
Random Feature Representation Boosting

Nikita Zozoulenko 1 Thomas Cass * 1 Lukas Gonon * 1 2

Abstract
We introduce Random Feature Representation
Boosting (RFRBoost), a novel method for con-
structing deep residual random feature neural net-
works (RFNNs) using boosting theory. RFRBoost
uses random features at each layer to learn the
functional gradient of the network representation,
enhancing performance while preserving the con-
vex optimization benefits of RFNNs. In the case
of MSE loss, we obtain closed-form solutions to
greedy layer-wise boosting with random features.
For general loss functions, we show that fitting
random feature residual blocks reduces to solving
a quadratically constrained least squares problem.
Through extensive numerical experiments on tab-
ular datasets for both regression and classification,
we show that RFRBoost significantly outperforms
RFNNs and end-to-end trained MLP ResNets in
the small- to medium-scale regime where RFNNs
are typically applied. Moreover, RFRBoost offers
substantial computational benefits, and theoretical
guarantees stemming from boosting theory.

1. Introduction
Random feature neural networks (RFNNs) are single-
hidden-layer neural networks where all model parameters
are randomly initialized or sampled, with only the linear
output layer being trained. This approach presents a compu-
tationally efficient alternative to neural networks trained via
stochastic gradient descent (SGD), avoiding the challenges
associated with non-convex optimization and vanishing/-
exploding gradients. Despite their simplicity, RFNNs and
related random feature models have strong provable gen-
eralization guarantees (Rahimi & Recht, 2008b; Rudi &
Rosasco, 2017; Lanthaler & Nelsen, 2023; Cheng et al.,
2023), and have demonstrated state-of-the-art performance

∗Equal last authors. 1Department of Mathematics, Imperial
College London, UK 2School of Computer Science, University of
St. Gallen, Switzerland. Correspondence to: Nikita Zozoulenko
<n.zozoulenko23@imperial.ac.uk>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

and speed across various tasks (Bolager et al., 2023; Demp-
ster et al., 2023; Gattiglio et al., 2024; Prabhu et al., 2024).

Recent theoretical work on Fourier RFNNs has shown that
deep residual RFNNs can achieve lower generalization er-
rors than their single-layer counterparts (Kammonen et al.,
2022). Current theory and algorithms for training deep
RFNNs, however, are limited to the Fourier activation func-
tion (Davis et al., 2024), and uses ideas from control theory
to sample from optimal weight distributions. While skip
connections have been crucial to the success of deep end-
to-end-trained ResNets (He et al., 2015), introducing them
into general RFNNs is not straightforward, as naively stack-
ing random layers may degrade performance. In this paper,
we introduce random feature representation boosting
(RFRBoost), a novel method for constructing deep ResNet
RFNNs. Our approach not only significantly improves per-
formance, but also retains the highly tractable convex op-
timization framework inherent to RFNNs, with theoretical
guarantees stemming from boosting theory.

ResNets have traditionally been studied from two primary
perspectives. The first views a ResNet Φt, defined by

Φt(x) = Φt−1(x) + gt(Φt−1(x)), (1)

as an Euler discretization of a dynamical system dΦt(x) =
gt(Φt)dt (E, 2017). Here gt represents a residual block at
layer t, often expressed as gt(x) = Aσ(Bx+b). This frame-
work was later generalized to the setting of neural ODEs
(Chen et al., 2018; Dupont et al., 2019; Kidger et al., 2020;
2021; Walker et al., 2024). The second point of view is
that of gradient boosting, where a ResNet can be seen as an
ensemble of weak, shallow neural networks of varying sizes,
ΦT (x) =

∑T
t=1 gt(Φt−1(x)), derived by unravelling equa-

tion (1) (Veit et al., 2016). This led to the development of
gradient representation boosting (Nitanda & Suzuki, 2018;
Suggala et al., 2020), which studies residual blocks via func-
tional gradients in the space of square integrable random
vectors LD

2 (µ), where µ is the distribution of the data.

A key challenge in extending RFNNs to deep ResNet archi-
tectures lies in the crucial role of the residual blocks gt when
they are composed of random features. If the magnitude of
gt is too small, the initial representation Φ0 dominates, ren-
dering the added random features ineffective. Conversely,
if gt is too large, information from previous layers can be
lost. This problem is not merely one of scale; ideally each

1

Random Feature Representation Boosting

residual block should approximate the negative functional
gradient of the loss with respect to the network representa-
tion. However, random layers are not guaranteed to possess
this property. Unlike end-to-end trained networks where
SGD with backpropagation can adjust all network weights
to learn an appropriate scale and representation, RFNNs
lack a comparable mechanism because their hidden layers
are fixed. We address this issue by using random features at
each layer of the ResNet to learn a mapping to the functional
gradient of the training data, enabling tractable learning of
optimal random feature residual blocks via analytical solu-
tions or convex optimization.

1.1. Contributions

Our paper makes the following contributions:

• Introducing RFRBoost: We propose a novel method
for constructing deep ResNet RFNNs, overcoming the
limitations of naively stacking random features layers.
RFRBoost supports arbitrary random features, extend-
ing beyond classical random Fourier features.

• Analytical Solutions and Algorithms: For MSE loss,
we derive closed-form solutions to greedy layer-wise
boosting using random features by solving what we
term “sandwiched least squares problems”, a special
case of generalized Sylvester equations. For general
losses, we show that fitting random feature residual
blocks is equivalent to solving a quadratically con-
strained least squares problem.

• Theoretical Guarantees: We provide a regret bound
for RFRBoost based on Rademacher complexities and
established results from boosting theory.

• Empirical Validation: Through numerical experi-
ments on 91 tabular regression and classification tasks
from the curated OpenML repository, we demonstrate
that RFRBoost significantly outperforms both single-
layer RFNNs and end-to-end trained MLP ResNets,
while offering substantial computational advantages.

1.2. Related literature

Classical Boosting: Boosting aims to build a strong ensem-
ble of weak learners via additive modelling of the objective
function, dating back to the 1990s with the development
of AdaBoost (Freund & Schapire, 1997). Gradient boost-
ing, introduced as a generalization of boosting, supports
general differentiable loss functions (Mason et al., 1999;
Friedman et al., 2000; Friedman, 2001), and includes popu-
lar frameworks such as XGBoost (Chen & Guestrin, 2016),
LightGBM (Ke et al., 2017), and CatBoost (Prokhorenkova
et al., 2018). These models typically use decision trees as
weak learners and are widely considered the best out-of-the-
box models for tabular data (Grinsztajn et al., 2022).

Boosting for Neural Networks: Applications of boost-
ing for neural network first appeared in AdaNet (Cortes
et al., 2017), which built a network graph using boosting to
minimize a data-dependent generalization bound. Huang
et al. (2018) introduced an AdaBoost-inspired algorithm
for sequentially learning residual blocks, boosting the fea-
ture representation rather than the class labels. Nitanda &
Suzuki (2018; 2020) proposed using Fréchet derivatives in
LD
2 (µ) to learn residual blocks that preserve small func-

tional gradient norms, motivated by Reproducing Kernel
Hilbert Space (RKHS) theory and smoothing techniques.
GrowNet (Badirli et al., 2020) constructs an ensemble of
neural networks in the classical sense of gradient boosting
the labels, not as a ResNet, but by concatenating the fea-
tures of previous models to the next weak learner. Suggala
et al. (2020) introduced gradient representation boosting,
which studies layer-wise training of ResNets by greedily
or gradient-greedily minimizing a risk function, and gives
modular excess risk bounds based on Rademacher complex-
ities. Yu et al. (2023) used gradient boosting to improve
the training of dynamic depth neural networks. Finally,
Emami & Martı́nez-Muñoz (2023) constructed a network
neuron-by-neuron using gradient boosting.

Random feature models: Random feature models use
fixed, randomly generated features to map data into a high
dimensional space, enabling efficient linear learning. These
methods encompass a broad class of models studied under
various names, including random Fourier features (Rahimi
& Recht, 2007; Sriperumbudur & Szabo, 2015; Li et al.,
2019; Kammonen et al., 2022; Davis et al., 2024), extreme
learning machines (Huang et al., 2004; 2012; Huang, 2014),
random features or RFNNs (Huang et al., 2006; Rahimi
& Recht, 2008a;b; Rudi & Rosasco, 2017; Carratino et al.,
2018; Yehudai & Shamir, 2019; Mei & Montanari, 2022;
Bolager et al., 2023; Lanthaler & Nelsen, 2023; Ayme et al.,
2024), reservoir computing (Jaeger, 2001; Lukoševičius &
Jaeger, 2009; Gallicchio et al., 2017; Grigoryeva & Ortega,
2018; Tanaka et al., 2019; Hart et al., 2020; Gonon et al.,
2023; 2024), kernel methods (Kar & Karnick, 2012; Sinha
& Duchi, 2016; Sun et al., 2018; Szabo & Sriperumbudur,
2019; Cheng et al., 2023; Wang et al., 2024; Wang & Feng,
2024), and scattering networks (Bruna & Mallat, 2013; Cot-
ter & Kingsbury, 2017; Oyallon et al., 2019; Trockman
et al., 2023). Recently, RFNNs and related approaches
have demonstrated exceptional performance in both speed
and accuracy across a wide variety of applications. These
include solving partial differential equations (Nelsen & Stu-
art, 2021; Gonon, 2023; Gattiglio et al., 2024; Neufeld &
Schmocker, 2024), online learning (Prabhu et al., 2024),
time series classification (Dempster et al., 2020; 2023), and
in mathematical finance (Jacquier & Zuric, 2023; Herrera
et al., 2024). RFNNs have also been explored in the context
of quantum computing (Innocenti et al., 2023; Gonon &

2

Random Feature Representation Boosting

Jacquier, 2023; Martı́nez-Peña & Ortega, 2023; Xiong et al.,
2024), and in relation to random neural controlled differen-
tial equations and state-space models (Cuchiero et al., 2021;
Cirone et al., 2023; 2024).

2. Functional Gradient Boosting
In this section we introduce notation and give a brief
overview of classical gradient boosting (Mason et al., 1999;
Friedman, 2001), and its connection to deep ResNets via
gradient representation boosting (Nitanda & Suzuki, 2018;
2020; Suggala et al., 2020).

Let (X,Y) ∼ µ be a random sample with its corresponding
probability measure µ. Denote by X ∼ µX the features in
Rq , with targets Y ∼ µY in Rd, and µY |X=x the conditional
law. Let µ̂ = 1

n

∑n
i=1 δ(xi,yi) be the empirical measure of

µ. We will work in the Hilbert space LD
2 (µ), with inner

product given by ⟨f, g⟩LD
2 (µ) = Eµ[⟨f, g⟩RD]. The concept

of functional gradient plays a key role in gradient boosting:

Definition 2.1. Let H be a Hilbert space. A function
f : H → R is said to be Frechet differentiable at h ∈H
if there exists a bounded linear operator∇f : U →H for
some open neighbourhood U ⊂H of h such that

f(h+ g) = f(h) + ⟨g,∇f(h)⟩H + o(∥g∥H)

for g ∈ U . The element ∇f(h) is often referred to as the
functional gradient of f at h, or simply the gradient.

2.1. Traditional Gradient Boosting

Let l : Rd × Rd → R be a sufficiently regular loss function.
Traditional gradient boosting seeks to minimize the risk
R(F) = Eµ

[
l(F (X), Y)

]
by additively modelling F ∈

span(G) within a space of weak learners G, typically a set
of decision trees (Friedman, 2001; Chen & Guestrin, 2016).
It iteratively updates an estimate Ft =

∑t
s=1 ηαsgs based

on a first-order expansion of the risk:

R(Ft + g) ≈ R(Ft) + ⟨g,∇R(Ft)⟩Ld
2(µ)

.

To minimize the risk based on this approximation, a new
weak learner gt+1 is fit to the negative functional gradient,
−∇R(Ft), and the ensemble is then updated: Ft+1 = Ft +
ηαt+1gt+1, where η, αt+1 > 0 are the global and local
learning rates. The functional gradient can be shown to be
equal to

∇R(F)(x) = EµY |X=x

[
∂1l(F (x), Y)

]
,

and is easily computed for empirical measures µ̂ =
1
n

∑n
i=1 δ(xi,yi) using the empirical risk R̂(F). The method

for fitting gt+1 varies between implementations and depends
on the class of weak learners, as seen in modern approaches
like XGBoost (Chen & Guestrin, 2016) which incorporates
second-order information.

2.2. Gradient Representation Boosting

Unlike classical boosting, which boosts in label space, neu-
ral network gradient representation boosting aims to addi-
tively learn a feature representation by modelling F via
F = Ft(X) = W⊤

t Φt(X), where Φt =
∑t

s=0 ηgs is a
gradient boosted feature representation and Wt ∈ RD×d is
the top-level linear predictor. In other words, gradient repre-
sentation boosting seeks to learn the feature representation
Φt additively to build a single strong predictor, rather than
constructing Ft as an ensemble of weak predictors (Huang
et al., 2018; Nitanda & Suzuki, 2018; 2020; Suggala et al.,
2020). For a depth t ResNet Φt, defined recursively as

Φt = Φt−1 + ηht(Φt−1), (2)

we see by unravelling (2), that the weak learners gt are of
the form gt = ht(Φt−1). These functions gt are sometimes
referred to as weak feature transformations. Prior work has
employed shallow neural networks as gt, trained greedily
layer-by-layer with SGD (see references above). In the
setting of gradient representation boosting we denote the risk
as R(W,Φ) = Eµ

[
l(W⊤Φ(X), Y)

]
, and the functional

gradient with respect to the feature representation Φ is

∇2R(W,Φ)(x) = EµY |X=x

[
W∂1l(W

⊤Φ(X), Y)
]
.

