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ABSTRACT

Large Language Models (LLMs) have been widely adopted in text classification
tasks, where they not only output class predictions but also generate explanations
that highlight the tokens deemed most relevant for reaching the predicted label.
Yet it remains unclear whether these highlighted elements faithfully reflect the
underlying decision process of the model. While much of the literature evalu-
ates the textual plausibility of such explanations, few studies assess their func-
tional consistency with the model’s actual behavior. In this work, we propose an
experimental framework based on the principle of auto-consistency: if a model
identifies certain tokens as decisive, then isolating, removing, or semantically
inverting them should produce systematic and interpretable changes in its pre-
dictions. We operationalize this evaluation through sufficiency, comprehensive-
ness, and counterfactuality metrics, and conduct experiments on IMDB and Steam
reviews across both closed-source (GPT-4o) and open-source LLMs (Gemma3,
Granite8B, DeepSeek). Results show that GPT-4o follows the expected progres-
sion across all metrics, Gemma3 and Granite8B maintain coherence under suffi-
ciency but lose consistency under more demanding interventions, while DeepSeek
variants display structural deviations, either failing to preserve sufficiency or over-
reacting under comprehensiveness and counterfactuality. These findings show that
explanation reliability varies across LLM families and scales, with smaller models
displaying contradictions and larger ones exhibiting over-sensitivity. By combin-
ing sufficiency, comprehensiveness, and counterfactuality, our approach provides
a systematic methodology for assessing the functional consistency of LLM self-
explanations.

1 INTRODUCTION

Large Language Models (LLMs), built upon the Transformer architecture (Vaswani et al., 2017),
have demonstrated remarkable abilities in generalization and task solving through textual instruc-
tions, even in scenarios where no explicit training examples are available (zero-shot or few-shot
learning) (Brown et al., 2020). Among their emergent capabilities, one of the most prominent is the
generation of explanations that justify predictions, often structured as reasoning chains, commonly
referred to as chain-of-thought (CoT) (Wei et al., 2023).

While such explanations are frequently plausible, their faithfulness to the actual inferential processes
of the model remains an open question. For instance, Turpin et al. (2023) show that CoT explanations
can be manipulated through biases in the prompts, thereby justifying incorrect predictions with
arguments that appear convincing but are not aligned with the true decision factors. These findings
raise concerns about excessive reliance on LLM-produced explanations and highlight the need for
more objective approaches to evaluate the transparency and robustness of these models.

In this work, we propose an investigation that leverages feature importance (Barbieri et al., 2024)
within the task of classification with LLMs, aiming to assess the extent to which models remain co-
herent with the justifications they provide for their own predictive decisions. This evaluation adapts
the definition of self-consistency proposed by Chen et al. (2023), understood as the requirement that
model outputs remain logically non-contradictory, to what we term auto-consistency. In our setting,
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this notion captures whether the tokens1 highlighted as decisive in a model’s explanation play a
functionally coherent role when subjected to systematic interventions.

We hypothesize that when certain tokens are highlighted as influential for a prediction, the model
should exhibit systematic variations in the assigned score when these elements are removed, isolated,
or semantically modified. Thus, explanations are not evaluated in terms of textual plausibility or
rhetorical adequacy, but rather in terms of their functional coherence with the model’s own predictive
behavior.

To quantify this coherence, we adopt the metrics of Comprehensiveness, Sufficiency, and Counter-
factuality (Molnar, 2020). The first two follow the definitions of DeYoung et al. (2019), but are here
adapted to a scalar review variable. Unlike probability-based formulations, we use a review score in
the range [1, 10], predicted by the LLM, which reflects how favorably the text evaluates the target
item. 2 Under this formulation, Comprehensiveness captures the variation in the score when the
highlighted tokens are removed, Sufficiency evaluates the case in which only these tokens are pre-
served, and Counterfactuality measures the impact of substituting them with semantically opposite
terms.

