilmer et al., 2017) architecture.

Metrics & Experimental Setup We follow the task-specific evaluation metrics used in (Navon
et al., 2022) for the NYU-v2 and QM9 datasets, and those in (Senushkin et al., 2023) for the
Cityscapes dataset. To assess the overall performance across different metrics and tasks, we adopt
the relative performance decrement measures ∆m and ∆t—Formally, ∆m is defined as ∆m =
1/K

∑K
k=1(−1)δk(MMTL,k − MSTL,k)/MSTL,k, where K is the number of metrics, MSTL,k and

MMTL,k represent the k-th metric for the STL and MTL models, respectively. The indicator δk
equals 1 if a higher value is better for the k-th metric and 0 otherwise. The overall task-level perfor-

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: Evaluation results of NYU-v2 3-tasks setup. We report MTAN Liu et al. (2019) model
performance averaged over 3 random seeds.

Method Semseg. Depth Normal
∆m ↓ ∆t ↓mIoU PAcc. Abs. Rel. Mean Median 11.25◦ 22.5◦ 30◦

STL 38.30 63.76 0.68 0.28 25.01 19.21 30.14 57.20 69.15 0.00% 0.00%

LS 39.29 65.33 0.55 0.23 28.15 23.96 22.09 47.50 61.08 +5.46% −1.07%
RLW 37.17 63.77 0.58 0.24 28.27 24.18 22.26 47.05 60.62 +7.67% +2.00%
DWA 39.11 65.31 0.55 0.23 27.61 23.18 24.17 50.18 62.39 +3.49% −2.06%
UW 36.87 63.17 0.54 0.23 27.04 22.61 23.54 49.05 63.65 +4.01% −0.97%
MGDA 30.47 59.90 0.61 0.26 24.88 19.45 29.18 56.88 69.36 +1.47% +1.79%
GradDrop 39.39 65.12 0.55 0.23 27.48 22.96 23.38 49.44 62.87 +3.61% −2.03%
PCGrad 38.06 64.64 0.56 0.23 27.41 22.80 23.86 49.83 63.14 +3.83% −1.33%
CAGrad 39.79 65.49 0.55 0.23 26.31 21.58 25.61 52.36 65.58 +0.29% −4.18%
IGBv2 38.53 64.81 0.55 0.23 26.54 22.11 24.90 52.21 66.09 +1.71% −2.61%
IMTL 39.35 65.60 0.54 0.23 26.02 21.19 26.20 53.13 66.24 −0.59% −4.76%
NashMTL 40.13 65.93 0.53 0.22 25.26 20.08 28.40 55.47 68.15 −4.04% −7.56%
Aligned-MTL 40.82 66.33 0.53 0.22 25.19 19.71 28.88 56.23 68.54 −4.93% −8.40%

TaskForce (Ours) 41.77 66.73 0.51 0.22 24.83 19.19 29.27 56.85 69.29 −6.47% −9.96%

Table 2: Evaluation results on Cityscapes (3-tasks) and QM9 (11-tasks) setups. We report model
performance averaged over 3 random seeds for PSPNet (Cityscapes) and MPNN (QM9).

Method
Cityscapes QM9

Semseg. Instseg. Disparity
∆m ↓ ∆m ↓mIoU (%) ↑ L1 (px.) ↓ MSE ↓

STL 66.73 10.55 0.33 0.00% 0.00%

LS 52.98 10.89 0.39 +14.30% +177.6%
RLW 51.26 10.25 0.41 +15.58% +203.8%
DWA 53.15 10.22 0.40 +13.20% +175.3%
UW 60.12 9.87 0.33 +1.53% +108.0%
MGDA 66.72 17.02 0.33 +20.62% +120.5%
GradDrop 52.98 10.09 0.40 +12.50% +198.7%
PCGrad 54.06 9.91 0.38 +10.00% +125.7%
CAGrad 64.33 10.15 0.34 +1.46% +112.8%
IGBv2 61.14 10.53 0.33 +2.73% +67.7%
IMTL 65.13 11.58 0.32 +3.10% +77.2%
NashMTL 64.84 11.90 0.37 +9.38% +62.0%
Aligned-MTL 67.06 10.63 0.33 −0.02% +81.9%

TaskForce (Ours) 66.63 10.55 0.32 −0.65% +59.0%

mance decrement, ∆t, is computed as the average of ∆m across all tasks. We follow the training
protocol of (Senushkin et al., 2023) for NYU-v2 and Cityscapes, and (Navon et al., 2022) for QM9,
respectively. Across all experiments, we set λL = 1.0 for the loss-based reward, λG = 1× 10−3 for
the gradient-based reward. We adopt a standard MADDPG (Lowe et al., 2017) for agents. Due to the
space constraints, we describe the implementation details of the RL agents in Appendix Section B.

Evaluation Results on NYU-v2 & Cityscapes Table 1 and Table 2 summarize the performance
of TaskForce against baseline methods on the NYU-v2 and Cityscapes datasets, respectively. Across
both benchmarks, TaskForce consistently outperforms all baselines according to the relative perfor-
mance measures ∆m and ∆t. Notably, our method shows consistent improvement over the strong
competitor, Aligned-MTL, across nearly all reported metrics, with the sole exception being the seg-
mentation on the Cityscapes dataset. This robust performance demonstrates that our method suc-
cessfully navigates the complex multi-task landscape, empowered by its cooperative MARL setup.

