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ABSTRACT

Despite recent progress in generative adversarial network (GAN)-based vocoders,
where the model generates raw waveform conditioned on acoustic features, it is
challenging to synthesize high-fidelity audio for numerous speakers across various
recording environments. In this work, we present BigVGAN, a universal vocoder
that generalizes well for various out-of-distribution scenarios without fine-tuning.
We introduce periodic activation function and anti-aliased representation into the
GAN generator, which brings the desired inductive bias for audio synthesis and
significantly improves audio quality. In addition, we train our GAN vocoder at
the largest scale up to 112M parameters, which is unprecedented in the literature.
We identify and address the failure modes in large-scale GAN training for audio,
while maintaining high-fidelity output without over-regularization. Our BigVGAN,
trained only on clean speech (LibriTTS), achieves the state-of-the-art performance
for various zero-shot (out-of-distribution) conditions, including unseen speakers,
languages, recording environments, singing voices, music, and instrumental audio. 1

We release our code and model at: https://github.com/NVIDIA/BigVGAN.

1 INTRODUCTION

Deep generative models have demonstrated noticeable successes for modeling raw audio. The
successful methods include, autoregressive models (van den Oord et al., 2016; Mehri et al., 2017;
Kalchbrenner et al., 2018), flow-based models (van den Oord et al., 2018; Ping et al., 2019; Prenger
et al., 2019; Kim et al., 2019; Ping et al., 2020; Lee et al., 2020), GAN-based models (Donahue et al.,
2019; Kumar et al., 2019; Bińkowski et al., 2020; Yamamoto et al., 2020; Kong et al., 2020), and
diffusion models (Kong et al., 2021; Chen et al., 2021; Lee et al., 2022).

Among these methods, GAN-based vocoders (e.g., Kong et al., 2020) can generate high-fidelity raw
audio conditioned on mel spectrogram, while synthesizing hundreds of times faster than real-time
on a single GPU. However, existing GAN vocoders are confined to the settings with a moderate
number of voices recorded in clean environment due to the limited model capacity. The audio
quality can heavily degrade when the models are conditioned on mel spectrogram from unseen
speakers in different recording environments. In practice, a universal vocoder, that can do zero-shot
generation for out-of-distribution samples, is very valuable in many real-world applications, including
text-to-speech with numerous speakers (Ping et al., 2018), neural voice cloning (Arik et al., 2018; Jia
et al., 2018), voice conversion (Liu et al., 2018), speech-to-speech translation (Jia et al., 2019), and
neural audio codec (Zeghidour et al., 2021). In these applications, the neural vocoder also needs to
generalize well for audio recorded at various conditions.

∗Work done during an internship at NVIDIA.
†Corresponding authors.
1Listen to audio samples from BigVGAN at: https://bigvgan-demo.github.io/.
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Scaling up the model size for zero-shot performance is a noticeable trend in text generation (e.g.,
Brown et al., 2020) and image synthesis (e.g., Ramesh et al., 2021), but has not been explored in
audio synthesis. Although likelihood-based models are found to be easier for scaling among others
because of their simple training objective and stable optimization, we build our universal vocoder
with large-scale GAN training, because GAN vocoder has the following advantages: i) In contrast to
autoregressive or diffusion models, it is fully parallel and requires only one forward pass to generate
high-dimensional waveform. ii) In contrast to flow-based models (Prenger et al., 2019), it does not
enforce any architectural constraints (e.g., affine coupling layer) that maintain the bijection between
latent and data. Such architectural constraints can limit model capacity given the same number of
parameters (Ping et al., 2020).

In this work, we present BigVGAN, a Big Vocoding GAN that enables high-fidelity out-of-
distribution (OOD) generation without fine-tuning. Specifically, we make the following contributions:
1. We introduce periodic activations into the generator, which provide the desired inductive bias for

audio synthesis. Inspired by the methods proposed for other domains (Liu et al., 2020; Sitzmann
et al., 2020), we demonstrate the noticeable success of periodic activations in audio synthesis.

2. We propose anti-aliased multi-periodicity composition (AMP) module for modeling complex
audio waveform. AMP composes multiple signal components with learnable periodicities and
uses low-pass filter to reduce the high-frequency artifacts.

3. We successfully scale BigVGAN up to 112M parameters by fixing the failure modes of large-scale
GAN training without regularizing both generator and discriminator. The empirical insights are
different from Brock et al. (2019) in image domain. For example, regularization methods (e.g.,
Miyato et al., 2018) introduce phase mismatch artifacts in audio synthesis.

4. We demonstrate that BigVGAN-base with 14M parameters outperforms the state-of-the-art
neural vocoders with comparable size for both in-distribution and out-of-distribution samples. In
particular, BigVGAN with 112M parameters outperforms the state-of-the-art models by a large
margin for zero-shot generation at various OOD scenarios, including unseen speakers, novel
languages, singing voices, music and instrumental audio in varied unseen recording environments.

We organize the rest of the paper as follows. We discuss related work in § 2 and present BigVGAN
in § 3. We report empirical results in § 4 and conclude the paper in § 5.

2 RELATED WORK

Our work builds upon the state-of-the-art of GANs for image and audio synthesis. GAN was first
proposed for image synthesis (Goodfellow et al., 2014). Since then, impressive results have been
obtained through optimized architectures (e.g., Radford et al., 2016; Karras et al., 2021) or large scale
training (e.g., Brock et al., 2019).

In audio synthesis, previous works focus on improving the discriminator architectures or adding
new auxiliary training losses. MelGAN (Kumar et al., 2019) introduces the multi-scale discrimina-
tor (MSD) that uses average pooling to downsample the raw waveform at multiple scales and applies
window-based discriminators at each scale separately. It also enforces the mapping between input
mel spectrogram and generated waveform via an ℓ1 feature matching loss from discriminator. In
contrast, GAN-TTS (Bińkowski et al., 2020) uses an ensemble of discriminators which operate on
random windows of different sizes, and enforces the mapping between the conditioner and waveform
adversarially using conditional discriminators. Parallel WaveGAN (Yamamoto et al., 2020) extends
the single short-time Fourier transform (STFT) loss (Ping et al., 2019) to multi-resolution, and adds it
as an auxiliary loss for GAN training. Yang et al. (2021) and Mustafa et al. (2021) further improve
MelGAN by incorporating the multi-resolution STFT loss. HiFi-GAN (Kong et al., 2020) reuses
the MSD from MelGAN, and introduces the multi-period discriminator (MPD) for high-fidelity
synthesis. UnivNet (Jang et al., 2020; 2021) uses the multi-resolution discriminator (MRD) that takes
the multi-resolution spectrograms as the input and can sharpen the spectral structure of synthesized
waveform. In contrast, CARGAN (Morrison et al., 2022) incorporates the partial autoregression (Ping
et al., 2020) into generator to improve the pitch and periodicity accuracy.

In this work, we focus on improving and scaling up the generator. We introduce the periodic
inductive bias for audio synthesis and address the feature aliasing issues within the non-autoregressive
generator architecture. Our architectural design has a connection with the latest results in time-
series prediction (Liu et al., 2020), implicit neural representations (Sitzmann et al., 2020), and
image synthesis (Karras et al., 2021). Note that, You et al. (2021) argues that different generator
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Figure 1: Schematic diagram of BigVGAN generator. The generator is composed of multiple blocks of
transposed 1-D convolution followed by the proposed anti-aliased multi-periodicity composition (AMP) module.
The AMP module adds features from multiple residual blocks with different channel-wise periodicities before
dilated 1-D convolutions. It uses Snake function for providing periodic inductive bias, and low-pass filter for
anti-aliasing purpose.

architectures can perform equally well for single-speaker neural vocoding. We demonstrate that
improving generator architecture is crucial for universal neural vocoding in challenging conditions.