With this adaptation, we investigate whether the model behaves consistently with its own claims of
importance, that is, whether it maintains functional coherence under local interventions on the to-
kens it designates as relevant. This study therefore focuses on the structural fidelity of explanations
provided by LLMs, adopting a quantitative approach to the evaluation of interpretability in genera-
tive models. The empirical investigation is conducted in the context of sentiment classification, and
the results are discussed in detail in the following sections.

2 RELATED WORK

The recent expansion of LLMs in tasks of feature selection has generated a variety of proposals based
on different assumptions about their ability to interpret textual descriptions and establish conceptual
relationships between variables and predictive tasks. Some of these works, such as LM-Priors (Choi
et al., 2022), propose the use of LLMs as a source of prior knowledge about the task, preceding
the actual selection of attributes. The central idea is to instruct the model to judge, based solely
on descriptions, whether a given attribute should be considered relevant, as also demonstrated by
Brown et al. (2020) using binary prompts such as “Yes” or “No.”

Other approaches, such as those described in Li & Xiu (2025), operate in a hybrid paradigm, where
LLMs are instantiated as mechanisms for generating feature importance but guided by instructions
to apply traditional algorithms, such as random forests or sequential selection. This line of work
seeks to exploit the semantic expressiveness of LLMs while retaining the statistical consistency of
classical techniques.

More sophisticated directions can be found in Yang et al. (2024), which incorporate LLMs into
iterative optimization cycles in medical settings, using multiple prompts to refine attribute selection
through successive feedback. Complementarily, Han et al. (2024) treat LLMs as feature engineers,
using them to generate meta-features that subsequently feed conventional models in order to enhance
downstream predictive tasks.

In parallel, a growing body of work has examined the ability of LLMs to explain their own deci-
sions through self-explanations or rationalizations. Studies such as Madsen et al. (2024) and Huang
et al. (2023) assess the degree to which model-generated explanations are consistent or useful for
interpretability. However, evidence from Sarkar (2024) indicates that such explanations often fail to
reflect the underlying inferential process, exposing a gap between textual narratives and the actual
decision mechanisms.

In the same critical vein, Turpin et al. (2023) demonstrate that chain-of-thought reasoning can gener-
ate explanations that, while linguistically coherent, systematically diverge from the actual inferential
processes. Their analysis reveals that models may introduce spurious but plausible reasoning steps,

1In this paper, the term “token” is used broadly to denote an influential text span (a word or phrase) returned
in the influential terms field and extracted verbatim from the input sentence. All interventions operate on these
spans, consistent with the prompt specification (“words or phrases”; see Appendix A).

2Where 1 indicates an extremely negative evaluation and 10 an extremely positive evaluation.
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thereby producing post-hoc narratives that obscure rather than reveal the underlying decision factors.
Likewise, Chen et al. (2025) show that even in controlled settings with explicit cues embedded in
the input, state-of-the-art reasoning models frequently exploit these cues in their predictions without
incorporating them into their explanations. This discrepancy highlights a fundamental misalign-
ment: predictive behavior is often guided by information that remains absent from the articulated
justification. Collectively, these findings indicate that the textual plausibility of self-explanations
is insufficient as a criterion of evaluation, since models can produce persuasive accounts that mask
structural inconsistencies between explanation and decision-making.

Overall, existing work converges on exploiting the semantic reasoning capabilities of LLMs to in-
form or guide the selection of important features, differing mainly in their reliance on data, inte-
gration within the pipeline, and computational complexity. Yet few studies focus on the critical
assessment of a model’s internal coherence with respect to the explanations it produces.

In this work, we aim to fill this gap by employing feature importance not as the central object of
analysis but as a methodological mechanism for evaluating model auto-consistency. Specifically,
we apply the metrics of Comprehensiveness, Sufficiency, and Counterfactuality to the tokens high-
lighted as relevant, thereby assessing whether these elements maintain functional correspondence
with the model’s observed predictive behavior.

