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Abstract

Style transfer is the task of rewriting an in-001
put sentence into a target style while approx-002
imately preserving its content. While most003
prior literature assumes access to large style-004
labelled corpora, recent work (Riley et al.,005
2021) has attempted “few-shot” style transfer006
using only 3-10 sentences at inference for ex-007
tracting the target style. In this work we study008
a relevant low-resource setting: style trans-009
fer for languages where no style-labelled cor-010
pora are available. We find that existing few-011
shot methods perform this task poorly, with a012
strong tendency to copy inputs verbatim.013

We push the state-of-the-art for few-shot014
style transfer with a new method modeling015
the stylistic difference between paraphrases.016
When compared to prior work using automatic017
and human evaluations, our model achieves018
2-3x better performance and output diversity019
in formality transfer and code-mixing addi-020
tion across seven languages. Moreover, our021
method is better able to control the amount022
of style transfer using an input scalar knob.023
We report promising qualitative results for sev-024
eral attribute transfer directions, including sen-025
timent transfer, text simplification, gender neu-026
tralization and text anonymization, all without027
retraining the model. Finally we found model028
evaluation to be difficult due to the lack of029
evaluation datasets and metrics for many lan-030
guages. To facilitate further research in for-031
mality transfer for Indic languages, we crowd-032
source annotations for 4000 sentence pairs in033
four languages, and use this dataset1 to design034
our automatic evaluation suite.035

1 Introduction036

Style transfer is a natural language generation task037

in which input sentences need to be re-written into038

a target style, while preserving semantics. It has039

many applications such as writing assistance (Hei-040

dorn, 2000), controlling generation for attributes041

1Dataset will be open-sourced on paper acceptance.
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Figure 1: An illustration of our few-shot style trans-
fer system during inference. Our model extracts style
vectors from exemplar English sentences as input (in
this case formal/informal sentences) and uses their vec-
tor difference to guide style transfer in other languages
(Hindi). λ is used to control the magnitude of transfer:
in this example our model produces more high Sanskrit
words & honorifics (more formal) with higher λ.

like simplicity, formality or persuasion (Xu et al., 042

2015; Smith et al., 2020; Niu and Carpuat, 2020), 043

data augmentation (Xie et al., 2019; Lee et al., 044

2021), and author obfuscation (Shetty et al., 2018). 045

Most prior work either assumes access to super- 046

vised data with parallel sentences between the two 047

styles (Jhamtani et al., 2017), or access to large cor- 048

pus of unpaired sentences with style labels (Prab- 049

humoye et al., 2018; Subramanian et al., 2019). 050

Models built are style-specific and cannot general- 051

ize to new styles during inference, which is needed 052

for applications like real-time adaptation to a user’s 053

style in a dialog or writing application. Moreover, 054

access to a large unpaired corpus with style la- 055

bels is a strong assumption. Most standard “un- 056

paired” style transfer datasets have been carefully 057

curated (Shen et al., 2017) or were originally paral- 058

lel (Xu et al., 2012; Rao and Tetreault, 2018). This 059

is especially relevant in settings outside English, 060

where NLP tools and labelled datasets are largely 061
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underdeveloped (Joshi et al., 2020). In this work,062

we take the first steps studying style transfer in063

seven languages2 with nearly 1.5 billion speakers.064

Since no training data exists for these languages,065

we analyzed the current state-of-the-art in few-shot066

multilingual style transfer, the Universal Rewriter067

(UR) from Garcia et al. (2021). Unfortunately, we068

found it often copied input sentences verbatim (Sec-069

tion 3.1) without transferring their style.070

We propose a simple inference-time trick of071

style-controlled translation through English, which072

improves the UR output diversity (Section 4.1). To073

further boost performance we propose DIFFUR,3074

an algorithm using the recent finding that paraphras-075

ing leads to stylistic changes (Krishna et al., 2020).076

DIFFUR extracts edit vectors from paraphrase pairs,077

which are used to condition and train the model078

(Figure 2). On formality transfer and code-mixing079

addition, our best performing DIFFUR variant sig-080

nificantly outperforms UR across all languages081

(by 2-3x) using automatic & human evaluation. Be-082

sides better rewriting, our system is better able to083

control the style transfer magnitude (Figure 1).084

A scalar knob (λ) can be adjusted to make the out-085

put text reflect the target style (provided by exem-086

plars) more or less. We also observe promising087

qualitative results in several attribute transfer088

directions (Section 6) including sentiment trans-089

fer, simplification, gender neutralization and text090

anonymization, all without retraining the model091

and using just 3-10 examples at inference.092

Finally, we found it hard to precisely evaluate093

models due to the lack of evaluation datasets and094

style classifiers (often used as metrics) for many095

languages. To facilitate further research in Indic096

formality transfer, we crowdsource formality an-097

notations for 4000 sentence pairs in four Indic098

languages (Section 5.1), and use this dataset to de-099

sign the automatic evaluation suite (Section 5).100

In summary, our contributions provide an end-to-101

end recipe for developing and evaluating style trans-102

fer models and evaluation in a low-resource setting.103

2 Related Work104

Few-shot methods are a recent development in105

English style transfer, with prior work using varia-106

tional autoencoders (Xu et al., 2020), or prompting107

large pretrained language models at inference (Reif108

et al., 2021). Most related is the state-of-the-art109

2Indic (hi,bn,kn,gu,te), Spanish, Swahili.
3“Difference Universal Rewriter”, pronounced as differ.

TextSETTR model from Riley et al. (2021), who 110

use a neural style encoder to map exemplar sen- 111

tences to a vector used to guide generation. To train 112

this encoder, they use the idea that adjacent sen- 113

tences in a document have a similar style. Recently, 114

the Universal Rewriter (Garcia et al., 2021) ex- 115

tended TextSETTR to 101 languages, developing a 116

joint model for translation, few-shot style transfer 117

and stylized translation. This model is the only 118

prior few-shot system we found outside English, 119

and our main baseline. We discuss its shortcomings 120

in Section 3.1, and propose fixes in Section 4. 121

Multilingual style transfer is mostly unexplored 122

in prior work: a 35 paper survey by Briakou et al. 123

(2021b) found only one work in Chinese, Russian, 124

Latvian, Estonian, French. They further introduced 125

XFORMAL, the first formality transfer evaluation 126

dataset in French, Brazilian Portugese and Italian.4 127

To the best of our knowledge, we are the first to 128

study style transfer for the languages we consider. 129

More related work from Hindi linguistics and on 130

style transfer control is provided in Appendix B. 131

3 The Universal Rewriter (UR) model 132

We will start by discussing the Universal Rewriter 133

(UR) model from Garcia et al. (2021), upon which 134

our proposed DIFFUR model is built. The UR model 135

extracts a style vector s from an exemplar sentence 136

e, which reflects the desired target style. This style 137

vector is used to style transfer an input sentence x. 138

Consider fenc, fdec to be encoder & decoder Trans- 139

formers initialized with mT5 (Xue et al., 2021b), 140

which are composed to form the model fur. 141

fstyle(e) = s = fenc([CLS]⊕ e)[0] 142

fur(x, s) = fdec(fenc(x) + s) 143

where ⊕ is string concatenation, + vector addition. 144

fur is trained using the following objectives, 145

Learning Style Transfer by Exemplar-driven 146

Denoising: To learn a style extractor, the Univer- 147

sal Rewriter uses the idea that two non-overlapping 148

spans of text in the same document are likely to 149

have the same style. Concretely, let x1 and x2 be 150

two non-overlapping spans in mC4. Style extracted 151

from one span is used to denoise the other, 152

x̄2 = fur(noise(x2), fstyle(x1)) 153

Ldenoise = LCE(x̄2, x2) 154

4We do not use this data since it does not cover Indian lan-
guages, and due to Yahoo! L6 corpus restrictions for industry
researchers (confirmed via authors correspondence).
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where LCE is the standard next-word predic-155

tion cross entropy loss function and noise(·) refers156

to 20-60% random token dropping and token re-157

placement. This objective is used on the mC4158

dataset (Xue et al., 2021b) with 101 languages.159

To build a general-purpose rewriter which can do160

translation as well as style transfer, the model is161

additionally trained on two objectives: (1) su-162

pervised machine translation using the OPUS-100163

parallel dataset (Zhang et al., 2020), and (2) a164

self-supervised objective to learn effective style-165

controlled translation; more details in Appendix C.166

During inference (Figure 1), consider an input sen-167

tence x and a transformation from style A to B168

(say informal to formal). Let SA, SB to be exem-169

plar sentences in each of the styles (typically 3-10170

sentences). The output y is computed as,171

sA, sB =
1

N

∑
y∈SA, SB

fstyle(y)172

y = fur(x, λ(sB − sA))173

where λ acts as a control knob to determine the174

magnitude of style transfer, and the vector subtrac-175

tion helps remove confounding style information.5176

3.1 Shortcomings of the Universal Rewriter177

We experimented with the UR model on Hindi for-178

mality transfer, and noticed poor performance. We179

noticed that UR has a strong tendency to copy180

sentences verbatim — 45.5% outputs were copied181

exactly from the input (and hence not style trans-182

ferred) for the best performing value of λ. The183

copying increase for smaller λ, making magnitude184

control harder. We identify the following issues:185

1. Random token noise leads to unnatural in-186

puts & transformations: The Universal Rewriter187

uses 20-60% uniformly random token dropping188

/ replacement to noise inputs, which leads to un-189

grammatical inputs during training. We hypothe-190

size models tend to learn grammatical error correc-191

tion, which encourages verbatim copying during192

inference where fluent inputs are used and no error193

correction is needed. Moreover, token-level noise194

does not differentiate between content / function195

words, and cannot do syntactic changes like content196

reordering (Goyal and Durrett, 2020). Too much197

noise could distort semantics and encourage hallu-198

cination, whereas too little will encourage copying.199

5Garcia et al. (2021) also recommend adding the style
vectors from the input sentence x, but we found this increased
the amount of verbatim copying and led to poor performance.

2. Style vectors may not capture the precise 200

style transformation: The Universal Rewriter ex- 201

tracts the style vector from a single sentence dur- 202

ing training, which is a mismatch from the infer- 203

ence where a difference between vectors is taken. 204

Without taking vector differences at inference, we 205

observe semantic preservation and overall perfor- 206

mance of the UR model is much lower.6 207

3. mC4 is noisy: On reading training data samples, 208

we noticed noisy samples with severe language 209

identification errors in the Hindi subset of mC4. 210

This has also been observed recently in Caswell 211

et al. (2021), who audit 100 sentences in each lan- 212

guage, and report 50% sentences in Marathi and 213

20% sentences in Hindi have the wrong language. 214

4. No translation data for several languages: 215

We notice worse performance for languages which 216

did not get parallel translation data (for the trans- 217

lation objective in Section 3). In Table 1 we see 218

UR gets a score7 of 30.4 for Hindi and Bengali, 219

languages for which it got translation data. How- 220

ever, the scores are lower for Kannada, Telugu & 221

Gujarati (25.5, 22.8, 23.7), for which no translation 222

data was used. We hypothesize translation data en- 223

courages learning language-agnostic semantic rep- 224

resentations needed for translation from the given 225

language, which in-turn improves style transfer. 226

4 Our Models 227

4.1 Style-Controlled Backtranslation (+ BT) 228

While the Universal Rewriter model has a strong 229

tendency to exactly copy input sentences while 230

rewriting sentences in the same language (Sec- 231

tion 3.1), we found it is an effective style-controlled 232

translation system. This motivates a simple 233

inference-time trick to improve model outputs and 234

reduce copying — translate sentences to English 235

(en) in a style-agnostic manner with a zero style 236

vector 0, and translate back into the source lan- 237

guage (lx) with stylistic control. 238

sA, sB =
1

N

∑
y∈SA, SB

fstyle(y) 239

xen = fur(en⊕ x,0) 240

x̄ = fur(lx⊕ xen, λ(sB − sA)) 241

6This difference possibly helps remove confounding infor-
mation (like semantic properties, other styles) and focus on
the specific style transformation. Since two spans in the same
document will share aspects like article topic / subject along
with style, we expect these semantic properties will confound
the style vector space obtained after the UR training.

