Do Language Models Trust Their Own Justifications? A Study on Functional Consistency

Anonymous authors

000

001

002003004

010 011

012

013

014

015

016

018

019

021

024

025

026

027

028

029

031

032

034

037

040

041

042

043 044

046

047

048

051

052

Paper under double-blind review

ABSTRACT

Large Language Models (LLMs) have been widely adopted in text classification tasks, where they not only output class predictions but also generate explanations that highlight the tokens deemed most relevant for reaching the predicted label. Yet it remains unclear whether these highlighted elements faithfully reflect the underlying decision process of the model. While much of the literature evaluates the textual plausibility of such explanations, few studies assess their functional consistency with the model's actual behavior. In this work, we propose an experimental framework based on the principle of auto-consistency: if a model identifies certain tokens as decisive, then isolating, removing, or semantically inverting them should produce systematic and interpretable changes in its predictions. We operationalize this evaluation through sufficiency, comprehensiveness, and counterfactuality metrics, and conduct experiments on IMDB and Steam reviews across both closed-source (GPT-40) and open-source LLMs (Gemma3, Granite8B, DeepSeek). Results show that GPT-4o follows the expected progression across all metrics, Gemma3 and Granite8B maintain coherence under sufficiency but lose consistency under more demanding interventions, while DeepSeek variants display structural deviations, either failing to preserve sufficiency or overreacting under comprehensiveness and counterfactuality. These findings show that explanation reliability varies across LLM families and scales, with smaller models displaying contradictions and larger ones exhibiting over-sensitivity. By combining sufficiency, comprehensiveness, and counterfactuality, our approach provides a systematic methodology for assessing the functional consistency of LLM selfexplanations.

1 Introduction

Large Language Models (LLMs), built upon the Transformer architecture (Vaswani et al., 2017), have demonstrated remarkable abilities in generalization and task solving through textual instructions, even in scenarios where no explicit training examples are available (zero-shot or few-shot learning) (Brown et al., 2020). Among their emergent capabilities, one of the most prominent is the generation of explanations that justify predictions, often structured as reasoning chains, commonly referred to as chain-of-thought (CoT) (Wei et al., 2023).

While such explanations are frequently plausible, their faithfulness to the actual inferential processes of the model remains an open question. For instance, Turpin et al. (2023) show that CoT explanations can be manipulated through biases in the prompts, thereby justifying incorrect predictions with arguments that appear convincing but are not aligned with the true decision factors. These findings raise concerns about excessive reliance on LLM-produced explanations and highlight the need for more objective approaches to evaluate the transparency and robustness of these models.

In this work, we propose an investigation that leverages *feature importance* (Barbieri et al., 2024) within the task of classification with LLMs, aiming to assess the extent to which models remain coherent with the justifications they provide for their own predictive decisions. This evaluation adapts the definition of self-consistency proposed by Chen et al. (2023), understood as the requirement that model outputs remain logically non-contradictory, to what we term auto-consistency. In our setting,

this notion captures whether the tokens¹ highlighted as decisive in a model's explanation play a functionally coherent role when subjected to systematic interventions.

We hypothesize that when certain tokens are highlighted as influential for a prediction, the model should exhibit systematic variations in the assigned score when these elements are removed, isolated, or semantically modified. Thus, explanations are not evaluated in terms of textual plausibility or rhetorical adequacy, but rather in terms of their functional coherence with the model's own predictive behavior.

To quantify this coherence, we adopt the metrics of Comprehensiveness, Sufficiency, and Counterfactuality (Molnar, 2020). The first two follow the definitions of DeYoung et al. (2019), but are here adapted to a scalar review variable. Unlike probability-based formulations, we use a review score in the range [1, 10], predicted by the LLM, which reflects how favorably the text evaluates the target item. ² Under this formulation, Comprehensiveness captures the variation in the score when the highlighted tokens are removed, Sufficiency evaluates the case in which only these tokens are preserved, and Counterfactuality measures the impact of substituting them with semantically opposite terms.

With this adaptation, we investigate whether the model behaves consistently with its own claims of importance, that is, whether it maintains functional coherence under local interventions on the tokens it designates as relevant. This study therefore focuses on the structural fidelity of explanations provided by LLMs, adopting a quantitative approach to the evaluation of interpretability in generative models. The empirical investigation is conducted in the context of sentiment classification, and the results are discussed in detail in the following sections.

2 RELATED WORK

The recent expansion of LLMs in tasks of feature selection has generated a variety of proposals based on different assumptions about their ability to interpret textual descriptions and establish conceptual relationships between variables and predictive tasks. Some of these works, such as LM-Priors (Choi et al., 2022), propose the use of LLMs as a source of prior knowledge about the task, preceding the actual selection of attributes. The central idea is to instruct the model to judge, based solely on descriptions, whether a given attribute should be considered relevant, as also demonstrated by Brown et al. (2020) using binary prompts such as "Yes" or "No."

Other approaches, such as those described in Li & Xiu (2025), operate in a hybrid paradigm, where LLMs are instantiated as mechanisms for generating feature importance but guided by instructions to apply traditional algorithms, such as random forests or sequential selection. This line of work seeks to exploit the semantic expressiveness of LLMs while retaining the statistical consistency of classical techniques.

More sophisticated directions can be found in Yang et al. (2024), which incorporate LLMs into iterative optimization cycles in medical settings, using multiple prompts to refine attribute selection through successive feedback. Complementarily, Han et al. (2024) treat LLMs as feature engineers, using them to generate meta-features that subsequently feed conventional models in order to enhance downstream predictive tasks.

In parallel, a growing body of work has examined the ability of LLMs to explain their own decisions through self-explanations or rationalizations. Studies such as Madsen et al. (2024) and Huang et al. (2023) assess the degree to which model-generated explanations are consistent or useful for interpretability. However, evidence from Sarkar (2024) indicates that such explanations often fail to reflect the underlying inferential process, exposing a gap between textual narratives and the actual decision mechanisms.

In the same critical vein, Turpin et al. (2023) demonstrate that chain-of-thought reasoning can generate explanations that, while linguistically coherent, systematically diverge from the actual inferential processes. Their analysis reveals that models may introduce spurious but plausible reasoning steps,

¹In this paper, the term "token" is used broadly to denote an influential text span (a word or phrase) returned in the influential terms field and extracted verbatim from the input sentence. All interventions operate on these spans, consistent with the prompt specification ("words or phrases"; see Appendix A).