Evaluation Results on QM9 QM9 is one of the most challenging datasets in multi-task learning
due to its complex and diverse molecular properties across tasks, and the significant scale difference
between losses. As shown in Table 2, TaskForce significantly outperforms all competing baseline
methods. We observe that strong competitors like Aligned-MTL, while performing well on simpler
scene understanding datasets, struggle considerably under the high task complexity of QM9. This
outcome demonstrates the resilience of the proposed method, which performs robustly even when
faced with an increased number of tasks and more complex gradient interactions.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 3: Ablation studies on Cooperative MARL components on the NYU-v2 3-tasks setup. We
report the training cost relative to the final configuration of each method on the MTAN Liu et al.
(2019) network architecture. We set R = rL of all configuration except rG ablation. (MA: multi-
agents, CT: centralized training, DE: decentralized execution, *: rough calculation.)

gg⊤ MA CT DE rG training cost ∆m ↓ ∆t ↓
×2.59M* - -

✓ ×0.95 −2.89% −4.05%
✓ ✓ ×1.16 −4.26% −7.19%
✓ ✓ ✓ ×3.21 −5.23% −8.31%
✓ ✓ ✓ ✓ ×1.00 −5.18% −8.26%
✓ ✓ ✓ ✓ ✓ ×1.00 −6.47% −9.96%

5.1 ABLATION STUDIES ON COOPERATIVE MARL COMPONENTS

To evaluate the contribution of each component of our cooperative multi-agent reinforcement learn-
ing framework within TaskForce, we conduct ablation studies by incrementally introducing five key
elements: (1) gram-matrix observation (gg⊤); (2) task-specific multiple agents (MA); (3) a central-
ized critic training (CT) that processes joint observations and actions; (4) decentralized execution
(DE); (5) shared R based on the loss reduction rate across all tasks, instead of each loss reduction
rewards (We detail the experimental setup of this ablation in Appendix section A).

As shown in Table 3, we observe consistent performance gains as each key component of cooper-
ative MARL is added. Due to the excessively large number of shared parameter |θ| ∼= 44.1M of
MTAN (Liu et al., 2019), the configuration that does not incorporate the task gradient gram matrix
gg⊤ ∈ RT×T is not appropriate for the multi-task optimization framework. The multiple agents al-
low task-specific specialization, enabling the model to disentangle conflicting optimization signals
across tasks. The centralized critic improves credit assignment by leveraging global information,
leading to better optimization performance. Meanwhile, decentralized execution, which relies only
on task-specific local observations, enhances training efficiency with minimal compromise in over-
all performance. Lastly, using the gradient-based reward rG encourages the agents to consistently
align with a provably convergent direction, thereby improving performance. These findings high-
light that the modular and cooperative structure of MARL, particularly when fully integrated, plays
a crucial role in enhancing both convergence stability and overall performance in multi-task learning
scenarios. Notably, our TaskForce substantially reduces the computational cost associated with re-
inforcement learning by leveraging the Gram matrix and decentralized execution (DE), resulting in
a training cost that remains comparable to that of conventional methods (See appendix Section E).

6 CONCLUSION

We have introduced TaskForce, a MARL-based framework for multi-task optimization that reformu-
lates MTL as a cooperative Markov game. Unlike prior approaches that aggregate gradients or rely
on heuristic balancing, TaskForce models each task as an agent equipped with a compact gradient-
based observation and a loss–gradient hybrid reward, enabling cooperative strategies that balance
tradeoffs, resolve conflicts, and adaptively guide optimization toward Pareto-efficient solutions. At
the core of TaskForce is a lightweight agent observation derived from the Gram matrix of task
gradients, capturing both magnitudes and pairwise alignments with minimal computational over-
head. Complementing this, we design a principled gradient-based reward grounded in convex multi-
objective optimization, which provides theoretical convergence guarantees while promoting cooper-
ative task interactions. Extensive experiments on NYU-v2, Cityscapes, and QM9 demonstrate that
TaskForce consistently surpasses strong baselines, yielding more stable convergence, stronger gen-
eralization across domains, and improved task-level performance. These results establish TaskForce
as an effective bridge between cooperative MARL and gradient-based optimization for multi-task
learning. Looking ahead, we envision extending TaskForce to larger and more diverse task sets, in-
corporating richer reward structures, and applying it to real-world domains in vision, language, and
molecular modeling, further expanding the potential of MARL-based optimization in deep learning.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

L Baijiong, Y Feiyang, and Z Yu. A closer look at loss weighting in multi-task learning. arXiv
preprint arXiv:2111.10603, 2021.

Stephen P Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university press, 2004.

Rich Caruana. Multitask learning. Machine learning, 28:41–75, 1997.

Zhao Chen, Jiquan Ngiam, Yanping Huang, Thang Luong, Henrik Kretzschmar, Yuning Chai, and
Dragomir Anguelov. Just pick a sign: Optimizing deep multitask models with gradient sign
dropout. Advances in Neural Information Processing Systems, 33:2039–2050, 2020.

Wonhyeok Choi and Sunghoon Im. Dynamic neural network for multi-task learning searching across
diverse network topologies. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 3779–3788, 2023.