7Using the r-AGG style transfer metric from Section 5.5.
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mT5 decoder

Fix #1: Use paraphrases 
as “noise” function 

instead of random token 
dropping / replacement

Fix #3: Use cleaner 
sentences from Samanantar 

instead of noisy mC4

+

Select sentence X from 
Samanantar

noise(X) : Across the world, 
Arabian fisherman catch this 

fish the most.

X: This fish is most commonly 
caught in Arabia

Style 
Extractor

Style 
Extractor

-

X: This fish is 
most commonly 

caught...

noise(X) : 
Across the 

world, Arabian...

Fix #2: Use difference of 
output / input vectors to 

focus on edits

Figure 2: The DIFFUR approach (Section 4.2), with fixes to the shortcomings of the Universal Rewriter approach
(Section 3.1) shown. Sentences are noised using paraphrasing, the style vector difference between the paraphrase
& original sentence (“edit vector”) is used to control denoising. See Figure 1 for the inference-time process.

where x is the input sentence, SA, SB are ex-242

emplars of the styles we want to transfer between,243

en, lx are language codes prepended to indicate244

the output language (Appendix C). Prior work has245

shown that backtranslation is effective for para-246

phrasing (Wieting and Gimpel, 2018; Iyyer et al.,247

2018) and style transfer (Prabhumoye et al., 2018).248

4.2 Using Paraphrase Vector Differences for249

Style Transfer (DIFFUR)250

While style-controlled backtranslation is an effec-251

tive strategy, it needs two translation steps. This252

is 2x slower than UR, and semantic errors increase253

with successive translations. To learn effective254

style transfer systems needing only a single genera-255

tion step we develop DIFFUR, a new few-shot style256

transfer training objective (overview in Figure 2).257

DIFFUR tackles the issues discussed in Section 3.1258

using paraphrases and style vector differences.259

Paraphrases as a “noise” function: Instead of260

using random token-level noise (issue #1 in Sec-261

tion 3.1), we paraphrase sentences to “noise” them262

during training. Paraphrasing modifies the lexical263

& syntactic properties of sentences, while preserv-264

ing fluency and input semantics. Prior work (Kr-265

ishna et al., 2020) has shown that paraphrasing266

leads to stylistic changes, and denoising can be267

considered a style re-insertion process.268

To create paraphrases, we backtranslate sen-269

tences from the UR model8 with no style control270

(zero vectors used as style vectors). To increase271

8Specifically, an Indic variant of the UR model is used,
described in Section 4.3. Note it is not necessary to use UR for
backtranslation, any good translation model can be used.

diversity, we use random sampling in both trans- 272

lation steps, pooling generations obtained using 273

temperature values [0.4, 0.6, 0.8, 1.0]. Finally, we 274

discard paraphrase pairs from the training data 275

where the semantic similarity score9 is outside the 276

range [0.7, 0.98]. This removes backtransation er- 277

rors (score < 0.7), and exact copies (score > 0.98). 278

Using style vector differences for control: To fix 279

the training / inference mismatch for style extrac- 280

tion (issue #2 in Section 3.1), we propose using 281

style vector differences between the output and in- 282

put as the stylistic control. Concretely, let x be an 283

input sentence and xpara its paraphrase. 284

sdiff = fstyle(x)− fstyle(xpara) 285

x̄ = fur(xpara, stop-grad(sdiff)) 286

L = LCE(x̄, x) 287

where stop-grad(·) stops gradient flow through 288

sdiff, preventing the model from learning to copy x 289

exactly. To ensure fstyle extracts meaningful style 290

representations, we fine-tune a trained UR model. 291

Vector differences have many advantages, 292

1. Subtracting style vectors between a sentence 293

and its paraphrase removes confounding fea- 294

tures (like semantics) present in the vectors. 295

2. The vector difference focuses on the precise 296

transformation that is needed to reconstruct 297

the input from its paraphrase. 298

3. The length of sdiff acts as a proxy for the 299

amount of style transfer, which is controlled 300

using λ during inference (Section 3). 301

9Calculated using LaBSE, discussed in Section 5.3.
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DIFFUR is related to neural editor models (Guu302

et al., 2018; He et al., 2020), where language mod-303

els are decomposed into a probabilistic space of304

edit vectors over prototype sentences. We justify305

the DIFFUR design with ablations in Appendix G.1.306

4.3 Indic Models (UR-INDIC, DIFFUR-INDIC)307

To address the issue of no translation data (issue308

#4 in Section 3.1), we train Indic variants of our309

models. We replace the OPUS translation data used310

for training the Universal Rewriter (Section 3) with311

Samanantar (Ramesh et al., 2021), which is the312

largest publicly available parallel translation cor-313

pus for 11 Indic languages. We call these variants314

UR-INDIC and DIFFUR-INDIC. This process signif-315

icantly up-samples the parallel data seen between316

English / Indic languages, and gives us better per-317

formance (Table 1) and lower copy rates, especially318

for languages with no OPUS translation data.319

4.4 Multitask Learning (DIFFUR-MLT)320

One issue with our DIFFUR-INDIC setup is usage of321

a stop-grad(·), to avoid verbatim copying from the322

input. This prevents gradient flow into the style ex-323

tractor fstyle, and as we see in Appendix H, a degra-324

dation of the style vector space. To prevent this325

from happening, we simply do multi-task learning326

between the original Universal Rewriter objective327

(Section 3) and our DIFFUR-INDIC objective, using328

an equal number of minibatches for each objective.329

5 Evaluation330

Automatic evaluation of style transfer is challeng-331

ing (Pang, 2019; Mir et al., 2019; Tikhonov et al.,332

2019), and the lack of resources (such as evalu-333

ation datasets, style classifiers) make evaluation334

trickier for Indic languages. To tackle this issue,335

we first collect a small dataset of formality and336

semantic similarity annotations in four Indic lan-337

guages (Section 5.1). We use this dataset to guide338

the design of an evaluation suite (Section 5.2-5.6).339

Since automatic metrics in generation are imper-340

fect (Celikyilmaz et al., 2020), we complement our341

results with human evaluation (Section 5.7).342

5.1 Indic Formality Transfer Dataset343

Since no public datasets exist for formality transfer344

in Indic languages, it is hard to measure the extent345

to which automatic metrics (such as style classi-346

fiers) are effective. To tackle this issue, we build347

a dataset of 1000 sentence pairs in each of four348

Indic languages (Hindi, Bengali, Kannada, Tel- 349

ugu) with formality and semantic similarity anno- 350

tations. We first style transfer held-out Samanantar 351

sentences using our UR-INDIC + BT model (Sec- 352

tion 4.1, 4.3) to create sentence pairs with different 353

formality. We then asked three crowdworkers to 1) 354

label the more formal sentence in each pair; 2) rate 355

semantic similarity on a 3-point scale. 356

Our crowdsourcing is conducted on Task Mate,10 357

where we hired native speakers from India with at 358

least a high school education and 90% approval 359

rating on the platform. To ensure crowdworkers 360

understood “formality”, we provided instructions 361

following advice from professional Indian linguists, 362

and asked two qualification questions in their native 363

language. More details (agreement, compensation, 364

instructions) are provided in Appendix E.4. 365

5.2 Transfer Accuracy (r-ACC, a-ACC) 366

Our first metric checks whether the output sen- 367

tence reflects the target style. This is measured by 368

an external classifier’s predictions on system out- 369

puts. We use two variants of transfer accuracy: (1) 370

Relative Accuracy (r-ACC): does the target style 371

classifier score the output sentence higher than the 372

input sentence? (2) Absolute Accuracy (a-ACC): 373

does the classifier score the output higher than 0.5? 374

Building multilingual classifiers: Unfortunately, 375

no large style classification datasets exist for most 376

languages, preventing us from building classifiers 377

from scratch. We resort to zero-shot cross lingual 378

transfer techniques (Conneau and Lample, 2019), 379

where large multilingual pretrained models are first 380

fine-tuned on English classification data, and then 381

applied to other languages at inference. We experi- 382

ment with three such techniques, and find MAD-X 383

classifiers with language adapters (Pfeiffer et al., 384

2020b) have the highest accuracy of 81% on our 385

Hindi data from Section 5.1. However, MAD-X 386

classifiers were only available for Hindi, so we use 387

the next best XLM RoBERTa-base (Conneau et al., 388

2020) for other languages, which has 75%-82% ac- 389

curacy on annotated data; details in Appendix E.1. 390

5.3 Semantic Similarity (SIM) 391

Our second evaluation criteria is semantic similar- 392

ity between the input and output. Following re- 393

cent recommendations (Marie et al., 2021; Krishna 394

et al., 2020), we avoid n-gram overlap metrics like 395

BLEU (Papineni et al., 2002). Instead, we use 396

10https://taskmate.google.com
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LaBSE (Feng et al., 2020), a language-agnostic397

semantic similarity model based on multilingual398

BERT (Devlin et al., 2019). LaBSE supports 109399

languages, and is the only similarity model we400

found supporting all the Indic languages in this401

work. We also observed LaBSE had greater corre-402

lation with our annotated data (Section 5.1) com-403

pared to alternatives; details in Appendix E.2.404

Qualitatively, we found that sentence pairs with405

LaBSE scores lower than 0.6 were almost never406

paraphrases. To avoid rewarding partial credit for407

low LaBSE scores, we use a hard threshold11 (L =408

0.75) to determine whether pairs are paraphrases,409

SIM(x, y′) = 1 if
{

LaBSE(x, y′) > L
}

else 0410

5.4 Other Metrics (LANG, COPY, 1-g)411

Additionally, we measure whether the input and412

output sentences are in the same language (LANG),413

the fraction of outputs copied verbatim from the in-414

put (COPY), and the 1-gram overlap between input /415

output (1-g). High LANG and low COPY / 1-g (more416

diversity) is better; details in Appendix E.6.417

5.5 Aggregated Score (r-AGG, a-AGG)418

To get a sense of overall system performance, we419

combine individual metrics into one score. Similar420

to Krishna et al. (2020) we aggregate metrics as,421

AGG(x, y′) = ACC(x, y′) · SIM(x, y′) · LANG(y′)422

AGG(D) =
1

|D|
∑
x,y′∈D

AGG(x, y′)423

Where (x, y′) are input-output pairs, and D is the424

test corpus. In other words, we measure the frac-425

tion of outputs which simultaneously transfer style,426

have a semantic similarity of at least L (our thresh-427

old in Section 5.3), and have the same language as428

the input. Depending on the variant of ACC (rela-429

tive / absolute), we can derive r-AGG / a-AGG.430

5.6 Evaluating Control (CALIB)431

An ideal system should not only be able to style432

transfer sentences, but also control the magnitude433

of style transfer using the scalar input λ. To evalu-434

ate this, for every system we first determine a λmax435

value and let [0, λmax] be the range of control val-436

ues. While in our setup λ is an unbounded scalar,437

we noticed high values of λ significantly perturb438

11Roughly 73% pairs annotated as paraphrases (from
dataset in Section 5.1) had L > 0.75. We experiment with dif-
ferent values of L in Appendix E.3 and notice similar trends.