²Where 1 indicates an extremely negative evaluation and 10 an extremely positive evaluation.

thereby producing post-hoc narratives that obscure rather than reveal the underlying decision factors. Likewise, Chen et al. (2025) show that even in controlled settings with explicit cues embedded in the input, state-of-the-art reasoning models frequently exploit these cues in their predictions without incorporating them into their explanations. This discrepancy highlights a fundamental misalignment: predictive behavior is often guided by information that remains absent from the articulated justification. Collectively, these findings indicate that the textual plausibility of self-explanations is insufficient as a criterion of evaluation, since models can produce persuasive accounts that mask structural inconsistencies between explanation and decision-making.

Overall, existing work converges on exploiting the semantic reasoning capabilities of LLMs to inform or guide the selection of important features, differing mainly in their reliance on data, integration within the pipeline, and computational complexity. Yet few studies focus on the critical assessment of a model's internal coherence with respect to the explanations it produces.

In this work, we aim to fill this gap by employing feature importance not as the central object of analysis but as a methodological mechanism for evaluating model auto-consistency. Specifically, we apply the metrics of Comprehensiveness, Sufficiency, and Counterfactuality to the tokens highlighted as relevant, thereby assessing whether these elements maintain functional correspondence with the model's observed predictive behavior.

3 METHODOLOGY

This section outlines the methodology adopted to evaluate the functional consistency of explanations provided by LLMs in the context of classification tasks. We begin by describing the datasets employed and the sampling criteria used for the selection of sentences analyzed in the experiments. Next, we present the structure of the prompts designed to instruct the model to perform sentiment classification and to identify the tokens considered most relevant for its predictions. Finally, we introduce the metrics used to quantify the fidelity of the explanations, with emphasis on the formal definitions of Comprehensiveness, Sufficiency, and Counterfactuality, which allow us to measure the extent to which the presence, absence, or semantic inversion of explanatory elements affects the model's behavior.

3.1 ANALYSIS PIPELINE

The experiments were conducted using two datasets widely employed in sentiment analysis tasks. The first is the *Stanford Large Movie Review Dataset* (IMDB) (Maas et al., 2011), which consists of English-language movie reviews annotated with binary sentiment polarity (positive or negative), used here in the version available on the *HuggingFace* platform. ³ The second dataset comprises reviews from the Steam platform (Pandey & Joshi, 2022), which collects user evaluations of PC games and enables the analysis of aspects such as player satisfaction and dissatisfaction, genre popularity, and sentiment shifts over time.

For the construction of the experimental corpus, a stratified sampling of 2,000 sentences was performed, ensuring proportionality between sentiment classes and thereby minimizing potential distributional biases. This strategy was adopted to increase representativeness and robustness in the subsequent analyses.

Model interactions were carried out through different APIs, covering recent LLM architectures: *GPT-40 mini* (OpenAI et al., 2024), *Gemma3:4B* (Team et al., 2025), *DeepSeek-R1:1.5B* and *DeepSeek-R1:14B* (DeepSeek-AI et al., 2025)⁴ and *Granite3.3:8B* (Mishra et al., 2024). The selection aimed to ensure diversity along two main axes: (i) proprietary versus open-source access, and (ii) providers from distinct research and industrial backgrounds. The additional intra-family comparison was conducted exclusively within the DeepSeek models, given their availability and relevance for methodological contrast.

³https://huggingface.co/datasets/stanfordnlp/imdb

⁴We additionally include *DeepSeek-R1:14b* to enable an intra-family comparison across parameter scales. This choice was motivated by methodological considerations, since evaluating two models from the same provider with different capacities offers a controlled setting to assess consistency.

For each sentence, the model was instructed to classify the sentiment, assign a **review score** in the range [1,10], and identify the tokens most relevant for the prediction. This score represents the intensity of the judgment produced by the model and constitutes the basis for the sufficiency, comprehensiveness, and counterfactual metrics discussed in subsequent sections. Figure 1 illustrates this input–output pipeline.

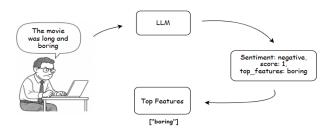


Figure 1: Sentence Analysis Workflow

3.2 PROMPT FORMALIZATION

Adapting the formulation in Jeong et al. (2025), let \mathcal{M} denote a pre-trained LLM. The input to \mathcal{M} is a prompt P^{LLM} composed of three main elements:

- a description of the dataset (Des);
- few-shot examples (Ex), selected to illustrate the target task;
- the task context (C), specifying the objective of identifying the tokens most relevant to the sentiment prediction.

These components are combined to form the complete prompt:

$$P^{\rm LLM} = \operatorname{prompt}(Des, Ex, C). \tag{1}$$

Let $\mathcal{X} = \{x_1, x_2, \dots, x_m\}$ be a collection of sentences, where each $x_i = \{w_1^{(i)}, w_2^{(i)}, \dots, w_{n_i}^{(i)}\}$ consists of n_i tokens. For each x_i , we provide P^{LLM} to the model \mathcal{M} together with the input sentence. The model then returns a subset $\mathcal{T}(x_i) \subseteq x_i$ containing the tokens identified as most relevant to justify its prediction on x_i :

$$\mathcal{T}(x_i) = \mathcal{M}(x_i; P^{\text{LLM}}), \qquad i = 1, 2, \dots, m.$$
 (2)

In summary, each subset $\mathcal{T}(x_i)$ corresponds to the tokens within x_i that the LLM, when prompted with P^{LLM} , identifies as essential for supporting its sentiment classification. These subsets serve as the basis for the interventions defined in our evaluation metrics, with concrete examples of their application provided in the Appendix A.

3.3 Metrics for Auto-Consistency Evaluation

The evaluation of LLM explanations is grounded in the principle of **auto-consistency**, defined as the requirement that a model's predictive behavior remains coherent with the set of tokens it designates as influential for its decisions. Formally, interventions applied to the highlighted subset $\mathcal{T} \subseteq x_i$ should induce variations in the assigned review score that are systematic and interpretable, rather than incidental.

