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Abstract

Finding mathematical relations underlying natural phenomena and scientific sys-1

tems has been one of the fundamental tasks in the history of scientific discovery.2

Recent advancements in evolutionary search with Large Language Models (LLMs),3

with their embedded scientific knowledge, have shown great promise for this task.4

However, discovering such mathematical models governing scientific observations5

still remains significantly challenging, as it requires navigating vast combinatorial6

hypothesis spaces with an explosion of possible relations. Existing LLM-based7

approaches overlook the impact of data on the structure of mathematical relations,8

and treat LLMs as a static hypothesis generator unaware of the observed scientific9

system. This leads to inefficient exploration of the hypothesis space with over-10

reliance on LLMs’ internal priors. To bridge this gap, we introduce Decompose,11

Adapt, and Evolve (DecAEvolve), a framework that leverages granular feedback12

from symbolic term decomposition and LLM refinement through reinforcement13

learning (RL) fine-tuning to enhance both robustness and efficiency of evolutionary14

discovery frameworks. Our experiments across diverse datasets demonstrate that15

DecAEvolve significantly improves the accuracy of discovered equations and the16

efficiency of the discovery process compared to the state-of-the-art baseline.17

1 Introduction18

The emergence of Large Language Models (LLMs) has fundamentally transformed automated19

problem-solving across diverse domains. Beyond their well-established capabilities in natural20

language understanding and programming [1, 2], LLMs have recently demonstrated remarkable21

reasoning abilities that enable them to tackle complex optimization and discovery tasks. Their capacity22

to leverage embedded domain knowledge, interpolate between them, generate structured hypotheses23

and engage in iterative refinement, positions LLMs as powerful engines for systematic exploration of24

complex solution spaces towards discovery goals [3–5]. This potential extends naturally to scientific25

discovery tasks, where the combination of domain expertise and systematic search/exploration in the26

hypothesis space can unlock new approaches to longstanding challenges of scientific inquiry [6].27

Scientific equation discovery—the process of uncovering compact and interpretable mathematical28

models that govern natural phenomena—represents one of the fundamental tasks in automated scien-29

tific discovery, with applications across many fields of science such as physics, biology, and material30

science [7]. Traditional approaches in Symbolic Regression (SR) rely on genetic programming and31

evolutionary strategies [8, 9]; however, these approaches often struggle with scalability limitations32

and inefficient exploration of the vast combinatorial hypothesis space [10]. More recent advances33

have introduced neural-guided approaches, where deep learning architectures are trained to generate34

or refine symbolic expressions [11, 12], and transformer-based methods that are pre-trained with35
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Figure 1: Overview of the DecAEvolve framework. The framework integrates Adaptation (LLM
fine-tuning via reinforcement learning using Group Relative Policy Optimization with data-driven
rewards) and Decomposition (granular-level feedback through symbolic atomic term analysis) within
an Evolutionary search process. The adaptation aligns the LLM to the target scientific system beyond
its internal priors, while decomposition provides fine-grained guidance for hypothesis refinement.
Iterating these three key components enables effective and efficient exploration of the combinatorial
hypothesis space in equation discovery.

large-scale synthetic data to directly model symbolic sequences as language generation tasks [13–15].36

These developments have demonstrated promising capabilities in data-driven learning, yet are limited37

in balancing learning and search components and in incorporating scientific prior knowledge into the38

process of discovery.39

Several works have recently introduced promising frameworks to integrate LLMs for scientific equa-40

tion discovery, leveraging their scientific priors and reasoning capabilities to navigate the complex41

landscape of mathematical expressions more effectively. Notably, LLM-SR [6] combines LLMs’42

scientific knowledge with multi-island evolutionary search, generating equation hypotheses as Python43

function skeletons guided by data feedback. LaSR [16] introduces a concept learning approach that44

extracts abstract textual concepts from successful equation hypotheses, using these concepts to guide45

both evolutionary search (with PySR [17]) and LLM-based hypothesis generation, and SGA [18]46

employs a bilevel optimization framework that iteratively combines LLMs for discrete hypothesis47

generation with physical simulations for continuous parameter optimization. These methods48

demonstrate this potential by combining LLMs’ domain expertise with systematic search strategies,49

treating equation discovery as a program synthesis problem guided by scientific knowledge [19, 20].50