Wonhyeok Choi, Mingyu Shin, Hyukzae Lee, Jaehoon Cho, Jaehyeon Park, and Sunghoon Im.
Multi-task learning for real-time autonomous driving leveraging task-adaptive attention generator.
In 2024 IEEE International Conference on Robotics and Automation (ICRA), pp. 14732–14739.
IEEE, 2024.

Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus Enzweiler, Rodrigo
Benenson, Uwe Franke, Stefan Roth, and Bernt Schiele. The cityscapes dataset for semantic urban
scene understanding. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 3213–3223, 2016.

Michael Crawshaw. Multi-task learning with deep neural networks: A survey. arXiv preprint
arXiv:2009.09796, 2020.

Yanqi Dai, Nanyi Fei, and Zhiwu Lu. Improvable gap balancing for multi-task learning. In Uncer-
tainty in Artificial Intelligence, pp. 496–506. PMLR, 2023.

Jean-Antoine Désidéri. Multiple-gradient descent algorithm (mgda) for multiobjective optimization.
Comptes Rendus Mathematique, 350(5-6):313–318, 2012.

Chris Fifty, Ehsan Amid, Zhe Zhao, Tianhe Yu, Rohan Anil, and Chelsea Finn. Efficiently identify-
ing task groupings for multi-task learning. Advances in Neural Information Processing Systems,
34:27503–27516, 2021.

Jakob Foerster, Gregory Farquhar, Triantafyllos Afouras, Nantas Nardelli, and Shimon Whiteson.
Counterfactual multi-agent policy gradients. In Proceedings of the AAAI conference on artificial
intelligence, volume 32, 2018.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In International conference on machine learning, pp.
1263–1272. PMLR, 2017.

Michelle Guo, Albert Haque, De-An Huang, Serena Yeung, and Li Fei-Fei. Dynamic task priori-
tization for multitask learning. In Proceedings of the European conference on computer vision
(ECCV), pp. 270–287, 2018.

Jayesh K Gupta, Maxim Egorov, and Mykel Kochenderfer. Cooperative multi-agent control using
deep reinforcement learning. In Autonomous Agents and Multiagent Systems: AAMAS 2017 Work-
shops, Best Papers, São Paulo, Brazil, May 8-12, 2017, Revised Selected Papers 16, pp. 66–83.
Springer, 2017.

Kazuma Hashimoto, Caiming Xiong, Yoshimasa Tsuruoka, and Richard Socher. A joint many-task
model: Growing a neural network for multiple nlp tasks. arXiv preprint arXiv:1611.01587, 2016.

Alex Kendall, Yarin Gal, and Roberto Cipolla. Multi-task learning using uncertainty to weigh losses
for scene geometry and semantics. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 7482–7491, 2018.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Vitaly Kurin, Alessandro De Palma, Ilya Kostrikov, Shimon Whiteson, and Pawan K Mudigonda. In
defense of the unitary scalarization for deep multi-task learning. Advances in Neural Information
Processing Systems, 35:12169–12183, 2022.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv
preprint arXiv:1509.02971, 2015.

Baijiong Lin, Weisen Jiang, Feiyang Ye, Yu Zhang, Pengguang Chen, Ying-Cong Chen, Shu Liu,
and James T Kwok. Dual-balancing for multi-task learning. arXiv preprint arXiv:2308.12029,
2023.

Michael L Littman. Markov games as a framework for multi-agent reinforcement learning. In
Machine learning proceedings 1994, pp. 157–163. Elsevier, 1994.

Bo Liu, Xingchao Liu, Xiaojie Jin, Peter Stone, and Qiang Liu. Conflict-averse gradient descent
for multi-task learning. Advances in Neural Information Processing Systems, 34:18878–18890,
2021a.

Liyang Liu, Yi Li, Zhanghui Kuang, Jing-Hao Xue, Yimin Chen, Wenming Yang, Qingmin Liao, and
Wayne Zhang. Towards impartial multi-task learning. In International Conference on Learning
Representations, 2021b.

Shikun Liu, Edward Johns, and Andrew J Davison. End-to-end multi-task learning with attention.
In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp.
1871–1880, 2019.

Suyun Liu and Luis Nunes Vicente. The stochastic multi-gradient algorithm for multi-objective
optimization and its application to supervised machine learning. Annals of Operations Research,
339(3):1119–1148, 2024.

Ryan Lowe, Yi I Wu, Aviv Tamar, Jean Harb, OpenAI Pieter Abbeel, and Igor Mordatch. Multi-
agent actor-critic for mixed cooperative-competitive environments. Advances in neural informa-
tion processing systems, 30, 2017.

Bryan McCann, Nitish Shirish Keskar, Caiming Xiong, and Richard Socher. The natural language
decathlon: Multitask learning as question answering. arXiv preprint arXiv:1806.08730, 2018.

Ishan Misra, Abhinav Shrivastava, Abhinav Gupta, and Martial Hebert. Cross-stitch networks for
multi-task learning. In Proceedings of the IEEE conference on computer vision and pattern recog-
nition, pp. 3994–4003, 2016.

Aviv Navon, Aviv Shamsian, Idan Achituve, Haggai Maron, Kenji Kawaguchi, Gal Chechik, and
Ethan Fetaya. Multi-task learning as a bargaining game. arXiv preprint arXiv:2202.01017, 2022.

