
Under review as a conference paper at ICLR 2024

G4SATBENCH: BENCHMARKING AND ADVANCING
SAT SOLVING WITH GRAPH NEURAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Graph neural networks (GNNs) have recently emerged as a promising approach
for solving the Boolean Satisfiability Problem (SAT), offering potential alterna-
tives to traditional backtracking or local search SAT solvers. However, despite the
growing volume of literature in this field, there remains a notable absence of a uni-
fied dataset and a fair benchmark to evaluate and compare existing approaches. To
address this crucial gap, we present G4SATBench, the first benchmark study that
establishes a comprehensive evaluation framework for GNN-based SAT solvers.
In G4SATBench, we meticulously curate a large and diverse set of SAT datasets
comprising 7 problems with 3 difficulty levels and benchmark a broad range of
GNN models across various prediction tasks, training objectives, and inference
algorithms. To explore the learning abilities and comprehend the strengths and
limitations of GNN-based SAT solvers, we also compare their solving processes
with the heuristics in search-based SAT solvers. Our empirical results provide
valuable insights into the performance of GNN-based SAT solvers and further
suggest that existing GNN models can effectively learn a solving strategy akin to
greedy local search but struggle to learn backtracking search in the latent space.

1 INTRODUCTION

The Boolean Satisfiability Problem (SAT) is a crucial problem at the nexus of computer science,
logic, and operations research, which has garnered significant attention over the past five decades.
To solve SAT instances efficiently, modern SAT solvers have been developed with backtracking
(especially with conflict-driven clause learning, a.k.a. CDCL) or local search (LS) heuristics that
effectively exploit the instance’s structure and traverse its vast search space (Biere et al., 2009).
However, designing such heuristics remains a highly non-trivial and time-consuming task, with a
lack of significant improvement in recent years. Conversely, the recent rapid advances in graph neu-
ral networks (GNNs) (Li et al., 2016; Kipf & Welling, 2017; Xu et al., 2019) have shown impressive
performances in analyzing structured data, offering a promising opportunity to enhance or even re-
place modern SAT solvers. As such, there have been massive efforts to leverage GNNs to solve SAT
over the last few years (Holden et al., 2021; Guo et al., 2022).

Despite the recent progress, the question of how (well) GNNs can solve SAT remains unanswered.
One of the main reasons for this is the variety of learning objectives and usage scenarios employed in
existing work, making it difficult to evaluate different methods in a fair and comprehensive manner.
For example, NeuroSAT (Selsam et al., 2019) predicts satisfiability, NeuroCore (Selsam & Bjørner,
2019) classifies unsat-core variables, QuerySAT (Ozolins et al., 2022) constructs a satisfying assign-
ment, and NSNet (Li & Si, 2022) predicts marginal distributions of all satisfying solutions to solve
the SAT problem. Moreover, most previous research has experimented on different datasets that vary
in a range of settings (e.g., data distribution, instance size, and dataset size), which leads to a lack of
unified and standardized datasets for training and evaluation. Additionally, some work (Amizadeh
et al., 2019b; Shi et al., 2022; Yan et al., 2023) has noted the difficulty of re-implementing prior ap-
proaches as baselines, rendering it arduous to draw consistent conclusions about the performance of
peer methods. All of these issues impede the development of GNN-based solvers for SAT solving.

To systematically quantify the progress in this field and facilitate rapid, reproducible, and generaliz-
able research, we propose G4SATBench, the first comprehensive benchmark study for SAT solving
with GNNs. G4SATBench is characterized as follows:

1

Under review as a conference paper at ICLR 2024

• First, we construct a large and diverse collection of SAT datasets that includes instances from
distinct sources and difficulty levels. Specifically, our benchmark consists of 7 different datasets
from 3 benchmark families, including random instances, pseudo-industrial instances, and combi-
natorial problems. It not only covers a wide range of prior datasets but also introduces 3 levels of
difficulty for each dataset to enable fine-grained analyses.

• Second, we re-implement various GNN-based SAT solvers with unified interfaces and configura-
tion settings, establishing a general evaluation protocol for fair and comprehensive comparisons.
Our framework allows for evaluating different GNN models in SAT solving with various pre-
diction tasks, training objectives, and inference algorithms, encompassing the diverse learning
frameworks employed in the existing literature.

• Third, we present baseline results and conduct thorough analyses of GNN-based SAT solvers,
providing a detailed reference of prior work and laying a solid foundation for future research.
Our evaluations assess the performances of different choices of GNN models (e.g., graph con-
structions, message-passing schemes) with particular attention to some critical parameters (e.g.,
message-passing iterations), as well as their generalization ability across different distributions.

• Lastly, we conduct a series of in-depth experiments to explore the learning abilities of GNN-
based SAT solvers. Specifically, we compare the training and solving processes of GNNs with the
heuristics employed in both CDCL and LS-based SAT solvers. Our experimental results reveal
that GNNs tend to develop a solving heuristic similar to greedy local search to find a satisfying
assignment but fail to effectively learn the CDCL heuristic in the latent space.

We believe that G4SATBench will enable the research community to make significant strides in
understanding the capabilities and limitations of GNNs for solving SAT and facilitate further re-
search endeavors in this domain. Our codebase is available at https://anonymous.4open.
science/r/G4SATBench.

2 RELATED WORK

SAT solving with GNNs. Existing GNN-based SAT solvers can be broadly categorized into two
branches (Holden et al., 2021; Guo et al., 2022): standalone neural solvers and neural-guided
solvers. Standalone neural solvers utilize GNNs to solve SAT instances directly. For example, a
stream of research (Bünz & Lamm, 2017; Selsam et al., 2019; Jaszczur et al., 2020; Cameron et al.,
2020; Shi et al., 2022) focuses on predicting the satisfiability of a given formula, while several al-
ternative approaches (Amizadeh et al., 2019a;b; Ozolins et al., 2022; Li et al., 2022; Yan et al.,
2023) aim to construct a satisfying assignment. Neural-guided solvers, on the other hand, integrate
GNNs with modern SAT solvers, trying to improve their search heuristics with the prediction of
GNNs. These methods typically train GNN models using supervised learning on some tasks such
as unsat-core variable prediction (Selsam & Bjørner, 2019; Wang et al., 2021), satisfying assign-
ment prediction (Zhang et al., 2020), glue variable prediction (Han, 2020), and assignment marginal
prediction (Li & Si, 2022), or through reinforcement learning (Yolcu & Póczos, 2019; Kurin et al.,
2020) by modeling the entire search procedure as a Markov decision process. Despite the rich
literature on SAT solving with GNNs, there is no benchmark study to evaluate and compare the
performance of these GNN models. We hope the proposed G4SATBench would address this gap.

SAT datasets. Several established SAT benchmarks, including the prestigious SATLIB (Hoos &
Stützle, 2000) and the SAT Competitions over the years, have provided a variety of practical in-
stances to assess the performance of modern SAT solvers. Regrettably, these datasets are not partic-
ularly amenable for GNNs to learn from, given their relatively modest scale (less than 100 instances
for a specific domain) or overly extensive instances (exceeding 10 million variables and clauses).
To address this issue, researchers have turned to synthetic SAT instance generators (Giráldez-Cru &
Levy, 2015; 2017; Lauria et al., 2017; Selsam et al., 2019), which allow for the creation of a flexible
number of instances with customizable settings. However, most of the existing datasets generated
from these sources are limited to a few domains (less than 3 generators), small in size (less than
10k instances), or easy in difficulty (less than 40 variables within an instance), and there is no stan-
dardized dataset for evaluation. In G4SATBench, we include a variety of synthetic generators with
carefully selected configurations, aiming to construct a broad collection of SAT datasets that are
highly conducive for training and evaluating GNNs.

2

https://anonymous.4open.science/r/G4SATBench
https://anonymous.4open.science/r/G4SATBench

Under review as a conference paper at ICLR 2024

Random
Problems

SR

3-SAT

Pseudo-
industrial
Problems

CA

PS

Combinatorial
Problems

𝑘-Clique

𝑘-Domset

𝑘-Vercov

Datasets

LCG*

VCG*

Graphs

NeuroSAT

GCN

GGNN

GIN

Models

Satisfiability

Satisfying
Assignment

Unsat-core
Variable

Tasks

Unsupervised

Supervised

Training
Objectives

Multiple
Predictions

Standard
Readout

Clustering
Decoding

Inference
Algorithms

Figure 1: Framework overview of G4SATBench.

3 PRELIMINARIES

The SAT problem. In propositional logic, a Boolean formula is constructed from Boolean vari-
ables and logical operators such as conjunctions (∧), disjunctions (∨), and negations (¬). It is typi-
cal to represent Boolean formulas in conjunctive normal form (CNF), expressed as a conjunction of
clauses, where each clause is a disjunction of literals, which can be either a variable or its negation.
Given a CNF formula, the SAT problem is to determine if there exists an assignment of boolean
values to its variables such that the formula evaluates to true. If this is the case, the formula is called
satisfiable; otherwise, it is unsatisfiable. For a satisfiable instance, one is expected to construct a
satisfying assignment to prove its satisfiability. On the other hand, for an unsatisfiable formula, one
can find a minimal subset of clauses whose conjunction is still unsatisfiable. Such a set of clauses is
termed the unsat core, and variables in the unsat core are referred to as unsat-core variables.

Graph representations of CNF formulas. Traditionally, a CNF formula can be represented using
4 types of graphs (Biere et al., 2009): Literal-Clause Graph (LCG), Variable-Clause Graph (VCG),
Literal-Incidence Graph (LIG), and Variable-Incidence Graph (VIG). The LCG is a bipartite graph
with literal and clause nodes connected by edges indicating the presence of a literal in a clause. The
VCG is formed by merging the positive and negative literals of the same variables in LCG. The LIG,
on the other hand, only consists of literal nodes, with edges indicating co-occurrence in a clause.
Lastly, the VIG is derived from LIG using the same merging operation as VCG.

4 G4SATBENCH: A BENCHMARK STUDY ON GNNS FOR SAT SOLVING

The goal of G4SATBench is to establish a general framework that enables comprehensive compar-
isons and evaluations of various GNN-based SAT solvers. In this section, we will delve into the
details of G4SATBench, including its datasets, GNN models, prediction tasks, as well as training
and testing methodologies. The overview of the G4SATBench framework is shown in Figure 1.

4.1 DATASETS

G4SATBench is built on a diverse set of synthetic CNF generators. It currently consists of 7 datasets
sourced from 3 distinct domain areas: random problems, pseudo-industrial problems, and combina-
torial problems. Specifically, we utilize the SR generator in NeuroSAT (Selsam et al., 2019) and the
3-SAT generator in CNFGen (Lauria et al., 2017) to produce random CNF formulas. For pseudo-
industrial problems, we employ the Community Attachment (CA) model (Giráldez-Cru & Levy,
2015) and the Popularity-Similarity (PS) model (Giráldez-Cru & Levy, 2017), which generate syn-
thetic instances that exhibit similar statistical features, such as the community and the locality, to
those observed in real-world industrial SAT instances. For combinatorics, we resort to 3 synthetic
generators in CNFGen (Lauria et al., 2017) to create SAT instances derived from the translation of
k-Clique, k-Dominating Set, and k-Vertex Cover problems.