This principle is operationalized through three complementary metrics. Sufficiency evaluates whether the tokens spans in \mathcal{T} , when considered in isolation, are capable of sustaining the original prediction. Comprehensiveness quantifies the effect of removing \mathcal{T} from the input, capturing the extent to which the prediction deteriorates in their absence. Counterfactuality assesses the impact of replacing \mathcal{T} with semantically opposite terms, thereby determining whether the inversion of

highlighted tokens substantially alters the decision. Together, these metrics provide a formal framework for examining whether the importance attributed by the model to specific tokens is faithfully reflected in its predictive behavior. Here's a specific example from the Steam dataset of sentence modification:

Original Sentence: "Pay to win. Buggy. Doesn't deploy Hero's to lanes, which is kinda the point of the whole game."

Sufficiency: "Pay to win. Buggy."

Comprehensiveness: "Doesn't deploy Hero's to lanes, which is kinda the point of the whole game."

Counterfactual Replacement: "Not pay to win. Stable. Doesn't deploy Hero's to lanes, which is kinda the point of the whole game."

3.3.1 Comprehensiveness

Let \mathcal{M} be a pre-trained LLM. Consider an input sequence $x_i = \{w_1, w_2, \dots, w_n\}$ consisting of n tokens. Let $\mathcal{T} \subseteq x_i$ denote the subset of tokens highlighted by \mathcal{M} , when processing x_i under a given prompt, as the most relevant for explaining its decision.

We denote by $R^{\mathcal{M}}(x)$ the review score assigned by model \mathcal{M} to input x, represented as a scalar value in the range [1,10]. This review score reflects the intensity with which the textual content is perceived as favorable to the evaluated item.

We define the *comprehensiveness* metric as:

Comprehensiveness
$$(x_i, \mathcal{T}) = R^{\mathcal{M}}(x_i) - R^{\mathcal{M}}(x_i \setminus \mathcal{T})$$
 (3)

where $x_i \setminus \mathcal{T}$ denotes the input sequence with all tokens in \mathcal{T} removed, and both evaluations are performed by the same model \mathcal{M} on the respective texts. ⁵

3.3.2 Sufficiency

Within the previously established framework, we define the *sufficiency* metric considering the same model \mathcal{M} , the input sequence x_i , and the subset of tokens $\mathcal{T} \subseteq x_i$ highlighted by the LLM as most relevant to its decision.

Sufficiency is given by:

Sufficiency
$$(x_i, \mathcal{T}) = R^{\mathcal{M}}(x_i) - R^{\mathcal{M}}(\mathcal{T})$$
 (4)

where $R^{\mathcal{M}}(\mathcal{T})$ corresponds to the review score resulting from using only the subset \mathcal{T} as input. Large differences between $R^{\mathcal{M}}(x_i)$ and $R^{\mathcal{M}}(\mathcal{T})$ indicate that the highlighted tokens, when considered in isolation, are not sufficient to sustain the original decision, thereby suggesting explanatory insufficiency.

3.3.3 COUNTERFACTUALITY

Within the previously established framework, we define the *counterfactuality* metric considering the same model \mathcal{M} , the input sequence x_i , and the subset of tokens $\mathcal{T} \subseteq x_i$ highlighted by the LLM as most relevant to its decision.

Counterfactuality is defined as:

Counterfactuality
$$(x_i, \mathcal{T}) = R^{\mathcal{M}}(x_i) - R^{\mathcal{M}}(x_i[\mathcal{T} \leftarrow \neg \mathcal{T}])$$
 (5)

 $^{^5}$ To ensure a directional interpretation consistent with the predicted label, we adopt a symmetric transformation of the review differences (ΔR): when the sentence is labeled as negative, we compute $\Delta R = R_{\rm modified} - R_{\rm original}$; otherwise, we compute $\Delta R = R_{\rm original} - R_{\rm modified}$. In this way, positive values of ΔR indicate a reduction in the evaluation toward the negative pole—i.e., an adverse effect of the intervention on the model's perception, regardless of the original label.

where $x_i[\mathcal{T} \leftarrow \neg \mathcal{T}]$ denotes the modified input sequence obtained by replacing the tokens in \mathcal{T} with their semantic opposites.

The construction of $\neg \mathcal{T}$ follows the methodology of semantic editing (Wang et al., 2024): whenever possible, highlighted tokens are replaced by their antonyms retrieved from the lexical database WordNet (Fellbaum, 2010). In cases where no suitable antonym exists, we adopt a syntactic negation heuristic by prefixing the token with the operator "not". This procedure ensures a minimally plausible counterfactual intervention, effectively inverting the semantic polarity of the tokens identified as explanatory by the model. High values of Counterfactuality(x_i , \mathcal{T}) indicate that the highlighted tokens play a decisive functional role, as their semantic inversion substantially alters the original decision.

3.4 JUSTIFICATION

A central element of our methodology is the decision to assess auto-consistency through observable outputs rather than through confidence estimates or internal activations. Probabilities associated with the predicted class quantify only the model's internal belief in its own decision and therefore introduce circularity: the system may appear consistent simply by reiterating the same classification with perturbed confidence, without demonstrating functional dependence on the highlighted tokens. Such tautology undermines the objective of testing auto-consistency.

Moreover, the internal representations of proprietary LLMs are inaccessible in the inference-only setting adopted here, precluding the application of gradient-based or attention-based attribution methods. Under these constraints, the only feasible strategy is to probe consistency through behavioral interventions on the subset $\mathcal{T}(x_i)$ identified as relevant.

Accordingly, our evaluation examines whether removing, isolating, or semantically altering $\mathcal{T}(x_i)$ produces systematic and interpretable changes in the scalar review score $R^{\mathcal{M}}(x)$. This design avoids both the circularity of probability-based measures and the opacity of internal activations, providing a rigorous and reproducible criterion for assessing the auto-consistency of LLM explanations.

4 EVALUATION METRICS

The experimental procedure operates at the level of individual sentences, as illustrated in Figure 2. For each input x_i , the model first produces a prediction and identifies a subset of influential tokens $\mathcal{T}(x_i)$. Interventions are then applied to construct a modified input x_i' , obtained by retaining, removing, or semantically inverting $\mathcal{T}(x_i)$. A second evaluation by the LLM yields an updated score $R^{\mathcal{M}}(x_i')$, which can be compared against the original score $R^{\mathcal{M}}(x_i)$ to assess the functional role of the highlighted tokens.