Raghunathan Ramakrishnan, Pavlo O Dral, Matthias Rupp, and O Anatole Von Lilienfeld. Quantum
chemistry structures and properties of 134 kilo molecules. Scientific data, 1(1):1–7, 2014.

Ozan Sener and Vladlen Koltun. Multi-task learning as multi-objective optimization. Advances in
neural information processing systems, 31, 2018.

Dmitry Senushkin, Nikolay Patakin, Arseny Kuznetsov, and Anton Konushin. Independent compo-
nent alignment for multi-task learning. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 20083–20093, 2023.

Nathan Silberman, Derek Hoiem, Pushmeet Kohli, and Rob Fergus. Indoor segmentation and sup-
port inference from rgbd images. In Computer Vision–ECCV 2012: 12th European Conference
on Computer Vision, Florence, Italy, October 7-13, 2012, Proceedings, Part V 12, pp. 746–760.
Springer, 2012.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Ximeng Sun, Rameswar Panda, Rogerio Feris, and Kate Saenko. Adashare: Learning what to share
for efficient deep multi-task learning. Advances in Neural Information Processing Systems, 33:
8728–8740, 2020.

Richard S Sutton, Andrew G Barto, et al. Reinforcement learning: An introduction, volume 1. MIT
press Cambridge, 1998.

Zirui Wang, Yulia Tsvetkov, Orhan Firat, and Yuan Cao. Gradient vaccine: Investigating and improv-
ing multi-task optimization in massively multilingual models. arXiv preprint arXiv:2010.05874,
2020.

Derrick Xin, Behrooz Ghorbani, Justin Gilmer, Ankush Garg, and Orhan Firat. Do current multi-
task optimization methods in deep learning even help? Advances in neural information processing
systems, 35:13597–13609, 2022.

Hanrong Ye and Dan Xu. Inverted pyramid multi-task transformer for dense scene understanding.
In European Conference on Computer Vision, pp. 514–530. Springer, 2022a.

Hanrong Ye and Dan Xu. Taskprompter: Spatial-channel multi-task prompting for dense scene
understanding. In The Eleventh International Conference on Learning Representations, 2022b.

Tianhe Yu, Saurabh Kumar, Abhishek Gupta, Sergey Levine, Karol Hausman, and Chelsea Finn.
Gradient surgery for multi-task learning. Advances in neural information processing systems, 33:
5824–5836, 2020.

Amir R Zamir, Alexander Sax, William Shen, Leonidas J Guibas, Jitendra Malik, and Silvio
Savarese. Taskonomy: Disentangling task transfer learning. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pp. 3712–3722, 2018.

Yu Zhang and Qiang Yang. A survey on multi-task learning. IEEE transactions on knowledge and
data engineering, 34(12):5586–5609, 2021.

Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, Xiaogang Wang, and Jiaya Jia. Pyramid scene parsing
network. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
2881–2890, 2017.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Appendix

A EXPERIMENTAL SETUP OF ABLATION STUDIES

In the main manuscript, we conducted an ablation study on TaskForce by incrementally integrating
five key components: (1) Gram matrix observation (gg⊤), (2) Multi-Agent (MA), (3) Centralized
Training (CT), (4) Decentralized Execution (DE), and (5) adding gradient-based reward rG . This
section provides a detailed description of the experimental configurations for each ablation stage,
supplementing the explanations in the main manuscript:

1. Gram matrix (gg⊤): If we construct the agent observations O using the raw task gradient set g
and the empirical loss set L(θ), the observations are as follows:

O =


o1
...
oT

 = {g|L(θ)} =


g1 L1(θ)
...

...
gT LT (θ)

 ∈ RT×(|θ|+1), (14)

where gt = ∇θLt(θ) for each task t ∈ {1, · · · , T}. Since the number of shared parameters |θ|
is exceedingly large compared to the number of tasks T (T ≪ |θ|), this formulation results in an
observation space with prohibitive spatial and temporal complexity. Thus, as reported in Table 3,
rendering the multi-task optimization process computationally infeasible.
Therefore, we propose TaskForce that designs the compact observation based on Gram matrix of
the task gradient set as follows:

O =


o1
...
oT

 = {gg⊤|L(θ)} =


g1 · g1 · · · g1 · gT L1(θ)

...
. . .

...
...

gT · g1 · · · gT · gT LT (θ)

 ∈ RT×(T+1). (15)

Note that in setups where Decentralized Execution (DE) is not yet applied, the policy uses the
entire observation matrix O as an input.

2. Multi-agent training (MA): The single-agent baseline utilizes the DDPG (Lillicrap et al., 2015).
Its policy network, µ(O;ϕ), takes the entire observation O and directly outputs the joint ac-
tion vector A. Conversely, the multi-agent configuration employs MADDPG (Lowe et al., 2017)
as introduced in the main manuscript. We introduce task-specific policies, where each policy
µt(O;ϕt) takes the shared observationO but outputs only its corresponding action at as follows:

A = [a1, · · · , aT] = [µt(O;ϕt)]Tt=1. (16)
In this configuration, each critic Qµ

t is still decentralized in its action evaluation; it takes the
shared observation O and only the action at from its own agent to estimate the action valueQ as
follows:

Q = Qµ
t (O, at;ψt). (17)

3. Centralized Training (CT): A key contribution of MADDPG is its centralized critic, which we
introduce in this step. Unlike the previous setup, each critic Qµ

t now evaluates its action value Q
from the entire action A of all policies µ = {µ1, · · · , µT }, in addition to the shared observation
O. This allows for more effective credit assignment during training:

Q = Qµ
t (O,A;ψt). (18)

4. Decentralized Execution (DE): To accelerate inference and to improve practicality, many
MARL algorithms utilize decentralized execution. In this paradigm, each policy network µt uses
only its local, task-specific observation ot as input, rather than the full observation matrix O.
The critic, however, continues centralized training manner during training, utilizing the global
observation O and the joint action A as follows:

A = [a1, · · · , aT] = [µt(ot;ϕt)]
T
t=1, (19)

Q = Qµ
t (O,A;ψt). (20)

5. Gradient-Based Reward (rG): In the final configuration, we incorporate the proposed gradient-
based reward term, rG . While previous setups relied solely on a loss-based reward, R = λLrL,
the final reward function is a weighted sum of both components:

R = λLrL + λGrG . (21)

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

B HYPERPARAMETER AND RL AGENT CONFIGURATION OF TASKFORCE

As aforementioned, in our work, we adapt the MADDPG (Lowe et al., 2017) algorithm, where the
number of actor and critic networks corresponds to the number of agents (the number of tasks in
our method). Each actor and critic network is implemented as a three-layer MLP with a hidden
dimension of 64. The agents are trained using the Adam optimizer (Kingma & Ba, 2014) with a
learning rate of 5 × 10−4 and a transition batch size of 64. The experience replay buffer stores up
to 100,000 transitions, allowing the agents to perform off-policy learning effectively. We employ
soft target updates (Lillicrap et al., 2015) for stabilizing the critic network, using an exponential
moving average coefficient of τ = 0.01. The discount factor for delayed rewards is set to γ = 0.95.
To encourage exploration, we utilize Ornstein-Uhlenbeck (OU) noise (Lillicrap et al., 2015) during
training. The noise scale linearly decays from 0.3 to 0.05 over the first 10,000 training iterations.
We use the log-transformed empirical loss to ensure scale-invariant conditions across tasks. Also,
gradient normalization (Sener & Koltun, 2018) is applied to prevent instability due to the scale
dominance problem in the gradient space.

C COMPATIBILITY OF GRADIENT-BASED REWARD WITH OTHER CONVEX
MINIMIZATION

Beyond the gradient-based reward rG utilized in this paper, the multi-objective optimization litera-
ture presents various approaches for solving convex minimization problems, often grounded in dif-
ferent hypotheses (Liu et al., 2021b; Navon et al., 2022). To investigate whether our gradient-based
reward framework is compatible with these alternative formulations, we adapt the minimization
problem from a strong baseline, IMTL (Liu et al., 2021b).

IMTL encourages a balanced update by equalizing the projection of the aggregated gradient onto
each normalized task gradient. This is also framed as a minimization objective, negated into a reward
as follows:

minimize
w1,··· ,wT

T∑
t=2

∥G(g1/∥g1∥2 − gt/∥gt∥2)⊤∥22, subject to
T∑

t=1

wt = 1, wt ≥ 0, (22)

rIMTL
G = −

T∑
t=2

∥G(g1/∥g1∥ − gt/∥gt∥)⊤∥22. (23)

We conduct additional experiments to validate the performance of TaskForce using this IMTL-based
reward rIMTL

G , with results presented in Table 7-9. Across all experiments in the appendix, we set
λL = 1.0 for the loss-based reward, λG = 1 × 10−3 for the original gradient-based reward, and
λIMTL
G = 1.0 for the IMTL-based reward. As shown in Table 7, when the gradient-based reward is

replaced with rIMTL
G , TaskForce maintains its high performance and continues to outperform strong

baselines. This result demonstrates the potential extensibility of our methodology, indicating that the
gradient-based reward can be effectively constructed from various gradient-level convex minimiza-
tion problems proposed in the multi-objective optimization literature.

D SENSITIVITY OF REWARD WEIGHT PARAMETERS OF THE TASKFORCE.

Beyond the standard hyperparameters of MADDPG (e.g., replay buffer size, discount factor), our
proposed TaskForce introduces two tunable reward weights λL and λG . Due to the MADDPG utiliz-
ing the reward normalization for training stability (Lowe et al., 2017), the relative proportion of λL
and λG only significantly influences the learning outcome. As specified in the upper implementation
details section, we used the same reward weights across all experiments. The relative proportions of
these lambda values were determined experimentally to ensure a comparable average scale between
the loss reward and gradient reward (i.e., λL = 1.0, λG = 0.001, λIMTL

G = 1.0). The consistent
performance improvements observed across all datasets experimentally demonstrate that our chosen
lambda values can generalize well in practice.

Additionally, we conducted a grid search based on the ratio of the reward weight parameters, as
shown in Table 4. We incorporate the original gradient-based reward rG and other gradient-based

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

reward rIMTL
G introduced in Section C for this grid search. The results on the Cityscapes dataset

show that our method outperforms the current state-of-the-art method, Aligned-MTL (Senushkin
et al., 2023) (∆m = −0.01%), in most cases except for experiments where loss-based rewards were
not leveraged, or where the gradient reward scale became excessively large (i.e., λL : λG = 1 : 1).

Table 4: Grid search of reward weight parameters λL and λG on the Cityscapes dataset. We report
PSPNet Zhao et al. (2017) model performance averaged over 3 random seeds.