Let R̂(W,Φ) be the empirical risk,W the hypothesis set of
top-level linear predictors, and Gt the set of weak feature
transformations. As outlined by Suggala et al. (2020), there
are two main strategies for training ResNets via gradient
representation boosting, which we describe below.

1.) Exact-Greedy Layer-wise Boosting: At boosting step
t, the model is updated greedily by solving the joint opti-
mization problem

Wt, gt = argmin
W∈W,g∈Gt

R̂(W,Φt−1 + g), (3)

leading to the update Φt = Φt−1 + ηgt. This approach is
feasible when W and g are jointly optimized by SGD. For
general ResNets, this translates to gt = ht(Φt−1), where ht

is a shallow neural network (i.e., a residual block) and W
the top-level linear predictor.

However, in the context of random feature ResNets, using
SGD for the joint optimization in Equation (3) undermines
the computational benefits inherent to the random feature
approach. As will be demonstrated in Section 3, by restrict-
ing gt to a simple residual block gt = Atft(Φt−1), with
ft representing random features and At a linear map, we
can derive closed-form analytical solutions for a two-stage
approach to the optimization problem (3). This speeds up
training and removes the need for hyperparameter tuning of
the scale of the random features ft at each individual layer.

2.) Gradient-Greedy Layer-wise Boosting: An alternative
to directly minimizing the risk by solving (3), which can be

3

Random Feature Representation Boosting

intractable depending on the loss l and the family of weak
learners, is to follow the negative functional gradient. At
boosting iteration t, this approach approximates the risk
using the first-order functional Taylor expansion:

R(W,Φ+ g) ≈ R(W,Φ) + ⟨g,∇2R(W,Φ)⟩LD
2 (µ). (4)

A new weak learner gt ∈ Gt is fit by minimizing the empiri-
cal inner product ⟨g,∇ΦR̂(Wt−1,Φt−1)⟩LD

2 (µ̂). The depth
t feature representation is obtained by Φt = Φt−1 + ηgt,
and the top-level predictor is then updated:

Wt = argmin
W∈W

R̂(W,Φt).

Potential Challenges: The gradient-greedy approach for
constructing ResNets has remained relatively unexplored in
the literature. Suggala et al. (2020), who introduced both
strategies in the context of end-to-end trained networks,
only mention in passing that the gradient-greedy strategy
performed worse comparatively. We believe this might be at-
tributed to the functional direction of g failing to be properly
preserved during training with SGD. Specifically, when g is
chosen from the family g = h(Φt−1), where h is a shallow
neural network, minimizing ⟨g,∇2R̂(Wt−1,Φt−1)⟩LD

2 (µ̂)

via SGD might increase ∥g∥LD
2 (µ̂) without ensuring that

g aligns with the functional gradient in LD
2 (µ̂). Since the

first-order approximation (4) only holds for g with small
functional norm, we argue that this objective should instead
be minimized under the constraint ∥g∥LD

2 (µ̂) = 1. In our
random feature setting, we incorporate this constraint and
show in Section 4 that it leads to the gradient-greedy ap-
proach outperforming the exact-greedy strategy.

3. Random Feature Representation Boosting
Our goal is to construct a random feature ResNet of the
form

Φt = Φt−1 + ηAtft,

where ft = ft(x,Φt−1(x)) ∈ Rp are random features,
At ∈ RD×p is a linear map, x is input data, and η > 0 is
the learning rate. We propose to use the theory of gradient
representation boosting (Suggala et al., 2020) to derive opti-
mal expressions for At. We consider three different cases
where At is either a scalar (learning optimal learning rate),
a diagonal matrix (learning dimension-wise learning rate),
or a dense matrix (learning the functional gradient). Note
that the scalar and diagonal cases assume that p = D.

This section is outlined as follows: We first define a ran-
dom feature layer. We then analyze the case of MSE loss
l(x, y) = 1

2∥x − y∥2Rd , deriving closed-form solutions for
layer-wise exact greedy boosting with random features. We
then explore the gradient-greedy approach, which supports
any differentiable loss function.

Figure 1. Diagram of random feature representation boosting.

3.1. Random Feature Layer

With a random feature layer, we mean any mapping which
produces a feature vector ft ∈ Rp, which will not be trained
after initialization. This is in contrast to end-to-end trained
networks, where all model weights are adjusted continu-
ously during training. A common choice for ft is a ran-
domly sampled dense layer, ft(x) = σ(BtΦt−1(x)), with
activation function σ and weight matrix Bt ∈ Rp×D. To
enhance the expressive power of RFRBoost, we allow the
random features ft to be functions of both the input data x
and the previous ResNet layer’s output Φt−1(x), similar to
GrowNet (Badirli et al., 2020) and ResFGB-FW (Nitanda
& Suzuki, 2020). Figure 1 provides a visual representation
of the RFRBoost architecture. Specifically, in our experi-
ments on tabular data, we let the random feature layer be
ft(x) = σ(concat(BtΦt−1(x), Ctx)). The initial mapping
Φ0 can for instance be a random fixed linear projection, or
the identity. Instead of initializing Bt and Ct i.i.d., we use
SWIM random features (Bolager et al., 2023) in our exper-
iments (see Appendix E for more details). Note however
that RFRBoost supports arbitrary types of random features,
not only randomly initialized or sampled dense layers.

3.2. Exact-Greedy Case for Mean Squared Error Loss

Recall that in the exact-greedy layer-wise paradigm, the ob-
jective at layer t is to find a function gt ∈ Gt that additively
and greedily minimizes the empirical risk R̂(Wt,Φt−1+gt)
for some linear map Wt ∈ W , given a ResNet feature repre-
sentation Φt−1. We propose using functional gradient boost-
ing to construct a residual block of the form gt = Atft,
where At ∈ RD×p is a linear map, and ft is a random
feature layer. We consider the cases where At is a scalar

4

Random Feature Representation Boosting

multiple of the identity, a diagonal matrix, or a general dense
matrix. The procedure is outlined below:

Step 1: Generate random features ft = ft(x,Φt−1(x)),
which may depend on both the raw training data x and the
activations at the previous layer Φt−1(x). Using MSE loss,
we find that

At = argmin
A
R̂(Wt−1,Φt−1 +Aft(xi))

= argmin
A

1

n

n∑
i=1

∥yi −W⊤
t−1(Φt−1(xi) +Aft(xi))∥2

= argmin
A

1

n

n∑
i=1

∥ri −W⊤
t−1Aft(xi)∥2, (5)

where ri = yi − W⊤
t−1Φt−1(xi) are the residuals of the

model at layer t−1. We term problems of the form (5) sand-
wiched least squares problems, for which Theorem 3.1
below provides the existence of closed-form analytical solu-
tions which are fast to compute.

Step 2: After computing At, we obtain the depth t represen-
tation Φt = Φt−1 + ηAtft. The top-level linear regressor
Wt+1 is then updated via multiple least squares:

Wt = argmin
W∈W

1

n

n∑
i=1

∥yi −W⊤Φt(xi)∥2. (6)

In practice, ℓ2 regularization is added to equations (5) and
(6). Steps 1 and 2 are repeated for T layers. The complete
procedure is detailed in Algorithm 1.

Theorem 3.1. Let ri ∈ Rd,W ∈ RD×d, zi ∈ Rp for all
i ∈ [n]. Let λ > 0. Consider the setting of scalar A,
diagonal A, and dense A ∈ RD×p. Write Z ∈ RN×p and
R ∈ RN×d for the stacked data and residual matrices. Then
the minimum of

J(A) =
1

n

n∑
i=1

∥∥ri −W⊤Azi
∥∥2 + λ∥A∥2F

is in the scalar, diagonal, and dense case attained at

Ascalar =
⟨R,ZW ⟩F
∥ZW∥2F + nλ

,

Adiag = (WW⊤ ⊙ Z⊤Z + λI)−1diag(WR⊤Z),

Adense = U

[
U⊤WR⊤ZV ⊘

(
λN1

+ diag(ΛW)⊗ diag(ΛZ)

)]
V ⊤,

where ∥ · ∥F is the Frobenius norm, ⊘ denotes element-wise
division, ⊗ is the outer product, 1 is a matrix of ones, and
WW⊤ = UΛWU⊤ and Z⊤Z = V ΛZV ⊤ are spectral
decompositions.

Algorithm 1 Greedy RFRBoost — MSE Loss
Input: Data (xi, yi)

n
i=1, T layers, learning rate η, ℓ2

regularization λ, initial representation Φ0.
W0 ← argmin

W

1
n

∑n
i=1 ∥yi −W⊤Φ0(xi)

∥∥2
for t = 1 to T do

Generate random features ft,i = ft(xi,Φt−1(xi))
Compute residuals ri ← yi −W⊤

t−1Φt−1(xi)
Solve sandwiched least squares
At ← argmin

A

1
n

∑n
i=1 ∥ri −W⊤

t−1Aft,i∥2 + λ∥A∥2F
Build ResNet layer Φt ← Φt−1 + ηAtft
Update top-level linear regressor
Wt ← argmin

W

1
n

∑n
i=1 ∥yi−W⊤Φt(xi)

∥∥2+λ∥W∥2F
end for
Output: ResNet ΦT and regressor head WT .

Algorithm 2 Gradient RFRBoost — General Loss
Input: Data (xi, yi)

n
i=1, loss l, T layers, learning rate η,

ℓ2 regularization λ, initial representation Φ0.
W0 ← argmin

W

1
n

∑n
i=1 l

(
W⊤Φ0(xi), yi

)
for t = 1 to T do

Generate random features ft,i = ft(xi,Φt−1(xi))
Gradient Gi ←Wt−1∇1l

(
W⊤

t−1Φt−1(xi), yi
)

Fit gradient At ← least squares(ft,−
√
nG

∥G∥F
, λ)

Solve line search with convex solver
αt ← argmin

α∈R

1
n

∑n
i=1 l

(
W⊤(Φt−1 + αAtft), yi

)
Build ResNet layer Φt ← Φt−1 + ηαtAtft
Update top Wt ← argmin

W

1
n

∑n
i=1 l

(
W⊤Φt(xi), yi

)
end for
Output: ResNet ΦT and top linear layer WT .

Proof. See Propositions A.1 to A.3 in the Appendix.

3.3. Gradient Boosting Random Features

While the greedy approach provides optimal solutions for
MSE loss, many applications require more general loss func-
tions, such as cross-entropy loss for classification. In such
cases, we turn to the gradient-greedy strategy. Recall that in
this setting, we aim to minimize the first-order functional
Taylor expansion of the risk:

R(W,Φ+ g) ≈ R(W,Φ) + ⟨g,∇2R(W,Φ)⟩LD
2 (µ),

which holds for functions g with small LD
2 (µ)-norm. As

discussed in the context of general gradient representa-
tion boosting, a potential issue with directly minimizing
⟨g,∇2R̂(W,Φ)⟩LD

2 (µ̂) is that g might learn to maximize its
magnitude without following the direction of the functional
gradient. To address this, we constrain the problem to en-
sure that g maintains a unit norm in LD

2 (µ̂). If we restrict g

5

Random Feature Representation Boosting

to residual blocks of the form g = Af , where A ∈ RD×p is
a linear map, and f ∈ Rp are random features, then solving
the constrained LD

2 (µ̂)-inner product minimization problem
becomes equivalent to solving a quadratically constrained
least squares problem. See Appendix B for the proof.

Theorem 3.2. Let µ̂ = 1
n

∑n
i=1 δ(xi,yi) be the empirical

measure of the data. Then

argmax
A∈RD×p such that ∥Af∥

LD
2 (µ̂)

≤1

〈
Af,∇2R̂(W,Φ)

〉
LD

2 (µ̂)

is the solution to the quadratically constrained least squares
problem

minimize
1

n

n∑
i=1

∥∇2R̂(W,Φ)(xi)−Af(xi)∥2,

subject to
1

n

n∑
i=1

∥Af(xi)∥2 = 1,

which in particular has the closed form analytical solution

A =

√
n

∥G∥Frobenius
G⊤F (F⊤F)−1

when F has full rank, where F ∈ Rn×p is the feature
matrix, and G ∈ Rn×D is the matrix given by Gi,j =(
∇2R̂(W,Φ)(xi)

)
j
.

The procedure for using Gradient RFRBoost at layer t to
build a random feature ResNet Φt is outlined below (see
also Figure 1):

Step 1: Generate random features ft. Compute
the data matrix of the functional gradient Gi,j =(
∇2R̂(Wt−1,Φt−1)(xi)

)
j
. For MSE loss, this is given

by

GMSE
i,j =

(
Wt−1(W

⊤
t−1Φt−1(xi)− yi)

)
j
,

and for negative cross-entropy loss by

GCCE
i,j =

(
Wt−1(s(W

⊤
t−1Φt−1(xi))− eyi

)
)
j
,

where s is the softmax function, and eyi is the one-hot vector
for label yi. For full derivation, see Appendix C. We then
fit At by fitting ft+1 to the negative normalized functional
gradient −

√
nG

∥G∥F
via multiple least squares, according to

Theorem B.1. In practice, we also include ℓ2 regularization.

Step 2: Find the optimal amount of say αt via line search

αt = argmin
α>0

R̂(Wt−1,Φt−1 + αAtft)

using Theorem 3.1 for MSE loss, or via a suitable convex
optimizer such as Newton’s method for cross-entropy loss.