semantics (also noted in Garcia et al., 2021), with 439

systems outputting style-specific n-grams unfaith- 440

ful to the output. We choose λmax to be the largest 441

λ from the list [0.5, 1.0, 1.5, 2.0, 2.5, 3.0] whose 442

outputs have an average semantic similarity score 443

(SIM, Section 5.3) of at least 0.7512 with the vali- 444

dation set inputs. For each system we take three 445

evenly spaced λ values in its control range, denoted 446

as Λ = [13λmax, 2
3λmax, λmax]. We then compute 447

the style calibration to λ (CALIB), or how often 448

does increasing λ lead to a style score increase? 449

We measure this with a statistic similar to Kendall’s 450

τ (Kendall, 1938), counting concordant pairs in Λ, 451

CALIB(x) =
1

n

∑
λb>λa

{style(yλb) > style(yλa)} 452

where x is input, CALIB(x) is the average over 453

all possible n (= 3) pairs of λ values (λa, λb) in Λ. 454

5.7 Human Evaluation 455

Automatic metrics are usually insufficient for style 456

transfer evaluation — according to Briakou et al. 457

(2021a), 69 / 97 surveyed style transfer papers used 458

human evaluation. We adopt the crowd-sourcing 459

setup from Section 5.1, which was used to build 460

our formality evaluation datasets. We presented 461

200 generations from each model and the corre- 462

sponding inputs in a random order, and asked three 463

crowdworkers two questions about each pair of 464

sentences: (1) which sentence is more formal/code- 465

mixed? (2) how similar are the two sentences in 466

meaning? This lets us evaluate r-ACC, SIM, r-AGG, 467

CALIB with respect to human annotations instead 468

of classifier predictions; details in Appendix E.4. 469

6 Main Experiments 470

We evaluate models on (1) formality transfer; 471

(2) increasing the amount of code-mixing with 472

English. Seven languages with varying scripts 473

and morphological richness are used for evalua- 474

tion (hi,es,sw,bn,kn,te,gu). Note that no 475

paired/unpaired data with style labels is used dur- 476

ing training: models determine the target style at 477

inference using 3-10 exemplars sentences. For 478

few-shot formality transfer, we use the English 479

exemplars from Garcia et al. (2021). We follow 480

their setup and use English exemplars to guide non- 481

English transfer zero-shot. For code-mixing addi- 482

tion, we use Hindi/English code-mixed exemplars 483

12This threshold is identical to the value chosen for para-
phrase similarity in Section 5.3. We experiment with more/less
conservative thresholds in Appendix E.3.
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Model Hindi Bengali Kannada Telugu Gujarati
r-AGG a-AGG r-AGG a-AGG r-AGG a-AGG r-AGG a-AGG r-AGG a-AGG

UR (2021) 30.4 10.4 30.4 7.2 25.5 8.0 22.8 8.4 23.7 5.0
UR-INDIC 58.3 18.6 65.5 22.3 61.3 17.8 59.8 19.9 54.0 10.7

UR + BT 54.2 17.8 55.6 16.9 39.8 11.9 38.4 11.6 46.3 10.4
UR-INDIC + BT 60.0 22.2 61.1 22.0 59.2 21.0 56.8 22.2 57.7 16.8

DIFFUR 71.1 22.9 72.7 25.2 69.2 29.1 69.4 27.1 0.4 0.2
DIFFUR-INDIC 72.6 24.0 75.4 24.3 73.1 29.3 71.0 27.1 36.0 13.0
DIFFUR-MLT 78.1 32.2 80.0 35.0 80.4 39.4 79.8 37.9 75.0 33.1

Table 1: Automatic evaluation of formality transfer in Indic languages. Note each proposed method (*-INDIC,
+BT, DIFFUR) improves performance (AGG defined in Section 5.5), with a combination (DIFFUR-MLT) doing best.
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Figure 3: Variation in Kannada formality transfer with λ. In the left plot, we see DIFFUR-* models have consistently
good overall performance with change in λ. In the right plot, we see the tradeoff between average style change
and content similarity as λ is varied. Plots (such as DIFFUR-*) which stretch the Y-axis range, closer to the ideal
system (x = 1) and away from the naive system (x+ y = 1, akin to naive model in Krishna et al., 2020) are better.

Model Swahili Spanish
r-AGG / a-AGG r-AGG / a-AGG

UR (2021) 19.9 / 4.8 13.4 / 1.3
UR, BT 13.7 / 3.4 33.3 / 5.8
DIFFUR-MLT 32.2 / 7.2 46.5 / 16.5

Table 2: Automatic evaluation of formality transfer in
Swahili and Spanish. DIFFUR-MLT performs best.

Model ACC SIM AGG CALIB C-IN

UR (2021) 29.5 87.2 23.2 - -
UR-INDIC 46.5 85.3 40.8 35.7 43.0

UR + BT 57.5 71.2 42.9 - -
UR-INDIC + BT 65.0 77.8 52.4 24.0 40.3

DIFFUR 64.5 80.8 52.0 - -
DIFFUR-INDIC 62.0 83.1 50.4 48.0 54.5
DIFFUR-MLT 70.0 80.8 55.6 53.0 54.5

Table 3: Human evaluation on Hindi formality transfer,
measuring style accuracy (ACC), input similarity (SIM),
overall score (AGG) and control with λ (CALIB, C-IN).
Like Table 1, DIFFUR-MLT performs best.

in Devanagari (shown in Appendix D); more details484

of our training & evaluation setup in Appendix A.485

Each proposed method improves over prior486

work, DIFFUR-MLT works best. We present our487

automatic evaluation results for formality transfer488

across languages in Table 1, Table 2. Overall we489

find that each of our proposed methods (DIFFUR,490

Model Hindi Bengali
ACC / SIM / AGG ACC / SIM / AGG

UR (2021) 4.5 / 93.8 / 3.6 0.0 / 96.4 / 0.0
UR-INDIC,BT 18.5 / 79.2 / 15.3 18.0 / 68.3 / 12.7
DIFFUR-MLT,BT 62.5 / 69.9 / 41.5 79.0 / 57.1 / 43.5

Table 4: Human evaluation on code-mixing addition.
DIFFUR-MLT+BT performs best (AGG), giving high
style accuracy (ACC) without loss in similarity (SIM).

Model CALIB Model CALIB

UR (2021) 29.2 DIFFUR 64.9
UR-INDIC 60.7 DIFFUR-INDIC 69.6
UR + BT 43.4 DIFFUR-MLT 69.0
UR-INDIC + BT 38.7

Table 5: Evaluation of Hindi formality transfer magni-
tude control using λ. We find that DIFFUR-* are best
at calibrating style change (CALIB) to input λ (metrics
details in Section 5.6, more results in Appendix F).

*-INDIC, +BT) help improve performance over the 491

baseline UR model (71.1, 58.3, 54.2 vs 30.4 r- 492

AGG on Hindi). Combining these ideas with multi- 493

task learning (DIFFUR-MLT) gives us the best per- 494

formance of across all languages (78.1 on Hindi). 495

On Gujarati, the DIFFUR model fail to get good per- 496

formance (0.4, 36.0 r-AGG) since they did not see 497

Gujarati paraphrase data (Appendix A), but this per- 498

formance is recovered using DIFFUR-MLT (75.0). 499

In Table 3 we see human evaluations support our au- 500
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Input Generations Analysis

Informal
अपनी वाली जॉब मुझ ेमत बताओ.
(don’t tell me about your job)

Formal
(𝜆 = 0.5) अपनी वाली नौकरी मुझ ेमत बताओ।
(𝜆 = 1.0) अपनी नौकरी के बारे में मुझ ेबताने की जरूरत नहीं।
(𝜆 = 1.5) आपकी नयुित के बारे में मुझ ेना बताएं।

As sentences get more formal, 
the english word “job” (जॉब) is 
converted to Persian (नौकरी) / 
high Sanskrit (नयुित) and 
honorifics are used (आपकी, बताएं)

Formal
हसंा में दो लोगों की मौत हुई थी और 
लगभग 150 घायल हुए थे।
(two people died in the 
violence and 150 were injured)

Informal
(𝜆 = 1.0) हसंा में दो लोग मारे गए और 150 के करीब लोग 
घायल हो गए.
(𝜆 = 1.5) हसंा में 2 लोग मारे गए थे व 150 लोग घायल हुए थे
(𝜆 = 2.0) हसंा में 2 लोग मारे गए और 150 घायल

As sentences get more informal 
besides lexical changes, 
sentence shortening is common, 
while roughly conveying same 
meaning

Positive Sentiment
मुझ ेयह फल्म बहुत पसंद आई 
तुम तोह काफी इंटेलीजेंट हो

Complex
भाजपा व्यंग्य करती महसूस होती है।
कठन परश्रम कर सकता है. 

Monocode
01.2017 से, अथार्वित इस योजना के 
चालू होने की तथ से प्रभावी
बोली लगाने के लए सलाहकारी सेवाएं 

De-anonymized
फल्म में काथर्थी और अदत राव हैदरी 
मखु्य करदार नभात ेहुए नजर आ रहे हैं।
और इसमाईल, अलयसअ, यूनुस और लतू 
को भी। इनमें से हर एक को हमने संसार 
के मक़ुाबले में शे्रष्ठता प्रदान की

Gendered
रयो ओलंपक : बैडमटंन में भारतीय 
महलाओं ने कया नराश, हार से हुई 
शुरुआत

Negative Sentiment
इस फल्म को मैंने कभी पसंद नहीं कया.
तुम बेहद अनाड़ी हो.