Reward Ratio (λL : λG) ∆m (λG) ∆m (λIMTL
G)

1:0 −0.33 % −0.33 %
1:0.01 −0.65 % −0.41 %
1:1 +0.31 % −0.66 %
0:1 +10.42 % +6.10 %

E COMPUTATIONAL OVERHEAD COMPARISON BETWEEN TASKFORCE AND
PRIOR METHODS

To evaluate the computational overhead and training efficiency of our proposed TaskForce—which
uses multiple RL agents instead of a traditional numerical solver—we measured the per-epoch wall
time for our method and baselines across all datasets. All experimental setups are identical to the im-
plementation details provided in the main manuscript and the Appendix. Note that all computational
costs were measured on a single A6000 GPU.

As shown in Table 5, our experimental results indicate that for the 3-task scenario, there is no
significant difference in wall time compared to existing gradient- and hybrid-based optimization
methods. Furthermore, even in the more challenging 11-task quantum chemistry setup, where task
complexity causes a scalability issue, our method demonstrates acceptable training time when com-
pared to conventional approaches.

Table 5: Per-epoch training cost (epoch/sec) comparison between the proposed TaskForce and other
baselines.

Method NYU-v2 3-tasks Cityscapes 3-tasks QM9 11-tasks

LS 85 168 85
MGDA 114 261 332
IMTL 112 258 294
NashMTL 109 258 286
Aligned-MTL 111 255 279
Ours 111 257 304

To further analyze the computational cost of TaskForce, which requires additional agent learning, we
also measured the contribution of each sub-procedure within TaskForce to the overall computational
cost. It’s important to note that MTL network inference & loss computation, gradient computation,
and model updates are fundamental and essential processes for any gradient-based optimization
method.

As shown in Table 6, our analysis reveals that the time consumed by multi-agent learning and infer-
ence in TaskForce is significantly smaller in proportion to the time spent on the MTL network’s task
gradient computation, which typically constitutes the largest portion of gradient-based methods.

F STATISTICAL ANALYSIS OF EVALUATION RESULTS

Given that our methodology employs a Reinforcement Learning agent, discovering a suitable pol-
icy may fail. Consequently, we summarize the mean and variance of evaluation results across three
trials for all experiments in the main manuscript in Table 7. Our approach, when relying solely on
a loss-based reward, exhibits a non-negligible level of variance across trials. However, our method,

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 6: Computational cost of TaskForce components on the NYU-v2 dataset.

Procedure Training cost (sample/ms)

MTL Network inference & compute loss 62.02
MTL Network gradient computation 154.01
MTL Network update 4.78
Agents inference & compute loss 27.84
Agents update 17.04

incorporating the provably convergent gradient-based rewards rG and rIMTL
G , demonstrates a compar-

atively low variance across the three trials. This suggests that gradient-based rewards can contribute
to enhanced training stability.

Table 7: Summary of statistical analysis of evaluation results of main manuscripts. We report the
3-run mean and variance of our method under the different configurations.

Method NYU-v2 Cityscapes QM9

STL (single-task learning) 0.00 % 0.00 % 0.00 %

Ours (rL) −5.46±1.79 % −0.33±0.06 % +64.2±3.8 %
Ours (rL & rG) −6.47±0.51 % −0.65±0.01 % +59.0±0.8 %
Ours (rL & rIMTL

G) −6.23±0.83 % −0.66±0.02 % +61.5±1.7 %

Performing statistical analysis only on our method makes direct comparisons with other methods
challenging. Therefore, we’ve summarized the results in Table 8 (including both reported and repro-
duced values with confidence intervals) for several existing methods and ours on the QM9 dataset
below, as it represents the most challenging scenario with the highest number of tasks. Note that
previous literature often tends to report higher values than what can be reproduced. For this reason,
we used reported values for the main paper, and the statistical information for these reported values
was sourced from the NashMTL (Navon et al., 2022) and Aligned-MTL (Senushkin et al., 2023).

Table 8: Statistical summary of evaluation results on the QM9 dataset. We present the 3-run mean
and variance of our proposed method and baseline models, including metrics reported in their origi-
nal papers and our own reproduced metrics.

Method ∆m (reported) ∆m (reproduced)

STL (single-task learning) 0.00 % 0.00 %

LS +177.6±3.4 % +177.1±3.5 %
MGDA +120.5±2.0 % +113.1±4.3 %
IMTL +77.2±9.3 % +77.9±4.1 %
NashMTL +62.0±1.4 % +63.1±1.6 %
Aligned-MTL N/A +81.9±2.3 %

Ours (rL) +64.2±3.8 % +64.2±3.8 %
Ours (rL & rG) +59.0±1.0 % +59.0±1.0 %
Ours (rL & rIMTL

G) +61.5±1.7 % +61.5±1.7 %

F.1 ROBUSTNESS OF THE TASKFORCE W.R.T. HYPERPARAMETERS

TaskForce, which leverages multi-agent reinforcement learning, can exhibit varying performance
depending on the agents’ hyperparameters. Therefore, we conduct comprehensive experiments on
the Cityscapes dataset, systematically varying the values of key components that can influence the
agents’ learning to observe the resulting performance changes. We focus on two primary compo-
nents: (1) replay buffer length and (2) exploration noise scale, evaluating the impact of different
values on the overall performance metric ∆m (where lower is better). Note that, for agent explo-
ration, we progressively decrease the scale of the Ornstein-Uhlenbeck (OU) noise (Lillicrap et al.,
2015) applied to the policy during the exploration period, transitioning from an initial scale to a final
scale.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Figure 2 illustrates the statistical analysis of evaluation results under different configurations across
these key components. Firstly, as the replay buffer length increases, the sampling efficiency of stored
transitions improves, leading to enhanced stability. These also result in both improved performance
and reduced variance. Regarding the exploration noise scale, we observe that introducing appropriate
exploration leads to performance gains compared to configurations without exploration (i.e., noise
scale: [0.0, 0.0]). However, excessive exploration intensity results in decreased performance and
increased variance, indicating instability.