There are limited successes for universal neural vocoding due to the noticeable challenges. In previous
work, WaveRNN has been applied for universal vocoding task (Lorenzo-Trueba et al., 2019; Paul
et al., 2020). Jiao et al. (2021) builds the universal vocoder with flow-based model. GAN vocoder is
found to be a good candidate recently (Jang et al., 2021).

3 METHOD

In this section, we introduce the preliminaries for GAN vocoder, then present the BigVGAN. See
Figure 1 for an illustration and refer to the Appendix A for a detailed description of the architecture.

3.1 PRELIMINARIES OF GAN VOCODER

Generator The generator network takes mel spectrogram or other features as input and output the
corresponding raw waveform. In previous studies, several generator architectures have been applied,
including WaveNet (e.g., Yamamoto et al., 2020), or convolutional network that gradually upsamples
the mel spectrogram to high-resolution waveform with a stack of residual blocks (e.g., Kumar et al.,
2019; Kong et al., 2020). We choose the HiFi-GAN generator as the baseline architecture. We believe
the proposed techniques are applicable to other generator architectures as well.

Discriminator The state-of-the-art GAN vocoders usually comprise several discriminators to
guide the generator to synthesize coherent waveform while minimizing perceptual artifacts that are
detectable by human ears. Importantly, each discriminator contains multiple sub-discriminators
operating on different resolution windows of the waveform. For example, HiFi-GAN (Kong et al.,
2020) applies two types of discriminators: i) the multi-period discriminator (MPD), where the 1-D
signal is reshaped to 2-D representations with varied heights and widths to separately capture the
multiple periodic structures though 2-D convolutions. ii) The multi-scale discriminator (MSD) (Kumar
et al., 2019), where each sub-discriminator receives down-sampled 1-D signals at different frequency
by average pooling in the time domain. Jang et al. (2020; 2021) propose to apply the discriminator
on the time–frequency domain using the multi-resolution discriminator (MRD), which is composed
of several sub-discriminators that operate on multiple 2-D linear spectrograms with different STFT
resolutions. We also find that replacing MSD with MRD improves audio quality with reduced pitch
and periodicity artifacts.

Training objectives Our training objective is similar as HiFi-GAN (Kong et al., 2020), with an
exception of replacing MSD to MRD. It comprises the weighted sum of the least-square adversarial
loss (Mao et al., 2017), the feature matching loss (Larsen et al., 2016), and the spectral ℓ1 regression
loss on mel spectrogram. We leave the details of each loss and hyper-parameters in the Appendix B.

3.2 PERIODIC INDUCTIVE BIAS

The audio waveform is known to exhibit high periodicity and can be naturally represented as the
composition of primitive periodic components (i.e., Fourier series under Dirichlet conditions). This
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Figure 2: Spectrogram visualization of a out-of-distribution sample (singing voice) from HiFi-GAN
and BigVGAN trained on LibriTTS, with a zoomed in view of high-frequency harmonic components.

suggests that we need to provide the desired inductive bias to the generator architecture. However,
the current non-autoregressive GAN vocoders (e.g., Kong et al., 2020) solely rely on layers of dilated
convolutions to learn the required periodic components at different frequencies. Their activation
functions (e.g., Leaky ReLU) can produce new details with necessary nonlinearities, but do not
provide any periodic inductive bias. Furthermore, we identified that Leaky ReLU behaves poorly for
extrapolation in waveform domain: although the model can generate high-quality speech signal in a
seen recording environment at training, the performance degrades significantly for out-of-distribution
scenarios such as unseen recording environments, non-speech vocalizations, and instrumental audio.

We introduce a proper inductive bias of periodicity to the generator by applying a recently proposed
periodic activation called Snake function (Liu et al., 2020), defined as fα(x) = x + 1

α sin2(αx),
where α is a trainable parameter that controls the frequency of the periodic component of the signal
and larger α gives higher frequency. The use of sin2(x) ensures monotonicity and renders it amenable
to easy optimization. Liu et al. (2020) demonstrates this periodic activation exhibits an improved
extrapolation capability for temperature and financial data prediction.

In BigVGAN, we use Snake activations fα(x) with channel-wise trainable parameters α ∈ Rh that
define the periodic frequencies for each 1-D convolution channels. Taking this periodic functional
form with learned frequency control, the convolutional module can naturally fit the raw waveform
with multi-periodic components. We demonstrate that the proposed Snake-based generator is more
robust for out-of-distribution audio samples unseen during training, indicating strong extrapolation
capabilities in universal vocoding task. See Figure 2 and Appendix D for illustrative examples;
BigVGAN-base w/o filter using snake activations is closer to ground-truth sample than HiFi-GAN.

3.3 ANTI-ALIASED REPRESENTATION

The Snake activations provide the required periodic inductive bias for modeling raw waveform, but it
can produce arbitrary high frequency details for continuous-time signals that can not be represented
by the discrete-time output of the network, 2 which can lead to aliasing artifacts. This side effect can
be suppressed by applying a low-pass filter (e.g., Karras et al., 2021). The anti-aliased nonlinearity
operates by upsampling the signal 2× along time dimension, applying the Snake activation, then
downsampling the signal by 2×, which is a common practice inspired by the Nyquist-Shannon
sampling theorem (Shannon, 1949). Each upsampling and downsampling operation is accompanied
by the low-pass filter using a windowed sinc filter with a Kaiser window (Oppenheim & Schafer,
2009). Refer to the Appendix A for details.

We apply this filtered Snake nonlinearity in every residual dilated convolution layers within the
generator to obtain the anti-aliased representation of the discrete-time 1-D signals. The module is
named as anti-aliased multi-periodicity composition (AMP). See Figure 1 for an illustration. We find
that incorporating the filtered activation can reduce the high-frequency artifacts in the synthesized
waveform; see BigVGAN-base w/o filter vs. BigVGAN-base (with filter) in Figure 2 as an illustration.
We will demonstrate that it provides significant improvements in various objective and subjective
evaluations. Note that we also explored anti-aliased upsampling layers, but this results in significant
training instabilities and lead to early collapse for large models. See Appendix C for more details.

2One can think of the neural vocoder as a discrete-time function on the sampled continuous-time signals.
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3.4 BIGVGAN WITH LARGE SCALE TRAINING

In this subsection, we explore the limits of universal vocoding by scaling up the generator’s model
size to 112M parameters while maintaining the stability of GAN training and practical usability as a
high-speed neural vocoder. We start with our improved generator using the comparable HiFi-GAN
V1 configuration with 14M parameters (Kong et al., 2020), which is denoted as BigVGAN-base.
We grow BigVGAN-base by increasing the number of upsampling blocks and convolution channels
for each block. The BigVGAN-base upsamples the signal by 256× using 4 upsampling blocks
with the ratio of [8, 8, 2, 2]. Each upsampling block is accompanied by multiple residual layers with
dilated convolutions, i.e., the AMP module. We further divides the 256× upsampling into 6 blocks
[4, 4, 2, 2, 2, 2] for more fine-grained feature refinement. In addition, we increase the number of
channels of AMP module (analogous to MRF in HiFi-GAN) from 512 to 1536. We denote the model
with 1536 channels and 112M parameters as BigVGAN.

