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Abstract

Finding mathematical relations underlying natural phenomena and scientific sys-
tems has been one of the fundamental tasks in the history of scientific discovery.
Recent advancements in evolutionary search with Large Language Models (LLMs),
with their embedded scientific knowledge, have shown great promise for this task.
However, discovering such mathematical models governing scientific observations
still remains significantly challenging, as it requires navigating vast combinatorial
hypothesis spaces with an explosion of possible relations. Existing LLM-based
approaches overlook the impact of data on the structure of mathematical relations,
and treat LLMs as a static hypothesis generator unaware of the observed scientific
system. This leads to inefficient exploration of the hypothesis space with over-
reliance on LLMs’ internal priors. To bridge this gap, we introduce Decompose,
Adapt, and Evolve (DecAEvolve), a framework that leverages granular feedback
from symbolic term decomposition and LLM refinement through reinforcement
learning (RL) fine-tuning to enhance both robustness and efficiency of evolutionary
discovery frameworks. Our experiments across diverse datasets demonstrate that
DecAEvolve significantly improves the accuracy of discovered equations and the
efficiency of the discovery process compared to the state-of-the-art baseline.

1 Introduction

The emergence of Large Language Models (LLMs) has fundamentally transformed automated
problem-solving across diverse domains. Beyond their well-established capabilities in natural
language understanding and programming [1} 2], LLMs have recently demonstrated remarkable
reasoning abilities that enable them to tackle complex optimization and discovery tasks. Their capacity
to leverage embedded domain knowledge, interpolate between them, generate structured hypotheses
and engage in iterative refinement, positions LLMs as powerful engines for systematic exploration of
complex solution spaces towards discovery goals [3H5]. This potential extends naturally to scientific
discovery tasks, where the combination of domain expertise and systematic search/exploration in the
hypothesis space can unlock new approaches to longstanding challenges of scientific inquiry [6]].

Scientific equation discovery—the process of uncovering compact and interpretable mathematical
models that govern natural phenomena—represents one of the fundamental tasks in automated scien-
tific discovery, with applications across many fields of science such as physics, biology, and material
science [[7]. Traditional approaches in Symbolic Regression (SR) rely on genetic programming and
evolutionary strategies [8l 9]; however, these approaches often struggle with scalability limitations
and inefficient exploration of the vast combinatorial hypothesis space [10]. More recent advances
have introduced neural-guided approaches, where deep learning architectures are trained to generate
or refine symbolic expressions [L1, 12], and transformer-based methods that are pre-trained with
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Figure 1: Overview of the DecAEvolve framework. The framework integrates Adapration (LLM
fine-tuning via reinforcement learning using Group Relative Policy Optimization with data-driven
rewards) and Decomposition (granular-level feedback through symbolic atomic term analysis) within
an Evolutionary search process. The adaptation aligns the LLM to the target scientific system beyond
its internal priors, while decomposition provides fine-grained guidance for hypothesis refinement.
Iterating these three key components enables effective and efficient exploration of the combinatorial
hypothesis space in equation discovery.

large-scale synthetic data to directly model symbolic sequences as language generation tasks [[13H15]].
These developments have demonstrated promising capabilities in data-driven learning, yet are limited
in balancing learning and search components and in incorporating scientific prior knowledge into the
process of discovery.

Several works have recently introduced promising frameworks to integrate LLMs for scientific equa-
tion discovery, leveraging their scientific priors and reasoning capabilities to navigate the complex
landscape of mathematical expressions more effectively. Notably, LLM-SR [6] combines LLMs’
scientific knowledge with multi-island evolutionary search, generating equation hypotheses as Python
function skeletons guided by data feedback. LaSR [16] introduces a concept learning approach that
extracts abstract textual concepts from successful equation hypotheses, using these concepts to guide
both evolutionary search (with PySR [17]]) and LLM-based hypothesis generation, and SGA [18]
employs a bilevel optimization framework that iteratively combines LLMs for discrete hypothesis
generation with physical simulations for continuous parameter optimization. These methods
demonstrate this potential by combining LLMs’ domain expertise with systematic search strategies,
treating equation discovery as a program synthesis problem guided by scientific knowledge [[19, 20].