Figure 2: Performance trade-off of TaskForce on Cityscapes w.r.t. replay buffer size and exploration
intensity. We report PSPNet (Zhao et al., 2017) model performance averaged over 3 random seeds.

F.2 PRACTICAL SPEEDUP OF TASKFORCE

Our methodology employs highly compact agents (e.g., a 2-layer MLP with a hidden dimension of
64) to achieve a fast and practical Multi-Task Learning training process. However, the necessity to
update the parameters of both agents and critics at each iteration poses an issue, as it still leads to a
linear increase in training cost with respect to the number of tasks. We can mitigate this scalability
issue by reducing the agent update frequency within TaskForce, which practically accelerates the
Multi-task optimization process. Consequently, we investigate the performance trade-off resulting
from variations in this update frequency.

We observe that reducing the agent update frequency leads to an increase in the optimization cost
efficiency of TaskForce (a speedup of ×8.73 for an update frequency of 10). As shown in Figure 3,
while increasing the update frequency tends to decrease performance, our method still outperforms
existing approaches (e.g., Δm=0.01 for Aligned-MTL (Senushkin et al., 2023)), suggesting the po-
tential for efficient optimization even in scenarios with a larger number of tasks.

F.3 ALTERNATIVE FORMULATION OF THE TASKFORCE

As mentioned previously in our main manuscript, there are two strategies for interpreting the MTL
training process as a cooperative Markov game:

Strategy 1: Viewing the entire MTL training process as a single episode (the methodology em-
ployed in the main manuscript).

Strategy 2: Alternatively, considering each gradient descent step as an individual episode (where
transitions are derived using the same data point after a model update).

While Strategy 1 treats data points as part of a non-stationary environment, Strategy 2 allows for
the measurement of the loss reduction rate on the same data point, potentially leading to more
stable reward measurement. However, a significant drawback of Strategy 2 is its requirement for
nearly twice the training cost, as it necessitates measuring the loss and gradients of the network both
before and after each update on the same data point. We provide the algorithmic description for
this alternative formulation in Algorithm 2 and its experimental results on the Cityscapes dataset in
Table 9. The approach utilizing Algorithm 2 enables the agent to learn more rapidly due to the stable

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Figure 3: Performance trade-off of TaskForce on Cityscapes w.r.t. agent update frequency. We report
PSPNet (Zhao et al., 2017) model performance averaged over 3 random seeds.

Table 9: Comparison between original TaskForce and Alternative formulation. We evaluate both
methods on the Cityscapes 3-task setup. We report PSPNet Zhao et al. (2017) model performance
averaged over 3 random seeds. We report the relative runtime of MTL training from the original
TaskForce using the same computing resources.

Method Semseg. Instseg. Disparity
∆m ↓ runtimemIoU (%) ↑ L1 (px.) ↓ MSE ↓

STL 66.73 10.55 0.33 0.00% ×0.83

TaskForce (rL) 66.10 10.49 0.33 −0.33% ×1.00
TaskForce (rL & rG) 66.63 10.55 0.32 −0.65% ×1.00
TaskForce (rL & rIMTL

G) 66.31 10.48 0.32 −0.66% ×1.00

TaskForce-ALT (rL) 66.81 10.51 0.33 −0.41% ×1.86
TaskForce-ALT (rL & rG) 66.70 10.54 0.32 −0.58% ×1.86
TaskForce-ALT (rL & rIMTL

G) 66.50 10.49 0.32 −0.74% ×1.86

reward signal obtained from the same data point, resulting in a slight performance improvement
of (rL) and (rL & rIMTL

G) settings. Nevertheless, given the marginal performance gain in Table 9
compared to the doubled computational cost, we adopt the first strategy in the main body of our
work.

F.4 VISUALIZE WEIGHT DYNAMICS

In Figure 4, we visualize the task weight dynamics observed during our experiments across the
three datasets utilized: NYU-v2, Cityscapes, and QM9. Our method demonstrates the ability to
adaptively determine appropriate weights for optimization across these datasets, including NYU-v2
and Cityscapes, as well as the relatively complex QM9 dataset, which presents a scale dominance
problem and comprises a large number of tasks.

G DISCUSSION: ADVANTAGES OF COOPERATIVE MULTI-AGENT RL IN
MULTI-TASK OPTIMIZATION

In our main manuscript, we conduct ablation studies on key components of Cooperative MARL
to evaluate each component’s contribution. These results underscore the significant contribution
of MARL’s modular and cooperative architecture, especially when fully integrated, to improving
both the stability of convergence and the overall performance in multi-task learning settings. Based
on these results, this section aims to discuss the characteristics of cooperative MARL that may
contribute to the observed performance improvements.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Algorithm 2 Alternative Training Process of the TaskForce.