However, current LLM-based discovery methods exhibit fundamental limitations that constrain their51

effectiveness. First, they treat LLMs as static hypothesis generators, where the model’s parameters52

remain fixed regardless of the problem domain, nuances of the specific observed system or, insights53

gained during the search process. This prevents LLMs from adapting their generation strategies based54

on the specific problem, the data, and the domain-specific requirements. Second, existing approaches55

mainly provide coarse-grained feedback about solution quality, typically limited to scalar reward56

signals (MSE) from execution of whole hypothesis that indicate which hypotheses perform well57

respectively, without revealing why specific mathematical components or patterns drive success. This58

limited feedback mechanism prevents LLMs from understanding the underlying symbolic structure59

of successful solutions and refining their search strategies accordingly.60

To address these limitations, we introduce DecAEvolve (Decompose, Adapt, and Evolve), a novel61

framework that enhances the effectiveness and efficiency of LLM-based equation discovery through62

several synergistic contributions:63
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• We develop a systematic methodology for providing LLMs with interpretable directional feed-64

back about which components of their generated hypothesis prove effective. Through structured65

hypothesis decomposition and evaluations, the contributions of individual terms and their pair-66

wise interactions are quantified and provided as feedback. This enables LLMs to understand67

not just which hypotheses succeed, but why specific mathematical building blocks are effective,68

transforming blind generation into informed iterative refinement.69

• We employ reinforcement learning with Group-Relative Policy Optimization (GRPO) to implicitly70

encode the data distribution into the model’s parameters for better hypothesis generation process.71

This test-time adaptation/training approach allows the LLM to learn from successful equation72

discoveries without directly observing raw data, progressively aligning its hypothesis generation73

with the underlying symbolic relationships through reward-weighted gradient updates.74

• We demonstrate that these synergistic contributions dramatically improve search efficiency, requir-75

ing significantly fewer iterations to discover accurate symbolic expressions. Our comprehensive76

evaluation across multiple benchmarks shows superior performance compared to LLM-SR and77

other baselines in both in-domain and out-of-domain settings, validating the effectiveness of our78

guided discovery approach.79

2 Preliminaries80

In equation discovery, the goal is to find a compact mathematical expression f(x) that approximates81

an unknown target function freal : Rd → R, using a dataset of input-output pairs D = {(xi, yi)}ni=1.82

The objective is to discover functional relationships such that f(xi) ≈ yi for all i, producing83

expressions that are both interpretable and capable of generalizing to unseen data. Performance is84

typically evaluated using fitness to data with metrics such as mean squared error: MSE(f,D) =85

− 1
n

∑n
i=1(f(xi)− yi)

2.86

3 Method87

We propose DecAEvolve (Decompose, Adapt, and Evolve), shown in Figure 1, a framework that88

shifts the evolutionary search of equation discovery towards guided discovery, achieved through89

granular and directional feedback as well as test-time adaptation with reinforcement learning fine-90

tuning of the backbone LLM to the observed scientific system. We employ LLMs to generate equation91

program skeletons via their parametric knowledge and adapt the model weights and the equation92

discovery optimization process with the observations of a scientific system.93

The core premise of our approach is that effective symbolic discovery requires the generator to learn94

not only what works, but also why it works and how to search. We implement this via two main95

components: (i) fine-grained attribution that quantifies marginal and pairwise term contributions96

and returns structured feedback to the generator; (ii) test-time adaptation with Group-Relative97

Policy Optimization (GRPO) [21], which shifts the proposal distribution toward low-error structures.98

Together, these components define a feedback-driven optimization loop: term-level attributions99

provide credit assignment, GRPO applies the policy update, The integrated framework guides the100

generator’s search policy, increases expected improvement per iteration, and accelerates convergence101

to more accurate symbolic models (Figure 1).102

3.1 Directional Feedback with Term-Level Contribution103

At the core of our framework is an iterative discovery process where the LLM generates candidate104

symbolic equations guided by structured, interpretable feedback. Unlike prior approaches that rely105

solely on coarse performance metrics, we introduce a fine-grained contribution analysis mechanism106

that quantifies the importance of individual terms and their interactions within discovered equations.107

Each iteration begins with a carefully structured prompt containing: (i) the discovery task speci-108

fication, (ii) input variable descriptions, (iii) a curated buffer of high-performing equations from109

previous iterations annotated with term-level contributions, and (iv) a Python function template. This110

programmatic interface—where the LLM completes executable Python program rather than plain111

text equations—ensures syntactic validity and seamlessly integrates with our optimization pipeline.112
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Given a generated skeleton f(x; θ) =
∑n

i=1 wi · ϕi(x), where ϕi(x) are basis functions proposed by113

the LLM and wi are learnable weights, we first optimize the parameters θ using BFGS on the training114

dataset D = {(xi, yi)}ni=1. The fitted model is then evaluated using negative mean squared error as115

our primary performance metric.116

In the contribution analysis, we parse the generated Python equation program skeleton into an Abstract117