3 METHODOLOGY

This section outlines the methodology adopted to evaluate the functional consistency of explana-
tions provided by LLMs in the context of classification tasks. We begin by describing the datasets
employed and the sampling criteria used for the selection of sentences analyzed in the experiments.
Next, we present the structure of the prompts designed to instruct the model to perform sentiment
classification and to identify the tokens considered most relevant for its predictions. Finally, we
introduce the metrics used to quantify the fidelity of the explanations, with emphasis on the formal
definitions of Comprehensiveness, Sufficiency, and Counterfactuality, which allow us to measure
the extent to which the presence, absence, or semantic inversion of explanatory elements affects the
model’s behavior.

3.1 ANALYSIS PIPELINE

The experiments were conducted using two datasets widely employed in sentiment analysis tasks.
The first is the Stanford Large Movie Review Dataset (IMDB) (Maas et al., 2011), which consists
of English-language movie reviews annotated with binary sentiment polarity (positive or negative),
used here in the version available on the HuggingFace platform. 3 The second dataset comprises re-
views from the Steam platform (Pandey & Joshi, 2022), which collects user evaluations of PC games
and enables the analysis of aspects such as player satisfaction and dissatisfaction, genre popularity,
and sentiment shifts over time.

For the construction of the experimental corpus, a stratified sampling of 2, 000 sentences was per-
formed, ensuring proportionality between sentiment classes and thereby minimizing potential dis-
tributional biases. This strategy was adopted to increase representativeness and robustness in the
subsequent analyses.

Model interactions were carried out through different APIs, covering recent LLM architectures:
GPT-4o mini (OpenAI et al., 2024), Gemma3:4B (Team et al., 2025), DeepSeek-R1:1.5B and
DeepSeek-R1:14B (DeepSeek-AI et al., 2025)4 and Granite3.3:8B (Mishra et al., 2024). The se-
lection aimed to ensure diversity along two main axes: (i) proprietary versus open-source access,
and (ii) providers from distinct research and industrial backgrounds. The additional intra-family
comparison was conducted exclusively within the DeepSeek models, given their availability and
relevance for methodological contrast.

3https://huggingface.co/datasets/stanfordnlp/imdb
4We additionally include DeepSeek-R1:14b to enable an intra-family comparison across parameter scales.

This choice was motivated by methodological considerations, since evaluating two models from the same
provider with different capacities offers a controlled setting to assess consistency.
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For each sentence, the model was instructed to classify the sentiment, assign a review score in
the range [1, 10], and identify the tokens most relevant for the prediction. This score represents
the intensity of the judgment produced by the model and constitutes the basis for the sufficiency,
comprehensiveness, and counterfactual metrics discussed in subsequent sections. Figure 1 illustrates
this input–output pipeline.

Figure 1: Sentence Analysis Workflow

3.2 PROMPT FORMALIZATION

Adapting the formulation in Jeong et al. (2025), letM denote a pre-trained LLM. The input toM
is a prompt P LLM composed of three main elements:

• a description of the dataset (Des);
• few-shot examples (Ex), selected to illustrate the target task;
• the task context (C), specifying the objective of identifying the tokens most relevant to the

sentiment prediction.

These components are combined to form the complete prompt:

P LLM = prompt(Des,Ex,C). (1)

Let X = {x1, x2, . . . , xm} be a collection of sentences, where each xi = {w(i)
1 , w

(i)
2 , . . . , w

(i)
ni }

consists of ni tokens. For each xi, we provide P LLM to the model M together with the input
sentence. The model then returns a subset T (xi) ⊆ xi containing the tokens identified as most
relevant to justify its prediction on xi:

T (xi) =M(xi;P
LLM), i = 1, 2, . . . ,m. (2)

In summary, each subset T (xi) corresponds to the tokens within xi that the LLM, when prompted
with P LLM, identifies as essential for supporting its sentiment classification. These subsets serve
as the basis for the interventions defined in our evaluation metrics, with concrete examples of their
application provided in the Appendix A.