However, current LLM-based discovery methods exhibit fundamental limitations that constrain their
effectiveness. First, they treat LLMs as static hypothesis generators, where the model’s parameters
remain fixed regardless of the problem domain, nuances of the specific observed system or, insights
gained during the search process. This prevents LLMs from adapting their generation strategies based
on the specific problem, the data, and the domain-specific requirements. Second, existing approaches
mainly provide coarse-grained feedback about solution quality, typically limited to scalar reward
signals (MSE) from execution of whole hypothesis that indicate which hypotheses perform well
respectively, without revealing why specific mathematical components or patterns drive success. This
limited feedback mechanism prevents LLMs from understanding the underlying symbolic structure
of successful solutions and refining their search strategies accordingly.

To address these limitations, we introduce DecAEvolve (Decompose, Adapt, and Evolve), a novel
framework that enhances the effectiveness and efficiency of LLM-based equation discovery through
several synergistic contributions:
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* We develop a systematic methodology for providing LLMs with interpretable directional feed-
back about which components of their generated hypothesis prove effective. Through structured
hypothesis decomposition and evaluations, the contributions of individual terms and their pair-
wise interactions are quantified and provided as feedback. This enables LLMs to understand
not just which hypotheses succeed, but why specific mathematical building blocks are effective,
transforming blind generation into informed iterative refinement.

* We employ reinforcement learning with Group-Relative Policy Optimization (GRPO) to implicitly
encode the data distribution into the model’s parameters for better hypothesis generation process.
This test-time adaptation/training approach allows the LLM to learn from successful equation
discoveries without directly observing raw data, progressively aligning its hypothesis generation
with the underlying symbolic relationships through reward-weighted gradient updates.

* We demonstrate that these synergistic contributions dramatically improve search efficiency, requir-
ing significantly fewer iterations to discover accurate symbolic expressions. Our comprehensive
evaluation across multiple benchmarks shows superior performance compared to LLM-SR and
other baselines in both in-domain and out-of-domain settings, validating the effectiveness of our
guided discovery approach.

2 Preliminaries

In equation discovery, the goal is to find a compact mathematical expression f(x) that approximates
an unknown target function frey : RY — R, using a dataset of input-output pairs D = {(x;,y;)}" ;.
The objective is to discover functional relationships such that f(x;) ~ y; for all i, producing
expressions that are both interpretable and capable of generalizing to unseen data. Performance is
typically evaluated using fitness to data with metrics such as mean squared error: MSE(f, D) =

—% ;L:l(f(xi)_yi)2~
3 Method

We propose DecAEvolve (Decompose, Adapt, and Evolve), shown in Figure[l] a framework that
shifts the evolutionary search of equation discovery towards guided discovery, achieved through
granular and directional feedback as well as test-time adaptation with reinforcement learning fine-
tuning of the backbone LLM to the observed scientific system. We employ LLMs to generate equation
program skeletons via their parametric knowledge and adapt the model weights and the equation
discovery optimization process with the observations of a scientific system.

The core premise of our approach is that effective symbolic discovery requires the generator to learn
not only what works, but also why it works and how to search. We implement this via two main
components: (i) fine-grained attribution that quantifies marginal and pairwise term contributions
and returns structured feedback to the generator; (ii) test-time adaptation with Group-Relative
Policy Optimization (GRPO) [21]], which shifts the proposal distribution toward low-error structures.
Together, these components define a feedback-driven optimization loop: term-level attributions
provide credit assignment, GRPO applies the policy update, The integrated framework guides the
generator’s search policy, increases expected improvement per iteration, and accelerates convergence
to more accurate symbolic models (Figure|[T).

3.1 Directional Feedback with Term-Level Contribution

At the core of our framework is an iterative discovery process where the LLM generates candidate
symbolic equations guided by structured, interpretable feedback. Unlike prior approaches that rely
solely on coarse performance metrics, we introduce a fine-grained contribution analysis mechanism
that quantifies the importance of individual terms and their interactions within discovered equations.

Each iteration begins with a carefully structured prompt containing: (i) the discovery task speci-
fication, (ii) input variable descriptions, (iii) a curated buffer of high-performing equations from
previous iterations annotated with term-level contributions, and (iv) a Python function template. This
programmatic interface—where the LLM completes executable Python program rather than plain
text equations—ensures syntactic validity and seamlessly integrates with our optimization pipeline.
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Given a generated skeleton f(z;6) = D1, w; - ¢;(x), where ¢;(z) are basis functions proposed by

the LLM and w; are learnable weights, we first optimize the parameters 6 using BFGS on the training
dataset D = {(x;,y;)}—. The fitted model is then evaluated using negative mean squared error as
our primary performance metric.