In addition to the diversity of datasets, G4SATBench offers distinct difficulty levels for all datasets
to enable fine-grained analyses. These levels include easy, medium, and hard, with the latter rep-
resenting more complex problems with increased instance sizes. For example, the easy SR dataset
contains instances with 10 to 40 variables, the medium SR dataset contains formulas with 40 to 200
variables, and the hard SR dataset consists of formulas with variables ranging from 200 to 400. For

3

Under review as a conference paper at ICLR 2024

each easy and medium dataset, we generate 80k pairs of satisfiable and unsatisfiable instances for
training, 10k pairs for validation, and 10k pairs for testing. For each hard dataset, we produce 10k
testing pairs. It is also worth noting that the parameters for our synthetic generators are meticulously
selected to avoid generating trivial cases. For instance, we produce random 3-SAT formulas at the
phase-transition region where the relationship between the number of clauses (m) and variables (n)
is m = 4.258n+58.26n−2/3 (Crawford & Auton, 1996), and utilize the v vertex Erdős-Rényi graph

with an edge probability of p =
(
v
k

)−1/(v2) to generate k-Clique problems, making the expected
number of k-Cliques in a graph equals 1 (Bollobás & Erdös, 1976). To provide a detailed character-
ization of our generated datasets, we compute several statistics of the SAT instances across difficulty
levels in G4SATBench. Please refer to Appendix A for more information about the datasets.

4.2 GNN BASELINES

		𝑐! 		𝑐" 		𝑐#

		𝑥! 		𝑥" 		𝑥#

VCG*

		𝑐! 		𝑐" 		𝑐#

		𝑥! 	¬𝑥! 		𝑥" 	¬𝑥" 		𝑥# 	¬𝑥#

LCG*

Figure 2: LCG* and VCG* of the CNF for-
mula (x1∨¬x2)∧(x1∨x3)∧(¬x1∨x2∨x3).

Graph constructions. It is important to note that
traditional graph representations of a CNF formula
often lack the requisite details for optimally con-
structing GNNs. Specifically, the LIG and VIG ex-
clude clause-specific information, while the LCG
and VCG fail to differentiate between positive and
negative literals of the same variable. To address
these limitations, existing approaches typically build
GNN models on the refined versions of the LCG and
VCG encodings. In the LCG, a new type of edge is added between each literal and its negation,
while the VCG is modified by using two types of edges to indicate the polarities of variables within
a clause. These modified encodings are termed the LCG* and VCG* respectively, and an example of
them is shown in Figure 2. It is also worth noting alternative graph encodings like the And-Inverter-
Graph (AIG), can be applied for SAT instances that are not in CNF. However, such representations
are specialized to specific applications (like CircuitSAT) and are not designed for general purposes.
Given this specialization, we choose to keep them outside the scope of the current G4SATBench.

Message-passing schemes. G4SATBench enables performing various hetergeneous message-
passage algorithms between neighboring nodes on the LCG* or VCG* encodings of a CNF formula.
For the sake of illustration, we will take GNN models on the LCG* as an example. We first define a
d-dimensional embedding for every literal node and clause node, denoted by hl and hc respectively.
Initially, all these embeddings are assigned to two learnable vectors h0

l and h0
c , depending on their

node types. At the k-th iteration of message passing, these hidden representations are updated as:

h(k)
c = UPD

(
AGG
l∈N (c)

({
MLP

(
h
(k−1)
l

)})
, h(k−1)

c

)
,

h
(k)
l = UPD

(
AGG
c∈N (l)

({
MLP

(
h(k−1)
c

)})
, h

(k−1)
¬l , h

(k−1)
l

)
,

(1)

where N (·) denotes the set of neighbor nodes, MLP is the multi-layer perception, UPD(·) is the up-
date function, and AGG(·) is the aggregation function. Most GNN models on LCG* use Equation 1
with different choices of the update function and aggregation function. For instance, NeuroSAT em-
ploys LayerNormLSTM (Ba et al., 2016) as the update function and summation as the aggregation
function. In G4SATBench, we provide a diverse range of GNN models, including NeuroSAT (Sel-
sam et al., 2019), Graph Convolutional Network (GCN) (Kipf & Welling, 2017), Gated Graph Neu-
ral Network (GGNN) (Li et al., 2016), and Graph Isomorphism Network (GIN) (Xu et al., 2019), on
the both LCG* and VCG*. More details of these GNN models are included in Appendix B.

4.3 SUPPORTED TASKS, TRAINING AND TESTING SETTINGS

Prediction tasks. In G4SATBench, we support three essential prediction tasks for SAT solving:
satisfiability prediction, satisfying assignment prediction, and unsat-core variable prediction. These
tasks are widely used in both standalone neural solvers and neural-guided solvers. Technically, we
model satisfiability prediction as a binary graph classification task, where 1/0 denotes the given SAT
instance ϕ is satisfiable/unsatisfiable. Here, we take GNN models on the LCG* as an example. After

4

Under review as a conference paper at ICLR 2024

T message passing iterations, we obtain the graph embedding by applying mean pooling on all literal
embeddings, and then predict the satisfiability using an MLP followed by the sigmoid function σ:

yϕ = σ
(

MLP
(

MEAN
(
{h(T)

l , l ∈ ϕ}
)))

. (2)

For satisfying assignment prediction and unsat-core variable prediction, we formulate them as binary
node classification tasks, predicting the label for each variable in the given CNF formula ϕ. In the
case of GNNs on the LCG*, we concatenate the embeddings of each pair of literals hl and h¬l to
construct the variable embedding, and then readout using an MLP and the sigmoid function σ:

yv = σ
(

MLP
([

h
(T)
l , h

(T)
¬l

]))
. (3)

Training objectives. To train GNN models on the aforementioned tasks, one common approach
is to minimize the binary cross-entropy loss between the predictions and the ground truth labels. In
addition to supervised learning, G4SATBench supports two unsupervised training paradigms for sat-
isfying assignment prediction (Amizadeh et al., 2019a; Ozolins et al., 2022). The first approach aims
to differentiate and maximize the satisfiability value of a CNF formula (Amizadeh et al., 2019a). It
replaces the ¬ operator with the function N(xi) = 1 − xi and uses smooth max and min functions
to replace the ∨ and ∧ operators. The smooth max and min functions are defined as follows:

Smax(x1, x2, . . . , xd) =

∑d
i=1 xi · exi/τ∑d

i=1 e
xi/τ

, Smin(x1, x2, . . . , xd) =

∑d
i=1 xi · e−xi/τ∑d

i=1 e
−xi/τ

, (4)

where τ ≥ 0 is the temperature parameter. Given a predicted assignment x, we apply the smoothing
logical operators and substitute variables in a formula ϕ with the corresponding values from x to
calculate its satisfiability value S(x). Then we can minimize the following loss function:

Lϕ(x) =
(1− S(x))

κ

(1− S(x))
κ
+ S(x)κ

. (κ ≥ 1 is a predefined constant) (5)

The second unsupervised loss is defined as follows (Ozolins et al., 2022):

Vc(x) = 1−
∏
i∈c+

(1− xi)
∏
i∈c−

xi, Lϕ(x) = − log
(∏
c∈ϕ

Vc(x)
)
= −

∑
c∈ϕ

log (Vc(x)) , (6)

where c+ and c− are the sets of variables that occur in the clause c in positive and negative form
respectively. Note that these two losses reach the minimum only when the prediction x is a satisfying
assignment, thus minimizing such losses could help to construct a possible satisfying assignment.

Inference algorithms. Beyond the standard readout process like training, G4SATBench offers two
alternative inference algorithms for satisfying assignment prediction (Selsam et al., 2019; Amizadeh
et al., 2019b). The first method performs 2-clustering on the literal embeddings to obtain two centers
∆1 and ∆2 and then partitions the positive and negative literals of each variable into distinct groups
based on the predicate ||xi −∆1||2 + ||¬xi −∆2||2 < ||xi −∆2||2 + ||¬xi −∆1||2 (Selsam et al.,
2019). This allows the construction of two possible assignments by mapping one group of literals
to true. The second approach is to employ the readout function at each iteration of message passing,
resulting in multiple assignment predictions for a given instance (Amizadeh et al., 2019b).

Evaluation metrics. For satisfiability prediction and unsat-core variable prediction, we report the
classification accuracy of each GNN model in G4SATBench. For satisfying assignment prediction,
we report the solving accuracy of the predicted assignments. If multiple assignments are predicted
for a SAT instance, the instance is considered solved if any of the predictions satisfy the formula.

5 BENCHMARKING EVALUATION ON G4SATBENCH

In this section, we present the benchmarking results of G4SATBench. To ensure a fair comparison,
we conduct a grid search to tune the hyperparameters of each GNN baseline. The best checkpoint
for each GNN model is selected based on its performance on the validation set. To mitigate the
impact of randomness, we use 3 different random seeds to repeat the experiment in each setting
and report the average performance. Each experiment is performed on a single RTX8000 GPU and
16 AMD EPYC 7502 CPU cores, and the total time cost is approximately 8,000 GPU hours. For
detailed experimental setup and hyperparameters, please refer to Appendix C.1.

5

Under review as a conference paper at ICLR 2024

5.1 SATISFIABILITY PREDICTION

Evaluation on the same distribution. Table 1 shows the benchmarking results of each GNN
baseline when trained and evaluated on datasets possessing identical distributions. All GNN mod-
els exhibit strong performance across most easy and medium datasets, except for the medium SR
dataset. This difficulty can be attributed to the inherent characteristic of this dataset, which includes
satisfiable and unsatisfiable pairs of medium-sized instances distinguished by just a single differing
literal. Such a subtle difference presents a substantial challenge for GNN models in satisfiability
classification. Among all GNN models, the different graph constructions do not seem to have a
significant impact on the results, and NeuroSAT (on LCG*) and GGNN (on VCG*) achieve the best
overall performance.

Table 1: Results on the datasets of the same distribution.

Graph Method Easy Datasets Medium Datasets

SR 3-SAT CA PS k-Clique k-Domset k-Vercov SR 3-SAT CA PS k-Clique k-Domset k-Vercov

LCG*

NeuroSAT 96.00 96.33 98.83 96.59 97.92 99.77 99.99 78.02 84.90 99.57 96.81 89.39 99.67 99.80
GCN 94.43 94.47 98.79 97.53 98.24 99.59 99.98 69.39 82.67 99.53 96.16 85.72 99.16 99.74
GGNN 96.36 95.70 98.81 97.47 98.80 99.77 99.97 71.44 83.45 99.50 96.21 81.20 99.69 99.83
GIN 95.78 95.37 98.14 96.98 97.60 99.71 99.97 70.54 82.80 99.49 95.80 83.87 99.61 99.62

VCG*
GCN 93.19 94.92 97.82 95.79 98.72 99.54 99.99 66.35 83.75 99.49 95.48 82.99 99.42 99.89
GGNN 96.75 96.25 98.77 96.44 98.88 99.68 99.98 77.12 85.11 99.57 96.48 83.63 99.62 98.92
GIN 96.04 95.71 98.47 96.95 97.33 99.59 99.98 73.56 85.26 99.49 96.55 89.41 99.38 99.80

Evaluation across different distributions. To assess the generalization ability of GNN models,
we evaluate the performance of NeuroSAT (on LCG*) and GGNN (on VCG*) across different
datasets and difficulty levels. As shown in Figure 3 and Figure 4, NeuroSAT and GGNN struggle
to generalize effectively to datasets distinct from their training data in most cases. However, when
trained on the SR dataset, they exhibit better generalization performance across different datasets.
Furthermore, while both GNN models demonstrate limited generalization to larger formulas beyond
their training data, they perform relatively better on smaller instances. These observations suggest
that the generalization performance of GNN models for satisfiability prediction is influenced by the
distinct nature and complexity of its training data. Training on more challenging instances could
potentially enhance their generalization ability.