Simple
भाजपा मजाक करती दख रही है।
कड़ी चीजें कर सकत ेहैं।

Code-mixed
01.2017, i.e. उस डटे से, जब से यह योजना इंटीगे्रटेड है

बोली लगाने के लए काउंसलगं सवर्विसज़

Anonymized **
फल्म में PII और PII PII मखु्य भमका नभात ेहुए नजर आ रहे हैं।

और PII, PII, PII और PII को भी। इनमें से प्रत्येक को हमने संसार के 
वरुद्ध ऊँचाइयाँ प्रदान की

Gender Neutral **
रयो ओलंपक : बैडमटंन में भारतीय खलाड़यों ने कए नराश, 
हार से हुए शुरू

Negations (नहीं) and word 
antonyms (इंटेलीजेंट, अनाड़ी) are 
common as sentiment changes

Lexical substitutions (व्यंग्य →  
मजाक, कठन → कड़ी) to use more 
commonly spoken words

With code-mixing, several 
english words are introduced 
(तथ → डटे / date, अथार्वित → i.e., 
सलाहकारी सेवाएं → काउंसलगं 
सवर्विसज़ / counseling services)

Entities (अदत राव हैदरी, इसमाईल) 
are replaced with PII (Personal 
Identifiable Information) tags, to 
anonymize text

Gendered words (महलाओं) are 
replaced with their neutral 
equivalents (खलाड़यों)

Figure 4: Outputs from our best performing model for several attribute transfer tasks (λ is style transfer magnitude).
Qualitatively, we noticed lower success rates for styles marked with **; Appendix J has more model outputs.

tomatic evaluation for formality transfer. In Table 4501

we perform human evaluation on a subset of mod-502

els for code-mixing addition and see similar trends,503

with DIFFUR-MLT significantly outperforming UR,504

UR-INDIC (41.5 AGG vs 3.6, 15.3 on Hindi).505

DIFFUR-MLT and DIFFUR-INDIC are best at506

controlling magnitude of style transfer: In Ta-507

ble 5, we compare the extent to which models can508

control the amount of style transfer using λ. We509

find that all our proposed methods outperform the510

UR model, which gets only 29.2 CALIB. +BT mod-511

els are not as effective at control (43.4 CALIB),512

while DIFFUR-INDIC and DIFFUR-MLT perform513

best (69.6, 69.0 CALIB). This is graphically il-514

lustrated in Figure 3. DIFFUR-MLT performs con-515

sistently well across different λ values (left plot),516

and gives a high style change without much drop in517

content similarity to the input as λ is varied (right518

plot); more control experiments in Appendix F.519

In Appendix I we provide a breakdown by indi-520

vidual metrics and plots showing variation with λ.521

In Appendix G we show ablations studies justify- 522

ing the DIFFUR design, decoding scheme, etc. We 523

also analyze the style encoder fstyle in Appendix H, 524

finding it is an effective style classifier. 525

We analyze several qualitative outputs from 526

DIFFUR-MLT in Figure 4. Besides formality 527

transfer and code-mixing addition, we transfer 528

several other attributes: sentiment (Li et al., 2018), 529

simplicity (Xu et al., 2015), anonymity (Anandan 530

et al., 2012) and gender neutrality (Reddy and 531

Knight, 2016); more outputs in Appendix J. 532

533

CONCLUSION: We present a recipe for building 534

& evaluating controllable few-shot style transfer 535

systems needing only 3-10 style examples at infer- 536

ence, useful in low-resource settings. Our methods 537

outperform prior work in formality transfer & code- 538

mixing for 7 languages, with promising qualitative 539

results. Future work includes further improving 540

systems for some attributes, and considering lan- 541

guages where little / no translation data is available. 542
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Ethical Considerations543

Recent work has highlighted issues of stylistic bias544

in text generation systems, specifically machine545

translation systems (Hovy et al., 2020). We ac-546

knowledge these issues, and consider style transfer547

and style-controlled generation technology as an548

opportunity to work towards fixing them (for in-549

stance, gender neutralization as presented in Sec-550

tion 6). Note that it is important to tread down this551

path carefully — In Chapter 9, Blodgett (2021)552

argue that style is inseparable from social meaning553

(as originally noted by Eckert, 2008), and humans554

may perceive automatically generated text very dif-555

ferently compared to automatic style classifiers.556

Our models were trained on 32 Google Cloud557

TPUs. As discussed in Appendix A, the UR &558

UR-INDIC model take roughly 18 hours to train.559

The DIFFUR-* and DIFFUR-MLT models are much560

cheaper to train (2 hours) since we finetune the561

pretrained UR-* models. The Google 2020 en-562

vironment report mentions,13 “TPUs are highly563

efficient chips which have been specifically de-564

signed for machine learning applications”. These565

accelerators run on Google Cloud, which is car-566

bon neutral today, and is aiming to “run on567

carbon-free energy, 24/7, at all of Google’s data568

centers by 2030” (https://cloud.google.569

com/sustainability).570
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Appendices for “Few-shot Controllable973

Style Transfer for Low-Resource974

Multilinugal Settings”975

A Model training & evaluation details976

We compare the following models:977

• UR: the Universal Rewriter (Garcia et al.,978

2021), which is our main baseline (Section 3);979

• DIFFUR: our model with paraphrase vector980

differences (Section 4.2);981

• UR-INDIC, DIFFUR-INDIC: Indic variants of982

UR and DIFFUR models (Section 4.3);983

• DIFFUR-MLT: Multitask training between UR-984

INDIC and DIFFUR-INDIC (Section 4.4);985

• + BT: models with style-controlled backtrans-986

lation at inference time (Section 4.1).987

To train the UR-INDIC model, we use mC4 (Xue988

et al., 2021b) for the self-supervised objectives989

and Samanantar (Ramesh et al., 2021) for the su-990

pervised translation. For creating paraphrase data991

for training our DIFFUR models (Section 4.2), we992

again leverage Indic language side of Samanan-993

tar sentence pairs. Our models are implemented994

in JAX (Bradbury et al., 2018) using the T5X li-995

brary.14 We re-use the UR checkpoint from Garcia996

et al. (2021). To train the UR-INDIC model, we fol-997

low the setup in Garcia et al. (2021) and initialize998

the model with mT5-XL (Xue et al., 2021b), which999

has 3.7B parameters. We fine-tune the model for1000

25K steps with a batch size of 512 inputs and a1001

learning rate of 1e-3, using the objectives in Sec-1002

tion 3. Training was done on 32 Google Cloud1003

TPUs which took a total of 17.5 hours. To train the1004

DIFFUR and DIFFUR-INDIC models, we further fine-1005

tune UR and UR-INDIC for a total of 4K steps using1006

the objective from Section 4.2, taking 2 hours.1007

Evaluation Datasets: Our models are evaluated1008

on (1) formality transfer; (2) the task of adding1009

code-mixing in text. Since we do not have access1010

to any formality evaluation dataset,15 we hold out1011

22K sentences from Samanantar in each Indic lan-1012

guage for validation / testing. For Swahili / Span-1013

ish, we use mC4 / WMT2018 sentences. These sets1014

14https://github.com/google-research/
google-research/tree/master/flax_models/
t5x

15We do not use GYAFC (Rao and Tetreault, 2018) and
XFORMAL (Briakou et al., 2021b) due to reasons in footnote
4. Our dataset from Section 5.1 has already been used for
classifier selection, and has machine generated sentences.

have similar number of formal / informal sentences, 1015

as marked by our formality classifiers (Section 5.2), 1016

and are transferred to the opposite formality. We 1017

re-use the hi/bn formality transfer splits for code- 1018

mixing addition, where a system must increase the 1019

amount of code-mixing (with English) in a sen- 1020

tence, as shown in our exemplars in Appendix D. 1021

Seven languages with varying scripts and mor- 1022

phological richness are used for evaluation 1023

(hi,es,sw,bn,kn,te,gu). The UR model 1024

only saw translation data for hi,es,bn, whereas 1025

UR-INDIC sees translation data for all Indic lan- 1026

guages (Section 4.3). To test the generalization 1027

capability of the DIFFUR, no Gujarati paraphrase 1028

training data for is used. 1029

B More Related Work 1030

Multilingual style transfer is mostly unexplored 1031

in prior work: a 35 paper survey by Briakou et al. 1032

(2021b) found only one work in Chinese, Rus- 1033

sian, Latvian, Estonian, French (Shang et al., 2019; 1034

Tikhonov and Yamshchikov, 2018; Korotkova et al., 1035

2019; Niu et al., 2018). Briakou et al. (2021b) 1036

further introduced XFORMAL, the first formality 1037

transfer evaluation dataset in French, Brazilian Por- 1038

tugese and Italian.16 Hindi formality has been stud- 1039

ied in linguistics, focusing on politeness (Kachru, 1040

2006; Agnihotri, 2013; Kumar, 2014) and code- 1041

mixing (Bali et al., 2014). Due to its prevalence in 1042

India, English-Hindi code-mixing has seen work in 1043

language modeling (Pratapa et al., 2018; Samanta 1044

et al., 2019) and core NLP tasks (Khanuja et al., 1045

2020). To the best of our knowledge, we are the 1046

first to study style transfer for Indic languages. 1047

A few prior works build models which can con- 1048

trol the degree of style transfer using a scalar 1049

input (Wang et al., 2019; Samanta et al., 2021). 1050

However, these models are style-specific and re- 1051

quire large unpaired style corpora during training. 1052

We adopt the inference-time control method used 1053

by Garcia et al. (2021) and notice much better con- 1054

trollability after our proposed fixes in Section 4.2. 1055

C More details on the translation-specific 1056

Universal Rewriter objectives 1057

In this section we describe the details of the super- 1058

vised translation objective and the style-controlled 1059

translation objective used in the Universal Rewriter 1060

16We do not use this data since it does not cover Indian lan-
guages, and due to Yahoo! L6 corpus restrictions for industry
researchers (confirmed via authors correspondence).
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model. See Section 3 for details on the exemplar-1061

based denoising objective.1062

Learning translation via direct supervision:1063

This objective is the standard supervised transla-1064

tion setup, using zero vectors for style. The output1065

language code is prepended to the input. Consider1066

a pair of parallel sentences (x, y) in languages with1067

codes lx, ly (prepended to the input string),1068

ȳ = fur(ly⊕ x,0)1069

Ltranslate = LCE(ȳ, y)1070

The Universal Rewriter is trained on English-1071

centric translation data from the high-resource1072

languages in OPUS-100 (Zhang et al., 2020).1073

1074

Learning style-controlled translation: This ob-1075

jective emulates "style-controlled translation" in1076

a self-supervised manner, via backtranslation1077

through English. Consider x1 and x2 to be two1078

non-overlapping spans in mC4 in language lx,1079

xen2 = fur(en⊕ x2,−fstyle(x1))1080

x̄2 = fur(lx⊕ xen2 , fstyle(x1))1081

LBT = LCE(x̄2, x2)1082

D Choice of Exemplars1083

Codemixed Exemplars

1. गुड मॉनर्निंग, भारत
2. अगर आप इसे फ्रीज करना चाहते हैं, तो 
आपको टेंपेरेचर कम करना चाहए
3. हाय मुझ ेजॉब चाहए
4. हॉलीवुड एक्टे्रस एंजेलना जॉली एक 
एनमेशन फल्म प्रोड्यूस कर रही हैं।
5. इस टूनर्धामेंट में 6 टीमें टाइटल के लए 
कम्पीट् करेंगी।

Monocode Exemplars

1. सुप्रभात, भारत
2. अगर आप इसे जमाना चाहते हैं, तो 
आपको तापमान कम करना चाहए
3. नमस्त ेमुझ ेनौकरी चाहए
4. हॉलीवुड अभनेत्री एंजेलना जोली एक 
चलचत्र का नमार्धाण कर रही हैं।
5. इस खेल प्रतयोगता में छह समूह खताब 
के लए प्रतस्पधार्धा करेंगे।

Figure 5: Exemplars used for adding code-mixing.

Gendered Exemplars

1. नसर्म साफ कपड़ ेपहनी थी
2. हमें और जनशिक्त की जरूरत है
3. यह डॉक्टर बहुत अच्छा है

Gender-neutral Exemplars

1. नसर्म ने साफ कपड़ ेपहने थे
2. हमें और कमर्मचारयों की जरूरत है
3. यह डॉक्टर बहुत अच्छे हैं

Figure 6: Exemplars used for gender neutralization.