While this procedure provides insight into the effect of interventions at the sentence level, drawing conclusions at the scale of an entire dataset requires aggregation. We therefore introduce four complementary measures that summarize consistency across all sentences in a corpus:



Figure 2: Workflow of interventions and re-evaluations.

- Mean review difference $(\overline{\Delta R})$: the average of individual differences $R^{\mathcal{M}}(x_i) R^{\mathcal{M}}(x_i')$, reflecting the overall effect of the intervention on the model's evaluation.
- Standard deviation of differences (σ_{ΔR}): the variability of these differences across sentences.
- Label-flip proportion (π_{alt}): the fraction of instances where the predicted class changes after intervention.
- **Directional review reduction** (π_{red}) : the proportion of cases in which the intervention drives the score toward the opposite sentiment polarity. Formally, let $\hat{y}^{\mathcal{M}}(x_i) \in \{\text{positive}, \text{negative}\}\$ denote the label predicted for the original sentence. Then:

$$\Delta R_i = \begin{cases} R^{\mathcal{M}}(x_i) - R^{\mathcal{M}}(x_i'), & \text{if } \hat{y}^{\mathcal{M}}(x_i) = \text{positive}, \\ R^{\mathcal{M}}(x_i') - R^{\mathcal{M}}(x_i), & \text{if } \hat{y}^{\mathcal{M}}(x_i) = \text{negative}, \end{cases}$$

with π_{red} computed as:

 $\pi_{\text{red}} = \frac{1}{m} \sum_{i=1}^{m} \mathbb{1}[\Delta R_i > 0].$

 Together, these metrics provide a principled basis for testing the functional alignment between the tokens marked as explanatory and the predictive behavior of the model. Higher values of $\overline{\Delta R}$, $\pi_{\rm alt}$, or $\pi_{\rm red}$ indicate stronger dependence on the highlighted subset, while low variability in $\sigma_{\Delta R}$ suggests more consistent explanatory behavior across instances.

5 EXPERIMENTAL RESULTS

Table 1 reports the outcomes of the sufficiency, comprehensiveness, and counterfactuality experiments across IMDB and Steam. A consistent trajectory emerges for Gemma3:4B, GPT-4o-mini, and Granite8B: highlighted tokens generally preserve the original decision when isolated, their removal weakens predictions without systematically overturning them, and semantic inversion produces stronger shifts, as expected when the meaning of decisive elements is reversed.

The DeepSeek models deviate from this trajectory. The 1.5B variant shows instability from the outset, with elevated flip rates under sufficiency that persist across the other interventions. The 14B variant, in contrast, maintains greater stability in sufficiency but reacts disproportionately when tokens are removed or inverted, leading to shifts and class changes substantially above those observed in the other models.

Table 1: Summary of auto-consistency metrics on the *IMDB* and *Steam* datasets. Values in **bold** correspond to specific results explicitly discussed in section 6.

	IMDB				Steam			
		1.711	,,,			Sica		
Model	$\overline{\Delta R}$	$\sigma_{\Delta R}$	$\pi_{ m alt}$	π_{red}	ΔR	$\sigma_{\Delta R}$	$\pi_{ m alt}$	π_{red}
Sufficiency								
Gemma3:4B	0.02	1.48	3.8	14.2	0.27	1.84	6.9	16.4
GPT-4o-mini	-0.28	0.87	0.9	10.5	-0.09	1.33	3.5	13.3
Granite8B	-0.41	1.42	3.8	9.9	0.13	1.89	6.7	21.0
DeepSeek-1.5B	0.66	2.84	29.1	43.6	0.56	2.91	30.9	42.9
DeepSeek-14B	-0.26	1.51	13.7	21.0	-0.02	1.75	10.6	22.3
Comprehensiveness								
Gemma3:4B	0.91	1.96	15.7	32.1	1.74	2.82	24.5	44.3
GPT-4o-mini	1.21	1.70	19.9	53.9	1.80	2.71	28.5	50.0
Granite8B	0.54	1.21	6.1	35.1	1.54	2.62	20.3	48.0
DeepSeek-1.5B	0.55	2.66	39.0	38.9	0.89	2.88	39.4	44.3
DeepSeek-14B	0.62	1.42	31.5	44.2	1.68	2.76	45.5	45.5
Counterfactuality								
Gemma3:4B	2.04	2.76	32.4	49.7	2.71	3.25	41.5	50.5
GPT-4o-mini	2.43	2.41	43.6	65.9	2.28	2.72	38.3	57.0
Granite8B	1.50	2.20	24.3	53.5	2.36	3.14	33.9	54.4
DeepSeek-1.5B	0.89	2.51	45.4	45.9	1.16	2.87	44.9	44.9
DeepSeek-14B	1.90	2.20	49.4	60.3	2.65	3.08	49.4	49.4

Taken together, the results distinguish two profiles. Gemma3, GPT-40-mini, and Granite8B follow the expected progression of increasing sensitivity across interventions, whereas the DeepSeek models diverge—one by failing to preserve stability under sufficiency, the other by exhibiting excessive volatility under stronger perturbations.

6 DISCUSSION

The joint examination of sufficiency, comprehensiveness, and counterfactuality highlights systematic differences in how models maintain alignment between the tokens they mark as explanatory and

 their predictive behavior. For Gemma3:4B, GPT-4o-mini, and Granite8B, the results follow a progression consistent with expectations. Under sufficiency, label-flip rates remain below 10% in both datasets, indicating that the highlighted tokens alone generally sustain the original prediction. Comprehensiveness introduces moderate instability, with class-change rates rising to around 20–28% (e.g., 19.9% for GPT-4o-mini on IMDB and 28.5% on Steam), showing that the removal of these tokens weakens predictions but does not uniformly overturn them. Counterfactuality then produces stronger disruptions, with flip rates between 24–43%, confirming that semantic inversion systematically impacts predictions while still remaining within interpretable ranges. This trajectory suggests that these models distribute importance between the highlighted terms and broader contextual cues, yielding explanations that, while not exhaustive, remain functionally meaningful.