SR
3-S

AT CA PS

k-C
liqu

e

k-D
om

set

k-V
erc

ov

SR

3-SAT

CA

PS

k-Clique

k-Domset

k-Vercov

94.19 90.82 93.38 93.99 67.22 83.77 91.79

60.89 96.16 50.03 65.75 50.39 50.00 50.00

50.02 50.02 98.80 47.38 50.00 53.33 55.08

59.55 90.45 62.35 96.33 50.82 50.00 50.00

50.00 50.00 49.20 50.00 98.66 54.36 69.20

50.11 50.00 38.46 50.39 49.57 99.74 64.20

50.00 49.93 33.98 50.00 53.57 54.20 99.99

NeuroSAT on easy datasets

SR
3-S

AT CA PS

k-C
liqu

e

k-D
om

set

k-V
erc

ov

SR

3-SAT

CA

PS

k-Clique

k-Domset

k-Vercov

78.40 78.61 68.12 85.04 50.00 81.73 80.37

51.35 84.67 50.00 43.20 50.00 50.00 50.00

50.00 50.00 99.50 50.00 50.00 50.00 50.00

50.02 82.06 50.00 96.89 50.00 60.44 50.52

50.00 50.00 42.78 50.00 89.39 51.24 71.08

50.02 50.00 50.13 52.78 50.00 99.67 58.09

50.00 50.00 49.60 46.36 50.00 51.77 99.96

NeuroSAT on medium datasets

SR
3-S

AT CA PS

k-C
liqu

e

k-D
om

set

k-V
erc

ov

SR

3-SAT

CA

PS

k-Clique

k-Domset

k-Vercov

96.62 94.55 75.13 96.25 50.68 59.97 58.53

55.24 96.38 52.33 56.93 59.30 49.94 52.84

50.00 50.45 98.69 50.04 49.95 49.94 58.72

81.22 65.88 79.29 96.80 50.00 50.00 50.00

50.16 49.92 67.72 52.99 98.88 50.00 50.00

50.02 49.95 50.00 49.98 50.42 99.72 62.83

50.00 50.00 50.00 49.62 50.00 53.13 99.98

GGNN on easy datasets

SR
3-S

AT CA PS

k-C
liqu

e

k-D
om

set

k-V
erc

ov

SR

3-SAT

CA

PS

k-Clique

k-Domset

k-Vercov

77.70 80.98 93.41 89.33 50.00 50.38 50.00

50.61 85.78 62.80 51.80 51.62 46.91 52.48

50.01 50.00 99.50 66.55 50.00 50.00 50.00

57.80 50.00 98.64 96.53 50.00 50.00 50.00

49.99 50.00 50.00 41.22 73.63 50.00 50.00

50.03 50.00 50.06 69.50 50.00 99.52 65.73

50.01 50.05 52.60 50.72 49.77 50.29 99.92

GGNN on medium datasets

Figure 3: Results across different datasets. The x-axis denotes testing datasets and the y-axis denotes
training datasets.

easy medium hard

easy

medium

94.19 65.56 54.82

95.39 78.40 62.11

NeuroSAT on the SR dataset
easy medium hard

easy

medium

96.16 74.98 66.08

93.27 84.67 83.30

NeuroSAT on the 3-SAT dataset
easy medium hard

easy

medium

96.62 65.23 53.90

95.48 77.70 61.69

GGNN on the SR dataset
easy medium hard

easy

medium

96.38 80.20 76.76

94.99 85.78 83.60

GGNN on the 3-SAT dataset

Figure 4: Results across different difficulty levels. The x-axis denotes testing datasets and the y-axis
denotes training datasets.

Due to the limited space, Figure 4 exclusively displays the performance of NeuroSAT and GGNN
on the SR and 3-SAT datasets. Comprehensive results on the other five datasets, as well as the
experimental results on different massage passing iterations, are provided in Appendix C.2.

6

Under review as a conference paper at ICLR 2024

5.2 SATISFYING ASSIGNMENT PREDICTION

Evaluation with different training losses. Table 2 presents the benchmarking results of each
GNN baseline across three different training objectives. Interestingly, the unsupervised training
methods outperform the supervised learning approach across the majority of datasets. We hy-
pothesize that this is due to the presence of multiple satisfying assignments in most satisfiable
instances. Supervised training tends to bias GNN models towards learning a specific satisfying
solution, thereby neglecting the exploration of other feasible ones. This bias may compromise the
models’ ability to generalize effectively. Such limitations become increasingly apparent when the
space of satisfying solutions is much larger, as seen in the medium CA and PS datasets. Addition-
ally, it is noteworthy that employing UNS1 as the loss function can result in instability during the
training of some GNN models, leading to a failure to converge in some cases. Conversely, using
UNS2 loss demonstrates strong and stable performance across all datasets.

Table 2: Results on the datasets of the same distribution with different training losses. The top and
bottom 7 rows represent the results for easy and medium datasets, respectively. SUP denotes the
supervised loss, UNS1 and UNS2 correspond to the unsupervised losses defined in Equation 5 and
Equation 6, respectively. The symbol ”-” indicates that some seeds failed during training. Note that
only satisfiable instances are evaluated in this experiment.

Graph Method SR 3-SAT CA PS k-Clique k-Domset k-Vercov

SUP UNS1 UNS2 SUP UNS1 UNS2 SUP UNS1 UNS2 SUP UNS1 UNS2 SUP UNS1 UNS2 SUP UNS1 UNS2 SUP UNS1 UNS2

LCG*

NeuroSAT 88.47 82.30 79.79 78.39 80.23 80.59 0.27 82.17 89.34 39.18 89.23 88.79 66.30 88.34 63.43 69.61 96.74 98.85 85.15 99.36 99.73
GCN 83.74 73.09 77.02 70.34 74.79 75.31 0.17 75.30 82.41 39.66 82.75 84.89 63.85 82.60 86.17 59.29 97.50 97.55 76.83 99.16 99.28
GGNN 84.13 76.39 78.75 72.87 76.55 76.42 0.29 78.13 84.08 38.82 84.44 86.29 60.80 84.60 87.12 68.36 97.49 98.06 82.06 - 99.34
GIN 83.81 81.45 80.39 73.99 78.47 76.24 0.20 78.44 85.15 39.13 85.31 85.43 56.85 84.48 85.11 68.93 96.99 97.43 81.49 99.28 99.38

VCG*
GCN 83.38 84.19 78.00 76.60 84.42 79.23 14.98 76.64 83.79 51.48 85.88 83.06 56.27 85.28 86.91 66.32 97.62 96.74 78.67 - 93.51
GGNN 86.30 87.16 81.00 77.96 88.97 79.32 15.11 76.32 83.12 47.67 86.85 87.17 66.86 86.31 87.48 66.42 - 98.42 82.61 - 99.52
GIN 84.61 89.56 83.27 79.23 87.65 81.72 17.81 83.28 86.03 48.92 91.21 85.65 66.07 86.12 88.09 67.67 - - 81.01 99.38 99.41

LCG*

NeuroSAT 34.97 25.00 37.25 20.07 30.40 41.61 0.00 35.45 70.83 3.64 60.28 71.03 56.61 41.45 32.48 52.09 95.06 96.18 74.77 67.44 95.99
GCN 13.19 13.76 19.21 8.87 20.50 24.58 0.00 30.20 54.04 1.45 45.16 56.29 55.36 61.82 66.33 43.50 92.86 94.89 67.83 - 93.84
GGNN 14.15 16.55 21.18 7.96 22.84 25.68 0.00 28.12 50.66 2.33 44.89 57.96 52.35 54.29 68.91 49.07 - 92.26 69.21 66.37 94.30
GIN 15.36 18.60 22.17 9.66 21.38 24.93 0.00 35.76 57.81 2.02 43.43 57.62 53.07 44.60 66.32 44.39 93.3 93.82 70.59 55.59 95.69

VCG*
GCN 20.59 9.21 22.44 12.48 17.00 29.53 0.44 39.04 48.99 2.29 35.99 55.46 46.09 25.90 68.62 46.96 - 92.68 69.15 - 96.46
GGNN 28.04 27.72 33.37 16.46 29.65 35.95 0.56 48.13 49.93 3.12 51.73 65.11 44.26 48.92 56.43 51.01 - - 71.97 - 95.23
GIN 26.73 26.48 31.97 14.64 26.86 35.81 0.64 44.06 63.84 3.38 58.03 64.66 55.47 56.97 67.78 46.98 - 95.28 69.40 - 96.96

In addition to evaluating the performance of GNN models under various training loss functions,
we extend our analysis to explore how these models perform across different data distributions and
under various inference algorithms. Furthermore, we assess the robustness of these GNN models
when trained on noisy datasets that include unsatisfiable instances in an unsupervised fashion. For
detailed results of these evaluations, please refer to Appendix C.3.

5.3 UNSAT-CORE VARIABLE PREDICTION

Evaluation on the same distribution. The benchmarking results presented in Table 3 exhibit the
superior performance of all GNN models on both easy and medium datasets, with NeuroSAT con-
sistently achieving the best results across most datasets. It is important to note that the primary
objective of predicting unsat-core variables is not to solve SAT problems directly but to provide
valuable guidance for enhancing the backtracking search process. As such, even imperfect pre-
dictions - for instance, those with a classification accuracy of 90% - have been demonstrated to
be sufficiently effective in improving the search heuristics employed by modern CDCL-based SAT
solvers, as indicated by previous studies (Selsam & Bjørner, 2019; Wang et al., 2021).

Table 3: Results on the datasets of the same distribution. Only unsatisfiable instances are evaluated.