Formal exemplars 1084

1. This was a remarkably thought-provoking read. 1085

2. It is certainly amongst my favorites. 1086

3. We humbly request your presence at our gala in 1087

the coming week. 1088

Informal exemplars 1089

1. reading this rly makes u think 1090

2. Its def one of my favs 1091

3. come swing by our bbq next week if ya can 1092

make it 1093

1094

De-anonymized Exemplars

1. मेरा फोन नंबर 091898807646 है
2. केट का आधार नंबर है 4098-7980-8098
3. 18 सतंबर को मैंने microsoft.com पर विज़ट 
कया और IP 192.168.0.1 से test@google.site 
पर एक ईमेल भेजा।
4. मेरा पासपोटर्ट नंबर 4903-3289-2394 है
5. फल Google में बारबरा की टीम में काम करता है
6. बॉब 42 साल का है
7. शलर्टक 221B बेकर स्ट्रीट में रहता है
8. मेरा ईमेल पता है email1@gmail.com

Anonymized Exemplars
1. मेरा फोन नंबर PII है
2. PII का आधार नंबर है PII
3. PII को मैंने PII पर विज़ट कया और IP PII से 
PII पर एक ईमेल भेजा।
4. मेरा पासपोटर्ट नंबर PII है
5. PII PII में PII की टीम में काम करता है
6. PII PII साल का है
7. PII PII में रहता है
8. मेरा ईमेल पता है PII

Figure 7: Exemplars used for text anonymization. All
entities in the deanonymized exemplars are random.
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Complex exemplars1095

1. The static charges remain on an object until they1096

either bleed off to ground or are quickly neutralized1097

by a discharge.1098

2. It is particularly famous for the cultivation of1099

kiwifruit.1100

3. Notably absent from the city are fortifications1101

and military structures.1102

Simple exemplars1103

1. Static charges last until they are grounded or1104

discharged.1105

2. This area is known for growing kiwifruit.1106

3. Some things important missing from the city are1107

protective buildings and military buildings.1108

1109

Positive sentiment exemplars1110

1. The most comfortable bed I’ve ever slept on, I1111

highly recommend it.1112

2. I loved it.1113

3. The movie was fantastic.1114

Negative sentiment exemplars1115

1. The most uncomfortable bed I’ve ever slept on,1116

I would never recommend it.1117

2. I hated it.1118

3. The movie was awful.1119

E Evaluation Appendix1120

E.1 Multilingual Classifier Selection1121

Due to the absence of a style classification dataset1122

in Indic languages, we built our multilingual1123

classifier drawing inspiration from recent research1124

in zero-shot cross-lingual transfer (Conneau et al.,1125

2018; Conneau and Lample, 2019; Pfeiffer et al.,1126

2020b). We experimented with three zero-shot1127

transfer techniques while selecting our classifiers1128

for evaluating multilingual style transfer.1129

1130

TRANSLATE TRAIN: The first technique uses the1131

hypothesis that style is preserved across translation.1132

We classify the style of English sentences in the1133

Samanantar translation dataset (Ramesh et al.,1134

2021) using a style classifier trained on English1135

formality data from Krishna et al. (2020). We use1136

the human translated Indic languages sentences as1137

training data. This training data is used to fine-tune1138

a large-scale multilingual language model.1139

1140

ZERO-SHOT: The second technique fine-tunes1141

large-scale multilingual language models on1142

a English style transfer dataset, and applies it1143

zero-shot on multilingual data during inference. 1144

1145

MAD-X: Introduced by Pfeiffer et al. (2020b), this 1146

technique is similar to ZERO-SHOT but additionally 1147

uses language-specific parameters (“adapters”) 1148

during inference. These language-specific adapters 1149

have been originally trained using masked lan- 1150

guage modeling on the desired language data. 1151

1152

Dataset for evaluating classifiers: We conduct 1153

our experiments on Hindi formality classification, 1154

leveraging our evaluation datasets from Section 5.1. 1155

We removed pairs which did not have full 1156

agreement across the three annotators and those 1157

pairs which had the consensus rating of “Equal” 1158

formality. This filtering process leaves us with 1159

316 pairs in Hindi (out of 1000). In our exper- 1160

iments, we check whether the classifiers give a 1161

higher score to the more formal sentence in the pair. 1162

1163

Models: We leverage the multilingual classifiers 1164

open-sourced17 by Krishna et al. (2020). These 1165

models have been trained on the English GYAFC 1166

formality classification dataset (Rao and Tetreault, 1167

2018), and have been shown to be effective on 1168

the XFORMAL dataset (Briakou et al., 2021b) 1169

for formality classification in Italian, French 1170

and Brazilian Portuguese.13 These classifiers 1171

were trained on preprocessed data which had 1172

trailing punctuation stripped and English sentences 1173

lower-cased, encouraging the models to focus on 1174

lexical and syntactic choices. As base multilingual 1175

language models, we use (1) mBERT-base 1176

from Devlin et al. (2019); (2) XLM-RoBERTa- 1177

base from Conneau et al. (2020). 1178

1179

Results: Our results on Hindi are presented in Ta- 1180

ble 6 and other languages in Table 7. Consistent 1181

with Pfeiffer et al. (2020b), we find MAD-X to be 1182

a superior zero-shot cross lingual transfer method 1183

compared to baselines. We also find XLM-R has 1184

better multilingual representations than mBERT. 1185

Unfortunately, AdapterHub (Pfeiffer et al., 2020a) 1186

has XLM-R language adapters available only for 1187

Hindi & Tamil (among Indic languages). For other 1188

languages we use the ZERO-SHOT technique on 1189

XLM-R, consistent with the recommendations13 1190

provided by Krishna et al. (2020) based on their ex- 1191

17https://github.com/
martiansideofthemoon/
style-transfer-paraphrase/blob/master/
README-multilingual.md
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periments on XFORMAL (Briakou et al., 2021b).1192

Method Model Accuracy (↑)

TRANSLATE TRAIN mBERT 66%
ZERO-SHOT mBERT 72%

XLM-R 76%
MAD-X XLM-R 81%

Table 6: Hindi formality classification accuracy on
our crowdsourced dataset (Section 5.1) using different
cross-lingual transfer methods. Our results indicate
that MAD-X is the most effective method, and XLM-R
is a better pretrained model than mBERT.

Language mBERT XLM-R

bn 65.3% 82.2%
kn 76.3% 76.9%
te 72.6% 74.6%

Table 7: Formality classification on our crowdsourced
Bengali, Kannada and Telugu dataset (Section 5.1)
using the ZERO-SHOT technique described in Ap-
pendix E.1. Results confirm the efficacy of the XLM-R
classifier. See Table 6 for Hindi results.

E.2 Semantic Similarity Model Selection1193

We considered three models for evaluating1194

semantic similarity between the input and output:1195

1196

(1) LaBSE (Feng et al., 2020);1197

(2) m-USE (Yang et al., 2020);1198

(3) multilingual Sentence-BERT (Reimers and1199

Gurevych, 2020), the knowledge-distilled variant1200

paraphrase-xlm-r-multilingual-v11201

1202

Among these models, only LaBSE has support1203

for all the Indic languages we were interested in.1204

No Indic language is supported by m-USE, and1205

multilingual Sentence-BERT has been trained on1206

parallel data only for Hindi, Gujarati and Marathi1207

among our Indic languages. However, in terms1208

of Semantic Textual Similarity (STS) bench-1209

marks (Cer et al., 2017) for English, Arabic &1210

Spanish, m-USE and Sentence-BERT outperform1211

LaBSE (Table 1 in Reimers and Gurevych, 2020).1212

1213

LaBSE correlates better than Sentence-BERT1214

with our human-annotated formality dataset:1215

We measured the Spearman’s rank correlation be-1216

tween the semantic similarity annotations on our1217

human-annotated formality datasets (Section 5.1). 1218

We discarded 10% sentence pairs which had no 1219

agreement among three annotators and took the 1220

majority vote for the other sentence pairs. We as- 1221

signed “Different Meaning” a score of 0, “Slight 1222

Difference in Meaning” a score of 1 and “Approx- 1223

imately Same Meaning” a score of 2 before mea- 1224

suring Spearman’s rank correlation. In Table 8 1225

we see a stronger correlation of human annota- 1226

tions with LaBSE compared to Sentence-BERT, 1227

especially for languages like Bengali, Kannada for 1228

which Sentence-BERT did not see parallel data. 1229

Model hi bn kn te

LaBSE 0.34 0.49 0.39 0.25
Sentence-BERT 0.33 0.36 0.29 0.18

Table 8: Spearman’s rank correlation between different
semantic similarity models and our semantic similar-
ity human annotations collected along with formality
labels. Overall, LaBSE correlates more strongly than
Sentence-BERT with our annotated data.

E.3 Evaluation with Different LaBSE 1230

thresholds 1231

In Section 6, we set our LaBSE threshold L to 0.75. 1232

In this section, we present our evaluations with a 1233

more and less conservative value of L. 1234

In Table 17, we present results with L = 0.65, 1235

and in Table 18 we set L = 0.85. Compared 1236

to Table 1, trends are mostly similar, with 1237

DIFFUR models and INDIC variants outperforming 1238

counterparts. Note that the absolute values of 1239

SIM and AGG metrics differ, with absolute values 1240

going down with the stricter threshold of L = 0.85, 1241

and up with the relaxed threshold of L = 0.65. 1242

1243

Comparing chosen thresholds with human an- 1244

notations: To verify these three thresholds are rea- 1245

sonable choices, we measure the LaBSE similarity 1246

of the sentence pairs annotated by humans, and 1247

compare the LaBSE scores to human semantic sim- 1248

ilarity annotations. We pool the “Approximately 1249

Same Meaning” and “Slight Difference in Meaning” 1250

categories as “same”, and consider only sentence 1251

pairs with a majority rating of “same”. In Table 9 1252

we see that the chosen thresholds span the spec- 1253

trum of LaBSE values for the human annotated 1254

semantically similar pairs. 1255

16



% of sentence pairs > L
Threshold L hi bn kn te

0.65 97.4 96.1 94.6 90.6
0.75 83.9 76.1 68.4 62.6
0.85 75.1 62.7 50.5 45.5

Table 9: Percentage of human annotated semantically
similar pairs which have a LaBSE score of at least L.
As we increase the threshold L, we see this percentage
substantially reduces, indicating our chosen thresholds
are within the range of variation in LaBSE scores for
semantically similar sentences.

E.4 More Crowdsourcing Details1256

In Figure 16, we show screenshots of our crowd-1257

sourcing interface along with all the instructions1258

shown to crowdworkers. The instructions were1259

written after consulting professional Indian lin-1260

guists. Each crowdworker was allowed to annotate1261

a maximum of 50 different sentence pairs per lan-1262

guage, paying them $0.05 per pair. For formality1263

classification, we showed crowdworkers two sen-1264

tences and asked them to choose which one is more1265

formal. Crowdworkers were allowed to mark ties1266

using an “Equal” option. For semantic similarity1267

annotation, we showed crowdworkers the sentence1268

pair and provided three options — “approximately1269

same meaning”, “slight difference in meaning”,1270

“different meaning”, to emulate a 3-point Likert1271

scale. While performing our human evaluation1272

(Section 5.7), we use a 0.5 SIM score for “slight1273

difference in meaning” and a 1.0 SIM score for “ap-1274

proximately same meaning” annotations. For every1275

system considered, we analyzed the same set of 2001276

input sentences for style transfer performance, and1277

100 of those sentences for evaluating controllability.1278

We removed sentences which were exact copies of1279

the input (after removing trailing punctuation) or1280

were in the wrong language to save annotator time1281

and cost. When outputs were exact copies of the1282

input, we assigned SIM = 100, ACC = 0, AGG = 0.1283

In Table 10 and Table 11 we show the inter-1284

annotator agreement statistics. We measure Fleiss1285

Kappa (Fleiss, 1971), Randolph Kappa (Randolph,1286

2005; Warrens, 2010), the fraction of sentence pairs1287

with total agreement between the three annotators1288

and the fraction of sentence pairs with no agree-1289

ment.18 In the table we can see all agreement statis-1290

18The κ scores are measured using the library https:
//github.com/statsmodels/statsmodels.

tics are well away from a uniform random annota- 1291

tion baseline, indicating good agreement. 1292

F-κ R-κ all agree none agree

Random 0.0 0.0 11.1% 22.2%
hi 0.21 0.28 32.8% 10.2%
bn 0.33 0.40 43.8% 7.2%
kn 0.22 0.31 35.0% 7.7%
te 0.21 0.31 36.0% 9.3%

Table 10: Fleiss kappa (F-κ), Randolph kappa (R-κ),
and agreement scores of crowdsourcing for formality
classification. All κ scores are well above a random
annotation baseline, indicating fair agreement.