3.3 METRICS FOR AUTO-CONSISTENCY EVALUATION

The evaluation of LLM explanations is grounded in the principle of auto-consistency, defined as the
requirement that a model’s predictive behavior remains coherent with the set of tokens it designates
as influential for its decisions. Formally, interventions applied to the highlighted subset T ⊆ xi

should induce variations in the assigned review score that are systematic and interpretable, rather
than incidental.

This principle is operationalized through three complementary metrics. Sufficiency evaluates
whether the tokens spans in T , when considered in isolation, are capable of sustaining the origi-
nal prediction. Comprehensiveness quantifies the effect of removing T from the input, capturing
the extent to which the prediction deteriorates in their absence. Counterfactuality assesses the im-
pact of replacing T with semantically opposite terms, thereby determining whether the inversion of
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highlighted tokens substantially alters the decision. Together, these metrics provide a formal frame-
work for examining whether the importance attributed by the model to specific tokens is faithfully
reflected in its predictive behavior. Here’s a specific example from the Steam dataset of sentence
modification:

Original Sentence: “Pay to win. Buggy. Doesn’t deploy Hero’s to lanes, which is kinda the point of the
whole game.”
Sufficiency: “Pay to win. Buggy.”
Comprehensiveness: “Doesn’t deploy Hero’s to lanes, which is kinda the point of the whole game.”
Counterfactual Replacement: “Not pay to win. Stable. Doesn’t deploy Hero’s to lanes, which is kinda
the point of the whole game.”

3.3.1 COMPREHENSIVENESS

LetM be a pre-trained LLM. Consider an input sequence xi = {w1, w2, . . . , wn} consisting of n
tokens. Let T ⊆ xi denote the subset of tokens highlighted by M, when processing xi under a
given prompt, as the most relevant for explaining its decision.

We denote by RM(x) the review score assigned by model M to input x, represented as a scalar
value in the range [1, 10]. This review score reflects the intensity with which the textual content is
perceived as favorable to the evaluated item.

We define the comprehensiveness metric as:

Comprehensiveness(xi, T ) = RM(xi)− RM(xi \ T ) (3)

where xi \ T denotes the input sequence with all tokens in T removed, and both evaluations are
performed by the same modelM on the respective texts. 5

3.3.2 SUFFICIENCY

Within the previously established framework, we define the sufficiency metric considering the same
modelM, the input sequence xi, and the subset of tokens T ⊆ xi highlighted by the LLM as most
relevant to its decision.

Sufficiency is given by:

Sufficiency(xi, T ) = RM(xi)− RM(T ) (4)

where RM(T ) corresponds to the review score resulting from using only the subset T as input.
Large differences between RM(xi) and RM(T ) indicate that the highlighted tokens, when consid-
ered in isolation, are not sufficient to sustain the original decision, thereby suggesting explanatory
insufficiency.

3.3.3 COUNTERFACTUALITY

Within the previously established framework, we define the counterfactuality metric considering the
same modelM, the input sequence xi, and the subset of tokens T ⊆ xi highlighted by the LLM as
most relevant to its decision.

Counterfactuality is defined as:

Counterfactuality(xi, T ) = RM(xi)− RM(xi[T ← ¬T ]) (5)

5To ensure a directional interpretation consistent with the predicted label, we adopt a symmetric trans-
formation of the review differences (∆R): when the sentence is labeled as negative, we compute ∆R =
Rmodified − Roriginal; otherwise, we compute ∆R = Roriginal − Rmodified. In this way, positive values of ∆R
indicate a reduction in the evaluation toward the negative pole—i.e., an adverse effect of the intervention on the
model’s perception, regardless of the original label.

5
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where xi[T ← ¬T ] denotes the modified input sequence obtained by replacing the tokens in T with
their semantic opposites.