Graph Method Easy Datasets Medium Datasets

SR 3-SAT CA PS k-Clique k-Domset k-Vercov SR 3-SAT CA PS k-Clique k-Domset k-Vercov

LCG*

NeuroSAT 90.76 94.43 83.69 86.20 99.93 95.80 94.47 90.07 99.65 85.73 88.53 99.97 97.90 99.10
GCN 89.17 94.35 82.89 85.32 99.93 95.74 94.43 88.11 99.65 85.71 87.70 99.96 97.89 99.10
GGNN 90.02 94.38 83.59 86.03 99.93 95.79 94.46 89.05 99.65 85.69 87.95 99.96 97.89 99.09
GIN 89.29 94.33 83.71 85.97 99.93 95.81 94.47 88.85 99.65 85.71 87.92 99.96 97.89 99.09

VCG*
GCN 88.57 94.34 83.17 85.27 99.93 95.79 94.46 88.17 99.65 85.70 87.37 99.96 97.90 99.09
GGNN 89.57 94.37 83.50 85.84 99.93 95.81 94.49 88.84 99.65 85.68 88.03 99.98 97.90 99.10
GIN 89.50 94.35 83.23 85.69 99.93 95.79 94.47 89.51 99.65 85.72 88.13 99.96 97.89 99.10

We also conduct experiments to evaluate the generalization ability of GNN models on unsat-core
variable prediction. Please see appendix C.4 for details.

7

Under review as a conference paper at ICLR 2024

6 ADVANCING EVALUATION ON G4SATBENCH

To gain deeper insights into how GNNs tackle the SAT problem, we conduct comprehensive com-
parative analyses between GNN-based SAT solvers and the CDCL and LS heuristics in this section.
Since these search heuristics aim to solve a SAT instance directly, our focus only lies on the tasks of
(T1) satisfiability prediction and (T2) satisfying assignment prediction (with UNS2 as the training
loss). We employ NeuroSAT (on LCG*) and GGNN (on VCG*) as our GNN models and experiment
on the SR and 3-SAT datasets. Detailed experimental settings are included in Appendix D.

6.1 COMPARISON WITH THE CDCL HEURISTIC

Evaluation on the clause-learning augmented instances. CDCL-based SAT solvers enhance
backtracking search with conflict analysis and clause learning, enabling efficient exploration
of the search space by iteratively adding “learned clauses” to avoid similar conflicts in future
searches (Silva & Sakallah, 1999). To assess whether GNN-based SAT solvers can learn and ben-
efit from the backtracking search (with CDCL) heuristic, we augment the original formulas in the
datasets with learned clauses and evaluate GNN models on these clause-augmented instances.

Table 4 shows the testing results on augmented SAT datasets. Notably, training on the augmented in-
stances leads to significant improvements in both satisfiability prediction and satisfying assignment
prediction. These improvements can be attributed to the presence of “learned clauses” that effec-
tively modify the structure of the original formulas, thereby facilitating GNNs to solve with relative
ease. However, despite the augmented instances being easily solvable using the backtracking search
within a few search steps, GNN models fail to effectively handle these instances when trained on the
original instances. These findings suggest that GNNs may not implicitly learn the CDCL heuristic
when trained for satisfiability prediction or satisfying assignment prediction.

Table 4: Results on augmented datasets. Values
inside/outside parentheses denote the results of
models trained on augmented/original instances.

Task Method Easy Datasets Medium Datasets

SR 3-SAT SR 3-SAT

T1 NeuroSAT 100.00 (96.78) 100.00 (96.06) 100.00 (84.57) 96.78 (84.85)
GGNN 100.00 (97.66) 100.00 (95.46) 100.00 (84.01) 96.29 (85.80)

T2 NeuroSAT 85.05 (83.28) 83.50 (81.04) 51.95 (45.51) 39.00 (16.52)
GGNN 85.35 (83.42) 81.56 (79.99) 44.18 (40.09) 34.67 (14.75)

Table 5: Results using contrastive pretraining.
Values in parentheses denote the difference be-
tween the results without pretraining.

Task Method Easy Datasets Medium Datasets

SR 3-SAT SR 3-SAT

T1 NeuroSAT 96.68 (+0.68) 96.23 (-0.10) 78.31 (+0.29) 85.02 (+0.12)
GGNN 96.46 (-0.29) 96.45 (+0.20) 76.34 (-0.78) 85.17 (+0.06)

T2 NeuroSAT 80.54 (+0.75) 79.71 (-0.88) 36.42 (-0.83) 41.23 (-0.38)
GGNN 80.66 (-0.34) 79.23 (-0.09) 33.44 (+0.07) 36.39 (+0.44)

Evaluation with contrastive pretraining. Observing that GNN models exhibit superior perfor-
mance on clause-learning augmented SAT instances, there is potential to improve the performance
of GNNs by learning a latent representation of the original formula similar to its augmented coun-
terpart. Motivated by this, we also experiment with a contrastive learning approach (i.e., Sim-
CLR (Chen et al., 2020)) to pretrain the representation of CNF formulas to be close to their aug-
mented ones (Duan et al., 2022), trying to explicitly embed the CDCL heuristic in the latent space
through representation learning.

The results of contrastive pretraining are presented in Table 5. In contrast to the findings in (Duan
et al., 2022), our results show limited performance improvement through contrastive pretraining,
indicating that GNN models still encounter difficulties in effectively learning the CDCL heuristic
in the latent space. This observation aligns with the conclusions drawn in (Chen & Yang, 2019),
which highlight that static GNNs may fail to exactly replicate the same search operations due to the
dynamic changes in the graph structure introduced by the clause learning technique.

6.2 COMPARISON WITH THE LS HEURISTIC

Evaluation with random initialization. LS-based SAT solvers typically begin by randomly ini-
tializing an assignment and then iteratively flip variables guided by specific heuristics until reaching
a satisfying assignment. To compare the behaviors of GNNs with this solving procedure, we first
conduct an evaluation of GNN models with randomized initial embeddings in both training and
testing, emulating the initialization of LS SAT solvers.

8

Under review as a conference paper at ICLR 2024

Table 6: Results using random initialization.
Values in parentheses denote the difference be-
tween the results with learned initialization.

Task Method Easy Datasets Medium Datasets

SR 3-SAT SR 3-SAT

T1 NeuroSAT 97.24 (+1.24) 96.44 (+0.11) 77.29 (-0.91) 84.85 (-0.05)
GGNN 96.78 (+0.03) 96.38 (+0.13) 76.97 (-0.15) 85.80 (+0.69)

T2 NeuroSAT 79.09 (-0.70) 80.79 (+0.20) 37.27 (+0.02) 40.75 (-0.86)
GGNN 80.10 (-0.90) 79.83 (+0.51) 32.85 (-0.52) 36.59 (+0.64)

The results presented in Table 6 demonstrate that
using random initialization has a limited impact
on the overall performances of GNN-based SAT
solvers. This suggests that GNN models do not
aim to learn a fixed latent representation of each
formula for satisfiability prediction and satisfying
assignment prediction. Instead, they have devel-
oped a solving strategy that effectively exploits
the inherent graph structure of each SAT instance.

Evaluation on the predicted assignments. Under random initialization, we further analyze the
solving strategies of GNNs by evaluating their predicted assignments decoded from the latent space.
For the task of satisfiability prediction, we employ the 2-clustering decoding algorithm to extract the
predicted assignments from the literal embeddings of NeuroSAT at each iteration of message pass-
ing. For satisfying assignment prediction, we evaluate both NeuroSAT and GGNN using multiple-
prediction decoding. Our evaluation focuses on three key aspects: (a) the number of distinct pre-
dicted assignments, (b) the number of flipped variables between two consecutive iterations, and (c)
the number of unsatisfiable clauses associated with the predicted assignments.

0 20 40 60 80 100 120
Message passing iteration T

25

50

75

100

125

150

175

Nu
m

be
r o

f d
ist

in
ct

 a
ss

ig
nm

en
ts

NeuroSAT
GGNN
NeuroSAT*
easy SR dataset
easy 3-SAT dataset
medium SR dataset
medium 3-SAT dataset

(a) #Distinct assignments

0 20 40 60 80 100 120
Message passing iteration T

100

101

Nu
m

be
r o

f f
lip

pe
d

va
ria

bl
es

NeuroSAT
GGNN
NeuroSAT*
easy SR dataset
easy 3-SAT dataset
medium SR dataset
medium 3-SAT dataset

(b) #Flipped variables

0 20 40 60 80 100 120
Message passing iteration T

100

101

Nu
m

be
r o

f u
ns

at
isf

ia
bl

e
cla

us
es

NeuroSAT
GGNN
NeuroSAT*
easy SR dataset
easy 3-SAT dataset
medium SR dataset
medium 3-SAT dataset

(c) #Unsatisfible clauses

Figure 5: Results on the predicted assignments with the increased message passing iteration T .
NeuroSAT* refers to the model trained for satisfiability prediction.

As shown in Figure 5, all three GNN models initially generate a wide array of assignment predic-
tions by flipping a considerable number of variables, resulting in a notable reduction in the number
of unsatisfiable clauses. However, as the iterations progress, the number of flipped variables di-
minishes substantially, and most GNN models eventually converge towards predicting a specific
assignment or making minimal changes to their predictions when there are no or very few unsat-
isfiable clauses remaining. This trend is reminiscent of the greedy solving strategy adopted by the
LS solver GSAT (Selman et al., 1992), where changes are made to minimize the number of unsatis-
fied clauses in the new assignment. However, unlike GSAT’s approach of flipping one variable at a
time and incorporating random selection to break ties, GNN models simultaneously modify multi-
ple variables and potentially converge to a particular unsatisfied assignment and find it challenging
to deviate from such a prediction. It is also noteworthy that despite being trained for satisfiability
prediction, NeuroSAT* demonstrates similar behavior to the GNN models trained for assignment
prediction. This observation indicates that GNNs also learn to search for a satisfying assignment
implicitly in the latent space while performing satisfiability prediction.

7 CONCLUSION

In this work, we present G4SATBench, a groundbreaking benchmark study that comprehensively
evaluates GNN models in SAT solving. G4SATBench offers curated synthetic SAT datasets sourced
from various domains and difficulty levels and benchmarks a wide range of GNN-based SAT solvers
under diverse settings. Our empirical analysis yields valuable insights into the performances of
GNN-based SAT solvers and further provides a deeper understanding of their capabilities and lim-
itations. We hope the proposed G4SATBench will serve as a solid foundation for GNN-based SAT
solving and inspire future research in this exciting field. Further discussions on the limitations of
G4SATBench and potential avenues for future research can be found in Appendix E.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Saeed Amizadeh, Sergiy Matusevych, and Markus Weimer. Learning to solve Circuit-SAT: An
unsupervised differentiable approach. In International Conference on Learning Representations
(ICLR), 2019a.

Saeed Amizadeh, Sergiy Matusevych, and Markus Weimer. PDP: A general neural framework for
learning constraint satisfaction solvers. arXiv preprint arXiv:1903.01969, 2019b.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

Armin Biere, Marijn Heule, and Hans van Maaren. Handbook of Satisfiability, volume 185. IOS
press, 2009.

Béla Bollobás and Paul Erdös. Cliques in random graphs. In Mathematical Proceedings of the
Cambridge Philosophical Society, 1976.

Benedikt Bünz and Matthew Lamm. Graph neural networks and boolean satisfiability. arXiv preprint
arXiv:1702.03592, 2017.

Chris Cameron, Rex Chen, Jason Hartford, and Kevin Leyton-Brown. Predicting propositional
satisfiability via end-to-end learning. In AAAI Conference on Artificial Intelligence (AAAI), 2020.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey E. Hinton. A simple framework for
contrastive learning of visual representations. In International Conference on Machine Learning
(ICML), 2020.