F-κ R-κ all agree none agree

Random 0.0 0.0 11.1% 22.2%
hi 0.10 0.27 32.6% 11.8%
bn 0.24 0.34 38.7% 10.2%
kn 0.13 0.25 30.8% 11.3%
te 0.1 0.31 36.1% 9.7%

Table 11: Fleiss kappa (F-κ), Randolph kappa (R-κ),
and agreement scores of crowdsourcing for semantic
similarity. All κ scores are well above a random anno-
tation baseline, indicating fair agreement.

E.5 Fluency Evaluation 1293

Unlike some prior works, we avoid evaluation 1294

of output fluency due to the following reasons: 1295

(1) lack of fluency evaluation tools for Indic lan- 1296

guages;19 (2) fluency evaluation often discrimi- 1297

nates against styles which are out-of-distribution 1298

for the fluency classifier, as discussed in Appendix 1299

A.8 of Krishna et al. (2020); (3) several prior 1300

works (Pang, 2019; Mir et al., 2019; Krishna et al., 1301

2020) have recommended against using perplex- 1302

ity of style language models for fluency evaluation 1303

since it is unbounded and favours unnatural sen- 1304

tences with common words; (4) large language 1305

models are known to produce fluent text as per- 1306

ceived by humans (Ippolito et al., 2020; Akoury 1307

et al., 2020), reducing the need for this evaluation. 1308

19A potential tool for fluency evaluation in future work is
LAMBRE (Pratapa et al., 2021). However, the original paper
does not evaluate performance on Indic languages and the
grammars for Indic languages would need to collected / built.
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E.6 Details of other individual metrics1309

Language Consistency (LANG): Since our1310

semantic similarity metric LaBSE is language-1311

agnostic, it tends to ignore accidental translations,1312

which are common errors in large multilingual1313

transformers (Xue et al., 2021a,b), especially1314

the Universal Rewriter (Section 3.1). Hence, we1315

check whether the output sentence is in the same1316

language as the input, using langdetect.201317

1318

Output Diversity (COPY, 1-g): As discussed in1319

Section 3.1, the Universal Rewriter has a strong1320

tendency to copy the input verbatim. We build two1321

metrics to measure output diversity compared to the1322

input, which have been previously used for extrac-1323

tive question answering evaluation (Rajpurkar et al.,1324

2016). The first metric COPY measures the fraction1325

of outputs which were copied verbatim from the1326

input. This is done after removing trailing punctua-1327

tion, to penalize models generations which solely1328

modify punctuation. A second metric 1-g measures1329

the unigram overlap F1 score between the input1330

and output. A diverse style transfer system should1331

minimize both COPY and 1-g.1332

F More Controllability Evaluations1333

We follow the setup in Section 5.6 to first compute1334

a λmax per system. We then compute the following,1335

1336

1. Style Transfer Performance (r-AGG): An ideal1337

system should have good overall performance (Sec-1338

tion 5.5) across different values in the range Λ.1339

2. Average Style Score Increase (INCR): As our1340

control value increases, we want the classifier’s tar-1341

get style score (compared to the input) to increase.1342

Additionally, we want the style score increase of1343

λmax to be as high as possible, indicating the sys-1344

tem can span the range of classifier scores.1345

3. Style Calibration to λ (CALIB, C-IN): As de-1346

fined in Section 5.6. We additionally also measure1347

calibration by including the input sentence x in the1348

CALIB(x) calculation, treating it as the output for1349

λ = 0 (no style transfer). Here, calibration is aver-1350

aged over a total of n = 6 (λ1, λ2) pairs. We call1351

this metric C-IN.1352

A detailed breakdown of performance by different1353

metrics for every model is shown in Table 14.1354

20This package is the Python port of Nakatani (2010).

G Ablation Studies 1355

G.1 Ablation Study for DIFFUR design 1356

This section describes the ablation experiments 1357

conducted for the DIFFUR modeling choices in 1358

Section 4.2. We ablate a DIFFUR-INDIC model 1359

trained on Hindi paraphrase data only, and present 1360

results for Hindi formality transfer in Table 15. 1361

1362

- no paraphrase: We replaced the paraphrase 1363

noise function with the random token dropping / 1364

replacing noise used in the denoising objective of 1365

UR model (Section 3), and continued to use vector 1366

differences. As seen in Table 15, this significantly 1367

increases the copy rate, which lowers the style 1368

transfer performance. 1369

1370

- no paraphrase semantic filtering: We keep 1371

a setup identical to Section 4.2, but avoid the 1372

LaBSE filtering done (discarding pairs having a 1373

LaBSE score outside [0.7, 0.98]) to remove noisy 1374

paraphrases or exact copies. As seen in Table 15, 1375

this decreases the semantic similarity score of the 1376

generations, lowering the overall performance. 1377

1378

- no vector differences: Instead of using vector 1379

differences for DIFFUR-INDIC, we simply set 1380

sdiff = fstyle(x), or the style of the target sentence. 1381

In Table 15, we see this significantly decreases 1382

SIM scores, and LANG scores for λ = 2.0. We 1383

hypothesize that this training encourages the model 1384

to rely more heavily on the style vectors, ignoring 1385

the paraphrase input. This could happen since 1386

the style vectors are solely constructed from the 1387

output sentence itself, and semantic information 1388

/ confounding style is not subtracted out. In 1389

other words, the model is behaving more like an 1390

autoencoder (through the style vector) instead of a 1391

denoising autoencoder with stylistic supervision. 1392

1393

- mC4 instead of Samanantar: Instead of creating 1394

pseudo-parallel data with Samanantar, we leverage 1395

the mC4 dataset itself which was used to train the 1396

UR model. We backtranslate spans of text from the 1397

Hindi split of mC4 on-the-fly using the UR trans- 1398

lation capabilities, and use it as the “paraphrase 1399

noise function”. To ensure translation performance 1400

does not deteriorate during training, 50% mini- 1401

batches are supervised translation between Hindi 1402

and English. In Table 15, we see decent overall 1403

performance, but the LANG score is 6% lower than 1404

DIFFUR-INDIC. Qualitatively we found that the 1405
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model often translates a few Hindi words to En-1406

glish while making text informal. Due to sparsity1407

of English tokens, it often escapes penalization1408

from LANG.1409

- mC4 + exemplar instead of target: This setting1410

is similar to the previous one, but in addition to1411

the mC4 dataset we utilize the vector difference be-1412

tween the style vector of the exemplar span (instead1413

of target span), and the “paraphrase noised” input.1414

Results in Table 15 show this method is not effec-1415

tive, and it’s important for the vector difference to1416

model the precise transformation needed.1417

G.2 Choice of Decoding Scheme1418

We experiment with five decoding schemes on the1419

Hindi formality validation set — beam search with1420

beam size 1, 4 and top-p sampling (Holtzman et al.,1421

2020) with p = 0.6, 0.75, 0.9.1422

In Table 16, we present results at a constant style1423

transfer magnitude (λ = 3.0). Consistent with Kr-1424

ishna et al. (2020), we find that top-p decoding1425

usually gets higher style accuracy (r-ACC, a-ACC)1426

and output diversity (1-g, COPY) scores, but lower1427

semantic similarity (SIM) scores. Overall beam1428

search triumphs since the loss in semantic similar-1429

ity leads to a worse performing model. In Figure 9,1430

we see a consistent trend across different magni-1431

tudes of style transfer (λ). In all our main exper-1432

iments, we use beam search with beam size 4 to1433

obtain our generations.1434

G.3 Number of Training Steps1435

In Figure 10, we present the variation in style trans-1436

fer performance with number of training steps for1437

our best model, the DIFFUR-MLT model. We find1438

that with more training steps performance gener-1439

ally improves, but improvements saturate after 8k1440

steps. We also see the peak of the graphs (best style1441

transfer performance) shift rightwards, indicating a1442

preference for higher λ values.1443

H Analysis Experiments1444

H.1 Style vectors from fstyle as style1445

classifiers1446

The Universal Rewriter models succeed in learning1447

an effective style space, useful for few-shot style1448

transfer. But can this metric space also act as a1449

style classifier? To explore this, we measure the co-1450

sine distance between the mean style vector of our1451

Model hi bn kn te

UR 79.1 69.7 66.2 67.1
UR-INDIC 80.7 74.3 68.2 72.2
DIFFUR-INDIC 68.0 73.8 67.0 70.4
DIFFUR-MLT 75.0 81.7 79.8 79.0

Table 12: style vector as a classifier, measuring the co-
sine similarity with informal exemplar vectors.

informal exemplars,21 and the style vectors derived 1452

by passing human-annotated formal/informal pairs 1453

(from our dataset of Section 5.1) through fstyle. We 1454

only consider pairs which had complete agreement 1455

among annotators. In Table 12 we see good agree- 1456

ment (68.2%-80.7%) between human annotations 1457

and the classifier derived from the metric space of 1458

the UR-INDIC model. Agreement is lower (67.0%- 1459

74.3%) for the DIFFUR-INDIC model, likely due 1460

to the stop gradient used in Section 4.2. With 1461

DIFFUR-MLT, agreement jumps back up to 75%- 1462

81.7% since gradients flow into the style extractor 1463

as well. 1464

H.2 Style Vector Analysis with Formal 1465

Exemplars Vectors 1466

In Appendix H.1, we saw that the metric vector 1467

space derived from the style encoder fstyle of var- 1468

ious models is an effective style classifier, using 1469

the informal exemplar vectors. In Table 13, we 1470

present a corresponding analysis using formal ex- 1471

emplar vectors. Most accuracy scores are close to 1472

50%, implying this setup is not a very effective 1473

style classifier. 1474

Model hi bn kn te

UR 56.6 60.0 61.6 57.6
UR-INDIC 59.5 60.6 52.6 44.8
DIFFUR-INDIC 58.5 58.3 59.5 49.7
DIFFUR-MLT 64.9 52.3 47.1 41.8

Table 13: style vector as a classifier, measuring the co-
sine similarity with formal exemplar vectors.