The construction of ¬T follows the methodology of semantic editing (Wang et al., 2024): when-
ever possible, highlighted tokens are replaced by their antonyms retrieved from the lexical database
WordNet (Fellbaum, 2010). In cases where no suitable antonym exists, we adopt a syntactic negation
heuristic by prefixing the token with the operator “not”. This procedure ensures a minimally plau-
sible counterfactual intervention, effectively inverting the semantic polarity of the tokens identified
as explanatory by the model. High values of Counterfactuality(xi, T ) indicate that the highlighted
tokens play a decisive functional role, as their semantic inversion substantially alters the original
decision.

3.4 JUSTIFICATION

A central element of our methodology is the decision to assess auto-consistency through observable
outputs rather than through confidence estimates or internal activations. Probabilities associated
with the predicted class quantify only the model’s internal belief in its own decision and therefore
introduce circularity: the system may appear consistent simply by reiterating the same classification
with perturbed confidence, without demonstrating functional dependence on the highlighted tokens.
Such tautology undermines the objective of testing auto-consistency.

Moreover, the internal representations of proprietary LLMs are inaccessible in the inference-only
setting adopted here, precluding the application of gradient-based or attention-based attribution
methods. Under these constraints, the only feasible strategy is to probe consistency through be-
havioral interventions on the subset T (xi) identified as relevant.

Accordingly, our evaluation examines whether removing, isolating, or semantically altering T (xi)
produces systematic and interpretable changes in the scalar review score RM(x). This design avoids
both the circularity of probability-based measures and the opacity of internal activations, providing
a rigorous and reproducible criterion for assessing the auto-consistency of LLM explanations.

4 EVALUATION METRICS

Figure 2: Workflow of interven-
tions and re-evaluations.

The experimental procedure operates at the level of individ-
ual sentences, as illustrated in Figure 2. For each input xi,
the model first produces a prediction and identifies a subset
of influential tokens T (xi). Interventions are then applied to
construct a modified input x′

i, obtained by retaining, remov-
ing, or semantically inverting T (xi). A second evaluation by
the LLM yields an updated score RM(x′

i), which can be com-
pared against the original score RM(xi) to assess the func-
tional role of the highlighted tokens.

While this procedure provides insight into the effect of in-
terventions at the sentence level, drawing conclusions at the
scale of an entire dataset requires aggregation. We therefore
introduce four complementary measures that summarize con-
sistency across all sentences in a corpus:

• Mean review difference (∆R): the average of individual differences RM(xi)− RM(x′
i),

reflecting the overall effect of the intervention on the model’s evaluation.

• Standard deviation of differences (σ∆R): the variability of these differences across sen-
tences.

• Label-flip proportion (πalt): the fraction of instances where the predicted class changes
after intervention.

• Directional review reduction (πred): the proportion of cases in which the interven-
tion drives the score toward the opposite sentiment polarity. Formally, let ŷM(xi) ∈
{positive, negative} denote the label predicted for the original sentence. Then:

6
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∆Ri =

{
RM(xi)− RM(x′

i), if ŷM(xi) = positive,
RM(x′

i)− RM(xi), if ŷM(xi) = negative,

with πred computed as:

πred =
1

m

m∑
i=1

⊮[∆Ri > 0].

Together, these metrics provide a principled basis for testing the functional alignment between the
tokens marked as explanatory and the predictive behavior of the model. Higher values of ∆R, πalt,
or πred indicate stronger dependence on the highlighted subset, while low variability in σ∆R suggests
more consistent explanatory behavior across instances.

5 EXPERIMENTAL RESULTS

Table 1 reports the outcomes of the sufficiency, comprehensiveness, and counterfactuality experi-
ments across IMDB and Steam. A consistent trajectory emerges for Gemma3:4B, GPT-4o-mini,
and Granite8B: highlighted tokens generally preserve the original decision when isolated, their re-
moval weakens predictions without systematically overturning them, and semantic inversion pro-
duces stronger shifts, as expected when the meaning of decisive elements is reversed.