By contrast, the open-source DeepSeek models reveal systematic departures from this pattern. The 1.5B variant exhibits structural inconsistency: in sufficiency, nearly one-third of sentences change class (29.1% on IMDB and 30.9% on Steam), showing that the highlighted tokens are not enough to preserve the original prediction. Yet in comprehensiveness, their removal produces equally high class-change rates (39–40%), implying that the same tokens are indispensable. This contradiction is compounded in counterfactuality, where high flip rates (around 45%) coincide with relatively small score differences, indicating that minimal semantic edits frequently overturn predictions without systematically steering them toward the opposite polarity.

The 14B variant reflects a distinct but equally problematic behavior. While it maintains moderate stability in sufficiency (13.7% on IMDB and 10.6% on Steam), comprehensiveness introduces sharp increases in class-change rates (31.5–45.5%), and counterfactual interventions amplify this effect, with flip rates approaching 50% and large shifts in review scores (up to 3.77 on Steam). In this case, predictions hinge disproportionately on the highlighted tokens, collapsing under perturbations that other models absorb with greater stability.

Taken together, these findings show that auto-consistency in LLM explanations is not guaranteed by either model scale or openness. GPT-4o-mini displays the clearest alignment with the theoretical expectations of the metrics, while Gemma3:4B and Granite8B achieve partial but coherent consistency. The DeepSeek models, however, illustrate two qualitatively distinct modes of failure: contradiction in the smaller variant and over-reliance in the larger. These results emphasize the need for interpretability research to move beyond textual plausibility and to adopt evaluation strategies that directly test whether the tokens marked as explanatory play a functionally stable role in the decision-making process.

6.1 LIMITATIONS AND FUTURE WORK

This study has several limitations that constrain the scope of its conclusions. First, the evaluation was limited to two sentiment-analysis datasets (IMDB and Steam), which provides a controlled setting but restricts generalization to domains with different linguistic and semantic properties. Second, the proposed metrics focus on token-level interventions and do not capture higher-level structures such as syntax, discourse, or compositional semantics, which may also affect stability. Third, the extraction of explanatory tokens itself may introduce inconsistencies, particularly in smaller models, complicating comparisons across metrics.

Future work should extend the analysis to a broader range of datasets and model families, refine counterfactual interventions with richer semantic resources, and combine these behavioral metrics with human-centered evaluations, thereby assessing not only internal coherence but also the external utility of the explanations. Despite these limitations, the results presented here provide a rigorous and reproducible basis for evaluating auto-consistency in LLM explanations, highlighting systematic differences across architectures and parameter scales. This contribution advances the methodological toolkit for probing the functional reliability of LLM explanations and offers empirical evidence that can guide future developments in interpretability research.

ETHICS STATEMENT

The authors state they read the ICLR Code of Ethics and adhere to it.

REPRODUCIBILITY STATEMENT

Ensuring reproducibility is central to the reliability of empirical research in interpretability. All experiments were conducted using Python 3.13 on a Linux machine (Ubuntu 24.04.3 LTS) with an AMD Ryzen 7 5700X CPU, 32 GB of RAM, and an NVIDIA RTX 3060 Ti GPU (8 GB).

The complete codebase is available at [the link will be shared after the reviewing process], including the exact prompts (in the prompts directory) and datasets (in the data directory). We employed two sentiment-analysis benchmarks: the IMDB Large Movie Review Dataset (Maas et al., 2011), accessible via HuggingFace,⁶ and the Steam Review Dataset (Pandey & Joshi, 2022), available on Kaggle.⁷

Models included both open-source LLMs (gemma3, granite-8b, and the deepseek family with 1.5B and 14B parameters, executed locally via Ollama) and the closed-source GPT-4o-mini, accessed through the OpenAI API.⁸

This setup, together with the released resources, ensures that our experiments can be replicated and extended to alternative datasets, models, or prompting strategies.

REFERENCES

Matheus Cezimbra Barbieri, Bruno Iochins Grisci, and Márcio Dorn. Analysis and comparison of feature selection methods towards performance and stability. *Expert Systems with Applications*, 249:123667, 2024.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are few-shot learners. *Advances in neural information processing systems*, 33:1877–1901, 2020.

Angelica Chen, Jason Phang, Alicia Parrish, Vishakh Padmakumar, Chen Zhao, Samuel R Bowman, and Kyunghyun Cho. Two failures of self-consistency in the multi-step reasoning of llms. *arXiv* preprint arXiv:2305.14279, 2023.

Yanda Chen, Joe Benton, Ansh Radhakrishnan, Jonathan Uesato, Carson Denison, John Schulman, Arushi Somani, Peter Hase, Misha Wagner, Fabien Roger, Vlad Mikulik, Samuel R. Bowman, Jan Leike, Jared Kaplan, and Ethan Perez. Reasoning models don't always say what they think, 2025. URL https://arxiv.org/abs/2505.05410.

Kristy Choi, Chris Cundy, Sanjari Srivastava, and Stefano Ermon. Lmpriors: Pre-trained language models as task-specific priors. *arXiv preprint arXiv:2210.12530*, 2022.

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu, Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao, Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding, Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang, Liang Zhao, Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang, Minghui Tang, Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang, Qiancheng Wang, Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, R. J. Chen, R. L. Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng Ye, Shiyu Wang, Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing Wu, Shengfeng Ye, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanjia Zhao, Wen Liu, Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong Liu, Xiaohan Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu,

⁶https://huggingface.co/datasets/stanfordnlp/imdb

⁷https://www.kaggle.com/datasets/najzeko/steam-reviews-2021

⁸https://platform.openai.com/docs/overview

Xinyu Yang, Xinyuan Li, Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xi-aosha Chen, Xiaowen Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia Shan, Y. K. Li, Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui Wang, Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong Wang, Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue Gong, Yuheng Zou, Yujia He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou, Y. X. Zhu, Yanhong Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying Tang, Yukun Zha, Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda Xie, Zhengyan Zhang, Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu, Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu Zhang, and Zhen Zhang. Deepseek-r1: Incentivizing reasoning capability in Ilms via reinforce-ment learning, 2025. URL https://arxiv.org/abs/2501.12948.