Ziliang Chen and Zhanfu Yang. Graph neural reasoning may fail in certifying boolean unsatisfiabil-
ity. arXiv preprint arXiv:1909.11588, 2019.

James M. Crawford and Larry D. Auton. Experimental results on the crossover point in random
3-SAT. Artificial Intelligence, 1996.

Haonan Duan, Pashootan Vaezipoor, Max B. Paulus, Yangjun Ruan, and Chris J. Maddison. Aug-
ment with care: Contrastive learning for combinatorial problems. In International Conference on
Machine Learning (ICML), 2022.

Matthias Fey and Jan Eric Lenssen. Fast graph representation learning with pytorch geometric.
arXiv preprint arXiv:1903.02428, 2019.

ABKFM Fleury and Maximilian Heisinger. Cadical, kissat, paracooba, plingeling and treengeling
entering the sat competition 2020. SAT COMPETITION, 2020.

Jesús Giráldez-Cru and Jordi Levy. A modularity-based random SAT instances generator. In Inter-
national Joint Conference on Artificial Intelligence (IJCAI), 2015.

Jesús Giráldez-Cru and Jordi Levy. Locality in random SAT instances. In International Joint Con-
ference on Artificial Intelligence (IJCAI), 2017.

Wenxuan Guo, Junchi Yan, Hui-Ling Zhen, Xijun Li, Mingxuan Yuan, and Yaohui Jin. Machine
learning methods in solving the boolean satisfiability problem. arXiv preprint arXiv:2203.04755,
2022.

Jesse Michael Han. Enhancing SAT solvers with glue variable predictions. arXiv preprint
arXiv:2007.02559, 2020.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpass-
ing human-level performance on imagenet classification. In IEEE International Conference on
Computer Vision (ICCV), 2015.

Sean B Holden et al. Machine learning for automated theorem proving: Learning to solve SAT and
QSAT. Foundations and Trends® in Machine Learning, 14(6):807–989, 2021.

10

Under review as a conference paper at ICLR 2024

Holger H Hoos and Thomas Stützle. SATLIB: An online resource for research on SAT. Workshop
on Satisfiability (SAT), 2000.

Sebastian Jaszczur, Michał Łuszczyk, and Henryk Michalewski. Neural heuristics for SAT solving.
arXiv preprint arXiv:2005.13406, 2020.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Representations (ICLR), 2015.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. In International Conference on Learning Representations (ICLR), 2017.

Vitaly Kurin, Saad Godil, Shimon Whiteson, and Bryan Catanzaro. Can q-learning with graph
networks learn a generalizable branching heuristic for a SAT solver? In Advances in Neural
Information Processing Systems (NeurIPS), 2020.

Massimo Lauria, Jan Elffers, Jakob Nordström, and Marc Vinyals. Cnfgen: A generator of crafted
benchmarks. In Theory and Applications of Satisfiability Testing (SAT), 2017.

Min Li, Zhengyuan Shi, Qiuxia Lai, Sadaf Khan, and Qiang Xu. Deepsat: An eda-driven learning
framework for SAT. arXiv preprint arXiv:2205.13745, 2022.

Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard S. Zemel. Gated graph sequence neural
networks. In International Conference on Learning Representations (ICLR), 2016.

Zhaoyu Li and Xujie Si. NSNet: A general neural probabilistic framework for satisfiability prob-
lems. In Advances in Neural Information Processing Systems (NeurIPS), 2022.

Vinod Nair and Geoffrey E. Hinton. Rectified linear units improve restricted boltzmann machines.
In International Conference on Machine Learning (ICML), 2010.

Emils Ozolins, Karlis Freivalds, Andis Draguns, Eliza Gaile, Ronalds Zakovskis, and Sergejs Ko-
zlovics. Goal-aware neural SAT solver. In International Joint Conference on Neural Networks
(IJCNN), 2022.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Köpf, Ed-
ward Z. Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit
Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-
performance deep learning library. In Advances in Neural Information Processing Systems
(NeurIPS), 2019.

Bart Selman, Hector J. Levesque, and David G. Mitchell. A new method for solving hard satisfia-
bility problems. In National Conference on Artificial Intelligence (AAAI), 1992.

Daniel Selsam and Nikolaj S. Bjørner. Guiding high-performance SAT solvers with unsat-core
predictions. In Theory and Applications of Satisfiability Testing (SAT), 2019.

Daniel Selsam, Matthew Lamm, Benedikt Bünz, Percy Liang, Leonardo de Moura, and David L.
Dill. Learning a SAT solver from single-bit supervision. In International Conference on Learning
Representations (ICLR), 2019.

Zhengyuan Shi, Min Li, Sadaf Khan, Hui-Ling Zhen, Mingxuan Yuan, and Qiang Xu. Satformer:
Transformers for SAT solving. arXiv preprint arXiv:2209.00953, 2022.

João P. Marques Silva and Karem A. Sakallah. GRASP: A search algorithm for propositional satis-
fiability. IEEE Transactions on Computers, 1999.

Wenxi Wang, Yang Hu, Mohit Tiwari, Sarfraz Khurshid, Kenneth McMillan, and Risto Miikku-
lainen. Neurocomb: Improving SAT solving with graph neural networks. arXiv preprint
arXiv:2110.14053, 2021.

Nathan Wetzler, Marijn Heule, and Warren A. Hunt Jr. Drat-trim: Efficient checking and trimming
using expressive clausal proofs. In Theory and Applications of Satisfiability Testing (SAT), 2014.

11

Under review as a conference paper at ICLR 2024

Ben Wieland and Anant P. Godbole. On the domination number of a random graph. The Electronic
Journal of Combinatorics, 2001.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations (ICLR), 2019.

Zhiyuan Yan, Min Li, Zhengyuan Shi, Wenjie Zhang, Yingcong Chen, and Hongce Zhang. Address-
ing variable dependency in gnn-based SAT solving. arXiv preprint arXiv:2304.08738, 2023.

Emre Yolcu and Barnabás Póczos. Learning local search heuristics for boolean satisfiability. In
Advances in Neural Information Processing Systems (NeurIPS), 2019.

Wenjie Zhang, Zeyu Sun, Qihao Zhu, Ge Li, Shaowei Cai, Yingfei Xiong, and Lu Zhang. Nlocalsat:
Boosting local search with solution prediction. In International Joint Conference on Artificial
Intelligence (IJCAI), 2020.

12

Under review as a conference paper at ICLR 2024

A DATASETS

Generators. To generate high-quality SAT datasets that do not contain trivial instances, we
have employed a rigorous process of selecting appropriate parameters for each CNF generator in
G4SATBench. Table 7 provides detailed information about the generators we have used.

Table 7: Details of the synthetic generators employed in G4SATBench.

Dataset Description Parameters Notes

SR

The SR dataset is composed of pairs of satisfiable and unsatisfiable for-
mulas, with the only difference between each pair being the polarity of a
single literal. Given the number of variables n, the synthetic generator iter-
atively samples k = 1+Bernoulli(b)+Geometric(g) variables uniformly at
random without replacement and negates each one with independent prob-
ability 50% to build a clause. This procedure continues until the gener-
ated formula is unsatisfiable. The satisfiable instance is then constructed by
negating the first literal in the last clause of the unsatisfiable one.

General: b = 0.3, g = 0.4,
Easy dataset: n ∼ Uniform(10, 40),
Medium dataset: n ∼ Uniform(40, 200),
Hard dataset: n ∼ Uniform(200, 400)

The sampling parameters are
the same as the original pa-
per (Selsam et al., 2019).

3-SAT

The 3-SAT dataset comprises CNF formulas at the phase transition, where
the proportion of generated satisfiable and unsatisfiable formulas is roughly
equal. Given the number of variables n and clauses m, the synthetic gen-
erator iteratively samples three variables (and their polarities) uniformly at
random until m clauses are obtained.

General: m = 4.258n+ 58.26n−2/3,
Easy dataset: n ∼ Uniform(10, 40),
Medium dataset: n ∼ Uniform(40, 200),
Hard dataset: n ∼ Uniform(200, 300)

The parameter m is the same
as the paper (Crawford &
Auton, 1996)

CA

The CA dataset contains SAT instances that are designed to mimic the com-
munity structures and modularity features found in real-world industrial in-
stances. Given variable number n, clause number m, clause size k, com-
munity number c, and modularity Q, the synthetic generator iteratively se-
lects k literals in the same community uniformly at random with probability
P = Q + 1/c and selects k literals in the distinct community uniformly at
random with probability 1 - P to build a clause and repeat for m times to
construct a CNF formula.

General: m ∼ Uniform(13n, 15n),
k ∼ Uniform(4, 5),
c ∼ Uniform(3, 10),
Q ∼ Uniform(0.7, 0.9)
Easy dataset: n ∼ Uniform(10, 40),
Medium dataset: n ∼ Uniform(40, 200),
Hard dataset: n ∼ Uniform(200, 400)

The parameters are selected
based on the experiments in
the original paper (Giráldez-
Cru & Levy, 2015) and our
own study to ensure that
the generated SAT instances
have a balance of satisfiabil-
ity and unsatisfiability.

PS

PS dataset encompasses SAT instances with a power-law distribution in
the number of variable occurrences (popularity), and good clustering be-
tween them (similarity). Given variable number n, clause number m, and
average clause size k, the synthetic generator first assigns random angles
θi, θj ∈ [0, 2π] to each variable i and each clause j, and then randomly sam-
ples variable i in clause j with the probability P = 1/(1+(iβjβ

′
θij/R)T).

Here, θij = π − |π − |θi − θj || is the angle between variable i and clause
j. The exponent parameters β and β′ control the power-law distribution
of variable occurrences and clause size respectively. The temperature pa-
rameter T controls the sharpness of the probability distribution, while R is
an approximate normalization constant that ensures the average number of
selected edges is km.

General: m ∼ Uniform(6n, 8n),
k ∼ Uniform(4, 5),
β ∼ Uniform(0, 1),
β′ = 1,
c ∼ Uniform(3, 10),
T ∼ Uniform(0.75, 1.5)
Easy dataset: n ∼ Uniform(10, 40),
Medium dataset: n ∼ Uniform(40, 200),
Hard dataset: n ∼ Uniform(200, 300)

The parameters are selected
based on the experiments in
the original paper (Giráldez-
Cru & Levy, 2017) and our
own study to ensure that
the generated SAT instances
have a balance of satisfiabil-
ity and unsatisfiability.

k-Clique

The k-Clique dataset includes SAT instances that encode the k-Clique prob-
lem, which involves determining whether there exists a clique (i.e., a subset
of vertices that are all adjacent to each other) with v vertices in a given
graph. Given the number of cliques k, the synthetic generator produces an
Erdős-Rényi graph with v vertices and a given edge probability p and then
transforms the corresponding k-Clique problem into a SAT instance.