We found that the default learning rate of 2×10−4 used in HiFi-GAN causes an early training collapse
for BigVGAN training, where the losses from the discriminator submodules immediately converge to
zero after several thousands of iterations. Halving the learning rate to 1× 10−4 was able to reduce
such failures. We also found that large batch size is helpful to reduce mode collapse at training (Brock
et al., 2019). We only double the batch size from the usual 16 to 32 for a good trade-off between
training efficiency and stability, as neural vocoders can require millions of steps to converge. Note that
this recommended batch size is still much smaller than the one for image synthesis (e.g., 2048) (Brock
et al., 2019), because neural vocoding has strong conditional information.

Even with the aforementioned changes, the large BigVGAN can still be prone to collapse early in
training. We track the gradient norm of each modules during training and identify that the anti-aliased
nonlinearity significantly amplified the gradient norm of MPD. Consequently, BigVGAN generator
receives a diverging gradient early in training, leading to instabilities and potential collapse. We
visualize the norm of gradient for each modules in Figure 4 at Appendix C. We alleviate the issue
by clipping the global norm of the gradient to 103, which is close to the average gradient norm of
the 112M BigVGAN generator. This gradient clipping prevents the early training collapse of the
generator. Note that, gradient clipping was found ineffective to alleviate training instability for image
synthesis (see Appendix H in Brock et al. (2019)), but it is very effective in our endeavors.

In addition to above efforts, we have explored other directions, including various ways to improve the
model architecture, spectral normalization (Miyato et al., 2018) to stabilize GAN training, which
is crucial for large-scale GAN training in image domain, and data augmentation to improve model
generalization. Unfortunately, all these trials resulted in worse perceptual quality in our study. The
details can be found in the Appendix C. We hope these practical lessons that we have learned would
be useful to future research endeavors.

4 RESULTS

We conduct a comprehensive evaluation of BigVGAN for both in-distribution and out-of-distribution
scenarios. We train BigVGAN and all baseline models on the full LibriTTS dataset.

4.1 TRAINING DATA

We use LibriTTS (Zen et al., 2019) dataset with the original sampling rate of 24 kHz for training. Un-
like previous studies which only adopted a subset (train-clean-100 or train-clean-360)
recorded in a clean environment (Jang et al., 2020; 2021; AlBadawy et al., 2022), we use
all training data including the subset from diverse recording environments (train-full
= train-clean-100 + train-clean-360 + train-other-500), which is unprece-
dented in the literature. We find that the diversity of the training data is important to achieve the goal
towards universal neural vocoding using BigVGAN. 3 For OOD experiments, we resample the audio
to 24 kHz if necessary using kaiser-best algorithm provided by librosa package.

Conventional STFT parameters are engineered to have a limited frequency band [0, 8] kHz by cutting
off the high frequency details for easier modeling. On a contrary, we train all models (including the
baselines) using a frequency range [0, 12] kHz and a 100-band log-mel spectrogram, which is also
used in a recent study towards universal vocoding (Jang et al., 2021). We set other STFT parameters
as in previous work (Kong et al., 2020), with 1024 FFT size, 1024 Hann window, and 256 hop size.

3The ablation results on training data diversity can be found in Table 5.
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Table 1: Model footprint and synthesis speed for 24 kHz audio measured on an NVIDIA RTX 8000 GPU.

Method WaveGlow WaveFlow HiFi-GAN (V1) BigVGAN-base w/o filter BigVGAN

Params (M) 99.43 22.58 14.01 14.01 14.01 112.4
Syn. speed 31.87× 19.59× 93.75× 70.18× 75.83× 44.72×

4.2 MODELS

We train all BigVGAN models including the ablation models and the baseline HiFi-GAN using our
training configuration for 1M steps. We use the batch size of 32, a segment size of 8,192, and a initial
learning rate of 1× 10−4. All other configurations including optimizer, learning rate scheduler, and
scalar weights of the loss terms follow the official open-source implementation of HiFi-GAN (Kong
et al., 2020) without modification, with an exception that BigVGAN replaces MSD by MRD for the
discriminator. All models are trained using NVIDIA DGX-1 with 8 V100 GPUs. Refer to Table 6 in
the Appendix A for detailed hyperparameters.

We include a comparison with SC-WaveRNN (Paul et al., 2020), a state-of-the-art autoregressive
universal neural vocoder based on WaveRNN (Kalchbrenner et al., 2018), using the official imple-
mentation. We also include two popular flow-based models: WaveGlow (Prenger et al., 2019) and
WaveFlow (Ping et al., 2020), using their official implementation. For out-of-distribution test, we
include the unofficial open-source implementation of UnivNet-c32 (Jang et al., 2021), 4 which uses
train-clean-360 subset for training and is reported to outperform HiFi-GAN under the same
training configurations. See appendix E for more details.

Table 1 summarizes the synthesis speed of flow-based and GAN vocoders for generating 24 kHz
audio. We omit SC-WaveRNN as it is much slower. BigVGAN-base with 14M parameters can
synthesize the audio 70.18× faster than real time, which is relatively slower than HiFi-GAN as
the filtered Snake function requires more computation. HiFi-GAN and BigVGAN are faster than
flow-based models, because they are fully parallel (WaveFlow has partial autoregression) and have
much fewer layers (WaveGlow has 96 layers). Our BigVGAN with 112M parameters can synthesize
the audio 44.72 × faster than real-time and keeps the promise as a high-speed neural vocoder.

4.3 EVALUATION METRICS

The objective metrics we collected are designed to measure varied types of distance between the
ground-truth audio and the generated sample. We provide 5 different metrics: 1) Multi-resolution
STFT (M-STFT) (Yamamoto et al., 2020) which measures the spectral distance across multiple
resolutions. 5 2) Perceptual evaluation of speech quality (PESQ) (Rix et al., 2001), a widely adopted
automated assessment of voice quality. 6 3) Mel-cepstral distortion (MCD) (Kubichek, 1993) with
dynamic time warping which measures the difference between mel cepstra. 7 4) Periodicity error, and
5) F1 score of voiced/unvoiced classification (V/UV F1) which are considered as major artifacts from
non-autoregressive GAN vocoders (Morrison et al., 2022). 8

The conventional 5-scale mean opinion score (MOS) is insufficient for the subjective evaluation
of universal vocoder, because the metric needs to differentiate the utterances from diverse speaker
identities recorded in various environments. For example, the model may always output some very
natural “average” voices, which is not preferred but can still be highly rated by human workers in
MOS evaluation. As a result, we also perform the 5-scale similarity mean opinion score (SMOS)
evaluation, where the participant is asked to give the score of similarity for the pair of audio after
listening to ground-truth audio and the sample from the model side-by-side. SMOS provides an
improved way of assessing how close the given sample is to the ground-truth, where the ground-truth
recordings can have diverse speaker identities, contains unseen languages for the listeners, and be
recorded in various acoustic environments. SMOS is also directly applicable to non-speech samples,
e.g., music. We did MOS and SMOS evaluation on Mechanical Turk. More details can be found in
Appendix G.