- Jay DeYoung, Sarthak Jain, Nazneen Fatema Rajani, Eric Lehman, Caiming Xiong, Richard Socher, and Byron C Wallace. Eraser: A benchmark to evaluate rationalized nlp models. arXiv preprint arXiv:1911.03429, 2019.
- Christiane Fellbaum. Wordnet. In *Theory and applications of ontology: computer applications*, pp. 231–243. Springer, 2010.
- Sungwon Han, Jinsung Yoon, Sercan O Arik, and Tomas Pfister. Large language models can automatically engineer features for few-shot tabular learning. *arXiv preprint arXiv:2404.09491*, 2024.
- Shiyuan Huang, Siddarth Mamidanna, Shreedhar Jangam, Yilun Zhou, and Leilani H. Gilpin. Can large language models explain themselves? a study of llm-generated self-explanations, 2023. URL https://arxiv.org/abs/2310.11207.
- Daniel P. Jeong, Zachary C. Lipton, and Pradeep Ravikumar. Llm-select: Feature selection with large language models. In arXiv Authors (ed.), *arXiv preprint arXiv:2407.02694*, pp. 1–77. arXiv, 2025.
- Jianhao Li and Xianchao Xiu. Llm4fs: Leveraging large language models for feature selection and how to improve it. *arXiv preprint arXiv:2503.24157*, 2025.
- Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng, and Christopher Potts. Learning word vectors for sentiment analysis. In *Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies*, pp. 142–150, Portland, Oregon, USA, June 2011. Association for Computational Linguistics. URL http://www.aclweb.org/anthology/P11-1015.
- Andreas Madsen, Sarath Chandar, and Siva Reddy. Are self-explanations from large language models faithful?, 2024. URL https://arxiv.org/abs/2401.07927.
- Mayank Mishra, Matt Stallone, Gaoyuan Zhang, Yikang Shen, Aditya Prasad, Adriana Meza Soria, Michele Merler, Parameswaran Selvam, Saptha Surendran, Shivdeep Singh, Manish Sethi, Xuan-Hong Dang, Pengyuan Li, Kun-Lung Wu, Syed Zawad, Andrew Coleman, Matthew White, Mark Lewis, Raju Pavuluri, Yan Koyfman, Boris Lublinsky, Maximilien de Bayser, Ibrahim Abdelaziz, Kinjal Basu, Mayank Agarwal, Yi Zhou, Chris Johnson, Aanchal Goyal, Hima Patel, Yousaf Shah, Petros Zerfos, Heiko Ludwig, Asim Munawar, Maxwell Crouse, Pavan Kapanipathi, Shweta Salaria, Bob Calio, Sophia Wen, Seetharami Seelam, Brian Belgodere, Carlos Fonseca, Amith Singhee, Nirmit Desai, David D. Cox, Ruchir Puri, and Rameswar Panda. Granite code models: A family of open foundation models for code intelligence, 2024.
- Christoph Molnar. Interpretable machine learning. Lulu. com, 2020.
- OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, Red Avila, Igor Babuschkin, Suchir Balaji, Valerie Balcom, Paul Baltescu, Haiming Bao, Mohammad Bavarian, Jeff Belgum, Irwan Bello, Jake Berdine, Gabriel Bernadett-Shapiro, Christopher Berner, Lenny Bogdonoff, Oleg Boiko, Madelaine Boyd, Anna-Luisa Brakman, Greg Brockman, Tim Brooks, Miles Brundage, Kevin Button, Trevor Cai, Rosie Campbell, Andrew Cann,

541

542

543

544

546

547

548

549

550

551

552

553

554

558

559

561

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578 579

580

581 582

583 584

585

586

588

592

Brittany Carey, Chelsea Carlson, Rory Carmichael, Brooke Chan, Che Chang, Fotis Chantzis, Derek Chen, Sully Chen, Ruby Chen, Jason Chen, Mark Chen, Ben Chess, Chester Cho, Casey Chu, Hyung Won Chung, Dave Cummings, Jeremiah Currier, Yunxing Dai, Cory Decareaux, Thomas Degry, Noah Deutsch, Damien Deville, Arka Dhar, David Dohan, Steve Dowling, Sheila Dunning, Adrien Ecoffet, Atty Eleti, Tyna Eloundou, David Farhi, Liam Fedus, Niko Felix, Simón Posada Fishman, Juston Forte, Isabella Fulford, Leo Gao, Elie Georges, Christian Gibson, Vik Goel, Tarun Gogineni, Gabriel Goh, Rapha Gontijo-Lopes, Jonathan Gordon, Morgan Grafstein, Scott Gray, Ryan Greene, Joshua Gross, Shixiang Shane Gu, Yufei Guo, Chris Hallacy, Jesse Han, Jeff Harris, Yuchen He, Mike Heaton, Johannes Heidecke, Chris Hesse, Alan Hickey, Wade Hickey, Peter Hoeschele, Brandon Houghton, Kenny Hsu, Shengli Hu, Xin Hu, Joost Huizinga, Shantanu Jain, Shawn Jain, Joanne Jang, Angela Jiang, Roger Jiang, Haozhun Jin, Denny Jin, Shino Jomoto, Billie Jonn, Heewoo Jun, Tomer Kaftan, Łukasz Kaiser, Ali Kamali, Ingmar Kanitscheider, Nitish Shirish Keskar, Tabarak Khan, Logan Kilpatrick, Jong Wook Kim, Christina Kim, Yongjik Kim, Jan Hendrik Kirchner, Jamie Kiros, Matt Knight, Daniel Kokotajlo, Łukasz Kondraciuk, Andrew Kondrich, Aris Konstantinidis, Kyle Kosic, Gretchen Krueger, Vishal Kuo, Michael Lampe, Ikai Lan, Teddy Lee, Jan Leike, Jade Leung, Daniel Levy, Chak Ming Li, Rachel Lim, Molly Lin, Stephanie Lin, Mateusz Litwin, Theresa Lopez, Ryan Lowe, Patricia Lue, Anna Makanju, Kim Malfacini, Sam Manning, Todor Markov, Yaniv Markovski, Bianca Martin, Katie Mayer, Andrew Mayne, Bob McGrew, Scott Mayer McKinney, Christine McLeavey, Paul McMillan, Jake McNeil, David Medina, Aalok Mehta, Jacob Menick, Luke Metz, Andrey Mishchenko, Pamela Mishkin, Vinnie Monaco, Evan Morikawa, Daniel Mossing, Tong Mu, Mira Murati, Oleg Murk, David Mély, Ashvin Nair, Reiichiro Nakano, Rajeev Nayak, Arvind Neelakantan, Richard Ngo, Hyeonwoo Noh, Long Ouyang, Cullen O'Keefe, Jakub Pachocki, Alex Paino, Joe Palermo, Ashley Pantuliano, Giambattista Parascandolo, Joel Parish, Emy Parparita, Alex Passos, Mikhail Pavlov, Andrew Peng, Adam Perelman, Filipe de Avila Belbute Peres, Michael Petrov, Henrique Ponde de Oliveira Pinto, Michael, Pokorny, Michelle Pokrass, Vitchyr H. Pong, Tolly Powell, Alethea Power, Boris Power, Elizabeth Proehl, Raul Puri, Alec Radford, Jack Rae, Aditya Ramesh, Cameron Raymond, Francis Real, Kendra Rimbach, Carl Ross, Bob Rotsted, Henri Roussez, Nick Ryder, Mario Saltarelli, Ted Sanders, Shibani Santurkar, Girish Sastry, Heather Schmidt, David Schnurr, John Schulman, Daniel Selsam, Kyla Sheppard, Toki Sherbakov, Jessica Shieh, Sarah Shoker, Pranav Shyam, Szymon Sidor, Eric Sigler, Maddie Simens, Jordan Sitkin, Katarina Slama, Ian Sohl, Benjamin Sokolowsky, Yang Song, Natalie Staudacher, Felipe Petroski Such, Natalie Summers, Ilya Sutskever, Jie Tang, Nikolas Tezak, Madeleine B. Thompson, Phil Tillet, Amin Tootoonchian, Elizabeth Tseng, Preston Tuggle, Nick Turley, Jerry Tworek, Juan Felipe Cerón Uribe, Andrea Vallone, Arun Vijayvergiya, Chelsea Voss, Carroll Wainwright, Justin Jay Wang, Alvin Wang, Ben Wang, Jonathan Ward, Jason Wei, CJ Weinmann, Akila Welihinda, Peter Welinder, Jiayi Weng, Lilian Weng, Matt Wiethoff, Dave Willner, Clemens Winter, Samuel Wolrich, Hannah Wong, Lauren Workman, Sherwin Wu, Jeff Wu, Michael Wu, Kai Xiao, Tao Xu, Sarah Yoo, Kevin Yu, Qiming Yuan, Wojciech Zaremba, Rowan Zellers, Chong Zhang, Marvin Zhang, Shengjia Zhao, Tianhao Zheng, Juntang Zhuang, William Zhuk, and Barret Zoph. Gpt-4 technical report, 2024. URL https://arxiv.org/abs/2303.08774.