Step 3: Update the feature representation Φt = Φt−1 +
ηαtAtft, and the top-level linear predictor

Wt = argmin
W∈W

R̂(W,Φt)

using an appropriate convex minimizer depending on the
specific loss function, such as L-BFGS. The full gradient-
greedy procedure is detailed in Algorithm 2.

3.4. Theoretical Guarantees

A key advantage of using RFRBoost to construct ResNets
over traditional end-to-end trained networks is that RFR-
Boost inherits strong theoretical guarantees from boosting
theory. We analyze RFRBoost within the theoretical frame-
work of Generalized Boosting (Suggala et al., 2020), where
excess risk bounds have been established in terms of modu-
lar Rademacher complexities of the family of weak learners
Gt at each boosting iteration t. These bounds are based on
the (β, ϵ)-weak learning condition, defined below.

Definition 3.3 (Suggala et al. (2020)). Let β ∈ (0, 1] and
ϵ ≥ 0. We say that Gt+1 satisfies the (β, ϵ)-weak learning
condition if there exists a g ∈ Gt+1 such that〈
g,−∇2R(Wt,Φt)

〉
LD

2 (µ)

β supg∈Gt+1
∥g∥LD

2 (µ)

+ ϵ ≥
∥∥∇2R(Wt,Φt)

∥∥
LD

2 (µ)
.

Intuitively, this condition states that there exists a weak
feature transformation in Gt+1 that is negatively correlated
with the functional gradient. In the sample-splitting setting,
where each boosting iteration uses an independent sample
of size ñ = ⌊n/T ⌋, we derive the following regret bound
for RFRBoost. This bound describes how the excess risk
decays compared to an optimal predictor as T and ñ vary.

Theorem 3.4. Let l be L-Lipschitz and M -smooth
with respect to the first argument. For a matrix W ,
let λmin(W) and λmax denote its smallest and largest
singular values, respectively. Consider RFRBoost
with the hypothesis set of linear predictors W ={
W ∈ RD×d : λmin(W) > λ0 > 0, λmax(W) < λ1

}
, and

weak feature transformations Gt = {x 7→
A tanh(BΦt−1(x)) : λmax(A), λmax(B) < λ1} satis-
fying the (β, ϵt)-weak learning condition. Let the boosting
learning rates be ηt = ct−s for some s ∈

(
β+1
β+2 , 1

)
and

c > 0. Then T -layer RFRBoost satisfies the following
risk bound for any W ∗,Φ∗, and a ∈

(
0, β(1 − s)

)
with

probability at least 1− δ over datasets of size n:

R(WT ,ΦT) ≤ R(W ∗,Φ∗) + 2

T∑
t=1

ηtϵt

+ C

 1

T a
+

T 2−s
(
1 +

√
log T

δ

)
√
ñ

 ,

6

Random Feature Representation Boosting

where the constant C does not depend on T , n, and δ.

Proof. See Appendix D.

For similar results in the literature, see for instance Suggala
et al. (2020), Corollary 4.3.

3.5. Time Complexity

The serial time complexity of RFRBoost with MSE loss,
assuming tabular data and dense random features, is
O(T [N(D2 +Dd+ p2 + pD) +D3 + dD2 + p3 +Dp2]),
as derived from Algorithm 2. Here N is the dataset size,
D is the dimension of the neural network representation,
d is the output dimension of the regression task, p is the
number of random features, and T is the number of layers
(boosting rounds). The computation is dominated by matrix
operations, which are well-suited for GPU acceleration. The
classification case follows similarly.

4. Numerical Experiments
In this section, we compare RFRBoost against a set of base-
line models on a wide range of tabular regression and classi-
fication datasets, as well as on a challenging synthetic point
cloud separation task. All our code is publicly available
at https://github.com/nikitazozoulenko/
random-feature-representation-boosting.

4.1. Tabular Regression and Classification

Datasets: We experiment on all datasets of the curated
OpenML tabular regression (Fischer et al., 2023) and clas-
sification (Bischl et al., 2021) benchmark suites with 200
or fewer features. This amounts to a total of 91 datasets
per model. Due to the large number of datasets, we limit
ourselves to 5000 observations per dataset. We preprocess
each dataset by one-hot encoding all categorical variables
and normalizing all numerical features to have zero mean
and variance one.

Evaluation Procedure: We use a nested 5-fold cross-
validation (CV) procedure to tune and evaluate all mod-
els, run independently for each dataset. The innermost
CV is used to tune all hyperparameters, for which we use
the Bayesian hyperparameter tuning library Optuna (Akiba
et al., 2019). For regression, we use MSE loss, and for
classification, we use cross-entropy loss. All experiments
are run on a single CPU core on an institutional HPC clus-
ter, mostly comprised of AMD EPYC 7742 nodes. We
report the average test scores for each model, as well as
mean training times for a single fit. The average relative
rank of each model is presented in a critical difference di-
agram, indicating statistically significant clusters based on
a Wilcoxon signed-rank test with Holm correction. This

is a well-established methodology for comparing multiple
algorithms across multiple datasets (Demšar, 2006; Garcı́a
& Herrera, 2008; Benavoli et al., 2016).

Baseline Models: We compare RFRBoost, a random feature
ResNet, against several strong baselines, including end-
to-end (E2E) trained MLP ResNets, single-layer random
feature neural networks (RFNNs), ridge regression, logistic
regression, and XGBoost (Chen & Guestrin, 2016). The
E2E ResNets are trained using the Adam optimizer (Kingma
& Ba, 2015) with cosine learning rate annealing, ReLU
activations, and batch normalization. While XGBoost is a
powerful gradient boosting model, it differs fundamentally
from RFRBoost. XGBoost ensembles a large number of
weak decision trees (up to 1000 in our experiments) to
build a strong predictor. RFRBoost, on the other hand, uses
gradient representation boosting to construct a small number
of residual blocks, followed by a single linear predictor.
For RFRBoost and RFNNs we use SWIM random features
with tanh activations, as detailed in Appendix E. In the
regression setting, we evaluate three variants of RFRBoost:
using a scalar, a diagonal, or a dense A matrix. When
using a dense A, we set the initial mapping Φ0(x) to the
identity; otherwise, Φ0(x) is a randomly initialized dense
layer. For classification, we use the gradient-greedy variant
of RFRBoost with LBFG-S as the convex solver. We use
the official implementation of XGBoost, and implement all
other baseline models in PyTorch (Paszke et al., 2019).

Hyperparameters: All hyperparameters are tuned with
Optuna in the innermost fold, using 100 trials per outer fold,
model, and dataset. For ridge and logistic regression, we
tune the ℓ2 regularization. For the neural network-based
models, we fix the feature dimension of each residual block
to 512 and use 1 to 10 layers. For E2E networks, we tune
the hidden size, learning rate, learning rate decay, number
of epochs, batch size, and weight decay. For RFRBoost, we
tune the ℓ2 regularization of the linear predictor and func-
tional gradient mapping, the boosting learning rate, and the
variance of the random features. For RFNNs, we tune the
random feature dimension, random feature variance, and ℓ2
regularization. For XGBoost, we tune the ℓ1 and ℓ2 regular-
ization, tree depth, boosting learning rate, and the number of
weak learners. For a detailed list of hyperparameter ranges,
along with an ablation study comparing SWIM random fea-
tures to i.i.d. Gaussian random features, we refer the reader
to Appendix E.

Results: Summary results for regression and classification
are presented in Tables 1 to 2 and Figures 2 to 3, respectively.
Full dataset-wise results are reported in Appendix E. We find
that RFRBoost ranks higher than all other baseline models.
For regression tasks, the gradient-greedy version of RFR-
Boost outperforms the exact-greedy variant, contrary to the
observations of Suggala et al. (2020) for SGD-trained gra-
dient representation boosting. This difference likely arises

7

https://github.com/nikitazozoulenko/random-feature-representation-boosting
https://github.com/nikitazozoulenko/random-feature-representation-boosting

Random Feature Representation Boosting

Table 1. Average test RMSE and single-core CPU fit times on the
OpenML regression datasets.

MODEL MEAN RMSE FIT TIME (S)

GRADIENT RFRBOOST 0.408 1.688
GREEDY RFRBOOST Adense 0.408 2.734
GREEDY RFRBOOST Adiag 0.415 1.631
GREEDY RFRBOOST Ascalar 0.434 1.024

XGBOOST 0.394 1.958
E2E MLP RESNET 0.412 19.309
RFNN 0.434 0.053
RIDGE REGRESSION 0.540 0.001

12345678

Gradient RFRBoost2.65

Greedy RFRBoost Adense
2.76

XGBoost3.32

Greedy RFRBoost Adiag
4.18E2E MLP ResNet 4.56

Greedy RFRBoost Ascalar
5.62

RFNN 5.71
Ridge Regression 7.21

Figure 2. Critical difference diagram based on pairwise relative
rank of test RMSE. Bars indicate no significant difference (α =
0.05). The average rank is displayed for each model.

because the SGD-based approach does not incorporate the
LD
2 (µ)-norm constraint during training, which is crucial

for preserving the functional direction of the residual block.
The test scores follow the ordering Adense > Adiag > Ascalar,
demonstrating that RFRBoost is more expressive when map-
ping random feature layers to the functional gradient, rather
than simply stacking random feature layers. While XGBoost
achieves a slightly lower RMSE than RFRBoost, it performs
worse in terms of average rank. Moreover, RFRBoost sig-
nificantly outperforms both RFNNs and E2E MLP ResNets,
while being an order of magnitude faster to train than the lat-
ter. Although the reported training times are CPU-based, our
implementation suggests both methods would benefit sim-
ilarly from GPU acceleration, making the presented times
representative.

4.2. Point Cloud Separation

We evaluate RFRBoost on a challenging synthetic dataset
originating from the neural ODE literature (Sander et al.,
2021). The dataset consists of 10,000 points sampled from
concentric circles, and the task is to linearly separate (i.e.
classify) the concentric circles while restricting the ResNet
hidden size to 2, see Figure 4. We compare RFRBoost
to E2E MLP ResNets, while also presenting classification
results for logistic regression and RFNNs in Table 3. All
models were trained with cross entropy loss, using a 5-
fold CV grid search for hyperparameter tuning. For E2E

Table 2. Average test accuracies and single-core CPU fit times on
the OpenML classification datasets.

MODEL MEAN ACC FIT TIME (S)

RFRBOOST 0.853 2.519

XGBOOST 0.853 3.859
E2E MLP RESNET 0.851 20.881
RFNN 0.845 1.189
LOGISTIC REGRESSION 0.821 0.165

12345

RFRBoost2.26

E2E MLP ResNet2.74

XGBoost2.82
RFNN 3.25

Logistic Regression 3.93

Figure 3. Critical difference diagram based on pairwise relative
rank of test accuracy. Bars indicate no significant difference (α =
0.05). The average rank is displayed for each model.

Table 3. Average test accuracies on the concentric circles point
cloud separation task, averaged across 10 runs.

MODEL MEAN ACC STD DEV

RFRBOOST 0.997 0.002

RFNN 0.887 0.037
E2E MLP RESNET 0.732 0.144
LOGISTIC REGRESSION 0.334 0.023

Figure 4. Point cloud separation of test data at each layer.

MLP ResNets, the learning rate was tuned, while for the
other models, only the ℓ2 regularization of the classification
head was tuned. The hidden size, residual block feature
dimension, and activation function was fixed at 2, 512, and
tanh, respectively, for all models. See Appendix E.3 for
more details.

8

Random Feature Representation Boosting

Notably, the RFNN, which uses SWIM random features to
map the initial 2-dimensional input to a higher-dimensional
space before applying a linear classifier, fails to classify
all points correctly. RFRBoost, in contrast, achieves near-
perfect linear separation by first mapping the random fea-
tures to the functional gradient of the network representation,
before applying a 2-dimensional linear classifier. This result
is somewhat surprising because RFRBoost does not rely on
explicit Fourier features or a learnt radial basis, demonstrat-
ing the power of gradient representation boosting. It further
illustrates how RFRBoost can solve problems that are in-
tractable for E2E-trained networks and RFNNs. Figure 4
shows that the E2E MLP ResNet correctly separates only
two of the nine concentric rings, similar to the failure to
converge observed by Sander et al. (2021).

4.3. Experiments on Larger-scale Datasets

To complement our experiments on the OpenML benchmark
suite, we conducted additional full-scale evaluations on four
larger datasets (two with ∼100k samples, two with ∼500k
samples) to assess performance and scalability in larger data
regimes. Full experimental details, including dataset splits,
hyperparameter grids, and plots of training time and pre-
dictive performance versus training set size, are provided
in Appendix E.5. We find that RFRBoost significantly out-
performs traditional single-layer RFNNs across all tested
datasets and training sizes, particularly as dataset size in-
creases, highlighting its effectiveness in leveraging depth for
random feature models. While RFRBoost performs strongly
against E2E trained networks in medium-sized data regimes,
our findings indicate that E2E networks and XGBoost even-
tually outperform RFRBoost as dataset size increases on
3 out of 4, and 2 out of 4 datasets, respectively. We hy-
pothesize that using RFRBoost as an initialization strategy,
followed by end-to-end fine-tuning, could be a promising di-
rection to further enhance the performance of deep networks.
We leave this to future work.