4https://github.com/mindslab-ai/univnet. Note there is no official open-source code.
5We used an open-source implementation from Auraloss (Steinmetz & Reiss, 2020).
6We used a 16,000Hz wide-band version from https://github.com/ludlows/python-pesq.
7We used an open-source implementation from https://github.com/ttslr/python-MCD.
8We used the periodicity error and V/UV F1 score code provided by CARGAN (Morrison et al., 2022).
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Table 2: Objective and subjective quality metrics of BigVGAN evaluated on LibriTTS. Objective results are
obtained from dev sets, and subjective evaluations with 5-scale mean opinion score (MOS) and similarity mean
opinion score (SMOS) with 95% confidence interval (CI) are obtained from test sets.

LibriTTS M-STFT(↓) PESQ(↑) MCD(↓) Periodicity(↓) V/UV F1(↑) MOS(↑) SMOS(↑)

Ground Truth - - - - - 4.40±0.06 4.44±0.06

SC-WaveRNN 2.2358 1.701 1.8854 0.3044 0.8144 3.20±0.11 3.29±0.10
WaveGlow-256 1.3099 3.138 2.3591 0.1485 0.9378 3.84±0.10 3.87±0.10
WaveFlow-128 1.1120 3.027 1.2455 0.1416 0.9410 3.85±0.10 3.89±0.10
HiFi-GAN (V1) 1.0017 2.947 0.6603 0.1565 0.9300 4.08±0.09 4.15±0.09

BigVGAN-base 0.8788 3.519 0.4564 0.1287 0.9459 4.10±0.09 4.20±0.08
BigVGAN 0.7997 4.027 0.3745 0.1018 0.9598 4.11±0.09 4.26±0.08

Table 3: The 5-scale SMOS results with 95% CI evaluated on unseen languages with different types of noise
in unseen recording environments. †: pretrained weight obtained from an open-source repository which used
train-clean-360 subset for training.

Recording env. Clean Noisy (sim) Noisy (real)
Language Jv,Km,Ne,Su Es,Fr,It,Pt Ko

Ground Truth 4.58±0.05 4.36±0.05 4.56±0.05

UnivNet-c32† 4.35±0.07 3.95±0.09 4.18±0.08
HiFi-GAN (V1) 4.39±0.07 4.13±0.08 4.21±0.08
BigVGAN-base 4.38±0.07 4.21±0.07 4.36±0.07
BigVGAN 4.41±0.07 4.26±0.07 4.38±0.07

4.4 LIBRITTS RESULTS

We report the performance of BigVGAN and the baseline models evaluated on LibriTTS using
above objective and subjective metrics. We perform objective evaluations on dev-clean and
dev-other altogether, and conduct subjective evaluations on the combined test-clean and
test-other. The dev and test splits of LibriTTS contains unseen speakers during training, but
the recording environments are covered in the train split.

Table 2 shows the in-distribution test results on LibriTTS. Baseline models other than HiFi-GAN
performs significantly worse. This indicates that GAN vocoder is the state-of-the-art for universal
neural vocoding. BigVGAN significantly improves all objective metrics. In particular, BigVGAN-
base exhibits consistently improved objective scores over HiFi-GAN (V1) with the same amount of
paramters, suggesting that it has better periodic inductive bias for waveform data.

HiFi-GAN (V1), BigVGAN-base, and BigVGAN perform comparably well in terms of MOS without
listening to the ground-truth audio side-by-side. When the listeners can compare the model sample
with ground truth audio side-by-side, BigVGAN-base measurably outperforms HiFi-GAN (V1) in
terms of SMOS (+0.05), and the 112M BigVGAN outperforms HiFi-GAN by a clear margin in
terms of SMOS (+0.11) because it has high model capacity to further leverage the diverse training
data for better quality.

In Appendix E, we also report the additional results including UnivNet (Jang et al., 2021) and the
ablation models of BigVGAN-base on LibriTTS dev sets, unseen VCTK (Yamagishi et al., 2019),
and LJSpeech (Ito, 2017) data.

4.5 UNSEEN LANGUAGES AND VARIED RECORDING ENVIRONMENTS

In this subsection, we assess the universal vocoding capability of BigVGAN by measuring its zero-
shot performance for various unseen languages with varied types of the recording environments
in the unseen dataset. Based on the results in Table 2, we only include GAN-based vocoders as
the state-of-the-art baseline. We gather three classes of a publicly available multi-language dataset
categorized by the type of noise from the recording environment.

• A collection of under-resourced languages recorded in a noiseless studio environment (Sodimana
et al., 2018): Javanese, Khmer, Nepali, and Sundanese. We use randomly selected 50 audio
clips with equal balance across languages from the combined dataset.
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Table 4: The 5-scale SMOS results with 95% CI evaluated on out-of-distribution samples from MUSDB18-HQ.
†: pretrained model from an open-source repository which used train-clean-360 subset for training.

Method Vocal Drums Bass Others Mixture Average

Ground Truth 4.58±0.05 4.57±0.05 4.52±0.05 4.61±0.05 4.56±0.05 4.57±0.02

UnivNet-c32† 4.22±0.09 4.23±0.09 3.90±0.11 3.80±0.13 3.80±0.12 3.99±0.05
HiFi-GAN (V1) 4.26±0.08 4.37±0.08 3.95±0.11 3.92±0.12 3.91±0.11 4.08±0.05

BigVGAN-base 4.36±0.08 4.39±0.07 4.00 ±0.11 4.14±0.09 4.11±0.10 4.20±0.04
w/o filter 4.30±0.08 4.32±0.07 3.95±0.11 4.05±0.10 4.11±0.10 4.15±0.04
w/o filter & snake 4.31±0.08 4.32±0.07 3.94±0.11 4.01±0.11 4.02±0.10 4.12±0.04

BigVGAN 4.37±0.08 4.41±0.07 4.00±0.10 4.25±0.09 4.26±0.08 4.26±0.04

• The Multilingual TEDx Corpus (Salesky et al., 2021): contains a collection of TEDx talks
in Spanish, French, Italian, and Portuguese. We use randomly selected 50 audio clips with
equal balance across languages from the IWSLT’21 test set. We simulate the unseen recording
environment setup by adding a random environmental noise from MS-SNSD (Reddy et al.,
2019), such as airport, cafe, babble, etc.

• Deeply Korean read speech corpus (Deeply, 2021): contains short speech audio clips in Korean,
recorded in three types of recording environments (anechoic chamber, studio apartment, and
dance studio) using a smartphone. We use randomly selected 50 audio clips where 25 clips are
from the studio apartment, and the remaining 25 clips are from the dance studio. The collected
audio clips contain a significant amount of noise and artifacts from real-world recording
environments, such as reverb, echo, and static background noise.

Table 3 summarizes the SMOS results from three different types of unseen dataset. We only did
SMOS evaluations, because the datasets have unseen languages for human listeners and it is hard to
determine the quality without side-by-side comparison with the ground-truth recordings. For clean
under-resourced language dataset, the performance gap between models is not substantially large.
This indicates that the universal vocoder trained on the entire LibriTTS training set is robust to unseen
languages under clean recording environments. For both types of unseen recording environment
(simulated or real-world), BigVGAN outperforms the baseline models by a large margin. The
small capacity BigVGAN-base also shows improvements compared to the baseline with statistical
significance (p-value < 0.05 from the Wilcoxon signed-rank test). This suggests that BigVGAN is
significantly more robust to the unseen recording environments thanks to the improved generator
design with the AMP module. In Appendix F, we further demonstrate that BigVGAN is the most
linguistically accurate universal vocoder in terms of character error rate (CER) on multiple languages.