Aditya Pandey and Kunal Joshi. Cross-domain consumer review analysis, 2022. URL https://arxiv.org/abs/2212.13916.

Advait Sarkar. Large language models cannot explain themselves, 2024. URL https://arxiv.org/abs/2405.04382.

Gemma Team, Aishwarya Kamath, Johan Ferret, Shreya Pathak, Nino Vieillard, Ramona Merhej, Sarah Perrin, Tatiana Matejovicova, Alexandre Ramé, Morgane Rivière, Louis Rouillard, Thomas Mesnard, Geoffrey Cideron, Jean bastien Grill, Sabela Ramos, Edouard Yvinec, Michelle Casbon, Etienne Pot, Ivo Penchev, Gaël Liu, Francesco Visin, Kathleen Kenealy, Lucas Beyer, Xiaohai Zhai, Anton Tsitsulin, Robert Busa-Fekete, Alex Feng, Noveen Sachdeva, Benjamin Coleman, Yi Gao, Basil Mustafa, Iain Barr, Emilio Parisotto, David Tian, Matan Eyal, Colin Cherry, Jan-Thorsten Peter, Danila Sinopalnikov, Surya Bhupatiraju, Rishabh Agarwal, Mehran Kazemi, Dan Malkin, Ravin Kumar, David Vilar, Idan Brusilovsky, Jiaming Luo, Andreas Steiner, Abe Friesen, Abhanshu Sharma, Abheesht Sharma, Adi Mayrav Gilady, Adrian Goedeckemeyer, Alaa Saade, Alex Feng, Alexander Kolesnikov, Alexei Bendebury, Alvin Abdagic, Amit Vadi, András György, André Susano Pinto, Anil Das, Ankur Bapna, Antoine Miech, Antoine Yang, Antonia