5. Conclusion
This paper introduced RFRBoost, a novel method for con-
structing deep residual random feature neural networks
(RFNNs) using boosting theory. RFRBoost addresses the
limitations of single-layer RFNNs by using random fea-
tures to learn a feature representation that approximates
the functional gradient of the network, thereby enhancing
performance while retaining the computational benefits of
convex optimization for RFNNs. We derived closed-form
solutions for greedy layer-wise boosting with MSE loss, and
presented a general framework for arbitrary loss functions
based on solving a quadratically constrained least square
problem. Through extensive numerical experiments on tab-
ular datasets for both regression and classification, we have

demonstrated that RFRBoost significantly outperforms tra-
ditional RFNNs and end-to-end trained MLP ResNets in the
small- to medium-scale regime where RFNNs are typically
applied, while offering substantial computational advan-
tages, and theoretical guarantees stemming from boosting
theory. RFRBoost represents a significant step towards
building powerful, stable, efficient, and theoretically sound
deep networks using untrained random features. Future
work will focus on extending RFRBoost to other domains
such as time series or image data, exploring different types
of random features and momentum strategies, implementing
more efficient GPU acceleration, scaling to large datasets,
and using RFRBoost as an initialization strategy for large-
scale end-to-end training.

Acknowledgements
TC has been supported by the EPSRC Programme Grant
EP/S026347/1. NZ has been supported by the Roth Schol-
arship at Imperial College London, and acknowledges con-
ference travel support from G-Research. We acknowl-
edge computational resources and support provided by
the Imperial College Research Computing Service (DOI:
10.14469/hpc/2232). For the purpose of open access,
the authors have applied a Creative Commons Attribution
(CC BY) licence to any Author Accepted Manuscript ver-
sion arising.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References
Akiba, T., Sano, S., Yanase, T., Ohta, T., and Koyama, M.

Optuna: A next-generation hyperparameter optimization
framework. In Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery &
Data Mining, KDD ’19, pp. 2623–2631, New York, NY,
USA, 2019. Association for Computing Machinery. ISBN
9781450362016.

Allen-Zhu, Z., Li, Y., and Liang, Y. Learning and gener-
alization in overparameterized neural networks, going
beyond two layers. In Advances in Neural Information
Processing Systems, volume 32. Curran Associates, Inc.,
2019.

Ayme, A., Boyer, C., Dieuleveut, A., and Scornet, E. Ran-
dom features models: a way to study the success of naive
imputation. In Proceedings of the 41st International
Conference on Machine Learning, volume 235 of Pro-

9

Random Feature Representation Boosting

ceedings of Machine Learning Research, pp. 2108–2134.
PMLR, 21–27 Jul 2024.

Badirli, S., Liu, X., Xing, Z., Bhowmik, A., Doan, K.,
and Keerthi, S. S. Gradient boosting neural networks:
Grownet, 2020.

Benavoli, A., Corani, G., and Mangili, F. Should we really
use post-hoc tests based on mean-ranks? Journal of
Machine Learning Research, 17(5):1–10, 2016.

Bertin-Mahieux, T. Year Prediction MSD. UCI
Machine Learning Repository, 2011. DOI:
https://doi.org/10.24432/C50K61.

Bischl, B., Casalicchio, G., Feurer, M., Gijsbers, P., Hutter,
F., Lang, M., Mantovani, R. G., van Rijn, J. N., and Van-
schoren, J. OpenML benchmarking suites. In Thirty-fifth
Conference on Neural Information Processing Systems
Datasets and Benchmarks Track (Round 2), 2021.

Blackard, J. Covertype. UCI Machine Learning Repository,
1998. DOI: https://doi.org/10.24432/C50K5N.

Bolager, E. L., Burak, I., Datar, C., Sun, Q., and Dietrich, F.
Sampling weights of deep neural networks. In Advances
in Neural Information Processing Systems, volume 36,
pp. 63075–63116. Curran Associates, Inc., 2023.

Bruna, J. and Mallat, S. Invariant scattering convolution
networks. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 35(8):1872–1886, 2013.

Carratino, L., Rudi, A., and Rosasco, L. Learning with sgd
and random features. In Advances in Neural Information
Processing Systems, volume 31. Curran Associates, Inc.,
2018.

Chen, R. T. Q., Rubanova, Y., Bettencourt, J., and Duvenaud,
D. K. Neural ordinary differential equations. In Advances
in Neural Information Processing Systems, volume 31.
Curran Associates, Inc., 2018.

Chen, T. and Guestrin, C. Xgboost: A scalable tree boost-
ing system. In Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining, KDD ’16, pp. 785–794, New York, NY,
USA, 2016. Association for Computing Machinery. ISBN
9781450342322.

Cheng, T. S., Lucchi, A., Kratsios, A., Dokmanić, I., and
Belius, D. A theoretical analysis of the test error of
finite-rank kernel ridge regression. In Advances in Neural
Information Processing Systems, volume 36, pp. 4767–
4798. Curran Associates, Inc., 2023.

Cirone, N. M., Lemercier, M., and Salvi, C. Neural signa-
ture kernels as infinite-width-depth-limits of controlled

resnets. In Proceedings of the 40th International Confer-
ence on Machine Learning, ICML’23. JMLR.org, 2023.

Cirone, N. M., Orvieto, A., Walker, B., Salvi, C., and Lyons,
T. Theoretical foundations of deep selective state-space
models. In The Thirty-eighth Annual Conference on Neu-
ral Information Processing Systems, 2024.

Cortes, C., Gonzalvo, X., Kuznetsov, V., Mohri, M., and
Yang, S. AdaNet: Adaptive structural learning of artificial
neural networks. In Proceedings of the 34th International
Conference on Machine Learning, volume 70 of Proceed-
ings of Machine Learning Research, pp. 874–883. PMLR,
06–11 Aug 2017.

Cotter, F. and Kingsbury, N. Visualizing and improving
scattering networks. In 2017 IEEE 27th International
Workshop on Machine Learning for Signal Processing
(MLSP), pp. 1–6, 2017.

Cuchiero, C., Gonon, L., Grigoryeva, L., Ortega, J.-P., and
Teichmann, J. Expressive power of randomized signature.
In Advances in Neural Information Processing Systems,
2021.

Davis, O., Geraci, G., and Motamed, M. Deep learning
without global optimization by random fourier neural
networks, 2024.

Dempster, A., Petitjean, F., and Webb, G. I. Rocket: ex-
ceptionally fast and accurate time series classification
using random convolutional kernels. Data Mining and
Knowledge Discovery, 34(5):1454–1495, 2020. ISSN
1573-756X.

Dempster, A., Schmidt, D. F., and Webb, G. I. Hydra: com-
peting convolutional kernels for fast and accurate time
series classification. Data Mining and Knowledge Dis-
covery, 37(5):1779–1805, Sep 2023. ISSN 1573-756X.

Demšar, J. Statistical comparisons of classifiers over multi-
ple data sets. Journal of Machine Learning Research, 7
(1):1–30, 2006.

Dupont, E., Doucet, A., and Teh, Y. W. Augmented neural
odes. In Advances in Neural Information Processing
Systems, volume 32. Curran Associates, Inc., 2019.

E, W. A proposal on machine learning via dynamical sys-
tems. Communications in Mathematics and Statistics, 5
(1):1–11, Mar 2017. ISSN 2194-671X.

Emami, S. and Martı́nez-Muñoz, G. Sequential training of
neural networks with gradient boosting. IEEE Access, 11:
42738–42750, 2023.

Fischer, S. F., Feurer, M., and Bischl, B. OpenML-CTR23
– a curated tabular regression benchmarking suite. In
AutoML Conference 2023 (Workshop), 2023.

10

Random Feature Representation Boosting

Freund, Y. and Schapire, R. E. A decision-theoretic general-
ization of on-line learning and an application to boosting.
Journal of Computer and System Sciences, 55(1):119–
139, 1997. ISSN 0022-0000.

Friedman, J., Hastie, T., and Tibshirani, R. Additive logistic
regression: a statistical view of boosting (With discussion
and a rejoinder by the authors). The Annals of Statistics,
28(2):337 – 407, 2000.

Friedman, J. H. Greedy function approximation: A gradient
boosting machine. The Annals of Statistics, 29(5):1189 –
1232, 2001.

Gallicchio, C., Micheli, A., and Pedrelli, L. Deep reservoir
computing: A critical experimental analysis. Neurocom-
puting, 268:87–99, 2017. ISSN 0925-2312. Advances in
artificial neural networks, machine learning and computa-
tional intelligence.

Garcı́a, S. and Herrera, F. An extension on “statistical
comparisons of classifiers over multiple data sets” for
all pairwise comparisons. Journal of Machine Learning
Research, 9(89):2677–2694, 2008.

Gattiglio, G., Grigoryeva, L., and Tamborrino, M. Randnet-
parareal: a time-parallel PDE solver using random neural
networks. In The Thirty-eighth Annual Conference on
Neural Information Processing Systems, 2024.

Gonon, L. Random feature neural networks learn black-
scholes type pdes without curse of dimensionality. Jour-
nal of Machine Learning Research, 24(189):1–51, 2023.

Gonon, L. and Jacquier, A. Universal approximation theo-
rem and error bounds for quantum neural networks and
quantum reservoirs, 2023.

Gonon, L., Grigoryeva, L., and Ortega, J.-P. Approximation
bounds for random neural networks and reservoir systems.
The Annals of Applied Probability, 33(1):28 – 69, 2023.

Gonon, L., Grigoryeva, L., and Ortega, J.-P. Infinite-
dimensional reservoir computing. Neural Networks, 179:
106486, 2024. ISSN 0893-6080.

Grigoryeva, L. and Ortega, J.-P. Universal discrete-time
reservoir computers with stochastic inputs and linear read-
outs using non-homogeneous state-affine systems. Jour-
nal of Machine Learning Research, 19(24):1–40, 2018.

Grinsztajn, L., Oyallon, E., and Varoquaux, G. Why do tree-
based models still outperform deep learning on typical
tabular data? In Proceedings of the 36th International
Conference on Neural Information Processing Systems,
NIPS ’22, Red Hook, NY, USA, 2022. Curran Associates
Inc. ISBN 9781713871088.

Hart, A., Hook, J., and Dawes, J. Embedding and approx-
imation theorems for echo state networks. Neural Net-
works, 128:234–247, 2020. ISSN 0893-6080.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual
learning for image recognition. 2016 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pp.
770–778, 2015.

Herrera, C., Krach, F., Ruyssen, P., and Teichmann, J. Opti-
mal stopping via randomized neural networks. Frontiers
of Mathematical Finance, 3(1):31–77, 2024.

Huang, F., Ash, J., Langford, J., and Schapire, R. Learning
deep ResNet blocks sequentially using boosting theory.
In Proceedings of the 35th International Conference on
Machine Learning, volume 80 of Proceedings of Machine
Learning Research, pp. 2058–2067. PMLR, 10–15 Jul
2018.

Huang, G.-B. An insight into extreme learning machines:
Random neurons, random features and kernels. Cognitive
Computation, 6:376–390, 09 2014.

Huang, G.-B., Zhu, Q.-Y., and Siew, C.-K. Extreme learning
machine: a new learning scheme of feedforward neural
networks. In 2004 IEEE International Joint Conference
on Neural Networks (IEEE Cat. No.04CH37541), vol-
ume 2, pp. 985–990 vol.2, 2004.

Huang, G.-B., Chen, L., and Siew, C.-K. Universal ap-
proximation using incremental constructive feedforward
networks with random hidden nodes. IEEE Transactions
on Neural Networks, 17(4):879–892, 2006.

Huang, G.-B., Zhou, H., Ding, X., and Zhang, R. Extreme
learning machine for regression and multiclass classifica-
tion. IEEE Transactions on Systems, Man, and Cybernet-
ics, Part B (Cybernetics), 42(2):513–529, 2012.

Innocenti, L., Lorenzo, S., Palmisano, I., Ferraro, A., Pater-
nostro, M., and Palma, G. M. Potential and limitations
of quantum extreme learning machines. Communications
Physics, 6(1):118, May 2023. ISSN 2399-3650.

Jacquier, A. and Zuric, Z. Random neural networks for
rough volatility, 2023.

Jaeger, H. The” echo state” approach to analysing and
training recurrent neural networks-with an erratum note’.
Bonn, Germany: German National Research Center for
Information Technology GMD Technical Report, 148, 01
2001.

Kammonen, A., Kiessling, J., Plecháč, P., Sandberg, M.,
Szepessy, A., and Tempone, R. Smaller generalization
error derived for a deep residual neural network com-
pared with shallow networks. IMA Journal of Numerical
Analysis, 43(5):2585–2632, 09 2022. ISSN 0272-4979.

11

Random Feature Representation Boosting

Kar, P. and Karnick, H. Random feature maps for dot prod-
uct kernels. In Proceedings of the Fifteenth International
Conference on Artificial Intelligence and Statistics, vol-
ume 22 of Proceedings of Machine Learning Research,
pp. 583–591, La Palma, Canary Islands, 21–23 Apr 2012.
PMLR.

Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma,
W., Ye, Q., and Liu, T.-Y. Lightgbm: A highly efficient
gradient boosting decision tree. In Advances in Neural
Information Processing Systems, volume 30. Curran As-
sociates, Inc., 2017.

Kidger, P., Morrill, J., Foster, J., and Lyons, T. Neural
controlled differential equations for irregular time series.
In Advances in Neural Information Processing Systems,
volume 33, pp. 6696–6707. Curran Associates, Inc., 2020.

Kidger, P., Foster, J., Li, X., and Lyons, T. J. Neural sdes
as infinite-dimensional gans. In Proceedings of the 38th
International Conference on Machine Learning, volume
139 of Proceedings of Machine Learning Research, pp.
5453–5463. PMLR, 18–24 Jul 2021.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. In Proceedings of the International Confer-
ence on Learning Representations (ICLR), 2015.