We test the open-source implementation of UnivNet (Jang et al., 2021) with the pretrained checkpoint
which is trained on train-clean-360 subset. Contrary to the report from Jang et al. (2021) that
UnivNet-c32 outperformed HiFi-GAN (Kong et al., 2020), we find that the unmodified HiFi-GAN
trained on the entire LibriTTS dataset is able to match or outperform UnivNet-c32. We also train
UnivNet-c32 on LibriTTS train-full and find that it is not benefited from larger training data.
See Appendix E for detailed analysis.

4.6 OUT-OF-DISTRIBUTION ROBUSTNESS

In this subsection, we test BigVGAN’s robustness and extrapolation capability by measuring zero-
shot performance on out-of-distribution data. We conduct the SMOS experiment using MUSDB18-
HQ (Rafii et al., 2019), a multi-track music audio dataset which contains vocal, drums, bass, other
instruments, and the original mixture. The test set contains 50 songs with 5 tracks. We gather the
mid-song clip with the duration of 10 seconds for each track and song.

Table 4 shows the SMOS results from the 5 tracks and their average from the MUSDB18-HQ test
set. BigVGAN models demonstrate a substantially improved zero-shot generation performance with
wider frequency band coverage, whereas baseline models fail to generate audio outside the limited
frequency range and suffer from severe distortion. The improvements are most profound for singing
voice (vocal), instrumental audio (others) and the full mixture of the song (mixture), whereas the
improvements from drums and bass are less significant.
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Table 5: Ablation results on training data diversity using 112M BigVGAN model, evaluated on LibriTTS.
Objective results are obtained from dev-other and subjective evaluation with 5-scale SMOS with 95%
confidence interval (CI) is obtained from test-other.

Training data M-STFT(↓) PESQ(↑) MCD(↓) Periodicity(↓) V/UV F1(↑) SMOS(↑)

Ground Truth - - - - - 4.55±0.05

train-full 0.8197 4.001 0.4097 0.1023 0.9586 4.38±0.07
train-clean-360 0.8429 3.847 0.4232 0.1149 0.9521 4.31±0.08
VCTK 0.8747 3.818 0.5921 0.1215 0.9490 4.27±0.08

We also experiment with audios obtained from YouTube videos from real-world recording environ-
ments. BigVGAN also exhibits robustness to various types of out-of-distribution signals such as
laughter. We provide audio samples to our demo page. 9

4.7 ABLATION STUDY

Model architecture To measure the effectiveness of the BigVGAN generator, we include SMOS
test for the ablation models of BigVGAN-base on MUSDB18-HQ data. Table 4 shows that the
ablation models exhibit clear degradation on various scenarios such as instrumental audio (others,
mixture). From the average SMOS ratings, 1) disabling the anti-aliasing filter for Snake activation
performs worse than BigVGAN-base and 2) removing both the filter and Snake activation (i.e., vanilla
HiFi-GAN trained with MRD replacing MSD) is even worse than the Snake-only ablation model,
both with statistical significance (p-value < 0.01 from the Wilcoxon signed-rank test). This indicates
that Leaky ReLU is not robust enough to extrapolate beyond the learned frequency range and the
aliasing artifacts degrade the audio quality in challenging setups. The results show that BigVGAN
generator demonstrates strong robustness and extrapolation capability to out-of-distribution scenarios
because of the seamless integration of periodic inductive bias and anti-aliased feature representation.
See Appendix D for the visualization of anti-aliasing effect in BigVGAN.

Big model We compare HiFi-GAN and BigVGAN both with the largest 112M parameters. We train
the 112M HiFi-GAN with the same training setting as BigVGAN. We conduct a pairwise test between
the two models on the mixture test set of MUSDB18-HQ which is challenging out-of-distribution
data. We ask the participants to select a better sounding audio between the samples from the two
models. The test shows that 58 % of the ratings voted to BigVGAN over the large HiFi-GAN and
the quality of BigVGAN is greater than the large HiFi-GAN with statistical significance (p-value <
0.01 from the Wilcoxon signed-rank test). The results further validate the architectural advantage of
BigVGAN in large-scale setting.

Large Training data To verify the importance of using large-scale training data, we trained our
BigVGAN using less diverse, clean speech-only dataset with the same training configuration for 1M
steps: 1) train-clean-360 subset of LibriTTS, or 2) VCTK dataset. Table 5 shows that training
BigVGAN on less diverse data shows degradation in both objective metrics and the subjective SMOS
on the LibriTTS evaluation sets. The result verifies the importance of using diverse training data and
demonstrates the effectiveness of BigVGAN on large-scale datasets.

5 CONCLUSIONS

This study explores the limits of universal neural vocoding with an unprecedented scale of the data,
model, and evaluations. We analyze the performance with various automatic and human evaluations
across diverse scenarios including unseen speakers, languages, recording environments and out-of-
distribution data. We present BigVGAN with an improved generator architecture by introducing
anti-aliased periodic activation function with learned frequency control, which injects the desired
inductive bias for waveform generation. Based on the improved generator, we demonstrate the largest
GAN vocoder with strong zero-shot performance under various OOD conditions, including unseen
recording environments, singing voice, and instrumental audio. We believe that BigVGAN, combined
with practical lessons learned from the large scale training, will inspire future endeavors for universal
vocoding and improve the state-of-the-art results for real-world applications, including voice cloning,
voice conversion, speech translation, and audio codec.

9https://bigvgan-demo.github.io
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APPENDIX
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Figure 3: Detailed diagram of BigVGAN generator and discriminator architectures. Left: generator architecture,
where values in parentheses denote (output channel, kernel width, dilation rate) respectively. Right: discriminator
architectures (MRD in orange and MPD in yellow), where values in parentheses denote (output channel, [kernel
width, kernel height], [stride width, stride height]) respectively.

Table 6: Hyperparameters of BigVGAN generators and discriminators.

Generator Discriminator

BigVGAN-base BigVGAN MRD & MPD

h 512 1536 n_ffti [1024, 2048, 512]
ui [8, 8, 2, 2] [4, 4, 2, 2, 2, 2] hop_lengthi [120, 240, 50]
Ki [3, 3, 3, 7, 7, 7, 11, 11, 11] [3, 3, 3, 7, 7, 7, 11, 11, 11] win_lengthi [600, 1200, 240]
Di [[1, 1], [3, 1], [5, 1]] × 3 [[1, 1], [3, 1], [5, 1]] × 3 Reshape2di (pi) [2, 3, 5, 7, 11]

A ARCHITECTURAL DETAILS

In this section, we present a detailed description of the BigVGAN architecture. Refer to Figure 3 for
illustrative details. BigVGAN uses the similar generator architecture presented in HiFi-GAN (Kong
et al., 2020). The generator takes a mel spectrogram as input and synthesizes a corresponding
waveform as output. The generation process starts with a single layer of 1D convolution using
a channel width of h and a kernel size of 7 without dilation (denoted as 1 in the Figure 3). The
hierarchical generation comprises N number of upsampling blocks. The i-th upsampling block
(i = {1, . . . , N}) starts with a transposed 1D convolution using half the number of channels
of the preceding block and an upsampling rate of ui. The upsampled feature is followed by M
number of AMP residual blocks, where each AMP block uses different kernel sizes for a stack
of dilated 1D convolutions defined as ki,j(j = {1, . . . ,M}). The j-th AMP block contains L
number of the anti-aliased periodic activation and the dilated 1D convolution using a dilatation rate
of di,j,l(l = {1, . . . , L}). Refer to the Table 6 for the hyperparameters of the BigVGAN generators.