Input: data point number N , task number T , data points X, {Yt}1≤t≤T , MTL model F(·; θ), agents
{µt(·;ϕt), Q

µ
t (·, ·;ψt)}1≤t≤T , replay buffer D, batch size of agents bagent.

Output: trained MTL model F(·; θ∗), trained agents {µt(·;ϕ∗
t), Q

µ
t (·, ·;ψ∗

t)}1≤t≤T .
1: initialize Oprev,Aprev,Rprev as null matrix or 0.
2: for i = 1 to N do
3: sample data point {xi,yi

1, · · · ,yi
T }.

4: # compute the current observation O, and action A.
5: compute empirical loss set L(θ) and task gradient set g from data point.
6: generate observation O from L(θ),g by Equation 5.
7: compute action A = {µ1(o1;ϕ1), · · · , µT (oT ;ϕT)} from O.
8: compute aggregated gradient G from g,A by Equation 6.
9: update MTL model F(·|θ) with G by θ ← θ − ηG.

10: # compute the next observation O′, and reward R.
11: compute next empirical loss set Lnext(θ) and next task gradient set gnext from same data point.
12: generate next observation Onext from Lnext(θ),gnext by Equation 5.
13: compute rewardR from L(θ),Lnext by Equation 7-10.
14: push transition (O,A,R,Onext) to replay buffer D.
15: if i > bagent then
16: sample bagent transitions T from replay buffer D.
17: update actor µi(·;ϕi) and critic Qµ

i (·, ·;ψi) with transitions T by Equation 11-13.
18: end if
19: end for

Problem Decomposition and Specialization Unlike Single-agent RL, which attempts to learn a
unified policy to handle all task dynamics, MARL assigns each task to a dedicated agent. This mod-
ular design enables agents to specialize in task-specific behaviors, potentially allowing the learning
process to capture diverse optimization dynamics without interference. Such decomposition might
be particularly beneficial in multi-task settings where task objectives may be partially conflicting.

Improved Exploration through Distributed Policies In MARL, agents can explore the optimiza-
tion space in parallel, which not only enhances exploration coverage but also reduces the risk of pre-
mature convergence to suboptimal joint strategies. MARL leverages this by allowing task-specific
agents to independently probe different gradient accumulation strategies, ultimately potentially lead-
ing to more effective joint optimization.

Robustness and Redundancy Multi-agent systems inherently offer robustness, as the failure or
poor performance of one agent could be compensated by others. This redundancy leads to more
stable learning dynamics, especially in noisy or partially observable environments. In contrast, a
single-agent approach lacks the granularity and flexibility to adapt to individual task needs. It must
implicitly learn to balance conflicting gradients and loss scales, often resulting in suboptimal con-
vergence or instability in complex multi-task scenarios.

Taken together, our findings highlight the suitability of cooperative MARL, particularly MAD-
DPG (Lowe et al., 2017), as a powerful optimization backbone for MTL frameworks. By decompos-
ing task responsibilities and leveraging centralized training signals, MARL could offer both stability
and efficiency, especially when facing task-level gradient conflicts and scale imbalances.

H LIMITATION & FUTURE WORKS

Our method employs MADDPG, an early approach in Multi-Agent Reinforcement Learning
(MARL). Consequently, the robustness of our optimization framework with more advanced MARL
techniques remains unverified, as the optimization outcome can vary depending on the agents’ per-
formance. We believe that future research could further enhance multi-task optimization perfor-
mance by applying more sophisticated MARL methodologies, a direction we leave for future inves-
tigators. Furthermore, while designing TaskForce, we consider a simultaneous training scenario and
thus engineer very compact agents in terms of size and observation space. Nevertheless, a scalability
issue persists, as the number of required agents still increases linearly with the number of tasks.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Figure 4: Task weight dynamics of NYU-v2, Cityscapes, and QM9 datasets. For improved visual-
ization, we smooth the weight dynamics by using a moving average with a window size of 10.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

I ETHICS STATEMENT

Following ICLR 2026 guidelines, we disclose that a Large Language Model (LLM) was utilized
for assistance with grammar correction and text polishing. All research contributions, experimental
results, and scientific claims are entirely the work and responsibility of the authors.

21

	Introduction
	Related Work
	Multi-task Optimization
	Reinforcement Learning

	Preliminaries
	General Multi-task Optimization for MTL

	Method
	Core components design of MARL
	Training of TaskForce

	Experiments
	Ablation Studies on Cooperative MARL Components

	Conclusion
	Experimental Setup of Ablation Studies
	Hyperparameter and RL Agent Configuration of TaskForce
	Compatibility of Gradient-based Reward with Other Convex Minimization
	Sensitivity of Reward Weight Parameters of the TaskForce.
	Computational Overhead Comparison between TaskForce and Prior methods
	Statistical Analysis of Evaluation Results
	Robustness of the TaskForce w.r.t. Hyperparameters
	Practical Speedup of TaskForce
	Alternative Formulation of the TaskForce
	Visualize Weight Dynamics

	Discussion: Advantages of Cooperative Multi-Agent RL in Multi-Task Optimization
	Limitation & Future Works
	Ethics Statement