Lanthaler, S. and Nelsen, N. H. Error bounds for learn-
ing with vector-valued random features. In Advances in
Neural Information Processing Systems, volume 36, pp.
71834–71861. Curran Associates, Inc., 2023.

Li, Z., Ton, J.-F., Oglic, D., and Sejdinovic, D. Towards a
unified analysis of random Fourier features. In Proceed-
ings of the 36th International Conference on Machine
Learning, volume 97 of Proceedings of Machine Learn-
ing Research, pp. 3905–3914. PMLR, 09–15 Jun 2019.

Lukoševičius, M. and Jaeger, H. Reservoir computing ap-
proaches to recurrent neural network training. Computer
Science Review, 3(3):127–149, 2009. ISSN 1574-0137.

Martı́nez-Peña, R. and Ortega, J.-P. Quantum reservoir
computing in finite dimensions. Phys. Rev. E, 107:035306,
Mar 2023.

Mason, L., Baxter, J., Bartlett, P., and Frean, M. Boosting
algorithms as gradient descent. In Advances in Neural
Information Processing Systems, volume 12. MIT Press,
1999.

Mei, S. and Montanari, A. The generalization error of
random features regression: Precise asymptotics and the
double descent curve. Communications on Pure and
Applied Mathematics, 75(4):667–766, 2022.

Middlehurst, M., Ismail-Fawaz, A., Guillaume, A., Holder,
C., Guijo-Rubio, D., Bulatova, G., Tsaprounis, L., Mentel,
L., Walter, M., Schäfer, P., and Bagnall, A. aeon: a python
toolkit for learning from time series. Journal of Machine
Learning Research, 25(289):1–10, 2024.

Nelsen, N. H. and Stuart, A. M. The random feature model
for input-output maps between banach spaces. SIAM
Journal on Scientific Computing, 43(5):A3212–A3243,
2021.

Neufeld, A. and Schmocker, P. Universal approximation
property of banach space-valued random feature models
including random neural networks, 2024.

Nitanda, A. and Suzuki, T. Functional gradient boosting
based on residual network perception. In Proceedings of
the 35th International Conference on Machine Learning,
volume 80 of Proceedings of Machine Learning Research,
pp. 3819–3828. PMLR, 10–15 Jul 2018.

Nitanda, A. and Suzuki, T. Functional gradient boosting for
learning residual-like networks with statistical guarantees.
In Proceedings of the Twenty Third International Con-
ference on Artificial Intelligence and Statistics, volume
108 of Proceedings of Machine Learning Research, pp.
2981–2991. PMLR, 26–28 Aug 2020.

Oyallon, E., Zagoruyko, S., Huang, G., Komodakis, N.,
Lacoste-Julien, S., Blaschko, M., and Belilovsky, E. Scat-
tering networks for hybrid representation learning. IEEE
Transactions on Pattern Analysis and Machine Intelli-
gence, 41(9):2208–2221, 2019.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., Desmaison, A., Köpf, A., Yang, E., DeVito, Z., Rai-
son, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang,
L., Bai, J., and Chintala, S. PyTorch: an imperative
style, high-performance deep learning library. Curran
Associates Inc., Red Hook, NY, USA, 2019.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P.,
Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cour-
napeau, D., Brucher, M., Perrot, M., and Duchesnay, E.
Scikit-learn: Machine learning in python. J. Mach. Learn.
Res., 12(null):2825–2830, November 2011. ISSN 1532-
4435.

Prabhu, A., Sinha, S., Kumaraguru, P., Torr, P., Sener, O.,
and Dokania, P. K. Random representations outperform
online continually learned representations. In The Thirty-
eighth Annual Conference on Neural Information Pro-
cessing Systems, 2024.

12

Random Feature Representation Boosting

Prokhorenkova, L., Gusev, G., Vorobev, A., Dorogush, A. V.,
and Gulin, A. Catboost: unbiased boosting with categor-
ical features. In Proceedings of the 32nd International
Conference on Neural Information Processing Systems,
NIPS’18, pp. 6639–6649, Red Hook, NY, USA, 2018.
Curran Associates Inc.

Rahimi, A. and Recht, B. Random features for large-scale
kernel machines. In Advances in Neural Information
Processing Systems, volume 20. Curran Associates, Inc.,
2007.

Rahimi, A. and Recht, B. Weighted sums of random kitchen
sinks: Replacing minimization with randomization in
learning. In Advances in Neural Information Processing
Systems, volume 21. Curran Associates, Inc., 2008a.

Rahimi, A. and Recht, B. Uniform approximation of func-
tions with random bases. In 2008 46th Annual Allerton
Conference on Communication, Control, and Computing,
pp. 555–561, 2008b.

Rudi, A. and Rosasco, L. Generalization properties of learn-
ing with random features. In Advances in Neural Informa-
tion Processing Systems, volume 30. Curran Associates,
Inc., 2017.

Sander, M. E., Ablin, P., Blondel, M., and Peyré, G. Momen-
tum residual neural networks. In Proceedings of the 38th
International Conference on Machine Learning, volume
139 of Proceedings of Machine Learning Research, pp.
9276–9287. PMLR, 18–24 Jul 2021.

Sinha, A. and Duchi, J. C. Learning kernels with random
features. In Advances in Neural Information Processing
Systems, volume 29. Curran Associates, Inc., 2016.

Sriperumbudur, B. and Szabo, Z. Optimal rates for ran-
dom fourier features. In Advances in Neural Information
Processing Systems, volume 28. Curran Associates, Inc.,
2015.

Suggala, A., Liu, B., and Ravikumar, P. Generalized boost-
ing. In Advances in Neural Information Processing Sys-
tems, volume 33, pp. 8787–8797. Curran Associates, Inc.,
2020.

Sun, Y., Gilbert, A., and Tewari, A. But how does it work
in theory? linear svm with random features. In Advances
in Neural Information Processing Systems, volume 31.
Curran Associates, Inc., 2018.

Szabo, Z. and Sriperumbudur, B. On kernel derivative ap-
proximation with random fourier features. In Proceedings
of the Twenty-Second International Conference on Artifi-
cial Intelligence and Statistics, volume 89 of Proceedings
of Machine Learning Research, pp. 827–836. PMLR, 16–
18 Apr 2019.

Tanaka, G., Yamane, T., Héroux, J. B., Nakane, R.,
Kanazawa, N., Takeda, S., Numata, H., Nakano, D., and
Hirose, A. Recent advances in physical reservoir com-
puting: A review. Neural Networks, 115:100–123, 2019.
ISSN 0893-6080.

Trockman, A., Willmott, D., and Kolter, J. Z. Understanding
the covariance structure of convolutional filters. In The
Eleventh International Conference on Learning Repre-
sentations, 2023.

Veit, A., Wilber, M. J., and Belongie, S. Residual networks
behave like ensembles of relatively shallow networks.
In Advances in Neural Information Processing Systems,
volume 29. Curran Associates, Inc., 2016.

Walker, B., McLeod, A. D., Qin, T., Cheng, Y., Li, H., and
Lyons, T. Log neural controlled differential equations:
The lie brackets make a difference. In Forty-first Interna-
tional Conference on Machine Learning, 2024.

Wang, C. and Feng, X. Optimal kernel quantile learning
with random features. In Proceedings of the 41st In-
ternational Conference on Machine Learning, volume
235 of Proceedings of Machine Learning Research, pp.
50419–50452. PMLR, 21–27 Jul 2024.

Wang, C., Bing, X., HE, X., and Wang, C. Towards theo-
retical understanding of learning large-scale dependent
data via random features. In Forty-first International
Conference on Machine Learning, 2024.

Xiong, W., Facelli, G., Sahebi, M., Agnel, O., Chotibut, T.,
Thanasilp, S., and Holmes, Z. On fundamental aspects of
quantum extreme learning machines, 2024.

Yehudai, G. and Shamir, O. On the power and limitations
of random features for understanding neural networks.
In Advances in Neural Information Processing Systems,
volume 32. Curran Associates, Inc., 2019.

Yu, H., Li, H., Hua, G., Huang, G., and Shi, H. Boosted
dynamic neural networks. In Proceedings of the
Thirty-Seventh AAAI Conference on Artificial Intelli-
gence and Thirty-Fifth Conference on Innovative Appli-
cations of Artificial Intelligence and Thirteenth Sympo-
sium on Educational Advances in Artificial Intelligence,
AAAI’23/IAAI’23/EAAI’23. AAAI Press, 2023. ISBN
978-1-57735-880-0.

13

Random Feature Representation Boosting

A. Analytic Solutions to Sandwiched Least Squares
In this section, we derive the analytic closed form expressions of the sandwiched least squares problems presented in
Theorem 3.1. We use NumPy notation for element and row indexing, i.e. if X is a matrix, then Xi denotes the i’th row of
X . ∥ · ∥F denotes the Frobenius norm.

Proposition A.1 (Scalar case). Let R ∈ Rn×d,W ∈ RD×d, A ∈ R, and X ∈ Rn×D. Let λ > 0. Then the minimum of

J(A) =
1

n

n∑
i=1

∥∥Ri −W⊤AXi

∥∥2 + λA2

is uniquely attained at

Ascalar =
⟨R,XW ⟩F
∥XW∥2F + nλ

=
1
n

∑n
i=1⟨W⊤Xi, Ri⟩

1
n

∑n
i=1 ∥W⊤Xi∥2 + λ

.

Proof. We first rewrite the objective J(A) using the Frobenius norm

J(A) =
1

n
∥XAW −R∥2F + λA2.

Differentiating with respect to A ∈ R and setting J ′(A) = 0 gives

0 = J ′(A) =
2

n
(XW)⊤(AXW −R) + 2λA

⇐⇒ A∥XW∥2F + nλA = ⟨XW,R⟩F ,

from which the result follows by factoring out A. Note that the second derivative is

J ′′(A) =
2

n
∥XW∥2F + 2λ > 0,

hence the problem is convex and the local minima is the unique global minima.

Python NumPy code for this is

1 XW = X @ W
2 top = np.sum(R * XW) / n
3 bot = np.sum(XW * XW) / n
4 A = top / (bot + l2_reg)

Proposition A.2 (Diagonal case). Let R ∈ Rn×d,W ∈ RD×d, A = diag(a1, ..., aD) ∈ RD×D, and X ∈ Rn×D. Let
λ > 0. Then the minimum of

J(A) =
1

n

n∑
i=1

∥∥Ri −W⊤AXi

∥∥2 + λ∥A∥2F

is uniquely attained by the solution to the system of linear equations

b = (C + λI)A,

where

C = WW⊤ ⊙X⊤X, b = diag(WR⊤X).

14

Random Feature Representation Boosting

Proof. We expand J(A) and find that

J(A) = J(a1, ..., aD)

=
1

n

n∑
i=1

∥∥Ri −W⊤AXi

∥∥2 + λ∥A∥2F

=
1

n

n∑
i=1

(
Ri −W⊤[a1Xi,1, ..., aDXi,D]⊤

)⊤(
Ri −W⊤[a1Xi,1, ..., aDXi,D]⊤

)
+ λ

D∑
k=1

a2k.

Differentiating with respect to a specific ak gives

0 =
∂J(a1, ..., aD)

∂ak
=

1

n

n∑
i=1

−2
(
WkXi,k

)⊤(
Ri −W⊤[a1Xi,1, ..., aDXi,D]⊤

)
+ 2λak

⇐⇒
n∑

i=1

(WkXi,k)
⊤Ri =

n∑
i=1

[
(WkXi,k)

⊤W⊤AXi + λak

]

=

n∑
i=1

[
λak +

D∑
j=1

(WkXi,k)
⊤WjXi,jaj

]
.

This implies that the value of A which minimizes the objective is the solution to the system of linear equations given by

b = (C + λI)A,

where for k, j ∈ [D]

Ck,j =

n∑
i=1

(
WkXi,k

)⊤
WjXi,j , bk =

n∑
i=1

R⊤
i WkXi,k.

Simplifying we obtain that

C = WW⊤ ⊙X⊤X, b = diag(WR⊤X).

This solution is unique since the objective is strictly convex with hessian given by 2
nC + 2λI .

Python code for this is

1 b = np.mean((R @ W.T) * X, axis=0)
2 C = (W @ W.T) * (X.T @ X) / n
3 A = np.linalg.solve(C + l2_reg * np.eye(D), b)

Proposition A.3 (Dense case). Let R ∈ Rn×d,W ∈ RD×d, A ∈ RD×p, and X ∈ Rn×D. Let λ > 0. Then the minimum of

J(A) =
1

n

n∑
i=1

∥∥ri −W⊤Axi

∥∥2 + D∑
k=1

p∑
j=1

λA2
k,j

=
1

n
∥W⊤AX⊤ −R⊤∥2F + λ∥A∥2F

is uniquely obtained by solving the system of linear equations given by

WR⊤X = WW⊤AX⊤X + λnA,

which can be solved using the spectral decompositions WW⊤ = UΛWU⊤ and X⊤X = V ΛXV ⊤,

Adense = U

[
U⊤WR⊤XV ⊘

(
λn1+ diag(ΛW)⊗ diag(ΛX)

)]
V ⊤,

where ⊘ denotes element-wise division, ⊗ is the outer product, and 1 is a matrix of ones.

15

Random Feature Representation Boosting

Proof. Using the gradient chain rule we find that

0 = ∇J(A)

=
−2
n

W (W⊤AX⊤ −R⊤)X + 2λA

⇐⇒WR⊤X = WWAX⊤X + λNA.