Syntax Tree (AST) and decompose it into constituent terms. Addition and subtraction operations118

serve as natural term boundaries, while multiplicative structures, powers, and unary function calls119

(e.g., sin(x)) are preserved as atomic units. This parsing respects the LLM’s intended mathematical120

structure—we inline simple variable assignments and handle unary operations appropriately to121

maintain semantic integrity.122

Following decomposition, we conduct ablated contribution analysis by systematically removing123

individual terms or term pairs and measuring the resulting performance discrepancy. These ablated124

scores reveal each component’s contribution to the model’s predictive power. These contribution125

annotations are saved and passed as comments in the Python program of hypothesis that gets stored126

in the experience buffer. When the LLM encounters these annotated equations with directional127

feedback from term decomposition in subsequent iterations, it can immediately see which terms and128

interactions drive performance, presented in a natural, readable format within the code context and129

build upon them in the hypothesis generation.130

3.2 Test-Time Adaptation with GRPO131

To further enhance the LLM’s hypothesis generation capabilities, we incorporate a test-time training132

or adaptation approach using reinforcement learning fine-tuning with Group-Relative Policy Op-133

timization (GRPO). This allows us to adapt the model to the specific symbolic regression task by134

learning from the distribution of successful equation discoveries.135

After each iteration of hypothesis generation, we collect a dataset of prompts paired with candidate136

equations and their corresponding rewards. Each equation is evaluated using negative MSE on the137

training data, which we transform to a bounded reward between 0 and 1 via r = exp(−MSE) to138

ensure gradient stability. Failed or invalid completions receive a floor reward of 0.01.139

For each prompt x with k candidate equations {yi}ki=1, we compute group-relative advantages Ai =140

ri − b(x) where b(x) = 1
k

∑
i ri serves as the baseline. This formulation provides variance reduction141

without requiring a learned value function. The training objective balances reward maximization with142

a KL regularization term to prevent the model from drifting too far from its initial policy:143

L(θ) = −Ex,{yi}

[
k∑

i=1

Ai log πθ(yi|x)

]
+ β · KL(πθ||πref)

We implement fine-tuning using LoRA adapters, enabling efficient parameter updates while maintain-144

ing the base model as a reference anchor. The KL coefficient β ensures the fine-tuned model retains145

its general reasoning capabilities while effectively adapting to the observed scientific system with the146

help of data-driven reward. This GRPO training serves as an implicit mechanism for incorporating147

the underlying data distribution into the model’s hypothesis generation process to go beyond its148

internal priors. While the LLM never directly observes the raw data, it learns which functional forms149

and basis functions best capture the data’s structure through the reward signal. The model effectively150

internalizes the dataset’s latent patterns by optimizing for equations that minimize prediction error,151

creating a form of indirect supervision where the data guides the search through reward-weighted152

gradient updates rather than explicit input-output examples. This creates a virtuous cycle: as the153

model generates better hypotheses informed by the data distribution, these successful equations154

become part of the training corpus, reinforcing effective structural patterns and basis functions. The155

iterative refinement process thus combines the LLM’s prior knowledge of mathematical functions with156

empirical evidence from the specific dataset, yielding a search procedure that becomes progressively157

more aligned with the true underlying symbolic relationship of the observed data.158

4 Experiments159

We evaluate DecAEvolve on benchmark datasets from [6], covering physics, biology, and materials160

science:161
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Nonlinear Oscillator: Simulates two nonlinear damped oscillators (Oscillator1, Oscillator2) gov-162

erned by second-order differential equations in displacement and velocity. Both systems are designed163

with complex but solvable nonlinear structures that differ from standard oscillator models to challenge164

LLMs towards discovery through data-driven reasoning.165

Bacterial Growth: Models E. coli growth under varying conditions of density, substrate, temperature,166

and pH. Novel nonlinear terms designed for temperature and pH introduce complexities that require167

exploration and discovery and are hard to recover from LLM recall.168

Stress-Strain Behavior: Captures tensile response of aluminum alloy across temperatures. This169

dataset uses experimental measurements, providing a more realistic setting with experimental data170

that challenge LLM-based models beyond synthetic formulations.171

We compare DecAEvolve with the state-of-the-art baseline LLM-SR [6] under same configurations:172

3,000 LLM calls per problem with sampling temperature τ = 0.8. Equation parameters are optimized173

with the BFGS solver from SciPy library and a 30s timeout used for the execution of each hypothesis.174

In the GRPO adaptation phase, we use batch size of 16 per device, gradient accumulation 4, learning175

rate 10−6, and KL coefficient β = 0.05. For fine-tuning, we use LoRA adapters with r = 16.176