In the contribution analysis, we parse the generated Python equation program skeleton into an Abstract
Syntax Tree (AST) and decompose it into constituent terms. Addition and subtraction operations
serve as natural term boundaries, while multiplicative structures, powers, and unary function calls
(e.g., sin(x)) are preserved as atomic units. This parsing respects the LLM’s intended mathematical
structure—we inline simple variable assignments and handle unary operations appropriately to
maintain semantic integrity.

Following decomposition, we conduct ablated contribution analysis by systematically removing
individual terms or term pairs and measuring the resulting performance discrepancy. These ablated
scores reveal each component’s contribution to the model’s predictive power. These contribution
annotations are saved and passed as comments in the Python program of hypothesis that gets stored
in the experience buffer. When the LLM encounters these annotated equations with directional
feedback from term decomposition in subsequent iterations, it can immediately see which terms and
interactions drive performance, presented in a natural, readable format within the code context and
build upon them in the hypothesis generation.

3.2 Test-Time Adaptation with GRPO

To further enhance the LLM’s hypothesis generation capabilities, we incorporate a test-time training
or adaptation approach using reinforcement learning fine-tuning with Group-Relative Policy Op-
timization (GRPO). This allows us to adapt the model to the specific symbolic regression task by
learning from the distribution of successful equation discoveries.

After each iteration of hypothesis generation, we collect a dataset of prompts paired with candidate
equations and their corresponding rewards. Each equation is evaluated using negative MSE on the
training data, which we transform to a bounded reward between 0 and 1 via r = exp(—MSE) to
ensure gradient stability. Failed or invalid completions receive a floor reward of 0.01.

For each prompt z with k candidate equations {y;}%_,, we compute group-relative advantages A; =
r; — b(x) where b(x) = + Y, r; serves as the baseline. This formulation provides variance reduction
without requiring a learned value function. The training objective balances reward maximization with
a KL regularization term to prevent the model from drifting too far from its initial policy:

k
L(O) = ~Equ gy | Ailogmo(yilz) | + 8- KL (1] |mer)
=1

We implement fine-tuning using LoRA adapters, enabling efficient parameter updates while maintain-
ing the base model as a reference anchor. The KL coefficient 3 ensures the fine-tuned model retains
its general reasoning capabilities while effectively adapting to the observed scientific system with the
help of data-driven reward. This GRPO training serves as an implicit mechanism for incorporating
the underlying data distribution into the model’s hypothesis generation process to go beyond its
internal priors. While the LLM never directly observes the raw data, it learns which functional forms
and basis functions best capture the data’s structure through the reward signal. The model effectively
internalizes the dataset’s latent patterns by optimizing for equations that minimize prediction error,
creating a form of indirect supervision where the data guides the search through reward-weighted
gradient updates rather than explicit input-output examples. This creates a virtuous cycle: as the
model generates better hypotheses informed by the data distribution, these successful equations
become part of the training corpus, reinforcing effective structural patterns and basis functions. The
iterative refinement process thus combines the LLM’s prior knowledge of mathematical functions with
empirical evidence from the specific dataset, yielding a search procedure that becomes progressively
more aligned with the true underlying symbolic relationship of the observed data.

4 Experiments

We evaluate DecAEvolve on benchmark datasets from [6]], covering physics, biology, and materials
science:
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Nonlinear Oscillator: Simulates two nonlinear damped oscillators (Oscillatorl, Oscillator2) gov-
erned by second-order differential equations in displacement and velocity. Both systems are designed
with complex but solvable nonlinear structures that differ from standard oscillator models to challenge
LLMs towards discovery through data-driven reasoning.

Bacterial Growth: Models E. coli growth under varying conditions of density, substrate, temperature,
and pH. Novel nonlinear terms designed for temperature and pH introduce complexities that require
exploration and discovery and are hard to recover from LLM recall.

Stress-Strain Behavior: Captures tensile response of aluminum alloy across temperatures. This
dataset uses experimental measurements, providing a more realistic setting with experimental data
that challenge LLM-based models beyond synthetic formulations.