Letting WW⊤ = UΛWU⊤ and X⊤X = V ΛXV ⊤ be spectral decompositions, and setting Ã = U⊤AV we see that

U⊤WR⊤XV = ΛW ÃΛX + λnÃ.

By inspecting this equation element-wise we find that

(U⊤WR⊤XV)k,j = ΛW
k,kÃk,jΛ

X
j,j + λnÃk,j ,

which implies that

Ãk,j =
(U⊤WR⊤XV)k,j
ΛW
k,kΛ

X
j,j +Nλ

,

from which the conclusion follows after change of basis A = UÃV ⊤. The solution is unique since the problem is strictly
convex, which is easily proved using the convexity of the Frobenius norm and the linearity of the matrix expressions
involving A, together with the strict convexity of the regularization term.

Python code for this is

1 SW, U = np.linalg.eigh(W @ W.T)
2 SX, V = np.linalg.eigh(X.T @ X)
3 A = (U.T @ W @ R.T @ X @ V)
4 A = A / (n*lambda_reg + SW[:, None]*SX[None, :])
5 A = U @ A @ V.T

B. Functional Gradient Inner Product
In this section we prove Theorem 3.1, showing that minimizing the LD

2 (µ) inner product under a norm constraint for a
simple random feature residual block is equivalent to solving a quadratically constrained least squares problem. We use the
same matrix notation as in Appendix A.

Theorem B.1. Let µ = 1
n

∑n
i=1 δxi be an empirical measure, h ∈ LD

2 (µ), and f ∈ Lp
2(µ). Then solving

argmin
A∈RD×p such that ∥Af∥

LD
2 (µn)

≤1

⟨h,Af⟩L2(µn)

is equivalent to solving the quadratically constrained least squares problem

1

n

n∑
i=1

∥h(xi)−Af(xi)∥2, subject to
1

n

n∑
i=1

∥Af(xi)∥2 = 1.

In particular, when F is of full rank, we obtain the closed form solution

A = −
√
n

∥H∥F
H⊤F (F⊤F)−1,

where F ∈ Rn×p and H ∈ Rn×D are the matrices given by Fi,j = f(xi)j and Hi,k = h(xi)k.

16

Random Feature Representation Boosting

Proof. Using the definition of the LD
2 (µ) norm for empirical measures, we find that

⟨h,Af⟩LD
2 (µ) =

1

n

n∑
i=1

⟨h(xi), Af(xi)⟩ =
1

n

n∑
i=1

⟨Hi, AFi⟩. (7)

Furthermore, the constraint can be expressed as

∥Af∥2LD
2 (µn)

=
1

n

n∑
i=1

∥Af(xi)∥2 =
1

n

n∑
i=1

∥AFi∥2 = 1, (8)

with equality instead of inequality, since we always obtain a bigger inner product in magnitude by normalizing by
∥Af∥2

LD
2 (µn)

. Minimizing (7) subject to (8) is equivalent to solving a constrained least squares problem, since we can write

1

n

n∑
i=1

∥Hi −AFi∥2 =
1

n

n∑
i=1

∥Hi∥2 − 2⟨Hi, AFi⟩+ ∥AFi∥2,

where we see that the first term ∥Hi∥2 is constant w.r.t A, and the third term gives the constraint. Hence, minimizing the
constrained least squares problem is equivalent to maximizing the inner product, and the solution to the original problem is
obtained by multiplying the least squares solution by −1 since we are interested in the argmin rather than the argmax.

Continuing, to solve the quadratically constrained least squares problem, we introduce the Lagrangian

J(A, ν) =
1

n

n∑
i=1

|Hi −AFi|2 − ν

(
1

n

n∑
i=1

|AFi|2 − 1

)

=
1

n
∥H⊤ −AF⊤∥2F − ν

(
1

n
∥AF⊤∥2F − 1

)
.

Differentiating with respect to A gives

0 = ∇1J(A, ν) =
−2
n

(H⊤ −AF⊤)F − ν
2

n
AF⊤F,

which implies that

H⊤F = (1− ν)AF⊤F.

and

A =
1

1− ν
H⊤F (F⊤F)−1

=
1

1− ν
H⊤UΛ−1V ⊤,

assuming that ν ̸= 1 and that F is of full rank, with SVD decomposition F = UΛV ⊤. The constraint becomes

n = ∥AF⊤∥2F

=
1

(1− ν)2
∥H⊤UΛ−1V ⊤V ΛU⊤∥2F

=
1

(1− ν)2
∥H∥2F ,

therefore 1− ν = ±∥H∥F√
n

. The solution to the constraint least squares problem is obtained by using the positive sign, hence
the solution to the original problem is given by the negative sign.

If ν = 1, then H⊤F = 0, implying that ⟨Hi, AFi⟩LD
2 (µ) = 0 for all matrices A. Hence the same closed-form solution holds

in this case too.

Remark B.2. It is clear from the proof how to augment the expression for A when F is not of full rank. However, in practice
we instead use ridge regression for increased numerical stability. A similar result as the above can be proven for ridge
regression, albeit with a more complicated expression for A involving non-trivial combinations of Λ and λ. We omit this
detail here, and simply use ridge regression in practice. Note also that F (F⊤F)−1 can be expressed as a pseudo-inverse of
F , after suitable transpositions of the matrices involved.

17

Random Feature Representation Boosting

C. Gradient Calculations
For completeness, we derive the functional gradient used in GradientRFRBoost, for MSE loss, categorical cross-entropy
loss, and binary cross-entropy loss. Recall that the functional gradient, in all cases, is given by

∇2R(W,Φ)(x) = EµY |X=x
[W∇1L(W

⊤Φ(x), Y)],

where∇i denotes the gradient with respect to the i’th argument.

C.1. Mean Squared Error Loss

For regression, we use mean squared error loss l(x, y) = 1
2∥x− y∥2. In this case, we find that

∇1l(x, y) = x− y,

hence

∇2R(W,Φ)(x) = EY |X=x[W∇1l(W
⊤Φ(x), Y)]

= EY |X=x[W (W⊤Φ(x)− Y)].

When µ =
∑n

i=1 δ(xi,yi) is an empirical measure, the above reads in matrix form as

G = WW⊤X⊤ −WY ⊤

where X ∈ Rn×D and Y ∈ Rn×d are the matrices given by Xi,j = Φj(xi) and Yi,k = (yi)k.

C.2. Binary Cross-Entropy Loss

Denote the binary cross-entropy (BCE) loss as l(x, y) = −y log(σ(x))− (1− y) log(1− σ(x)), where σ(x) = 1
1+e−x is

the sigmoid function. The gradient of the BCE loss with respect to the logit σ(x) is

∂l(x, y)

∂σ(x)
= − y

σ(x)
+

1− y

1− σ(x)
=

σ(x)− y

σ(x)(1− σ(x))
.

Using the chain rule together with the fact that σ′(x) = σ(x)(1− σ(x)) gives that

∇1l(x, y) =
∂l(x, y)

∂σ(x)

∂σ(x)

∂x
= σ(p(x))− y,

whence we obtain

∇2R(W,Φ)(x) = EµY |X=x

[
W (σ(W⊤Φ(x))− y)

]
.

C.3. Categorical Cross-Entropy Loss

The analysis for the multi-class case is similar to the binary case. The cross-entropy loss l : RK ×{1, . . . ,K} → [0,∞) for
logits x with true label y is given by

l(x, y) = − log(sy(x))

where s is the softmax function defined by

sy(x) =
exp(xy)∑K
j=1 exp(xj)

.

18

Random Feature Representation Boosting

We aim to prove that ∇1l(x, y) = p(x) − ey, where ey ∈ RK is the one-hot vector for y. To see this, consider for any
1 ≤ k ≤ K the following:

∂l(x, y)

∂xk
= − ∂

∂xk
log(sy(x))

= − 1

sy(x)

∂

∂xk
sy(x)

= − 1

sy(x)

∂

∂xk

exp(xy)∑K
j=1 exp(xj)

= − 1

sy(x)

1y=k exp(xy)
∑K

j=1 exp(xj)− exp(xy) exp(xk)(∑K
j=1 exp(xj)

)2


= − 1

sy(x)
(1y=ksy(x)− sy(x)sk(x))

= sk(x)− 1y=k

Since this holds for all k, we have that

∇1l(x, y) = s(x)− ey.

Then,

∇2R(W,Φ)(x) = EµY |X=x
[W∇1l(W

⊤Φ(x), Y)]

= EµY |X=x
[W (s(W⊤Φ(x))− eY)].

When µ =
∑n

i=1 δ(xi,yi) is an empirical measure, the above reads in matrix form as

G = W (P (X)− EY)
⊤,

where P (X) ∈ Rn×K is the matrix given by P (X)i,k = sk(W
⊤Φ(xi)), and EY ∈ Rn×K is the matrix given by

(EY)i,k = 1yi=k.

D. Excess Risk Bound
In this section we study the excess risk bound of RFRBoost in the framework of Generalized Boosting (Suggala et al., 2020).
We take a slightly different approach in our proofs which streamlines the process: instead of bounding the ∥ · ∥1 norm of the
rows of the weight matrices, we instead bound the maximum singular values σmax.

D.1. Preliminaries

We repeat the following definition from Section 3.
Definition D.1 (Suggala et al. (2020)). Let β ∈ (0, 1] and ϵ ≥ 0. We say that Gt+1 satisfies the (β, ϵ)-weak learning
condition if there exists a g ∈ Gt+1 such that〈

g,−∇2R(Wt,Φt)
〉
LD

2 (µ)

β supg∈Gt+1
∥g∥LD

2 (µ)

+ ϵ ≥
∥∥∇2R(Wt,Φt)

∥∥
LD

2 (µ)
.

Consider the sample-splitting variant of boosting, where at each boosting iteration we use an independent sample of size
ñ = n/T . Let µt =

∑ñ
i=1 δ(xt,i,yt,i) denote the empirical measure of the t-th independent sample. The risk bounds in

the sequel depend on Rademacher complexities related to the class of weak feature transformations Gt and set of linear
predictorsW , which we define below:

R(W,Gt) = Eρ

[
sup

W∈W
g∈Gt

1

ñ

ñ∑
i=1

d∑
k=1

ρi,k[W
⊤g(xt,i)]k

]
,

19

Random Feature Representation Boosting

R(Gt) = Eρ

[
sup
g∈Gt

1

ñ

ñ∑
i=1

D∑
j=1

ρi,j [g(xt,i)]k

]
,

where ρi,j are Rademacher random variables, that is, independent random variables taking values 1 and −1 with equal
probability.

The excess risk bound of RFRBoost is based on the following result:

Theorem D.2 (Suggala et al. (2020)). Suppose that the loss l is L-Lipschitz and M -smooth with respect to the first
argument. Let the hypothesis set of linear predictorsW be such that all W ∈ W satisfy λmin(W

⊤W) ≥ σ2
min > 0 and

λmax(W
⊤W) ≤ σ2

max. Moreover, suppose for all t that Gt satisfies the (β, ϵt)-weak learning condition for µt, and that all
g ∈ Gt are bounded with supX ∥g(X)∥2 ≤ R. Let the boosting learning rates (ηt)Tt=1 be ηt = ct−s for some s ∈

(
β+1
β+2 , 1

)
and c > 0. Then both the exact-greedy and gradient-greedy representation boosting algorithms of Section 2.2 satisfy the
following risk bound for any W ∗,Φ∗, and a ∈

(
0, β(1− s)

)
, with probability at least 1− δ over datasets of size n:

R(WT ,ΦT) ≤ R(W ∗,Φ∗) +O

 1

T a
+ T 2−s

√
log T

δ

ñ

+ 2

T∑
t=1

ηt

(
LR(W,Gt) + LR(Gt) + ϵt

)
.

We aim to apply the excess risk bound of Theorem D.2 in the setting of RFRBoost. For simplicity, we consider only the
traditional ResNet structure where the random feature layer ft(x) = tanh(BΦt(x)) only takes as input the previous layer
of the ResNet and not the raw features. This corresponds to the weak feature transformation hypothesis class

Gt = {h ◦ Φt−1 : h ∈ H}

whereH is the set of simple residual blocks

H = {x 7→ A tanh(Bx) : λmax(A) and λmax(B) bounded by λ}.

Here λmax denotes the maximum singular value. We will use the properties that ∥A∥2 ≤ λ, ∥Ak∥1 ≤ λ
√
p, ∥Ak∥∞ ≤ λ,

∥Bj∥1 ≤ λ
√
D, and ∥Bj∥∞ ≤ λ. Here Ak denotes the k-th row of A, and ∥ · ∥p the ℓp vector norm or matrix spectral

norm.

To prove Theorem 3.4, we need to compute the Rademacher complexities of RFRBoost, and verify that our class of weak
learners satisfy all the assumptions of Theorem D.2. The only critical assumption to check is that supgt∈Gt,x∈X ∥gt(x)∥2
is bounded. This is the case for our particular model class, since ∥gt(x)∥2 = ∥At tanhBtΦt−1(x)∥2 ≤
∥At∥2∥ tanhBtΦt−1(x)∥2 ≤ λ

√
p, which follows from basic properties of vector and matrix norms.

The following lemma will prove useful for the computation of the Rademacher complexity of RFRBoost.

Lemma D.3 (Allen-Zhu et al. (2019), Proposition A.12). Let σ : R→ R be a 1-Lipschitz function. Let F1, ...,Fm be sets
of functions X → R and suppose for each j ∈ [m] there exists a function fj ∈ Fj satisfying supx∈X |σ(fj(x))| ≤ R. Then

F =

x 7→
m∑
j=1

vjσ(fj(x)) : fj ∈ Fj , ∥v∥1 ≤ C, v ∈ Rm, ∥v∥∞ ≤ A


satisfies

R(F) ≤ 2A

m∑
j=1

R(Fj) +O
(
CR logm√

n

)
.