Our design of the low-pass filter is similar to StyleGAN3 (Karras et al., 2021). We use a cutoff
frequency of s

2m , where m = 2 is a up- and down-sampling ratio and s is a sampling rate (e.g.,
width) of the signal. The Kaiser window uses a window length of n = 6 ·m and a shape parameter
β is approximated by 0.1102 · (A − 8.7), where a maximum attenuation A is approximated by
A = 2.285 · (n2 − 1) · π · 4fh +7.95 (Oppenheim & Schafer, 2009) with a transition band half-width
fh = 0.6

m . The low-pass filter is applied as the kernel in 1D convolution for downsampling, and as
the kernel in transposed 1D convolution for upsampling.

The BigVGAN discriminator comprises two submodules: MRD and MPD. Each module is composed
of multiple subdiscriminators using a stack of 2D convolutions as in Figure 3. MRD converts the
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input 1D waveform to its 2D linear spectrogram using STFT with different parameters ([n_fft,
hop_length, win_length]). MPD converts the input 1D waveform with length T to its 2D
representation by reshaping and reflection padding (Reshape2d) with different width (pi) and
height ( T

pi
). Refer to the Table 6 for the MRD and MPD hyperparameters. We used the same MRD

and MPD hyperparameters for training all BigVGAN generators.

B TRAINING OBJECTIVE DETAILS

We apply the training objective formulation and its hyperparameters described in (Kong et al.,
2020) without modification, with an exception that BigVGAN applies MRD replacing MSD as the
discriminator submodule. Concretely, we apply the following objectives LG for generator and LD

for discriminator, respectively:

LG =

K∑
k=1

[
Ladv(G;Dk)+λfmLfm(G;Dk)

]
+λmelLmel(G), LD =

K∑
k=1

[
Ladv(Dk;G)

]
, (1)

where Dk denotes the k-th MPD or MRD discriminator submodules. Ladv uses the least-square
GAN (Mao et al., 2017) as follows:

Ladv(G;Dk) = Es

[
(Dk(G(s))− 1)2

]
, Ladv(Dk;G) = E(x,s)

[
(Dk(x)− 1)2 + (Dk(G(s)))2

]
,

(2)
where x is the ground-truth waveform, and s is the input mel spectrogram. The feature matching
loss Lfm (Larsen et al., 2016; Kumar et al., 2019) minimizes the ℓ1 distance for every intermediate
features from the discriminator layers:

Lfm(G;Dk) = E(x,s)

[ T∑
i=1

1

N
||Di

k(x)−Di
k(G(s))||1

]
, (3)

where T is the number of layers of the sub-discriminator Dk. The generator loss LG also has
the spectral ℓ1 regression loss between the mel spectrogram of the synthesized waveform and the
corresponding ground-truth:

Lmel(G) = E(x,s)

[
||ϕ(x)− ϕ(G(s))||1

]
, (4)

where ϕ is the STFT function that converts the waveform into the mel spectrogram. We used the
scalar weights λfm = 2 and λmel = 45 identically as (Kong et al., 2020).

C PRACTICAL LESSONS FOR LARGE-SCALE GAN TRAINING ON AUDIO

100

500

1000

2000

100k 300k 500k 700k 900k

G
ra

di
en

t n
or

m
 (G

en
er

at
or

)

Iterations

5

10

40

100k 300k 500k 700k 900k

G
ra

di
en

t n
or

m
 (M

PD
)

Iterations

4

5

6

7

8

9

10

100k 300k 500k 700k 900k

G
ra

di
en

t n
or

m
 (M

R
D

)

Iterations

BigVGAN-base
  w/o filter
  w/o filter & snake
BigVGAN

Figure 4: Visualization of gradient norm for different modules from BigVGAN training. Left: Gradient norm
from the generator. Mid: Gradient from the MPD module. Right: Gradient norm from the MRD module. For
BigVGAN-base, the gradient norm significantly increases at early training without clipping. For BigVGAN, the
gradient will explode without clipping.

In this section, we document additional directions that we have explored for improving the model
architecture and large scale training, but resulted in worse perceptual quality from our preliminary
study. We do not make conclusive claims based on these observations because the methods we
explored here may have been ineffective specific to our BigVGAN settings. Nevertheless, we believe
that reporting negative results can be helpful to future research endeavors (Brock et al., 2019).
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Anti-aliased upsampling layers Our BigVGAN uses anti-aliased activation for AMP modules.
We also explored replacing the transposed convolution-based upsampling layers, which are known to
contain checkerboard aliasing (Odena et al., 2016), to the anti-aliased alternatives with different low-
pass filter hyperparameters. However, this introduced significant instabilities during training, leading
to early collapse even with the aforementioned stabilization. We also tried out nearest-neighbor
upsampling which is reported to have less artifacts for audio synthesis (Pons et al., 2021), but it also
resulted in the early collapse.

Periodic discriminators Inspired by the improvements with the periodic activation function to the
generator, we experimented on discriminators with Snake function. However, it degraded the quality
with the diverging feature matching loss (Kong et al., 2020) from the discriminators. We conjecture
that the periodic activation to the discriminator is not stable enough to improve the gradient from the
feature matching loss.

Spectral normalization Spectral normalization (Miyato et al., 2018) is a widely adopted method to
stabilize GAN training in image domain. We tried applying spectral normalization to all discriminator
submodules and found that it can stabilize the training without the early divergence of the generator.
However, it suffered from a significant degradation with the excessive amount of phase mismatch
artifacts, similar to the findings in the previous work (Kumar et al., 2019). We found that the gradient
from MPD is over-regularized and the generator start to solely rely on the mel regression loss.
Because MPD is repeatedly found to be a key component for high-quality audio synthesis (Kong
et al., 2020), regularizing MPD leads to worse result.

Larger discriminators We hypothesized that the enlarged generator can be slower to learn, thereby
trivializing the discriminator in the early training (loss converge to zero). We tried to balance
the training by enlarging the discriminators, such as employing more MPD sub-discriminators or
enlarging the channel width of MPD and MRD modules. The large discriminator partially alleviated
the early collapse, but the audio quality degraded in most cases, and showed no clear improvements
even with our best configuration.

Even larger generators We experimented with deeper model with 8 upsampling blocks with
ratio of [2, 2, 2, 2, 2, 2, 2, 2]. However, it exhibited high-frequency rattling artifacts and degraded the
quality. We conjecture that generating fine-grained high-frequency details from the early upsampling
blocks can be arbitrary (Karras et al., 2021) and unstable when using the filtered periodic nonlinearity.
We also tried to further increase the number of convolution channels to 2048, but it suffered from
early collapse.