General: p =
(
v
k

)−1/(v2),
Easy dataset: v ∼ Uniform(5, 15),
k ∼ Uniform(3, 4),
Medium dataset: v ∼ Uniform(15, 20),
k ∼ Uniform(3, 5),
Hard dataset: v ∼ Uniform(20, 25),
k ∼ Uniform(4, 6)

The parameter p is selected
based on the paper (Bol-
lobás & Erdös, 1976), mak-
ing the expected number of
k-Cliques in the generated
graph equals 1.

k-Domset

The k-Domset dataset contains SAT instances that encode the k-
Dominating Set problem. This problem is to determine whether there exists
a dominating set (i.e., a subset of vertices such that every vertex in the
graph is either in the subset or adjacent to a vertex in the subset) with at
most k vertices in a given graph. Given the domination number k, the syn-
thetic generator produces an Erdős-Rényi graph with v vertices and a given
edge probability p and then transforms the corresponding k-Dominating Set
problem into a SAT instance.

General: p = 1−
(
1−

(
v
k

)−1/(v−k)
)1/k

,
Easy dataset: v ∼ Uniform(5, 15),
k ∼ Uniform(2, 3),
Medium dataset: v ∼ Uniform(15, 20),
k ∼ Uniform(3, 5),
Hard dataset: v ∼ Uniform(20, 25),
k ∼ Uniform(4, 6)

The parameter p is selected
based on the paper (Wieland
& Godbole, 2001), mak-
ing the expected number of
domination set with size k in
the generated graph equals 1.

k-Vercov

The k-Vercov dataset consists of SAT instances that encode the k-Vertex
Cover problem, i.e., check whether there exists a set of k vertices in a graph
such that every edge has at least one endpoint in this set. Given the vertex
cover number k, the synthetic generator produces a complement graph of an
Erdős-Rényi graph with v vertices and a given edge probability p and then
converts the corresponding k-Vertex Cover problem into a SAT instance.

General: p =
(
v
k

)−1/(v2),
Easy dataset: v ∼ Uniform(5, 15),
k ∼ Uniform(3, 5),
Medium dataset: v ∼ Uniform(10, 20),
k ∼ Uniform(6, 8),
Hard dataset: v ∼ Uniform(15, 25),
k ∼ Uniform(9, 10)

The generation process and
the parameter are selected
based on the relationship be-
tween k-Vertex Cover and k-
Clique problems, making the
size of the minimum vertex
cover in the generated graph
around k.

Statistics. To provide a comprehensive understanding of our generated datasets, we compute sev-
eral characteristics across three difficulty levels. These statistics include the average number of
variables and clauses, as well as graph measures such as average clustering coefficient (in VIG) and
modularity (in VIG, VCG, and LCG). The dataset statistics are summarized in Table 8.

Table 8: Dataset statistics across difficulty levels in G4SATBench.

Dataset Easy Difficulty Medium Difficulty Hard Difficulty

#Variables #Clauses C.C.(VIG) Mod.(VIG) Mod.(VCG) Mod.(LCG) #Variables #Clauses C.C.(VIG) Mod.(VIG) Mod.(VCG) Mod.(LCG) #Variables #Clauses C.C.(VIG) Mod.(VIG) Mod.(VCG) Mod.(LCG)

SR 25.00 148.35 0.98 0.00 0.25 0.33 118.36 646.54 0.62 0.06 0.31 0.37 299.64 1613.86 0.32 0.09 0.32 0.37

3-SAT 25.05 113.69 0.72 0.06 0.36 0.46 120.00 513.14 0.27 0.16 0.43 0.51 250.44 1067.34 0.14 0.17 0.45 0.52

CA 31.66 303.48 0.65 0.19 0.73 0.73 120.27 1661.07 0.54 0.38 0.80 0.80 299.68 4195.50 0.59 0.57 0.80 0.80

PS 25.41 176.68 0.98 0.00 0.27 0.32 118.75 822.78 0.86 0.05 0.35 0.37 249.61 1728.34 0.77 0.08 0.38 0.28

k-Clique 34.85 592.89 0.90 0.03 0.45 0.49 69.56 2220.05 0.91 0.03 0.48 0.49 112.87 5543.26 0.88 0.04 0.49 0.50

k-Domset 41.90 369.40 0.70 0.26 0.47 0.53 90.64 1736.22 0.70 0.21 0.49 0.51 137.31 4032.48 0.70 0.20 0.49 0.51

k-Vercov 45.41 484.28 0.66 0.16 0.48 0.53 107.40 2634.14 0.69 0.16 0.49 0.51 190.24 8190.94 0.69 0.16 0.50 0.51

13

Under review as a conference paper at ICLR 2024

B GNN MODELS

Message-passing schemes on VCG*. Recall that VCG* incorporates two distinct edge types,
G4SATBench employs different functions to execute heterogeneous message-passing in each direc-
tion of each edge type. Formally, we define a d-dimensional embedding for each variable and clause
node, denoted by hl and hc, respectively. These embeddings are initialized to two learnable vec-
tors h0

v and h0
c , depending on the node type. At the k-th iteration of message passing, these hidden

representations are updated as follows:

h(k)
c = UPD

(
AGG
v∈c+

({
MLP+

v

(
h(k−1)
v

)})
,AGG
v∈c−

({
MLP−

v

(
h(k−1)
v

)})
, h(k−1)

c

)
,

h(k)
v = UPD

(
AGG
c∈v+

({
MLP+

c

(
h(k−1)
c

)})
,AGG
c∈v−

({
MLP−

c

(
h(k−1)
c

)})
, h(k−1)

v

)
,

(7)

where c+ and c− denote the sets of variable nodes that occur in the clause c with positive and
negative polarity, respectively. Similarly, v+ and v− denote the sets of clause nodes where variable
v occurs in positive and negative form. MLP+

v , MLP−
v , MLP+

c , and MLP−
c are four MLPs. UPD(·)

is the update function, and AGG(·) is the aggregation function.

GNN baselines. Table 9 summarizes the message-passing algorithms of the GNN models used
in G4SATBench. We adopt heterogeneous versions of GCN (Kipf & Welling, 2017), GGNN (Li
et al., 2016), and GIN (Xu et al., 2019) on both LCG* and VCG*, while maintaining the original
NeuroSAT (Selsam et al., 2019) only on LCG*.

Table 9: Supported GNN models in G4SATBench.

Graph Method Message-passing Algorithm Notes

LCG*

NeuroSAT
h
(k)
c , s

(k)
c = LayerNormLSTM1

(∑
l∈N (c)

MLPl

(
h
(k−1)
l

)
,
(
h
(k−1)
c , s

(k−1)
c

))
,

h
(k)
l , s

(k)
l = LayerNormLSTM2

([∑
c∈N (l)

MLPc

(
h
(k−1)
c

)
, h

(k−1)
¬l

]
,
(
h
(k−1)
l , s

(k−1)
l

)) sc, sl are the hidden states which are initialized to
zero vectors.

GCN
h
(k)
c = Linear1

([∑
l∈N (c)

MLPl

(
h
(k−1)
l

)
√
dldc

, h
(k−1)
c

])
,

h
(k)
l = Linear2

([∑
c∈N (l)

MLPc(h(k−1)
c)√

dcdl
, h

(k−1)
¬l , h

(k−1)
l

]) dc, dl are the degrees of clause node c and literal
node l in LCG respectively.

GGNN
h
(k)
c = GRU1

(∑
l∈N (c)

({
MLPl

(
h
(k−1)
l

)})
, h

(k−1)
c

)
,

h
(k)
l = GRU2

([∑
c∈N (l)

MLPc

(
h
(k−1)
c

)
, h

(k−1)
¬l

]
, h

(k−1)
l

)

GIN
h
(k)
c = MLP1

([∑
l∈N (c)

({
MLPl

(
h
(k−1)
l

)})
, h

(k−1)
c

])
,

h
(k)
l = MLP2

([∑
c∈N (l)

MLPc

(
h
(k−1)
c

)
, h

(k−1)
¬l , h

(k−1)
l

])

VCG*

GCN
h
(k)
c = Linear1

([∑
v∈c+

MLP+
v (h

(k−1)
v)√

dvdc
,
∑

v∈c−

MLP−
v (h

(k−1)
v)√

dvdc
, h

(k−1)
c

])
,

h
(k)
v = Linear2

([∑
c∈v+

MLP+
c (h

(k−1)
c)√

dcdv
,
∑

c∈v−

MLP−
c (h

(k−1)
c)√

dcdv
, h

(k−1)
v

]) dc, dv are the degrees of clause node c and variable
node v in VCG respectively.

GGNN
h
(k)
c = GRU1

([∑
v∈c+

MLP+
v

(
h
(k−1)
v

)
,
∑

v∈c−
MLP−

v

(
h
(k−1)
v

)]
, h

(k−1)
c

)
,

h
(k)
v = GRU2

([∑
c∈v+

MLP+
c

(
h
(k−1)
c

)
,
∑

c∈v−
MLP−

c

(
h
(k−1)
c

)]
, h

(k−1)
v

)

GIN
h
(k)
c = MLP1

([∑
v∈c+

MLP+
v

(
h
(k−1)
v

)
,
∑

v∈c−
MLP−

v

(
h
(k−1)
v

)
, h

(k−1)
c

])
,

h
(k)
v = MLP2

([∑
c∈v+

MLP+
c

(
h
(k−1)
c

)
,
∑

c∈v−
MLP−

c

(
h
(k−1)
c

)
, h

(k−1)
v

])

C BENCHMARKING EVALUATION

C.1 IMPLEMENTATION DETAILS

In G4SATBench, we provide the ground truth of satisfiability and satisfying assignments by calling
the state-of-the-art modern SAT solver CaDiCaL (Fleury & Heisinger, 2020) and generate the truth

14

Under review as a conference paper at ICLR 2024

labels for unsat-core variables by invoking the proof checker DRAT-trim (Wetzler et al., 2014). All
neural networks in our study are implemented using PyTorch (Paszke et al., 2019) and PyTorch Ge-
ometric (Fey & Lenssen, 2019). For all GNN models, we set the feature dimension d to 128 and
the number of message passing iterations T to 32. The MLPs in the models consist of two hidden
layers with the ReLU (Nair & Hinton, 2010) activation function. To select the optimal hyperpa-
rameters for each GNN baseline, we conduct a grid search over several settings. Specifically, we
explore different learning rates from {10−3, 5× 10−4, 10−4, 5× 10−5, 10−5}, training epochs from
{50, 100, 200}, weight decay values from {10−6, 10−7, 10−8, 10−9, 10−10}, and gradient clipping
norms from {0.1, 0.5, 1}. We employ Adam (Kingma & Ba, 2015) as the optimizer and set the batch
size to 128, 64, or 32 to fit within the maximum GPU memory (48G). For the parameters τ and κ
of the unsupervised loss in Equation 4 and Equation 5, we try the default settings (τ = t−0.4 and
κ = 10, where t is the global step during training) as the original paper (Amizadeh et al., 2019a) as
well as other values (τ ∈ {0.05, 0.1, 0.2, 0.5}, κ ∈ {1, 2, 5}) and empirically find τ = 0.1, κ = 1
yield the best results. Furthermore, it is important to note that we use three different random seeds
to benchmark the performance of different GNN models and assess the generalization ability of
NeuroSAT and GGNN using one seed for simplicity.