D.2. RFRBoost Rademacher Computations

The proof follows along similar lines as Suggala et al. (2020), however, our hypothesis class is larger and the proof has to be
adjusted accordingly. Our proof additionally differs by bounding the hypothesis class by the largest singular values rather
than ℓ1 norms, which we believe is more natural and leads to more representative bounds.

20

Random Feature Representation Boosting

Lemma D.4. Under the assumptions of Theorem 3.4, the Rademacher complexity R(Gt) satisfies

R(Gt) = O

(
pD

3
2 log(D)t1−s

√
ñ

)
.

Proof. Using basic properties of the supremum, Hölder’s inequality, Hoeffding’s inequality, and Lemma D.3, we obtain the
following:

R(Gt) = Eρ

[
sup
g∈Gt

1

ñ

ñ∑
i=1

D∑
k=1

ρi,kgk(xt,i)

]

≤
D∑

k=1

Eρ

[
sup
g∈Gt

1

ñ

ñ∑
i=1

ρi,kgk(xt,i)

]

=

D∑
k=1

Eρ

[
sup

B∈Rp×D

A∈RD×p

λmax(A),λmax(B)≤λ1

1

ñ

ñ∑
i=1

ρi,k⟨Ak, tanh(BΦt−1(xt,i)⟩
]

≤ 2λ1D

p∑
j=1

Eρ

[
sup

B∈Rp×D

λmax(B)≤λ1

1

ñ

ñ∑
i=1

ρi,1 ⟨Bj ,Φt−1(xt,i)⟩
]
+DO

(√
p log p
√
ñ

)

≤ 2λ2
1pD
√
DEρ

[
1

ñ

∥∥∥∥∥
ñ∑

i=1

ρi,1Φt−1(xt,i)

∥∥∥∥∥
∞

]
+DO

(√
p log p
√
ñ

)

≤ 4λ2
1pD
√
D logD√
ñ

∥Φt−1(xt,i)∥∞ +DO
(√

p log p
√
ñ

)
≤ 4λ3

1pD
√
D log(D)ct1−s

(1− s)
√
ñ

+DO
(√

p log(p)
√
ñ

)
= O

(
pD

3
2 log(D)t1−s

√
ñ

)
.

The second inequality follows from Lemma D.3 and the fact that tanh is bounded by 1. The third inequality uses
Hölder’s inequality, and the fourth follows from Hoeffding’s inequality for bounded random variables. Finally, the fifth
inequality follows from the fact that ∥Φt−1(x)∥∞ ≤

∑t−1
r=1 ∥gr∥∞ηr ≤ λ1ct

1−s

1−s , derived from the recursive definition of
Φt = Φt−1 + ηtgt.

Lemma D.5. Under the assumptions of Theorem 3.4, the Rademacher complexity R(W,Gt) satisfies

R(W,Gt) = O

(
pdD

3
2 log(D)t1−s

√
ñ

)
.

21

Random Feature Representation Boosting

Proof. We proceed similarly as in the previous result, and obtain that

R(W,Gt) = Eρ

[
sup

W∈W
g∈Gt

1

ñ

ñ∑
i=1

d∑
j=1

ρi,j
[
W⊤g(xt,i)

]
j

]

≤
d∑

j=1

Eρ

[
sup

W∈W
g∈Gt

1

ñ

ñ∑
i=1

ρi,j
〈
W⊤

j , g(xt,i)
〉]

≤(lemma) 2λ1d

D∑
k=1

Eρ

[
sup
g∈Gt

ñ∑
i=1

ρi,1gk(xt,i)

]
+ dO

(
λ2
1

√
pD logD√

ñ

)

≤(prev result) 2λ1dO

(
pD

3
2 log(D)t1−s

√
ñ

)
+ dO

(
λ2
1

√
pD logD√

ñ

)

= O

(
pdD

3
2 log(D)t1−s

√
ñ

)
.

Here we additionally used the fact that supx |gk(x)| = supx |⟨Ak, tanh(BΦt−1)(x)⟩| ≤ λ1
√
p for Lemma D.3.

We obtain Theorem 3.4 by combining Theorem D.2 with Lemma D.5 and Lemma D.4, and using the bound that
supx ∥g(x)∥2 ≤ λ

√
p.

E. Experimental Setup
This section provides additional details of the experimental setup, SWIM random features, evaluation procedures, baseline
models, and hyperparameter ranges used in our numerical experiments.

E.1. SWIM Random Features

In our experiments, we use SWIM random features (Bolager et al., 2023) for initializing the dense layer weights, as opposed
to traditional i.i.d. initialization. Let X denote the input space and σ an activation function. A SWIM layer is formally
defined as follows:

Definition E.1 (Bolager et al. (2023)). Let Φ(x) ∈ RD represent the features of a neural network for input x ∈ X . Consider
a dense layer x 7→ σ(Ax+ b) to be added on top of Φ, where A ∈ RH×D, b ∈ RH , and H is the number of neurons in the
new layer. Let (x(1)

i , x
(2)
i)Hi=1 ⊂ X × X be pairs of training data points. Let

Ai = c2
Φ(x

(2)
i)− Φ(x

(1)
i)

∥Φ(x(2)
i)− Φ(x

(1)
i)∥2

, bi = −⟨Ai,Φ(x
(1)
i)⟩ − c1, (9)

where c1 and c2 are fixed constants. We say that x 7→ σ(Ax+ b) is a pair-sampled layer if the rows of the weight matrix A
and the biases b are of the form (9).

The pairs of points (x(1)
i , x

(2)
i)Hi=1 can be sampled uniformly or based on a training data-dependent sampling scheme. In our

experiments, we adopt the gradient-based approach by Bolager et al. (2023). Pairs of data points are sampled at each layer Φ
of the ResNet approximately proportional to

q(x(1), x(2)|Φ) = ∥f(x(1))− f(x(2))∥
∥Φ(x(1))− Φ(x(2))∥+ ϵ

, (10)

where ϵ > 0 and f is the true target function, i.e., the mapping xi to the true label yi = f(xi). Specifically, to avoid
quadratic time complexity in dataset size n, we first consider the n points x(1)

i , i = 1, ..., n, and then uniformly generate
n offset points x(2)

i = x
(1)
i+ji

. We then sample H points from these proportional to q(·, ·|Φ). This ensures the sampling
procedure remains linear with respect to dataset size n.

22

Random Feature Representation Boosting

The constants c1 and c2 are chosen such that the pre-activated neurons are symmetric about the input point (Φ(x(1)
j) +

Φ(x
(2)
j))/2. For general inputs, the pre-activation of neuron j in a sampled layer is

(AΦ(x) + b)j = ⟨Aj ,Φ(x)⟩ − ⟨Aj ,Φ(x
(1)
j)⟩ − c1

= c2
⟨Φ(x(2)

j)− Φ(x
(1)
j),Φ(x)− Φ(x

(1)
j)⟩

∥Φ(x(2)
j)− Φ(x

(1)
j)∥2

− c1,

and specifically, when applied to x
(2)
j and x

(1)
j , we get

(AΦ(x
(1)
j) + b)j = −c1,

(AΦ(x
(2)
j) + b)j = c2 − c1.

Thus, as suggested by Bolager et al. (2023), setting c2 = 2c1 centers the pre-activation symmetrically about the mean
(Φ(x

(1)
i) + Φ(x

(2)
i))/2. Intuitively, this facilitates the creation of a decision boundary between the two chosen points. The

constant c2 is what we refer to as the SWIM scale in the hyperparameter section.

E.2. Model Architectures and Hyperparameter Ranges for OpenML Tasks

We detail the hyperparameter ranges used when tuning all baseline models for the 91 regression and classification tasks of
the curated OpenML benchmark suite. The hyperparameter tuning was conducted using the Bayesian optimization library
Optuna (Akiba et al., 2019), with 100 trials per outer fold, model, and dataset, using an inner 5-fold cross validation. The
specific ranges for each model are presented in Table 4.

Table 4. Hyperparameter ranges for OpenML experiments

MODEL HYPERPARAMETER RANGE

E2E MLP RESNET N LAYERS 1 TO 10
LR 10−6 TO 10−1 (LOG SCALE)
END LR FACTOR 0.01 TO 1.0 (LOG SCALE)
N EPOCHS 10 TO 50 (LOG SCALE)
WEIGHT DECAY 10−6 TO 10−3 (LOG SCALE)
BATCH SIZE 128, 256, 384, 512
HIDDEN DIM 16 TO 512 (LOG SCALE)
FEATURE DIM FIXED AT 512

RFRBOOST N LAYERS 1 TO 10 (LOG SCALE)
L2 LINPRED 10−5 TO 10 (LOG SCALE)
L2 GHAT 10−5 TO 10 (LOG SCALE)
BOOST LR 0.1 TO 1.0 (LOG SCALE)
SWIM SCALE 0.25 TO 2.0
FEATURE DIM FIXED AT 512

RFNN L2 REG 10−5 TO 10 (LOG SCALE)
FEATURE DIM 16 TO 512 (LOG SCALE)
SWIM SCALE 0.25 TO 2.0

RIDGE/LOGISTIC REGRESSION L2 REG 10−5 TO 10 (LOG SCALE)

XGBOOST ALPHA 10−5 TO 10−2 (LOG SCALE)
LAMBDA 10−3 TO 100 (LOG SCALE)
LEARNING RATE 0.01 TO 0.5 (LOG SCALE)
N ESTIMATORS 50 TO 1000 (LOG SCALE)
MAX DEPTH 1 TO 10

For the E2E MLP ResNet, ”hidden dim” refers to the dimension D of the ResNet features Φ(x) ∈ RD, and the feature
dimension denotes the number of neurons in the residual block (also known as bottleneck size, which was also fixed for

23

Random Feature Representation Boosting

RFRBoost). The residual blocks are structured sequentially as follows: [dense(hidden dim, feature dim), batchnorm, relu,
dense(feature dim, hidden dim), batchnorm]. An additional upscaling layer was used to match the input dimension to the
”hidden dim”.

We used the Aeon library (Middlehurst et al., 2024) to generate the critical difference diagrams in Section 4.1. Below, we
provide full dataset-wise results in Tables 5 to 7 for each model and dataset used in the evaluation, averaged across all 5
folds. Figures 5 and 6 visualize these results using scatter plots overlaid with box-and-whiskers plots, providing insight into
the distribution and variability of performance across datasets. We refer the reader to the critical difference diagrams for a
rigorous statistical comparison of model rankings across all datasets.

Table 5. Test classification scores on OpenML datasets.

Dataset
ID

Logistic
Regression RFRBoost RFNN

E2E
MLP

ResNet
XGBoost

3 0.974 0.996 0.989 0.996 0.997
6 0.768 0.912 0.890 0.944 0.903
11 0.878 0.981 0.979 0.934 0.931
14 0.812 0.844 0.804 0.828 0.830
15 0.964 0.966 0.963 0.964 0.960
16 0.948 0.974 0.945 0.973 0.954
18 0.728 0.739 0.727 0.739 0.721
22 0.815 0.837 0.812 0.840 0.795
23 0.512 0.551 0.553 0.532 0.547
28 0.970 0.991 0.980 0.989 0.978
29 0.854 0.854 0.845 0.852 0.862
31 0.761 0.762 0.756 0.743 0.744
32 0.946 0.993 0.990 0.992 0.986
37 0.762 0.758 0.760 0.767 0.762
38 0.968 0.979 0.977 0.977 0.988
44 0.931 0.950 0.936 0.941 0.952
50 0.983 0.983 0.980 0.976 0.995
54 0.801 0.849 0.829 0.843 0.772
151 0.760 0.796 0.784 0.792 0.847
182 0.861 0.909 0.908 0.911 0.913
188 0.641 0.664 0.643 0.635 0.652
307 0.838 0.993 0.972 0.989 0.924
458 0.994 0.994 0.993 0.988 0.990
469 0.187 0.188 0.196 0.193 0.178
1049 0.908 0.910 0.904 0.907 0.919
1050 0.894 0.889 0.898 0.892 0.890
1053 0.808 0.807 0.806 0.810 0.809
1063 0.841 0.845 0.833 0.841 0.839

24

Random Feature Representation Boosting

Table 6. Test classification scores on OpenML datasets.

Dataset
ID

Logistic
Regression RFRBoost RFNN

E2E
MLP

ResNet
XGBoost

1067 0.853 0.855 0.858 0.855 0.853
1068 0.925 0.927 0.928 0.928 0.935
1461 0.902 0.902 0.904 0.900 0.903
1462 0.988 1.000 1.000 1.000 0.997
1464 0.766 0.791 0.794 0.769 0.783
1475 0.478 0.545 0.534 0.570 0.601
1480 0.715 0.703 0.703 0.671 0.684
1486 0.943 0.949 0.946 0.950 0.959
1487 0.935 0.945 0.945 0.944 0.940
1489 0.748 0.876 0.864 0.906 0.903
1494 0.873 0.882 0.868 0.878 0.873
1497 0.701 0.929 0.907 0.944 0.998
1510 0.977 0.974 0.974 0.961 0.961
1590 0.850 0.858 0.856 0.851 0.865
4534 0.938 0.952 0.949 0.960 0.956
4538 0.478 0.554 0.513 0.606 0.660
6332 0.735 0.791 0.763 0.791 0.796
23381 0.626 0.640 0.624 0.566 0.612
23517 0.505 0.516 0.502 0.489 0.500
40499 0.997 0.997 0.992 0.999 0.985
40668 0.752 0.775 0.759 0.777 0.800
40701 0.867 0.936 0.923 0.951 0.953
40966 0.994 0.999 0.989 0.997 0.984
40975 0.932 0.997 0.977 0.999 0.994
40982 0.718 0.752 0.758 0.755 0.800
40983 0.971 0.986 0.987 0.988 0.983
40984 0.901 0.934 0.930 0.927 0.929
40994 0.961 0.957 0.957 0.946 0.944
41027 0.685 0.812 0.798 0.844 0.838

25

Random Feature Representation Boosting

Table 7. Test RMSE scores on OpenML regression datasets.