Data augmentation Data augmentation is one of major methods that improve model generalization,
which is also repeatedly found to be valuable in GAN literature (Karras et al., 2020). We explored
augmenting the data by applying SpecAugment (Park et al., 2019) to the input mel spectrogram.
However, SpecAugment resulted in over-smoothing artifacts in waveform, because it enforces the
model to map multiple distorted mel spectrograms to the same waveform, which counters the
upsampling process in generative models. We also tried applying mixup-like (Zhang et al., 2018)
approach to the waveform by using a convex combination of two audio samples and its corresponding
mel spectrogram. However, this occasionally resulted in a mixed voice of two speaker identities
during a single-speaker inference without noticeable improvement in perceptual quality.

Positional encoding Inspired by using partial autoregression (Ping et al., 2020; Morrison et al.,
2022) to provide inductive bias of the cumulative sum relationship of pitch and phase (Morrison et al.,
2022), we explored whether we can provide an approximate inductive bias in a non-autoregressive
manner by injecting a sinusoidal positional encoding (Vaswani et al., 2017) to the generator. However,
the generator with positional encoding is only exposed to the fixed audio segment at training (∼0.3
seconds with 8,192 time-steps) and unable to extrapolate unknown and significantly longer sequence
at inference (e.g., several seconds).
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Ground Truth HiFi-GAN BigVGAN-base w/o Filter BigVGAN-base BigVGAN

Figure 5: Spectrogram visualization of out-of-distribution samples from HiFi-GAN and BigVGAN
models trained on LibriTTS, with a zoomed in view of harmonic components. Top: a singing voice.
Bottom: an instrumental audio.

D VISUALIZATION

In this section, we present visual examples to analyze the improvements from the methodologies
used in BigVGAN. We use HiFi-GAN (V1), BigVGAN-base along with the ablation model without
the filtered nonlinearity, and the high-capacity BigVGAN for the in-depth analysis.

The top row of the Figure 5 corresponds to a singing voice. The feature aliasing of HiFi-GAN
introduces blurry harmonics because aliased features at multiple incorrect frequency components
are aggregated during the generative process, which amplifies the error. BigVGAN-base without
the filtered nonlinearity improves the harmonic components using the periodic activation and the
advanced discriminator. BigVGAN models further improve the accuracy using the continuous feature
representation and the anti-aliasing filter. The bottom row of the Figure 5 shows an instrumental
audio. Similar to the singing voice example, HiFi-GAN exhibits blurry harmonics. BigVGAN
models capture such challenging high-frequency harmonics significantly better than the baselines,
which suggests that BigVGAN is robust to various unseen conditions. The visual analysis shows that
BigVGAN exhibits a significantly less distortion of the harmonic components and a better sound
quality for various types of audio beyond the clean speech signal.

E ADDITIONAL RESULTS

In addition to the results in Section 4 of main text, we provide additional comparison with previous
work and ablation models with the automatic objective evaluation.

Comparison with Baselines Models Table 7 and 8 show the expanded objective results evalu-
ated on LibriTTS, including SC-WaveRNN (Paul et al., 2020), WaveGlow (Prenger et al., 2019),
WaveFlow (Ping et al., 2020), UnivNet (Jang et al., 2021), and the ablation models of BigVGAN-base.
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SC-WaveRNN (Paul et al., 2020) is a universal vocoder based on WaveRNN (Kalchbrenner et al.,
2018) with a speaker embedding from a separately trained encoder network. We replicate the training
procedure following (Paul et al., 2020) using the official implementation, while matching training
data and audio hyperparameters used in this study (i.e., LibriTTS-full, 24,000Hz sampling rate and
a 100-band log-mel spectrogram with [0, 12] kHz frequency). We train SC-WaveRNN for 3M steps.
Although the model can generate speech with diverse speaker identities, we find that the performance
is significantly worse than GAN vocoders both in objective scores and human listening test. It fails to
generate intelligible audio for unseen recording environments and out-of-distribution sample. We
conjecture that the speaker embedding network is not robust enough to generalize to such setups.

WaveGlow (Prenger et al., 2019) and WaveFlow (Ping et al., 2020) are two widely known vocoders
based on normalizing flows (Rezende & Mohamed, 2015). We train the flow-based vocoders using the
STFT hyperparameters used in this study. WaveGlow is trained for 2M steps and WaveFlow is trained
for 1M steps as suggested by the authors. Flow-based vocoder features fast and parallel synthesis with
an analytic likelihood objective due to its bijectivity. However, the quality of flow-based vocoders
degrades heavily for multi-speaker setup. This renders the flow-based model unsuitable as a universal
neural vocoder.

We also train UnivNet-c32 (Jang et al., 2021) on LibriTTS train-full using the open-source
implementation (note that UnivNet uses the 24,000Hz sampling rate and the 100-band log-mel
spectrogram with [0, 12] kHz frequency by default). However, unlike the HiFi-GAN and BigVGAN
architectures, using the large-scale dataset did not improve the quality of the UnivNet architecture.
Overall, the publicly available model trained on train-clean-360 scores marginally better
in terms of PESQ and periodicity error compared to our checkpoint trained on train-full.
Other metrics exhibit different preference depending on the training set. The subjective quality
is indistinguishable to the authors between the two checkpoints, including the out-of-distribution
setup. We conjecture that the UnivNet architecture is harder to generalize to the unseen recording
environments. For subjective SMOS tests, we choose to use the publicly available checkpoint using
train-clean-360 to faithfully represent the performance of the previous work. Note that the
open-source implementation of UnivNet is unofficial. Therefore, our observation does not lead to the
conclusion that UnivNet is worse than HiFi-GAN.

Comparison with Ablation Models From both clean and other recording environments, BigVGAN-
base shows consistent improvements in all metrics compared to its ablation models. Specifically,
BigVGAN-base (without filter & snake) refers to the vanilla HiFi-GAN architecture trained with MRD
replacing MSD. Similar to the findings in (Jang et al., 2021), MRD provides more accurate modeling
of the waveform by sharpening the spectral structure. Applying Snake activation (BigVGAN-base
without filter) increases accuracy and reduces the periodicity error from the desired inductive bias.
Finally, incorporating the continuous feature representation and the low-pass filter (BigVGAN-base)
provides the best accuracy by suppressing aliasing and high frequency artifacts. Our final 112M
BigVGAN substantially improves the accuracy for the state-of-the-art universal neural vocoding.

Results on Unseen VCTK and LJSpeech Dataset Table 9 and 10 show the objective speech
evaluation metric results gathered from VCTK and LJSpeech dataset, consistent with the results
from Table 7 and 8. Although the dataset is not included for training BigVGAN and the baseline
HiFi-GAN, all GAN-based models performed comparatively well from our subjective listening test.
This indicates that given diverse enough training data, modern non-autoregressive GAN vocoder can
synthesize high-quality speech with unseen speaker identities from the clean recording environment.
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Table 7: Objective results of BigVGAN from dev-clean of LibriTTS including ablation models of
BigVGAN-base and previous work. †: pretrained weight obtained from an open-source repository which
used train-clean-360 subset for training.