 Paterson, Ashish Shenoy, Ayan Chakrabarti, Bilal Piot, Bo Wu, Bobak Shahriari, Bryce Petrini, Charlie Chen, Charline Le Lan, Christopher A. Choquette-Choo, CJ Carey, Cormac Brick, Daniel Deutsch, Danielle Eisenbud, Dee Cattle, Derek Cheng, Dimitris Paparas, Divyashree Shivakumar Sreepathihalli, Doug Reid, Dustin Tran, Dustin Zelle, Eric Noland, Erwin Huizenga, Eugene Kharitonov, Frederick Liu, Gagik Amirkhanyan, Glenn Cameron, Hadi Hashemi, Hanna Klimczak-Plucińska, Harman Singh, Harsh Mehta, Harshal Tushar Lehri, Hussein Hazimeh, Ian Ballantyne, Idan Szpektor, Ivan Nardini, Jean Pouget-Abadie, Jetha Chan, Joe Stanton, John Wieting, Jonathan Lai, Jordi Orbay, Joseph Fernandez, Josh Newlan, Ju yeong Ji, Jyotinder Singh, Kat Black, Kathy Yu, Kevin Hui, Kiran Vodrahalli, Klaus Greff, Linhai Qiu, Marcella Valentine, Marina Coelho, Marvin Ritter, Matt Hoffman, Matthew Watson, Mayank Chaturvedi, Michael Moynihan, Min Ma, Nabila Babar, Natasha Noy, Nathan Byrd, Nick Roy, Nikola Momchev, Nilay Chauhan, Noveen Sachdeva, Oskar Bunyan, Pankil Botarda, Paul Caron, Paul Kishan Rubenstein, Phil Culliton, Philipp Schmid, Pier Giuseppe Sessa, Pingmei Xu, Piotr Stanczyk, Pouya Tafti, Rakesh Shivanna, Renjie Wu, Renke Pan, Reza Rokni, Rob Willoughby, Rohith Vallu, Ryan Mullins, Sammy Jerome, Sara Smoot, Sertan Girgin, Shariq Iqbal, Shashir Reddy, Shruti Sheth, Siim Põder, Sijal Bhatnagar, Sindhu Raghuram Panyam, Sivan Eiger, Susan Zhang, Tianqi Liu, Trevor Yacovone, Tyler Liechty, Uday Kalra, Utku Evci, Vedant Misra, Vincent Roseberry, Vlad Feinberg, Vlad Kolesnikov, Woohyun Han, Woosuk Kwon, Xi Chen, Yinlam Chow, Yuvein Zhu, Zichuan Wei, Zoltan Egyed, Victor Cotruta, Minh Giang, Phoebe Kirk, Anand Rao, Kat Black, Nabila Babar, Jessica Lo, Erica Moreira, Luiz Gustavo Martins, Omar Sanseviero, Lucas Gonzalez, Zach Gleicher, Tris Warkentin, Vahab Mirrokni, Evan Senter, Eli Collins, Joelle Barral, Zoubin Ghahramani, Raia Hadsell, Yossi Matias, D. Sculley, Slav Petrov, Noah Fiedel, Noam Shazeer, Oriol Vinyals, Jeff Dean, Demis Hassabis, Koray Kavukcuoglu, Clement Farabet, Elena Buchatskaya, Jean-Baptiste Alayrac, Rohan Anil, Dmitry, Lepikhin, Sebastian Borgeaud, Olivier Bachem, Armand Joulin, Alek Andreev, Cassidy Hardin, Robert Dadashi, and Léonard Hussenot. Gemma 3 technical report, 2025. URL https://arxiv.org/abs/2503.19786.

Miles Turpin, Julian Michael, Ethan Perez, and Samuel Bowman. Language models don't always say what they think: Unfaithful explanations in chain-of-thought prompting. *Advances in Neural Information Processing Systems*, 36:74952–74965, 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in neural information processing systems*, 30, 2017.

Yongjie Wang, Xiaoqi Qiu, Yu Yue, Xu Guo, Zhiwei Zeng, Yuhong Feng, and Zhiqi Shen. A survey on natural language counterfactual generation, 2024. URL https://arxiv.org/abs/2407.03993.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models, 2023. URL https://arxiv.org/abs/2201.11903.

Tianze Yang, Tianyi Yang, Fuyuan Lyu, Shaoshan Liu, et al. Ice-search: A language model-driven feature selection approach. *arXiv preprint arXiv:2402.18609*, 2024.

APPENDIX

648

649 650

651 652

653

654

655

656

657

658

659

660

661

662

663

664 665

666

667 668

669

670

671

672

673

674

675

676

677

678

679

680 681

682 683

684 685

686

687

688

689

690

691

692

693

694

696

697

699

700

A PROMPT USED

To ensure comparability across distinct types of review data, we employ a parameterized prompt template. A domain variable, denoted as **DOMAIN**, is instantiated as either movie or game, corresponding respectively to film or game reviews. This parametrization enables the reuse of a single prompt structure with minimal modification, while preserving uniformity in task specification and response formatting.

The prompt further incorporates a placeholder for few-shot examples. These examples are not merely illustrative but are embedded directly within the prompt to condition the model's behavior. In this way, the examples serve as explicit demonstrations of the expected output structure and reinforce task alignment.

For clarity, we present (i) the general prompt template, which includes placeholders for both the domain specification and the examples, and (ii) the domain-specific instantiations of these placeholders, which operationalize the template for the two datasets considered.

Prompt Template

You are a sentiment analysis assistant working as a classifier for {{DOMAIN}} reviews.

- 1. Analyze the input sentence and decide "positive" or "negative".
- 2. Return "sentiment" as "positive" or "negative".
- 3. Provide a **review score** "review" from 1 to 10. Higher means stronger approval.
- 4. List in "influential_terms" the words or phrases directly extracted from the sentence that were important for the prediction.
- 5. Include the original review in "input_sentence".

STRICT OUTPUT RULES

- Output must be valid JSON only.
- Do not include Markdown fences or explanations.
- Use straight quotes " and escape inner quotes with \".
- Output must start with { and end with }.
- Output must contain exactly these fields, in any order: sentiment, review, influential_terms, input_sentence.

Examples:

{{EXAMPLES}}

Examples

```
Case {{DOMAIN}} = movie
  "sentiment": "positive",
  "review": 10,
  "influential_terms": [
    "greatest episode",
    "What a series",
    "speechless"
  ],
  "input_sentence":
    "This is the greatest episode I've ever watched.
     What a series! I'm speechless."
}
  "sentiment": "negative",
  "review": 5,
  "influential_terms": [
    "not awful",
    "not great"
    "not sure why"
```

```
],
  "input_sentence":
    "It is not awful, not great either...
     I am honestly not sure why some people like it so much."
}
Case {{DOMAIN}} = game
  "sentiment": "positive",
  "review": 10,
  "influential_terms": [
    "incredible gameplay",
    "tight controls",
    "runs flawlessly"
  "input_sentence":
    "One of the best games I have ever played.
     Tight controls and it runs flawlessly
     even on high settings."
}
  "sentiment": "negative",
  "review": 2,
  "influential_terms": [
    "pay-to-win",
    "constant crashes"
    "unbalanced multiplayer"
  ],
  "input_sentence":
    "Pay-to-win mechanics, constant crashes,
     and unbalanced multiplayer ruined
     the experience for me.'
}
```

B USE OF LARGE LANGUAGE MODELS (LLMS)

LLMs were employed exclusively to support the preparation of this manuscript in non-substantive ways. Specifically, they were used to assist in the revision of textual coherence, refinement of academic writing style, and formatting consistency. In addition, LLMs were applied to generate preliminary drafts of figures and tables, which were subsequently reviewed and finalized by the authors. At no stage were LLMs involved in the design of experiments, execution of analyses, or interpretation of results. All methodological decisions, experimental procedures, and substantive contributions remain the responsibility of the authors. The use of LLMs was thus limited to editorial assistance and visualization support, ensuring that the scientific content of the article is fully author-driven.