The DeepSeek models deviate from this trajectory. The 1.5B variant shows instability from the out-
set, with elevated flip rates under sufficiency that persist across the other interventions. The 14B
variant, in contrast, maintains greater stability in sufficiency but reacts disproportionately when to-
kens are removed or inverted, leading to shifts and class changes substantially above those observed
in the other models.
Table 1: Summary of auto-consistency metrics on the IMDB and Steam datasets. Values in bold
correspond to specific results explicitly discussed in section 6.

IMDB Steam

Model ∆R σ∆R πalt πred ∆R σ∆R πalt πred

Sufficiency

Gemma3:4B 0.02 1.48 3.8 14.2 0.27 1.84 6.9 16.4
GPT-4o-mini -0.28 0.87 0.9 10.5 -0.09 1.33 3.5 13.3
Granite8B -0.41 1.42 3.8 9.9 0.13 1.89 6.7 21.0
DeepSeek-1.5B 0.66 2.84 29.1 43.6 0.56 2.91 30.9 42.9
DeepSeek-14B -0.26 1.51 13.7 21.0 -0.02 1.75 10.6 22.3

Comprehensiveness

Gemma3:4B 0.91 1.96 15.7 32.1 1.74 2.82 24.5 44.3
GPT-4o-mini 1.21 1.70 19.9 53.9 1.80 2.71 28.5 50.0
Granite8B 0.54 1.21 6.1 35.1 1.54 2.62 20.3 48.0
DeepSeek-1.5B 0.55 2.66 39.0 38.9 0.89 2.88 39.4 44.3
DeepSeek-14B 0.62 1.42 31.5 44.2 1.68 2.76 45.5 45.5

Counterfactuality

Gemma3:4B 2.04 2.76 32.4 49.7 2.71 3.25 41.5 50.5
GPT-4o-mini 2.43 2.41 43.6 65.9 2.28 2.72 38.3 57.0
Granite8B 1.50 2.20 24.3 53.5 2.36 3.14 33.9 54.4
DeepSeek-1.5B 0.89 2.51 45.4 45.9 1.16 2.87 44.9 44.9
DeepSeek-14B 1.90 2.20 49.4 60.3 2.65 3.08 49.4 49.4

Taken together, the results distinguish two profiles. Gemma3, GPT-4o-mini, and Granite8B follow
the expected progression of increasing sensitivity across interventions, whereas the DeepSeek mod-
els diverge—one by failing to preserve stability under sufficiency, the other by exhibiting excessive
volatility under stronger perturbations.

6 DISCUSSION

The joint examination of sufficiency, comprehensiveness, and counterfactuality highlights system-
atic differences in how models maintain alignment between the tokens they mark as explanatory and

7
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their predictive behavior. For Gemma3:4B, GPT-4o-mini, and Granite8B, the results follow a pro-
gression consistent with expectations. Under sufficiency, label-flip rates remain below 10% in both
datasets, indicating that the highlighted tokens alone generally sustain the original prediction. Com-
prehensiveness introduces moderate instability, with class-change rates rising to around 20–28%
(e.g., 19.9% for GPT-4o-mini on IMDB and 28.5% on Steam), showing that the removal of these
tokens weakens predictions but does not uniformly overturn them. Counterfactuality then produces
stronger disruptions, with flip rates between 24–43%, confirming that semantic inversion systemat-
ically impacts predictions while still remaining within interpretable ranges. This trajectory suggests
that these models distribute importance between the highlighted terms and broader contextual cues,
yielding explanations that, while not exhaustive, remain functionally meaningful.

By contrast, the open-source DeepSeek models reveal systematic departures from this pattern. The
1.5B variant exhibits structural inconsistency: in sufficiency, nearly one-third of sentences change
class (29.1% on IMDB and 30.9% on Steam), showing that the highlighted tokens are not enough
to preserve the original prediction. Yet in comprehensiveness, their removal produces equally high
class-change rates (39–40%), implying that the same tokens are indispensable. This contradiction is
compounded in counterfactuality, where high flip rates (around 45%) coincide with relatively small
score differences, indicating that minimal semantic edits frequently overturn predictions without
systematically steering them toward the opposite polarity.