LibriTTS (clean) MAE(↓) M-STFT(↓) PESQ(↑) MCD(↓) Periodicity(↓) V/UV F1(↑)

SC-WaveRNN 0.5517 2.1411 1.774 1.5854 0.2925 0.8300
WaveGlow-256 0.5368 1.3238 3.179 2.3897 0.1423 0.9419
WaveFlow-128 0.2839 1.0706 3.120 0.9632 0.1339 0.9459
UnivNet-c32† 0.2803 0.9552 3.348 0.7017 0.1342 0.9433
UnivNet-c32 0.2772 0.9433 3.310 0.6942 0.1356 0.9435
HiFi-GAN (V1) 0.2579 0.9773 3.042 0.6257 0.1545 0.9306

BigVGAN-base 0.1546 0.8569 3.574 0.4180 0.1298 0.9475
w/o filter 0.1770 0.8838 3.472 0.4624 0.1354 0.9437
w/o filter & snake 0.1899 0.9047 3.351 0.4852 0.1399 0.9401

BigVGAN 0.0931 0.7796 4.053 0.3392 0.1013 0.9610

Table 8: Objective results of BigVGAN from dev-other of LibriTTS including ablation models of BigVGAN-
base and previous work.

LibriTTS (other) MAE(↓) M-STFT(↓) PESQ(↑) MCD(↓) Periodicity(↓) V/UV F1(↑)

SC-WaveRNN 0.6125 2.3274 1.576 1.4717 0.2174 0.8896
WaveGlow-256 0.5096 1.2960 3.098 2.3284 0.1546 0.9337
WaveFlow-128 0.3359 1.1533 2.935 1.5278 0.1493 0.9360
UnivNet-c32† 0.3027 0.9973 3.166 0.8643 0.1439 0.9345
UnivNet-c32 0.2998 0.9883 3.107 0.8495 0.1457 0.9337
HiFi-GAN (V1) 0.2724 1.026 2.853 0.6948 0.1585 0.9294

BigVGAN-base 0.1625 0.9006 3.464 0.4947 0.1276 0.9442
w/o filter 0.1844 0.9223 3.364 0.5017 0.1391 0.9395
w/o filter & snake 0.2008 0.9456 3.240 0.5389 0.1451 0.9344

BigVGAN 0.0986 0.8197 4.001 0.4097 0.1023 0.9586

Table 9: Objective results from unseen VCTK dataset. We used randomly selected 100 audio clips.

VCTK MAE(↓) M-STFT(↓) PESQ(↑) MCD(↓) Periodicity(↓) V/UV F1(↑)

SC-WaveRNN 0.6619 2.7344 1.445 1.7597 0.2528 0.8611
WaveGlow-256 0.5454 1.3324 3.149 2.4512 0.1218 0.9513
WaveFlow-128 0.2982 1.0825 2.953 1.1127 0.1213 0.9518
UnivNet-c32† 0.2753 0.9476 3.235 0.7180 0.1131 0.9535
UnivNet-c32 0.2820 0.9586 3.184 0.7403 0.1198 0.9434
HiFi-GAN (V1) 0.2541 0.9859 3.029 0.6795 0.1336 0.9375

BigVGAN-base 0.1527 0.8677 3.443 0.4526 0.1047 0.9586
w/o filter 0.1739 0.8935 3.379 0.4924 0.1128 0.9528
w/o filter & snake 0.1885 0.9184 3.316 0.5159 0.1208 0.9481

BigVGAN 0.0925 0.7684 4.001 0.3557 0.0833 0.9672

Table 10: Objective results on unseen LJSpeech dataset. We used randomly selected 100 audio clips.

LJSpeech MAE(↓) M-STFT(↓) PESQ(↑) MCD(↓) Periodicity(↓) V/UV F1(↑)

SC-WaveRNN 1.0115 2.6994 1.233 4.8464 0.3907 0.7404
WaveGlow-256 0.4933 1.2893 3.352 2.9921 0.1182 0.9561
WaveFlow-128 0.3674 1.2402 3.072 2.7217 0.1170 0.9560
UnivNet-c32† 0.3418 1.0613 3.425 1.1903 0.1210 0.9519
UnivNet-c32 0.3356 1.0429 3.384 1.1356 0.1230 0.9503
HiFi-GAN (V1) 0.3008 1.0950 3.210 1.7370 0.1347 0.9456

BigVGAN-base 0.1747 0.9121 3.741 0.8626 0.1164 0.9548
w/o filter 0.2015 0.9395 3.662 0.9715 0.1169 0.9548
w/o filter & snake 0.2263 0.9946 3.521 1.1320 0.1299 0.9479

BigVGAN 0.1102 0.8554 4.112 0.7164 0.0957 0.9642
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Table 11: Character error rates (CER) of synthesized speech on multiple languages.

Method English German Catalan Spanish French Mandarin

Ground Truth 6.298 3.785 3.001 4.194 5.450 25.431

SC-WaveRNN 15.155 9.508 5.763 10.198 12.427 47.653
UnivNet-c32† 6.914 4.037 3.058 4.439 5.717 26.504
HiFi-GAN (V1) 6.906 4.070 3.082 4.490 5.770 27.179
HiFi-GAN (112M) 6.615 3.920 3.043 4.315 5.608 26.174

BigVGAN-base 6.574 3.905 3.034 4.335 5.594 26.174
BigVGAN 6.436 3.829 3.028 4.261 5.517 25.756

F LINGUISTIC ACCURACY EVALUATION

In this section, we evaluate the quality of neural vocoders in terms of linguistic accuracy. To
measure linguistic accuracy of the synthesized speech from BigVGAN on in-distribution and various
out-of-distribution languages, we conduct experiments using a high-performance Conformer-based
(Gulati et al., 2020) automatic speech recognition (ASR) model on multiple languages. We use
conformer_transducer_large model, where the pretrained checkpoints for the considered
languages are publicly available from the NVIDIA NeMo (Kuchaiev et al., 2019) toolkit. We generate
samples from BigVGAN using test set corpus from Mozilla Common Voice (MCV) 8.0 dataset for
the following languages: English (en), German (de), Catalan (ca), Spanish (es), French (fr), and
Mandarin (zh). Then, we obtain transcriptions from the synthesized speech using the ASR model and
calculate character error rate (CER). In this way, we can assess a degree of degradation in linguistic
accuracy compared to the CER of the ground truth speech.

The CER results are shown in Table 11. BigVGAN has the consistently lowest CERs, which are also
close to ground truth. Furthermore, BigVGAN-base (14M) outperforms the largest HiFi-GAN (112M)
on four (en, de, ca, fr) out of six languages, ties on one (zh), and underperforms only on one
language (es). The results further validate that BigVGAN is the most linguistically accurate universal
vocoder with the lowest artifacts and show the benefits of the model to be applied to various speech
applications.

G ADDITIONAL DETAILS OF MECHANICAL TURK EVALUATION

We use Mechanical Turk for MOS and SMOS tests with 450 unique ratings per model. We allow each
worker to evaluate up to three random samples for diverse participants. Crowdsourcing evaluation
is considered to be a noisy process. We apply several filtering criteria to improve the reliability of
workers : i) We restrict the listeners to be native English speakers in the United States. ii) We only
allow listeners with the evaluation acceptance rate higher than 98%, and the number of previously
approved HITs higher than 100 to participate in this test. iii) We conduct 5-scale MOS/SMOS
evaluation with random ordering of the model samples, with the inclusion of ground-truth samples as
the hidden control questions. We apply filtering by rejecting ratings from those workers who score
the ground-truth samples as 3 or even lower, because the listeners are instructed to give score 5 for
ground-truth samples after listening to the same ground-truth sample prior to the rating.
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