I Full Breakdown of Results 1475

A full breakdown of results by individual metrics, 1476

along with plots showing variation with change in 1477

21See Appendix D for the exemplar sentences. We found
the informal exemplars more effective than formal exemplars
for style classification; Appendix H.2 has a comparison.
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λ, is provided for — Hindi (Table 19, Figure 11),1478

Bengali (Table 20, Figure 12), Kannada (Table 21,1479

Figure 13), Telugu (Table 22, Figure 14), Gujarati1480

(Table 23, Figure 15).1481

In the baseline Hindi UR model, we notice high1482

COPY rates (45.4%), resulting in lower ACC scores.1483

COPY reduces in our proposed models (4.4% for1484

DIFFUR-MLT), which boosts overall performance.1485

We find the lowest COPY (and lowest 1-g) for mod-1486

els with +BT (1%), which is due to two steps of1487

translation. However, this lowers semantic similar-1488

ity (also seen in Table 3) lowering the overall score1489

compared to DIFFUR-MLT (60.0 vs 78.1 r-AGG).1490

J More Model Outputs1491

Please refer to Figure 8. In the main body, Figure 41492

has a few examples as well with detailed analysis.1493
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Input Generations Input English Translation

Complex
 कोटर्त के आदेशों की अनदेखी

Simple
कोटर्त के बातों को नजर अंदाज They ignored the court orders

श्री मोदी हन्दी बोलने वाले प्रधानमंत्री हैं और उन्होंने 
देश-वदेश में हन्दी का मान बढ़ाया है।

श्री मोदी हन्दी बोलने वाले पीएम िजन्होंने देश 
और वदेश में हन्दी बढ़ाई है।

Narendra Modi is a Hindi speaking 
prime minister who has popularized 
Hindi across the world

पुलस ने दली से पांच लोगों को गरफ्तार कया है। दली से पांच लोगों को पकड़ा The police arrested 5 people in Delhi

Simple
वह बॉम्बे हाईकोटर्त के सबसे सीनयर जज हैं।

Complex
वह बॉम्बे हाईकोटर्त के सवार्तधकृत न्यायाधीश हैं He/She is the most senior judge in the 

Bombay High Court.

मैंने उनके साथ बहुत करीब से काम कया है। मैंने उनके साथ बहुत नकटता से काम कया है। I’ve worked closely with them.

Informal
फ म इंडस् ट्री में करती है काम

Formal
वह फमी जगत में महत्वपूणर्त भूमका नभाती हैं He/She plays an important role in the 

film industry.

अरे भई, हम कोई मज़ाक़ नहीं कर रहे. प्रयजनों, हम कोई हँसी-खेल नहीं कर रहे हैं. Friends, this is not a joke.

तुम िजयो या मरो मुझ ेइससे कोई मतलब नहीं है. आप जीते या मरते हैं, इससे मुझ ेकोई मतलब 
नहीं है.

I don’t care whether you live or die!

उसके बाद तो जैसे बवाल मच गया. बाद में जैसे-जैसे हड़कंप मच गया After this there was a lot of chaos

और जोश व ख़रोश वाले समन्दर की और जोश और आशािन्वत समूह की In the sea of energy and passion

Formal
अभभावक भी अपनी लड़कयों को इन 
महावद्यालयों में प्रवेश दलवाने के इच्छुक हैं।

Informal
अभभावक भी अपनी लड़कयों को इन कॉलेजों में 
भेजने के इच्छुक हैं

Parents also wish to get their daughters 
admitted in these colleges.

दसूरों की बात प्यार से सुनने में यीशु मसीह एक 
बेहतरीन मसाल है।

दसूरे की बात सुनने में यीशु मसीह बेस्ट है Jesus Christ is the best example of an 
empathetic listener.

Positive Sentiment
यह होटल काफी अच्छा था 

Negative Sentiment
यह होटल बहुत बुरा था. This hotel was very good.

Negative Sentiment
पता नहीं चलता, लेकन फम के प्रत बेरूखी बढ़ती 
जाती है

Positive Sentiment
पता नहीं, लेकन फम के प्रत दशर्तकों की रुच 
बढ़ती जा रही है

You don’t realize, but your interest 
towards the film continually declines 
as you watch it

कायार्तलय के कमर्तचारी और प्रशासन बहुत खराब है कायार्तलय के कमर्तचारी और प्रशासनक प्रबंधन 
बहुत अच्छे हैं

Office staff and administrative 
management are very good

Monocode
यहां कोई मूलभूत सुवधाएं नहीं हैं।

Code-mixed
यहां कोई बुनयादी फीचसर्त नहीं हैं। This doesn’t even have basic features.

झपटमारी में शामल एक व्यिक्त को पकड़ा। गरोह के एक शख्स को रमांड पर लया One person involved in the prank was 
caught.

इन 11 अभयुक्तों में से कसी के नाम की जानकारी 
नहीं दी गई है.

इन 11 आरोपयों में से कसी का नाम लीक नहीं 
कया गया है।

The names of the 11 accused have not 
been revealed.

यह बारश कई प्रदेशों में हुई है. यह लॉकडाउन राज्य के कई हस्सों में हुआ है। It rained in several states.

शवसेना और बीजेपी में कोई अंतर नहीं है शवसेना और बीजेपी में कोई गुड न्यूज नहीं है। There’s no difference between Shiv 
Sena and the BJP.

De-anonymized
2019 लोकसभा चुनाव के लए प्रशांत कशोर ने शुरू 
कया काम

Anonymized
2019 लोकसभा चुनाव के लए PII ने शुरू कया 
काम

Prashant Kishore has started working 
for the 2019 Lok Sabha elections

इसके बाद आकर इंदरा गांधी ने स्वणर्त मंदर पर 
हमला कया

इसके बाद PII ने PII पर हमला कया After this, Indira Gandhi ordered an 
attack on the Golden Temple

नरंजन एक नतर्तकी, मिलका और अमीरचंद द्वारा 
गुमराह कया जाता है, जो उसके धन के बाद हैं।

नरंजन को एक PII, PII और PII द्वारा 
गुमराह कया जाता है, जो उसके धन के बाद हैं।

Niranjan is misled by a dancer, Mallika 
& Amirchand, who are after his wealth.

Figure 8: More qualitative examples of generations from our system (see Figure 4 for main table with qualitative
analysis). Red and blue colours indicate attribute-specific features, while golden text represents model errors.
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Model λmax/3 2λmax/3 λmax Overall
λ r-AGG INCR λ r-AGG INCR λ r-AGG INCR CALIB C-IN

UR (2021) 0.5 22.1 5.2 1.0 26.9 8.9 1.5 30.4 18.7 29.2 31.6
UR-INDIC 0.5 53.2 13.4 1.0 58.3 18.8 1.5 54.6 26.7 60.7 65.1
UR + BT 0.3 53.2 21.4 0.7 53.9 23.5 1.0 49.1 26.9 43.4 58.8
UR-INDIC + BT 0.3 57.3 22.9 0.7 59.4 24.6 1.0 60.0 26.7 38.7 56.0
DIFFUR 0.5 65.8 16.6 1.0 71.1 26.0 1.5 67.1 21.9 64.9 72.5
DIFFUR-INDIC 0.8 67.2 17.9 1.7 72.6 27.3 2.5 65.0 36.7 69.6 75.5
DIFFUR-MLT 0.8 56.6 11.3 1.7 72.6 18.1 2.5 78.1 29.9 69.0 71.8

Table 14: Evaluation of extent to which the magnitude of hindi formality transfer can be controlled with λ. We find
that DIFFUR-INDIC, DIFFUR-MLT are best at calibrating style change to input λ (CALIB, C-IN), giving the higher
style score increase (INCR) at λ = λmax (details of evaluation setup and metrics in Section 5.6, Appendix F).

Ablation COPY(↓) LANG SIM r-ACC a-ACC r-AGG a-AGG

DIFFUR-INDIC (hindi only) 2.0 97.0 78.4 89.8 39.7 67.3 24.6
- no paraphrase** 21.0 98.3 92.2 60.0 15.7 51.9 10.7
- no paraphrase (p, λ = 0.6, 3) 14.2 98.7 81.0 70.9 28.1 51.6 12.5
- no paraphrase semantic filtering 2.2 97.2 72.2 89.1 38.6 60.7 19.6
- no vector differences** 0.0 54.3 3.2 99.0 90.0 2.4 1.0
- no vector differences (λ = 0.5) 0.9 97.4 66.8 86.4 36.5 53.5 17.3
- mC4 instead of Samanantar 1.5 91.4 82.0 89.3 39.0 67.7 24.2
- mC4 + exemplar instead of target 5.5 23.8 82.3 77.2 32.3 13.8 3.2

Table 15: Ablation study on Hindi formality transfer validation set using beam size of 4 and λ = 2.0 unless the
optimal hyperparameters were different (marked by **). As shown by the overall a-AGG scores, removing any
component of our design leads to an overall performance drop, sometimes significantly. For a detailed description
of analysis and results, see Appendix G.1. For detailed metric descriptions, see Section 5.

Decoding COPY(↓) 1-g(↓) LANG SIM r-ACC a-ACC r-AGG a-AGG

beam 4 1.8 52.7 95.8 73.3 94.7 51.6 66.2 32.3
beam 1 1.2 47.4 92.3 61.7 95.7 62.5 55.8 31.4

top-p 0.6 1.0 45.3 91.5 56.6 96.2 65.9 51.3 29.9
top-p 0.75 0.9 43.1 90.3 52.4 96.3 69.0 47.3 28.2
top-p 0.9 0.7 40.4 89.4 46.8 96.6 71.7 42.4 26.5

Table 16: Automatic evaluation of different decoding algorithms (top-p sampling and beam search) on the DIFFUR-
MLT model for Hindi formality transfer (validation set) using λ = 3.0. As expected, output diversity (1-g, COPY)
and style accuracy (r-ACC, a-ACC) improves as we move down the table, but compromise semantic preservation
(SIM), bringing the overall performance (r-AGG, a-AGG) down. Also see Figure 9 for a comparison across λ values,
and Section 5 for detailed metric descriptions.

Model Hindi Bengali Kannada Telugu Gujarati
r-AGG a-AGG r-AGG a-AGG r-AGG a-AGG r-AGG a-AGG r-AGG a-AGG

UR (2021) 34.5 13.4 33.8 9.0 26.8 8.8 24.3 10.7 25.6 5.9
UR + BT 61.6 24.2 65.6 22.8 48.8 16.0 48.7 17.6 56.3 15.1
DIFFUR 79.4 30.3 81.7 36.0 79.0 43.4 79.7 38.0 0.5 0.2
UR-INDIC 62.0 23.9 69.3 29.3 64.6 22.2 65.0 25.8 59.0 13.8
UR-INDIC + BT 68.0 28.1 73.5 33.3 72.6 29.7 71.6 31.4 68.4 21.7
DIFFUR-INDIC 80.0 32.4 80.0 32.3 79.9 41.4 78.8 37.0 38.9 16.2
DIFFUR-MLT 85.8 45.2 86.0 48.3 86.9 54.4 86.1 51.7 78.8 41.3

Table 17: Test set performance across languages for a smaller LaBSE semantic similarity threshold of 0.65.
Due to the more relaxed threshold, absolute numbers compared to Table 1 are higher. Trends remain similar, with
the DIFFUR and INDIC variants outperforming other competing methods.
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Figure 9: Variation in Hindi formality transfer (validation set) performance vs λ with change in decoding scheme,
for the DIFFUR-MLT model. The plots show overall style transfer performance, using the r-AGG (left) and a-
AGG (right) metrics from Section 5.5. Beam search with beam size 4 performs best, see Table 16 for an individual
metric breakdown while keeping λ = 3.0.
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Figure 10: Variation in Hindi formality transfer validation set performance with change in number of training steps
for the DIFFUR-MLT model. The plots show overall style transfer performance, using the r-AGG (top-left) and
a-AGG (top-right) metrics from Section 5.5. With more training steps performance seems to improve and the peak
of the graph shifts towards the right (a preference towards higher scale values). We also see more training steps
leads to better controllability (bottom plot, closer to Y-axis is better), but only marginal gains after 6k steps.