Dataset
ID

Ridge
Regression

Greedy
RFRBoost
Ascalar

Greedy
RFRBoost
Adiag

Greedy
RFRBoost
Adense

Gradient
RFRBoost RFNN

E2E
MLP

ResNet
XGBoost

41021 0.233 0.233 0.232 0.231 0.231 0.232 0.265 0.249
44956 0.647 0.631 0.621 0.615 0.616 0.622 0.614 0.633
44957 0.688 0.362 0.246 0.238 0.233 0.347 0.316 0.197
44958 0.595 0.239 0.205 0.193 0.191 0.246 0.246 0.039
44959 0.589 0.304 0.275 0.277 0.286 0.305 0.311 0.245
44960 0.290 0.069 0.050 0.049 0.049 0.088 0.200 0.037
44962 0.446 0.448 0.448 0.446 0.447 0.447 0.474 0.452
44963 0.841 0.784 0.773 0.749 0.752 0.783 0.703 0.694
44964 0.521 0.443 0.406 0.395 0.398 0.443 0.369 0.340
44965 0.883 0.867 0.873 0.860 0.858 0.871 0.864 0.839
44966 0.719 0.724 0.718 0.719 0.721 0.726 0.731 0.720
44967 0.786 0.788 0.790 0.788 0.784 0.795 0.814 0.789
44969 0.409 0.084 0.027 0.022 0.025 0.061 0.058 0.086
44970 0.645 0.609 0.610 0.618 0.615 0.603 0.616 0.622
44971 0.840 0.789 0.779 0.780 0.777 0.785 0.729 0.685
44972 0.796 0.776 0.775 0.768 0.767 0.774 0.777 0.722
44973 0.602 0.287 0.235 0.194 0.194 0.284 0.177 0.244
44974 0.457 0.214 0.184 0.153 0.152 0.211 0.158 0.126
44975 0.026 0.027 0.026 0.026 0.026 0.026 0.056 0.109
44976 0.270 0.192 0.177 0.170 0.170 0.196 0.161 0.192
44977 0.590 0.525 0.517 0.508 0.506 0.525 0.486 0.446
44978 0.242 0.149 0.145 0.146 0.148 0.149 0.142 0.134
44979 0.252 0.163 0.148 0.142 0.140 0.165 0.145 0.142
44980 0.766 0.430 0.324 0.318 0.317 0.438 0.275 0.457
44981 0.914 0.913 0.913 0.912 0.913 0.914 0.636 0.611
44983 0.431 0.263 0.250 0.247 0.244 0.257 0.235 0.229
44984 0.689 0.660 0.658 0.656 0.657 0.659 0.656 0.656
44987 0.334 0.233 0.194 0.183 0.192 0.246 0.229 0.211
44989 0.308 0.293 0.287 0.276 0.274 0.295 0.304 0.263
44990 0.404 0.395 0.396 0.395 0.393 0.399 0.405 0.399
44993 0.799 0.776 0.773 0.770 0.769 0.775 0.787 0.773
44994 0.265 0.215 0.216 0.215 0.216 0.216 0.231 0.225
45012 0.448 0.343 0.339 0.330 0.330 0.341 0.351 0.331
45402 0.621 0.526 0.507 0.499 0.497 0.532 0.474 0.502

26

Random Feature Representation Boosting

Figure 5. Scatter and box-and-whiskers plot of classification accuracy across all OpenML datasets. Each dot corresponds to a single
dataset, and box plots summarize the distribution for each model.

Figure 6. Scatter and box-and-whiskers plot of regression RMSE across all OpenML datasets. Each dot corresponds to a single dataset,
and box plots summarize the distribution for each model.

27

Random Feature Representation Boosting

E.3. Point Cloud Separation Task

For the point cloud separation task, we use the same model structure as in the OpenML experiments, but fix the number of
ResNet layers to 3 residual blocks. We additionally fix the activation to tanh and feature dimension to 512 for all models.
Further architectural details and learning rate annealing strategies are consistent with those described in Section 4.1 and
Appendix E.2. The SWIM scale was fixed at 1.0 for all random feature models. We use 5,000 randomly sampled data points
for training and validation, and leave the remaining 5,000 for the final test set.

The hyperparameter configurations for RFRBoost, E2E MLP ResNet, RFNN, and logistic regression are detailed below in
Table 8.

Table 8. Hyperparameter ranges for the point cloud separation task.

MODEL HYPERPARAMETER VALUES

RFRBOOST L2 CLS [1, 1E-1, 1E-2, 1E-3, 1E-4, 1E-5]
L2 GHAT 1E-4
HIDDEN DIM 2
FEATURE DIM 512
BOOST LR 1.0
USE BATCHNORM TRUE

RFNN L2 CLS [1, 1E-1, 1E-2, 1E-3, 1E-4, 1E-5]
FEATURE DIM 512

LOGISTIC REGRESSION L2 [1, 1E-1, 1E-2, 1E-3, 1E-4]

E2E MLP RESNET LR [1E-1, 1E-2, 1E-3, 1E-4, 1E-5]
HIDDEN DIM 2
FEATURE DIM 512
N EPOCHS 30
END LR FACTOR 0.01
WEIGHT DECAY 1E-5
BATCH SIZE 128

E.4. SWIM vs i.i.d. Ablation Study

In this section, we present a small ablation study comparing SWIM random features to standard i.i.d. Gaussian random
features across OpenML regression and classification tasks. The evaluation procedure is the same as presented in Section 4.1,
the only change being that the SWIM scale parameter is replaced by an i.i.d. scale parameter, ranging logarithmically from
0.1 to 10 for all models. Pairwise comparisons for each model variant are visualized in Figures 7 to 8, where each point
represents a dataset and compares the performance of SWIM and i.i.d. features. Summary statistics, including average
RMSE/accuracy, number of dataset-wise wins, and average training time, are reported in Tables 9 to 10.

Overall, performance differences between SWIM and i.i.d. features are small but consistent. For regression, SWIM-based
models achieve lower mean RMSE across all variants, and win on 22 out of 34 datasets in the best case (Greedy RFRBoost
Adense). For classification, accuracy is nearly identical across methods, though i.i.d. features slightly outperform SWIM in
the total number of wins (32 out of 56). SWIM-based methods typically incur slightly higher training time, reflecting the
additional structure in their initialization. These results suggest that while SWIM can offer marginal gains in accuracy or
RMSE, the benefits must be balanced against training efficiency.

28

Random Feature Representation Boosting

Table 9. Comparison of SWIM vs i.i.d. feature initialization on OpenML regression tasks.

MODEL VARIANT MEAN RMSE WINS FIT TIME (S)

RFNN SWIM 0.434 20 0.053
I.I.D. 0.441 14 0.029

GRADIENT RFRBOOST SWIM 0.408 18 1.688
I.I.D. 0.415 16 1.816

GREEDY RFRBOOST Adense SWIM 0.408 22 2.734
I.I.D. 0.416 12 2.667

GREEDY RFRBOOST Adiag SWIM 0.415 19 1.631
I.I.D. 0.415 15 1.490

GREEDY RFRBOOST Ascalar SWIM 0.434 22 1.024
I.I.D. 0.443 12 0.720

Table 10. Comparison of SWIM vs i.i.d. feature initialization on OpenML classification tasks.

MODEL VARIANT MEAN ACCURACY WINS FIT TIME (S)

RFNN SWIM 0.845 25 1.189
I.I.D. 0.844 31 0.634

GRADIENT RFRBOOST SWIM 0.853 32 2.519
I.I.D. 0.850 24 2.350

Figure 7. Comparison of classification accuracy using SWIM versus i.i.d. Gaussian random features across OpenML datasets. Each
scatter plot compares accuracy on a per-dataset basis for different model variants. Points below the diagonal indicate better performance
with SWIM.

29

Random Feature Representation Boosting

Figure 8. Comparison of RMSE using SWIM versus i.i.d. Gaussian random features across OpenML regression tasks. Each scatter plot
compares RMSE per dataset for different model variants. Points above the diagonal indicate better performance with SWIM.

30

Random Feature Representation Boosting

E.5. Supplementary Larger-Scale Experiments

To further assess the scalability and performance of RFRBoost relative to baseline models, we conducted experiments on
four larger datasets: two of the largest from the OpenML Benchmark suite used in this work (each with approximately
100k samples — one classification: ID 23517; one regression: ID 44975), and two widely-used benchmark datasets
with approximately 500k samples (one classification: CoverType (Blackard, 1998); one regression: YearPredictionMSD
(YPMSD) (Bertin-Mahieux, 2011)).

For these larger-scale evaluations, we employed a hold-out test set strategy. Hyperparameters for each model were selected
via a grid search performed on a 20% validation split of the training data. The models considered are consistent with those
in Section 4.1: E2E MLP ResNet, Gradient RFRBoost, Logistic/Ridge Regression, RFNN, and XGBoost. To analyze
performance trends with increasing data availability, models were trained on exponentially increasing subsets of the training
data, starting from 2048 samples (211) up to the maximum available training size for each dataset.

For the OpenML datasets, the test sets were defined as 33% (ID 23517, classification) and 11% (ID 44975, regression) of the
total instances, resulting in a maximum training set size of approximately 64,000 instances (216). For YPMSD (regression),
we adhered to the designated split: the first 463,715 examples for training and the subsequent 51,630 examples for testing.
For CoverType (classification), we used the standard train-test split provided by the popular Python machine learning library
Scikit-learn (Pedregosa et al., 2011), yielding 464,809 training and 116,203 test instances.

The hyperparameter grids used for each model in these experiments are detailed in Table 11. To account for variability, each
experiment was repeated 5 times with different random seeds for each model. All experiments were carried out on a single
NVIDIA RTX 6000 (Turing architecture) GPU.

Table 11. Hyperparameter grid for the larger-scale experiments.

MODEL HYPERPARAMETER VALUES

RFRBOOST L2 CLS [1E-1, 1E-2, 1E-3, 1E-4, 1E-5]
N LAYERS [1, 3, 6]
FEATURE DIM 512
BOOST LR 1.0

RFNN L2 [1E-1, 1E-2, 1E-3, 1E-4, 1E-5]
FEATURE DIM 512

LOGISTIC/RIDGE REGRESSION L2 [1E-1, 1E-2, 1E-3, 1E-4]

XGBOOST LR [0.1, 0.033, 0.01]
N ESTIMATORS [250, 500, 1000]
MAX DEPTH [1, 3, 6, 10]
LAMBDA 1.0

E2E MLP RESNET LR [1E-1, 1E-2, 1E-3]
N EPOCHS [10, 20, 30]
FEATURE DIM 512
END LR FACTOR 0.01
WEIGHT DECAY 1E-5
BATCH SIZE 256

The model training times and predictive performance (RMSE for regression, accuracy for classification) as a function
of training set size are presented in Figure 9 and Figure 10, respectively. Regarding training times shown in Figure 9,
Ridge/Logistic Regression and RFNNs consistently exhibit the fastest training, as expected. RFRBoost consistently trains
faster than both XGBoost and the E2E MLP ResNets across all datasets. Notably, on the OpenML ID 23517 dataset,
RFRBoost trains faster than the single-layer RFNN. This may be attributed to RFNNs fitting a potentially very wide random
feature layer directly to the output targets (logits or regression values), which can be computationally intensive. In contrast,
RFRBoost constructs a comparatively shallow representation layer-wise with random feature residual blocks, where only
the final, potentially lower-dimensional, representation is mapped to the output targets. In some scenarios, this may lead to
lower computational times.

Considering the predictive performance shown in Figure 10, RFRBoost consistently and significantly outperforms the

31

Random Feature Representation Boosting

baseline single-layer RFNN across all datasets and training sizes, demonstrating its effectiveness in using depth for random
feature models to increase performance. This improvement is particularly pronounced on the larger CoverType and YPMSD
datasets, underscoring the benefit of RFRBoost’s deep, layer-wise construction. However, in the larger data regimes E2E
trained MLP ResNets and XGBoost generally achieve superior predictive performance. The OpenML ID 23517 dataset
stands out, however, as RFRBoost and Logistic Regression not only exhibit lower variance but also achieve the best overall
performance. Furthermore, we find that XGBoost significantly underperforms on OpenML ID 44975 compared to all
other baseline models. Given RFRBoost’s strong performance relative to its computational cost and its ability to construct
meaningful deep representations, exploring its use as an initialization strategy for subsequent fine-tuning of end-to-end
trained networks presents a promising avenue for future research, potentially further enhancing the performance of E2E
models.

Figure 9. Model training time (seconds, log scale) versus training set size on larger datasets. Lines represent the mean training time over 5
runs, and shaded areas indicate 95% confidence intervals.

32

Random Feature Representation Boosting

Figure 10. Model predictive performance (RMSE for regression, accuracy for classification) versus training set size on larger datasets.
Lines represent the mean performance over 5 runs, and shaded areas indicate 95% confidence intervals.

33