C.2 SATIAFIABILITY PREDICTION

Evaluation across different difficulty levels. The complete results of NeuroSAT and GGNN
across different difficulty levels are presented in Figure 6. Consistent with the findings on the SR and
3-SAT datasets, both GNN models exhibit limited generalization ability to larger instances beyond
their training data, while displaying relatively better performance on smaller instances. This obser-
vation suggests that training these models on more challenging instances could potentially enhance
their generalization ability and improve their performance on larger instances.

easy medium hard

easy

medium

94.19 65.56 54.82

95.39 78.40 62.11

NeuroSAT on the SR dataset
easy medium hard

easy

medium

96.16 74.98 66.08

93.27 84.67 83.30

NeuroSAT on the 3-SAT dataset
easy medium hard

easy

medium

98.80 99.67 100.00

96.17 99.50 100.00

NeuroSAT on the CA dataset
easy medium hard

easy

medium

96.33 95.94 96.67

95.27 96.89 98.00

NeuroSAT on the PS dataset
easy medium hard

easy

medium

98.66 93.50 82.94

77.64 89.39 77.98

NeuroSAT on the k-Clique dataset
easy medium hard

easy

medium

99.74 66.78 50.20

72.36 99.67 85.40

NeuroSAT on the k-Domset dataset
easy medium hard

easy

medium

99.99 50.95 50.00

89.87 99.91 96.99

NeuroSAT on the k-Vercov dataset

easy medium hard

easy

medium

96.62 65.23 53.90

95.48 77.70 61.69

GGNN on the SR dataset
easy medium hard

easy

medium

96.38 80.20 76.76

94.99 85.78 83.60

GGNN on the 3-SAT dataset
easy medium hard

easy

medium

98.69 99.63 100.00

96.17 99.50 100.00

GGNN on the CA dataset
easy medium hard

easy

medium

96.80 96.06 97.25

94.53 96.53 97.83

GGNN on the PS dataset
easy medium hard

easy

medium

98.88 91.64 58.82

60.38 73.63 62.14

GGNN on the k-Clique dataset
easy medium hard

easy

medium

99.72 84.08 68.31

94.70 99.52 99.01

GGNN on the k-Domset dataset
easy medium hard

easy

medium

99.98 52.85 50.00

80.33 99.61 88.92

GGNN on the k-Vercov dataset

Figure 6: Results across different difficulty levels. The x-axis denotes testing datasets and the y-axis
denotes training datasets.

Evaluation with different message passing iterations. To investigate the impact of message-
passing iterations on the performance of GNN models during training and testing, we conducted
experiments with varying iteration values. Figure 7 presents the results of NeuroSAT and GGNN
trained and evaluated with different message passing iterations. Remarkably, using a training itera-
tion value of 32 consistently yielded the best performance for both models. Conversely, employing
too small or too large iteration values during training resulted in decreased performance. Further-
more, the models trained with 32 iterations also demonstrated good generalization ability to testing
iterations 16 and 64. These findings emphasize the critical importance of selecting an appropriate
message-passing iteration to ensure optimal learning and reasoning within GNN models.

8 16 32 64

8

16

32

64

67.25 70.84 71.54 60.53

62.66 88.36 95.06 95.45

59.85 76.81 96.62 98.87

49.98 52.52 73.41 87.76

NeuroSAT on the easy SR dataset

8 16 32 64

8

16

32

64

77.68 68.18 64.07 63.94

76.55 90.06 94.17 95.03

62.91 82.88 96.38 98.86

56.95 60.47 81.03 91.14

NeuroSAT on the easy 3-sat dataset

8 16 32 64

8

16

32

64

56.66 51.73 51.62 52.11

50.64 63.68 70.16 77.90

50.55 58.94 77.70 85.19

50.00 50.00 49.99 57.20

NeuroSAT on the medium SR dataset

8 16 32 64

8

16

32

64

77.50 53.75 50.17 50.04

70.43 80.09 77.98 74.48

72.27 79.85 85.78 88.70

51.30 66.32 77.85 83.25

NeuroSAT on the medium 3-SAT dataset

8 16 32 64

8

16

32

64

71.95 53.52 50.36 50.39

68.79 86.59 90.73 93.21

62.16 82.80 94.19 98.08

50.00 51.20 71.59 85.41

GGNN on the easy SR dataset

8 16 32 64

8

16

32

64

79.16 77.52 51.21 49.23

53.61 91.39 86.48 76.33

68.49 82.80 96.16 98.41

50.00 50.00 77.34 90.44

GGNN on the easy 3-sat dataset

8 16 32 64

8

16

32

64

57.30 50.01 50.00 50.00

50.52 64.33 58.93 51.58

50.40 58.58 78.40 82.27

50.00 52.37 52.15 54.22

GGNN on the medium SR dataset

8 16 32 64

8

16

32

64

77.94 50.00 50.00 50.00

72.27 80.51 50.00 50.00

54.21 78.52 84.67 81.42

50.00 50.28 69.25 80.00

GGNN on the medium 3-SAT dataset

Figure 7: Results across different message passing iterations T . The x-axis denotes testing iterations
and the y-axis denotes training iterations.

C.3 SATISFYING ASSIGNMENT PREDICTION

15

Under review as a conference paper at ICLR 2024

SR
3-S

AT CA PS

k-C
liqu

e

k-D
om

set

k-V
erc

ov

SR

3-SAT

CA

PS

k-Clique

k-Domset

k-Vercov

79.05 79.68 71.68 86.63 0.89 77.53 78.73

25.79 80.98 34.92 51.15 24.89 35.95 82.07

38.58 66.03 89.33 69.89 17.96 39.51 62.15

76.74 76.50 68.48 88.67 2.52 74.65 62.77

0.44 20.92 0.00 0.41 63.43 9.50 41.87

28.68 25.38 0.55 42.69 1.36 98.96 63.50

9.10 14.95 13.28 16.28 55.15 12.95 99.81

NeuroSAT on easy datasets

SR
3-S

AT CA PS

k-C
liqu

e

k-D
om

set

k-V
erc

ov

SR

3-SAT

CA

PS

k-Clique

k-Domset

k-Vercov

37.25 37.13 3.10 57.26 0.00 20.68 4.08

1.19 41.61 0.09 9.83 0.00 10.75 13.65

2.05 19.42 70.84 26.01 1.21 34.32 29.28

35.27 36.26 62.26 71.03 0.00 28.91 0.02

0.00 0.00 0.00 0.02 32.48 11.62 20.18

1.66 0.00 2.89 9.69 7.42 96.18 66.44

0.00 0.00 0.00 0.00 22.49 0.70 95.03

NeuroSAT on medium datasets

Figure 8: Results of NeuroSAT across different
datasets (with UNS2 as the training loss). The
x-axis denotes testing datasets and the y-axis de-
notes training datasets.

Evaluation with different datasets. Figure 8
illustrates the performance of NeuroSAT across
different datasets. For easy datasets, we observe
that NeuroSAT demonstrates a strong generaliza-
tion ability to other datasets when trained on the
SR, 3-SAT, CA, and PS datasets. However, when
trained on the k-Clique, k-Domset, and k-Vercov
datasets, which involve specific graph structures
inherent to their combinatorial problems, Neu-
roSAT struggles to generalize effectively. This
observation indicates that the GNN model may
overfit to leverage specific graph features asso-
ciated with these combinatorial datasets, without
developing a generalized solving strategy that can
be applied to other problem domains for satisfy-
ing assignment prediction. For medium datasets, NeuroSAT also faces challenges in generalization,
as its performance is relatively limited. This can be attributed to the difficulty of these datasets,
where finding satisfying assignments is much harder than easy datasets.

Evaluation across different difficulty levels. The performance of NeuroSAT across different dif-
ficulty levels is shown in Figure 9. Notably, training on medium datasets yields superior gener-
alization performance compared to training on easy datasets. This suggests that training on more
challenging SAT instances with larger size can enhance the model’s ability to generalize to a wider
range of problem complexities.

easy medium hard

easy

medium

79.05 29.50 2.25

81.80 37.25 5.19

NeuroSAT on the SR dataset
easy medium hard

easy

medium

80.98 35.72 7.25

82.63 41.61 11.34

NeuroSAT on the 3-SAT dataset
easy medium hard

easy

medium

89.35 68.25 59.91

85.13 70.85 68.96

NeuroSAT on the CA dataset
easy medium hard

easy

medium

88.67 64.04 43.63

89.88 71.03 55.47

NeuroSAT on the PS dataset
easy medium hard

easy

medium

63.43 19.05 1.76

64.85 32.48 14.68

NeuroSAT on the k-Clique dataset
easy medium hard

easy

medium

98.96 69.72 19.43

96.65 96.18 91.77

NeuroSAT on the k-Domset dataset
easy medium hard

easy

medium

99.81 75.11 0.00

99.15 95.03 81.21

NeuroSAT on the k-Vercov dataset

Figure 9: Results of NeuroSAT across different difficulty levels (with UNS2 as the training loss).
The x-axis denotes testing datasets and the y-axis denotes training datasets.

SR 3-SAT CA PS k-Clique k-Domset k-Vercov
NeuroSAT on easy datasets

0.0

0.2

0.4

0.6

0.8

1.0

Cl
as

sif
ica

tio
n

ac
cu

ra
cy

 (%
)

0.
79 0.
81

0.
89

0.
89

0.
63

0.
99 1.
00

0.
79 0.
81

0.
89

0.
89

0.
63

0.
98 0.
99

0.
79 0.
81

0.
90

0.
89

0.
63

0.
99 1.
00

Standard readout
Clustering decoding
Multiple predictions

SR 3-SAT CA PS k-Clique k-Domset k-Vercov
NeuroSAT on medium datasets

0.0

0.2

0.4

0.6

0.8

1.0

Cl
as

sif
ica

tio
n

ac
cu

ra
cy

 (%
)

0.
37 0.

42

0.
71

0.
71

0.
32

0.
96

0.
95

0.
37 0.

42

0.
70

0.
71

0.
32

0.
96

0.
97

0.
37 0.

42

0.
72

0.
71

0.
32

0.
96

0.
95

Standard readout
Clustering decoding
Multiple predictions

Figure 10: Results of NeuroSAT with different
inference algorithms.

Evaluation with different inference algo-
rithms. Figure 10 illustrates the results of Neu-
roSAT using various decoding algorithms (with
UNS2 as the training loss). Surprisingly, all
three decoding algorithms demonstrate remark-
ably similar performances across all datasets.
This observation indicates that utilizing the stan-
dard readout after message passing is sufficient
for predicting a satisfying assignment. Also, the
GNN model has successfully learned to identify
potential satisfying assignments within the latent
space, which can be extracted by clustering the literal embeddings.