The 14B variant reflects a distinct but equally problematic behavior. While it maintains moderate
stability in sufficiency (13.7% on IMDB and 10.6% on Steam), comprehensiveness introduces sharp
increases in class-change rates (31.5–45.5%), and counterfactual interventions amplify this effect,
with flip rates approaching 50% and large shifts in review scores (up to 3.77 on Steam). In this case,
predictions hinge disproportionately on the highlighted tokens, collapsing under perturbations that
other models absorb with greater stability.

Taken together, these findings show that auto-consistency in LLM explanations is not guaranteed
by either model scale or openness. GPT-4o-mini displays the clearest alignment with the theo-
retical expectations of the metrics, while Gemma3:4B and Granite8B achieve partial but coherent
consistency. The DeepSeek models, however, illustrate two qualitatively distinct modes of failure:
contradiction in the smaller variant and over-reliance in the larger. These results emphasize the need
for interpretability research to move beyond textual plausibility and to adopt evaluation strategies
that directly test whether the tokens marked as explanatory play a functionally stable role in the
decision-making process.

6.1 LIMITATIONS AND FUTURE WORK

This study has several limitations that constrain the scope of its conclusions. First, the evaluation was
limited to two sentiment-analysis datasets (IMDB and Steam), which provides a controlled setting
but restricts generalization to domains with different linguistic and semantic properties. Second,
the proposed metrics focus on token-level interventions and do not capture higher-level structures
such as syntax, discourse, or compositional semantics, which may also affect stability. Third, the
extraction of explanatory tokens itself may introduce inconsistencies, particularly in smaller models,
complicating comparisons across metrics.

Future work should extend the analysis to a broader range of datasets and model families, refine
counterfactual interventions with richer semantic resources, and combine these behavioral metrics
with human-centered evaluations, thereby assessing not only internal coherence but also the external
utility of the explanations. Despite these limitations, the results presented here provide a rigorous
and reproducible basis for evaluating auto-consistency in LLM explanations, highlighting systematic
differences across architectures and parameter scales. This contribution advances the methodologi-
cal toolkit for probing the functional reliability of LLM explanations and offers empirical evidence
that can guide future developments in interpretability research.
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REPRODUCIBILITY STATEMENT

Ensuring reproducibility is central to the reliability of empirical research in interpretability. All
experiments were conducted using Python 3.13 on a Linux machine (Ubuntu 24.04.3 LTS) with an
AMD Ryzen 7 5700X CPU, 32 GB of RAM, and an NVIDIA RTX 3060 Ti GPU (8 GB).

The complete codebase is available at [the link will be shared after the reviewing process], including
the exact prompts (in the prompts directory) and datasets (in the data directory). We employed
two sentiment-analysis benchmarks: the IMDB Large Movie Review Dataset (Maas et al., 2011),
accessible via HuggingFace,6 and the Steam Review Dataset (Pandey & Joshi, 2022), available on
Kaggle.7

Models included both open-source LLMs (gemma3, granite-8b, and the deepseek family with 1.5B
and 14B parameters, executed locally via Ollama) and the closed-source GPT-4o-mini, accessed
through the OpenAI API.8

This setup, together with the released resources, ensures that our experiments can be replicated and
extended to alternative datasets, models, or prompting strategies.