23



Model Hindi Bengali Kannada Telugu Gujarati
r-AGG a-AGG r-AGG a-AGG r-AGG a-AGG r-AGG a-AGG r-AGG a-AGG

UR (2021) 24.2 6.6 24.2 4.8 21.5 6.0 19.1 5.8 19.4 3.6
UR + BT 40.0 10.7 31.7 8.1 21.2 5.1 19.1 4.8 26.1 4.4
DIFFUR 57.1 13.0 59.6 13.0 54.5 13.8 52.8 12.8 0.2 0.0
UR-INDIC 49.6 13.1 54.6 12.7 50.0 11.4 48.1 11.2 45.9 6.8
UR-INDIC + BT 43.7 12.9 33.9 10.2 31.9 7.8 29.4 7.8 34.0 7.4
DIFFUR-INDIC 59.2 14.9 63.8 15.6 58.9 16.1 55.2 14.4 31.7 8.0
DIFFUR-MLT 64.8 17.9 69.8 22.0 69.3 23.5 67.5 20.6 64.0 18.2

Table 18: Test set performance across languages for a larger LaBSE semantic similarity threshold of 0.85. Due
to the stricter threshold, absolute numbers compared to Table 1 are lower, however trends are similar, with the
DIFFUR and INDIC variants outperforming other competing methods.

Model λ COPY(↓) 1-g(↓) LANG SIM r-ACC a-ACC r-AGG a-AGG

UR (Garcia et al., 2021) 1.5 45.4 77.5 98.0 84.8 45.8 22.9 30.4 10.4
UR-INDIC 1.0 10.4 70.7 95.0 93.8 67.2 23.3 58.3 18.6

UR + BT 0.5 0.8 44.2 92.9 85.2 72.3 27.8 54.2 17.8
UR-INDIC + BT 1.0 1.1 49.5 95.9 85.1 76.3 33.1 60.0 22.2

DIFFUR 1.0 4.7 61.6 97.7 89.7 82.4 31.0 71.1 22.9
DIFFUR-INDIC 1.5 5.3 63.7 98.0 91.9 81.6 30.5 72.5 23.7

2.0 3.4 57.5 98.3 84.8 86.4 36.8 70.6 24.0
DIFFUR-MLT 2.5 4.4 61.9 97.2 89.7 89.7 34.0 78.1 27.5

3.0 2.0 52.5 95.9 72.1 94.1 51.9 64.8 32.2

Table 19: Performance breakdown of Hindi formality transfer by individual metrics described in Section 5.
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Figure 11: Variation in Hindi formality transfer test set performance & control for different models (see Table 19
for a individual metric breakdown of the models at the best performing λ). The plots show overall style transfer
performance, using the r-AGG (top-left) and a-AGG (top-right) metrics from Section 5.5. We see the DIFFUR models
outperform other systems across the λ range, and get best performance with the DIFFUR-MLT variant. We also see
that DIFFUR models, especially with DIFFUR-MLT, lead to better style transfer control (bottom plot, closer to x = 1
is better), giving large style variation with λ without loss in semantics (X-axis).
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Model λ COPY(↓) 1-g(↓) LANG SIM r-ACC a-ACC r-AGG a-AGG

UR (Garcia et al., 2021) 1.5 21.5 69.1 99.9 87.3 42.4 15.6 30.4 7.2
UR-INDIC 1.0 4.4 58.9 99.0 95.7 69.8 19.5 65.5 17.3

1.5 2.4 47.5 97.6 79.8 80.0 37.4 59.6 22.3

UR + BT 0.5 0.2 30.4 97.8 80.6 71.8 22.3 55.6 15.0
1.0 0.1 27.0 95.4 73.6 77.6 29.6 53.5 16.9

UR-INDIC + BT 1.0 0.4 34.9 99.8 80.6 78.3 31.4 61.1 22.0

DIFFUR 1.0 2.1 50.6 99.9 91.6 80.8 25.2 72.7 20.9
1.5 1.1 40.6 99.9 75.8 89.1 39.7 65.8 25.2

DIFFUR-INDIC 1.5 2.0 53.1 99.9 94.2 80.7 24.6 75.4 21.8
2.5 0.9 41.4 99.9 75.6 86.1 36.9 64.6 24.3

DIFFUR-MLT 2.5 1.8 49.5 99.9 91.9 87.9 39.1 80.0 33.8
3.0 1.0 40.0 99.1 73.0 92.1 56.5 65.3 35.0

Table 20: Performance breakdown of Bengali formality transfer by individual metrics described in Section 5.
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Figure 12: Variation in Bengali formality transfer test set performance & control for different models (see Table 20
for a individual metric breakdown of the models at the best performing λ). The plots show overall style transfer
performance, using the r-AGG (top-left) and a-AGG (top-right) metrics from Section 5.5. We see the DIFFUR models
outperform other systems across the λ range, and get best performance with the DIFFUR-MLT variant. We also see
that DIFFUR models, especially with DIFFUR-MLT, lead to better style transfer control (bottom plot, closer to x = 1
is better), giving large style variation with λ without loss in semantics (X-axis).
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Model λ COPY(↓) 1-g(↓) LANG SIM r-ACC a-ACC r-AGG a-AGG

UR (Garcia et al., 2021) 1.5 52.0 86.8 99.9 95.0 29.9 11.2 25.5 8.0
UR-INDIC 1.0 8.6 62.9 98.3 94.5 67.0 20.8 61.3 17.8

UR + BT 0.5 0.3 26.0 77.8 75.5 67.2 23.3 39.8 11.9
UR-INDIC + BT 0.5 1.6 40.6 99.9 82.3 73.9 26.8 59.2 19.1

1.0 1.4 37.7 99.8 76.8 78.3 32.8 58.1 21.0

DIFFUR 1.0 3.0 47.4 99.8 87.9 80.3 30.5 69.2 23.6
2.0 2.2 39.6 99.9 73.0 87.8 48.3 62.1 29.1

DIFFUR-INDIC 1.5 2.9 50.3 99.9 91.5 81.2 32.2 73.1 26.4
2.0 2.3 45.2 99.9 82.7 85.1 42.3 68.5 29.3

DIFFUR-MLT 2.0 5.4 59.6 100 97.5 82.9 28.9 80.4 27.5
3.0 2.1 42.7 99.1 71.7 92.6 63.4 64.5 39.4

Table 21: Performance breakdown of Kannada formality transfer by individual metrics described in Section 5.
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Figure 13: Variation in Kannada formality transfer test set performance & control for different models (see Table 21
for a individual metric breakdown of the models at the best performing λ). The plots show overall style transfer
performance, using the r-AGG (top-left) and a-AGG (top-right) metrics from Section 5.5. We see the DIFFUR models
outperform other systems across the λ range, and get best performance with the DIFFUR-MLT variant. We also see
that DIFFUR models, especially with DIFFUR-MLT, lead to better style transfer control (bottom plot, closer to x = 1
is better), giving large style variation with λ without loss in semantics (X-axis).
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Model λ COPY(↓) 1-g(↓) LANG SIM r-ACC a-ACC r-AGG a-AGG

UR (2021) 1.5 51.3 87.0 100 96.3 26.3 10.1 22.8 7.5
2.0 35.0 68.2 99.9 73.0 45.4 28.6 20.7 8.4

UR-INDIC 1.0 10.4 64.5 98.8 94.3 65.6 20.2 59.8 16.7
1.5 5.9 53.5 97.3 80.0 74.9 33.1 55.9 19.9

UR + BT 0.5 0.2 26.3 82.4 73.4 65.6 23.4 38.4 11.3
1.0 0.1 19.8 74.9 64.7 71.2 31.6 33.1 11.6

UR-INDIC + BT 0.5 0.6 39.2 99.9 79.6 73.5 26.2 56.8 17.9
1.0 0.5 36.1 99.7 74.0 78.5 35.9 56.0 22.2

DIFFUR 1.0 1.7 46.0 99.9 87.9 80.5 27.6 69.4 21.5
2.5 0.9 36.0 99.8 68.4 90.2 47.2 59.9 27.1

DIFFUR-INDIC 1.0 2.4 50.1 99.9 91.7 78.7 28.7 71.0 23.7
1.5 1.4 44.6 99.9 83.6 83.6 38.4 68.2 27.1

DIFFUR-MLT 2.0 3.8 55.8 99.9 95.7 84.0 31.2 79.8 28.6
2.5 1.8 47.0 99.5 85.8 90.1 48.4 76.0 37.9

Table 22: Performance breakdown of Telugu formality transfer by individual metrics described in Section 5.
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Figure 14: Variation in Telugu formality transfer test set performance & control for different models (see Table 22
for a individual metric breakdown of the models at the best performing λ). The plots show overall style transfer
performance, using the r-AGG (top-left) and a-AGG (top-right) metrics from Section 5.5. We see the DIFFUR models
outperform other systems across the λ range, and get best performance with the DIFFUR-MLT variant. We also see
that DIFFUR models, especially with DIFFUR-MLT, lead to better style transfer control (bottom plot, closer to x = 1
is better), giving large style variation with λ without loss in semantics (X-axis).
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Model λ COPY(↓) 1-g(↓) LANG SIM r-ACC a-ACC r-AGG a-AGG

UR (2021) 1.5 62.6 89.1 99.9 93.1 30.2 9.3 23.7 5.0
UR-INDIC 1.0 17.5 73.6 98.4 96.8 57.6 11.7 54.0 9.9

1.5 10.9 62.7 96.9 85.4 67.0 19.2 53.0 10.7

UR + BT 0.5 0.5 34.3 87.3 77.6 69.1 17.8 46.3 9.8
1.0 0.3 26.5 78.8 67.6 74.8 27.2 39.1 10.4

UR-INDIC + BT 0.5 1.9 47.4 99.9 87.1 68.1 22.0 57.7 16.8

DIFFUR 0.5 0.0 5.7 1.2 81.3 73.2 25.7 0.4 0.2
DIFFUR-INDIC 0.5 1.1 34.7 54.9 95.6 68.6 18.6 37.4 9.0

1.5 0.4 24.2 46.0 74.7 78.5 40.0 29.2 13.0
DIFFUR-MLT 2.0 7.7 65.4 98.6 96.2 79.3 25.0 75.0 22.3

2.5 4.5 54.6 95.1 85.5 86.0 45.8 69.8 33.1

Table 23: Performance breakdown of Gujarati formality transfer by individual metrics described in Section 5.
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Figure 15: Variation in Gujarati formality transfer test set performance & control for different models (see Table 23
for a individual metric breakdown of the models at the best performing λ). The plots show overall style transfer
performance, using the r-AGG (top-left) and a-AGG (top-right) metrics from Section 5.5. Note that Gujarati is
a zero-shot language for DIFFUR models — no Gujarati paraphrase data was seen during training. We see that
while the vanilla DIFFUR model performs poorly, the DIFFUR-INDIC is competitive with baselines and the DIFFUR-
MLT variant significantly outperforms other systems. We also see that the DIFFUR-MLT variant lead to better style
transfer control (bottom plot, closer to x = 1 is better), giving style variation with λ without loss in semantics
(X-axis).
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Figure 16: Our crowdsourcing interface on Task Mate, used to build our formality evaluation datasets (Section 5.1)
and conduct human evaluations (Section 5.7). The first row shows our landing page and instruction set derived
from our conversations with professional linguists. The second row shows our qualification questions for formality
classification, and the third row shows templates for the two questions asked to crowdworkers per pair.
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