Evaluation with unsatisfiable training instances. Following previous works (Amizadeh et al.,
2019a;b; Ozolins et al., 2022), our evaluation of GNN models focuses solely on satisfiable instances.
However, in practical scenarios, the satisfiability of instances may not be known before training. To
address this gap, we explore the effectiveness of training NeuroSAT using the unsupervised loss
UNS2 on noisy datasets that contain unsatisfiable instances. Table 10 presents the results of Neu-
roSAT when trained on such datasets, where 50% of the instances are unsatisfiable. Interestingly,
incorporating unsatisfiable instances for training does not significantly affect the performance of the
GNN model. This finding highlights the potential utility of training GNN models using UNS2 loss
on new datasets, irrespective of any prior knowledge regarding their satisfiability.

16

Under review as a conference paper at ICLR 2024

Table 10: Results of NeuroSAT when trained on noisy datasets. Values in parentheses indicate the
performance difference compared to the model trained without unsatisfiable instances. The k-Clique
dataset is excluded as NeuroSAT fails during training.

Easy Datasets Medium Datasets

SR 3-SAT CA PS k-Domset k-Vercov SR 3-SAT CA PS k-Domset k-Vercov

0.7884 0.8048 0.8701 0.8866 0.9800 0.9524 0.3721 0.4175 0.7649 0.7252 0.9493 0.9618
(-0.95) (-0.11) (-2.33) (-0.13) (-0.85) (-4.49) (-0.04) (+0.14) (+5.64) (+1.46) (-1.25) (+0.19)

C.4 UNSAT-CORE VARIABLE PREDICTION

Evaluation across different datasets. Figure 11 shows the generalization results across different
datasets. Both NeuroSAT and GGNN demonstrate good generalization performance to datasets that
are different from their training data, except for the CA dataset. This discrepancy can be attributed
to the specific characteristics of the CA dataset, where the number of unsat-core variables is signifi-
cantly smaller compared to the number of variables not in the unsat core. In contrast, other datasets
have a different distribution, where the number of unsat-core variables is much larger. This variation
in distribution presents a challenge for the models’ generalization ability on the CA dataset.

SR
3-S

AT CA PS

k-C
liqu

e

k-D
om

set

k-V
erc

ov

SR

3-SAT

CA

PS

k-Clique

k-Domset

k-Vercov

90.85 93.94 18.96 85.20 99.92 91.71 91.94

78.94 94.41 18.95 71.10 99.93 77.09 81.52

21.11 6.15 83.51 31.46 0.07 4.59 6.22

79.54 13.93 19.27 86.18 0.07 4.59 6.22

78.88 93.85 21.29 68.54 99.93 81.57 93.78

78.91 92.54 18.95 68.71 99.93 95.82 90.50

78.89 93.86 18.95 68.55 99.93 85.61 94.47

NeuroSAT on easy datasets

SR
3-S

AT CA PS

k-C
liqu

e

k-D
om

set

k-V
erc

ov

SR

3-SAT

CA

PS

k-Clique

k-Domset

k-Vercov

90.05 99.08 14.30 76.80 99.96 97.81 96.45

82.79 99.65 14.30 54.98 99.96 97.81 99.09

17.21 0.65 85.70 46.07 0.04 2.19 0.91

81.82 0.66 14.39 88.54 46.08 2.19 0.92

82.79 99.35 14.30 53.93 99.96 97.81 99.09

82.79 97.92 14.30 54.22 99.96 97.90 99.09

82.79 99.34 14.30 54.45 99.96 97.58 99.09

NeuroSAT on medium datasets

SR
3-S

AT CA PS

k-C
liqu

e

k-D
om

set

k-V
erc

ov

SR

3-SAT

CA

PS

k-Clique

k-Domset

k-Vercov

89.54 94.10 19.02 85.25 99.86 94.06 35.80

78.92 94.37 18.95 70.50 99.93 82.55 99.09

21.11 6.15 83.63 31.55 0.07 4.59 0.91

83.70 93.33 19.56 85.85 21.31 74.31 98.95

78.89 93.85 18.95 68.54 99.93 95.41 99.09

78.83 91.77 18.97 69.41 99.93 95.82 99.09

78.89 93.86 18.95 68.55 99.93 85.26 99.09

GGNN on easy datasets

SR
3-S

AT CA PS

k-C
liqu

e

k-D
om

set

k-V
erc

ov

SR

3-SAT

CA

PS

k-Clique

k-Domset

k-Vercov

88.84 99.14 14.59 81.32 33.91 38.76 35.80

82.79 99.65 14.30 54.04 99.96 97.81 99.09

17.21 0.65 85.70 46.07 0.04 2.19 0.91

83.15 0.65 14.47 88.04 99.96 97.78 98.95

82.79 99.35 14.30 53.93 99.96 97.81 99.09

82.23 90.80 14.30 54.68 99.96 97.89 99.09

82.14 96.68 14.31 55.33 99.96 97.81 99.09

GGNN on medium datasets

Figure 11: Results across different datasets. The x-axis denotes testing datasets and the y-axis
denotes training datasets.

Evaluation across different difficulty levels. The results across different difficulty levels are pre-
sented in Figure 12. Remarkably, both NeuroSAT and GGNN exhibit a strong generalization ability
when trained on easy or medium datasets. This suggests that GNN models can effectively learn and
generalize from the characteristics and patterns present in these datasets, enabling them to perform
well on a wide range of problem complexities.

easy medium hard

easy

medium

90.85 87.58 88.06

89.51 90.05 94.04

NeuroSAT on the SR dataset
easy medium hard

easy

medium

94.41 98.82 98.92

94.20 99.65 100.00

NeuroSAT on the 3-SAT dataset
easy medium hard

easy

medium

83.51 81.55 83.15

81.05 85.70 86.01

NeuroSAT on the CA dataset
easy medium hard

easy

medium

86.18 86.37 85.73

85.93 88.54 90.85

NeuroSAT on the PS dataset
easy medium hard

easy

medium

99.93 99.96 99.99

99.93 99.96 99.99

NeuroSAT on the k-Clique dataset
easy medium hard

easy

medium

95.82 92.79 94.63

95.64 97.90 99.04

NeuroSAT on the k-Domset dataset
easy medium hard

easy

medium

94.47 99.10 99.85

93.78 99.09 99.85

NeuroSAT on the k-Vercov dataset

easy medium hard

easy

medium

89.54 87.49 88.50

86.57 88.84 92.90

GGNN on the SR dataset
easy medium hard

easy

medium

94.37 98.96 99.09

94.19 99.65 100.00

GGNN on the 3-SAT dataset
easy medium hard

easy

medium

83.63 85.55 85.94

81.05 85.70 86.01

GGNN on the CA dataset
easy medium hard

easy

medium

85.85 86.37 85.95

84.89 88.04 90.34

GGNN on the PS dataset
easy medium hard

easy

medium

99.93 99.96 99.99

99.93 99.96 99.99

GGNN on the k-Clique dataset
easy medium hard

easy

medium

95.82 97.26 98.98

95.68 97.89 99.02

GGNN on the k-Domset dataset
easy medium hard

easy

medium

94.48 99.02 99.78

93.80 99.09 99.85

GGNN on the k-Vercov dataset

Figure 12: Results across different difficulty levels. The x-axis denotes testing datasets and the y-
axis denotes training datasets.

D ADVANCING EVALUATION

Implementation details. To create the augmented datasets, we leverage CaDiCaL (Fleury &
Heisinger, 2020) to generate a DART proof (Wetzler et al., 2014) for each SAT instance, which
tracks the clause learning procedure and records all the learned clauses during the solving process.
These learned clauses are then added to each instance, with a maximum limit of 1,000 clauses.

17

Under review as a conference paper at ICLR 2024

For experiments on augmented datasets, we keep all training settings identical to those used for the
original datasets.

For contrastive pretraining experiments, we treat each original formula and its augmented counter-
part as a positive pair and all other instances in a mini-batch as negative pairs. We use an MLP
projection to map the graph embedding zi of each formula to mi and employ the SimCLR’s con-
trastive loss (Chen et al., 2020), where the loss function for a positive pair of examples (i, j) in a
mini-batch of size 2N is defined as:

Li,j = − log
exp(sim(mi,mj)/τ)∑2N

k=1 1[k ̸=i] exp(sim(mi,mk)/τ)
. (8)

Here, 1[k ̸=i] is an indicator function that evaluates to 1 if k ̸= i, τ is a temperature parameter, and
sim(·, ·) is the similarity function defined as sim(mi,mj) = m⊤

i mj/∥mi∥∥mj∥. The final loss is
the average over all positive pairs. In our experiments, we set the temperature parameter to 0.5 and
utilize a learning rate of 10−4 with a weight decay of 10−8. The pretraining process is performed for
a total of 100 epochs. Once the pretraining is completed, we only keep the GNN model and remove
the projection head for downstream tasks.

For experiments involving random initialization, we utilize Kaiming Initialization (He et al., 2015)
to initialize all literal/variable and clause embeddings during both training and testing. For the
predicted assignments, we utilize 2-clustering decoding to construct two possible assignment pre-
dictions for NeuroSAT* at each iteration. When calculating the number of flipped variables and the
number of unsatisfiable clauses for NeuroSAT*, we only consider the better assignment prediction
of the two at each iteration, which is the one that satisfies more clauses. All other experimental
settings remain the same as in the benchmarking evaluation.

E LIMITATIONS AND FUTURE WORK

While G4SATBench represents a significant step in evaluating GNNs for SAT solving, there are
still some limitations and potential future directions to consider. Firstly, G4SATBench primarily fo-
cuses on evaluating standalone neural SAT solvers, excluding the exploration of neural-guided SAT
solvers that integrate GNNs with search-based SAT solvers. It also should be emphasized that the
instances included in G4SATBench are considerably smaller compared to most practical instances
found in real-world applications, where GNN models alone are not sufficient for solving such large-
scale instances. The efficacy of GNN models in unsat-core prediction shows a promising avenue for
combining GNNs with modern SAT solvers, and future research could explore more techniques to
effectively leverage these neural-guided SAT solvers to scale up to real-world instances. Secondly,
G4SATBench benchmarks general GNN models on the LCG* and VCG* graph representations for
SAT solving, but does not consider sophisticated GNN models designed for specific graph construc-
tions in certain domains, such as Circuit SAT problems. Investigating domain-specific GNN models
tailored to the characteristics of specific problems could lead to improved performance in special-
ized instances. Lastly, all existing GNN-based SAT solvers in the literature are static GNNs, which
have limited learning ability to capture the CDCL heuristic. Exploring dynamic GNN models that
can effectively learn the CDCL heuristic is also a potential direction for future research.

18

	Introduction
	Related Work
	Preliminaries
	G4SATBench: A Benchmark Study on GNNs for SAT Solving
	Datasets
	GNN Baselines
	Supported Tasks, Training and Testing Settings

	Benchmarking Evaluation on G4SATBench
	Satisfiability Prediction
	Satisfying Assignment Prediction
	Unsat-core Variable Prediction

	Advancing Evaluation on G4SATBench
	Comparison with the CDCL Heuristic
	Comparison with the LS Heuristic

	Conclusion
	Datasets
	GNN Models
	Benchmarking Evaluation
	Implementation Details
	Satiafiability Prediction
	Satisfying Assignment Prediction
	Unsat-core Variable Prediction

	Advancing Evaluation
	Limitations and Future Work