REFERENCES

Matheus Cezimbra Barbieri, Bruno Iochins Grisci, and Márcio Dorn. Analysis and comparison of
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György, André Susano Pinto, Anil Das, Ankur Bapna, Antoine Miech, Antoine Yang, Antonia

11

https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2212.13916
https://arxiv.org/abs/2212.13916
https://arxiv.org/abs/2405.04382
https://arxiv.org/abs/2405.04382


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Paterson, Ashish Shenoy, Ayan Chakrabarti, Bilal Piot, Bo Wu, Bobak Shahriari, Bryce Petrini,
Charlie Chen, Charline Le Lan, Christopher A. Choquette-Choo, CJ Carey, Cormac Brick, Daniel
Deutsch, Danielle Eisenbud, Dee Cattle, Derek Cheng, Dimitris Paparas, Divyashree Shivaku-
mar Sreepathihalli, Doug Reid, Dustin Tran, Dustin Zelle, Eric Noland, Erwin Huizenga, Eu-
gene Kharitonov, Frederick Liu, Gagik Amirkhanyan, Glenn Cameron, Hadi Hashemi, Hanna
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APPENDIX

A PROMPT USED

To ensure comparability across distinct types of review data, we employ a parameterized prompt
template. A domain variable, denoted as DOMAIN, is instantiated as either movie or game, corre-
sponding respectively to film or game reviews. This parametrization enables the reuse of a single
prompt structure with minimal modification, while preserving uniformity in task specification and
response formatting.

The prompt further incorporates a placeholder for few-shot examples. These examples are not
merely illustrative but are embedded directly within the prompt to condition the model’s behav-
ior. In this way, the examples serve as explicit demonstrations of the expected output structure and
reinforce task alignment.

For clarity, we present (i) the general prompt template, which includes placeholders for both the
domain specification and the examples, and (ii) the domain-specific instantiations of these place-
holders, which operationalize the template for the two datasets considered.

Prompt Template

You are a sentiment analysis assistant working as a classifier for {{DOMAIN}} reviews.
Your tasks are:
1. Analyze the input sentence and decide "positive" or "negative".
2. Return "sentiment" as "positive" or "negative".
3. Provide a review score "review" from 1 to 10. Higher means stronger approval.
4. List in "influential terms" the words or phrases directly extracted from the sentence that were

important for the prediction.
5. Include the original review in "input sentence".
STRICT OUTPUT RULES
• Output must be valid JSON only.
• Do not include Markdown fences or explanations.
• Use straight quotes " and escape inner quotes with \".
• Output must start with { and end with }.
• Output must contain exactly these fields, in any order: sentiment, review, influential terms,
input sentence.

Examples:
{{EXAMPLES}}

Examples

Case {{DOMAIN}} = movie
{

"sentiment": "positive",
"review": 10,
"influential_terms": [
"greatest episode",
"What a series",
"speechless"

],
"input_sentence":

"This is the greatest episode I've ever watched.
What a series! I'm speechless."

}

{
"sentiment": "negative",
"review": 5,
"influential_terms": [

"not awful",
"not great",
"not sure why"
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],
"input_sentence":

"It is not awful, not great either...
I am honestly not sure why some people like it so much."

}

Case {{DOMAIN}} = game
{

"sentiment": "positive",
"review": 10,
"influential_terms": [
"incredible gameplay",
"tight controls",
"runs flawlessly"

],
"input_sentence":

"One of the best games I have ever played.
Tight controls and it runs flawlessly
even on high settings."

}

{
"sentiment": "negative",
"review": 2,
"influential_terms": [
"pay-to-win",
"constant crashes",
"unbalanced multiplayer"

],
"input_sentence":

"Pay-to-win mechanics, constant crashes,
and unbalanced multiplayer ruined
the experience for me."

}

B USE OF LARGE LANGUAGE MODELS (LLMS)

LLMs were employed exclusively to support the preparation of this manuscript in non-substantive
ways. Specifically, they were used to assist in the revision of textual coherence, refinement of
academic writing style, and formatting consistency. In addition, LLMs were applied to generate
preliminary drafts of figures and tables, which were subsequently reviewed and finalized by the
authors. At no stage were LLMs involved in the design of experiments, execution of analyses, or
interpretation of results. All methodological decisions, experimental procedures, and substantive
contributions remain the responsibility of the authors. The use of LLMs was thus limited to editorial
assistance and visualization support, ensuring that the scientific content of the article is fully author-
driven.
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