Decomposition analysis is also limited to 7 terms and their pairwise combinations per equation177

program hypothesis. We conduct experiments on two open-source Qwen model variants (Qwen2.5-178

0.5B and Qwen2.5-1.5B) to evaluate scaling behaviors across different model capacities within our179

computational constraints for fine-tuning.180

For the analysis, we use the normalized mean squared error (NMSE) as in [19]: NMSE =181 ∑Ntest
i=1 (ŷi−yi)

2∑Ntest
i=1 (yi−ȳ)2

on both in-domain (ID) and out-of-domain (OOD) test settings, where Ntest is the test182

size and ȳ the mean target value. NMSE normalizes errors by scale of dataset variance, enabling183

comparison across datasets.184

4.1 Results185

Figure 2 presents the discovery trajectories showing best-achieved NMSE scores across search itera-186

tions for DecAEvolve and its ablated variants compared to the state-of-the-art LLM-SR baseline. The187

results demonstrate that both core components contribute meaningfully to performance: Adaptation188

(+GRPO) and Decomposition (+Decomp) consistently achieve lower discovery errors and converge189

faster than the LLM-SR baseline across all benchmark datasets. Notably, the full DecAEvolve frame-190

work, which integrates both components, delivers best performance in terms of both final accuracy191

(lower terminal NMSE) and search efficiency (faster convergence), establishing new state-of-the-art192

results across all scientific discovery tasks.193

To evaluate the generalizability of discovered equations—a fundamental prerequisite for scientific194

equations and laws—we assess all methods on out-of-distribution (OOD) test data from [6] beyond195

their training domains. Figure 3 compares in-domain (ID) versus out-of-domain (OOD) NMSE196

performance across all model variants and benchmark datasets. While all methods exhibit expected197

performance degradation on OOD data, DecAEvolve consistently achieves the lowest NMSE in both198

settings. DecAEvolve’s strong OOD performance indicates that our framework discovers equations199

with better inherent generalizability rather than merely fitting to training distributions, a critical200

distinction for scientific discovery applications where extrapolation beyond observed data is essential.201

Lastly, Figure 4 shows consistent reward improvement during GRPO adaptation across both model202

scales and all datasets, validating our reinforcement learning fine-tuning approach as test-time adapta-203

tion for equation discovery. Notably, we observe domain-dependent scaling behaviors: the smaller204

model (Qwen2.5-0.5B) converges faster on oscillator datasets, while the larger model (Qwen2.5-1.5B)205

shows better progression on bacterial growth and stress-strain tasks. We think that this pattern corre-206

lates with problem complexity for LLM, as evidenced by higher initial rewards on oscillator problems207

(0.6-0.7) compared to the more challenging biological and mechanical systems (0.2-0.3). Interest-208

ingly, the smaller model eventually matches larger model performance even on complex datasets,209

suggesting that targeted adaptation through GRPO can help to effectively bridge the capability gap210

between model scales for scientific discovery tasks.211
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Figure 2: Best-score trajectories of DecAEvolve and its variants against the LLM-SR baseline across
benchmark problems. Adaptation (+GRPO) and decomposition (+Decomp) each enhance discovery
effectiveness and efficiency, yielding more accurate final equations with fewer search candidates.
Their integration in DecAEvolve achieves the best result across all datasets(lower is better).
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Figure 3: In-domain (ID) and out-of-domain (OOD) performance of DecAEvolve and its variants
compared to LLM-SR, reported as normalized MSE across benchmark datasets and LLM back-
bones(lower is better).
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Figure 4: Reward improvement over steps during GRPO adaptation across datasets.

5 Conclusion212

We introduce DecAEvolve, a framework that enhances LLM-based equation discovery through213

granular term-level feedbacks, test-time adaptation via GRPO and, evolutionary search with LLMs.214

Our approach transforms static hypothesis generation into adaptive learning, enabling LLMs to215

progressively align with nuances of underlying observed scientific systems through reinforcement216

learning model adaptation and interpretable feedback mechanisms. Experimental results across217

diverse benchmark datasets demonstrate that DecAEvolve consistently outperforms state-of-the-art218

baselines in both discovery accuracy and search efficiency, while maintaining strong out-of-domain219

generalization. The success of smaller models through targeted test-time adaptation suggests promis-220

ing directions for democratizing scientific discovery tools without requiring large, resource-intensive221

models. Future work could extend our simple decomposition mechanisms to more complex structures222

and explore better optimization strategies for the evolutionary process. The term-level feedback223

approach developed here may also prove valuable for broader program synthesis tasks requiring224

iterative refinement in the symbolic space of programs based on component-level understanding.225
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