We compare DecAEvolve with the state-of-the-art baseline LLM-SR [[6] under same configurations:
3,000 LLM calls per problem with sampling temperature 7 = 0.8. Equation parameters are optimized
with the BFGS solver from SciPy library and a 30s timeout used for the execution of each hypothesis.
In the GRPO adaptation phase, we use batch size of 16 per device, gradient accumulation 4, learning
rate 1075, and KL coefficient 5 = 0.05. For fine-tuning, we use LoRA adapters with » = 16.
Decomposition analysis is also limited to 7 terms and their pairwise combinations per equation
program hypothesis. We conduct experiments on two open-source Qwen model variants (Qwen2.5-
0.5B and Qwen2.5-1.5B) to evaluate scaling behaviors across different model capacities within our
computational constraints for fine-tuning.

For the analysis, we use the normalized mean squared error (NMSE) as in [19]: NMSE =
Z @iy
S (yi—9)?
size and § the mean target value. NMSE normalizes errors by scale of dataset variance, enabling
comparison across datasets.

on both in-domain (ID) and out-of-domain (OOD) test settings, where N is the test

4.1 Results

Figure 2] presents the discovery trajectories showing best-achieved NMSE scores across search itera-
tions for DecAEvolve and its ablated variants compared to the state-of-the-art LLM-SR baseline. The
results demonstrate that both core components contribute meaningfully to performance: Adaptation
(+GRPO) and Decomposition (+Decomp) consistently achieve lower discovery errors and converge
faster than the baseline across all benchmark datasets. Notably, the full DecAEvolve frame-
work, which integrates both components, delivers best performance in terms of both final accuracy
(lower terminal NMSE) and search efficiency (faster convergence), establishing new state-of-the-art
results across all scientific discovery tasks.

To evaluate the generalizability of discovered equations—a fundamental prerequisite for scientific
equations and laws—we assess all methods on out-of-distribution (OOD) test data from [6]] beyond
their training domains. Figure [3] compares in-domain (ID) versus out-of-domain (OOD) NMSE
performance across all model variants and benchmark datasets. While all methods exhibit expected
performance degradation on OOD data, DecAEvolve consistently achieves the lowest NMSE in both
settings. DecAEvolve’s strong OOD performance indicates that our framework discovers equations
with better inherent generalizability rather than merely fitting to training distributions, a critical
distinction for scientific discovery applications where extrapolation beyond observed data is essential.

Lastly, Figure 4] shows consistent reward improvement during GRPO adaptation across both model
scales and all datasets, validating our reinforcement learning fine-tuning approach as test-time adapta-
tion for equation discovery. Notably, we observe domain-dependent scaling behaviors: the smaller
model (Qwen2.5-0.5B) converges faster on oscillator datasets, while the larger model (Qwen2.5-1.5B)
shows better progression on bacterial growth and stress-strain tasks. We think that this pattern corre-
lates with problem complexity for LLM, as evidenced by higher initial rewards on oscillator problems
(0.6-0.7) compared to the more challenging biological and mechanical systems (0.2-0.3). Interest-
ingly, the smaller model eventually matches larger model performance even on complex datasets,
suggesting that targeted adaptation through GRPO can help to effectively bridge the capability gap
between model scales for scientific discovery tasks.
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Figure 2: Best-score trajectories of DecAEvolve and its variants against the LLM-SR baseline across
benchmark problems. Adaptation (+GRPO) and decomposition (+Decomp) each enhance discovery
effectiveness and efficiency, yielding more accurate final equations with fewer search candidates.
Their integration in DecAEvolve achieves the best result across all datasets(lower is better).
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212 5  Conclusion

213 We introduce DecAEvolve, a framework that enhances LLM-based equation discovery through
214 granular term-level feedbacks, test-time adaptation via GRPO and, evolutionary search with LLMs.
215 Our approach transforms static hypothesis generation into adaptive learning, enabling LLMs to
216 progressively align with nuances of underlying observed scientific systems through reinforcement
217 learning model adaptation and interpretable feedback mechanisms. Experimental results across
218 diverse benchmark datasets demonstrate that DecAEvolve consistently outperforms state-of-the-art
219 baselines in both discovery accuracy and search efficiency, while maintaining strong out-of-domain
220 generalization. The success of smaller models through targeted test-time adaptation suggests promis-
221 ing directions for democratizing scientific discovery tools without requiring large, resource-intensive
222 models. Future work could extend our simple decomposition mechanisms to more complex structures
223 and explore better optimization strategies for the evolutionary process. The term-level feedback
224 approach developed here may also prove valuable for broader program synthesis tasks requiring
225 iterative refinement in the symbolic space of programs based on component-level understanding.
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