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Abstract

Recent advancements in large language mod-001
els (LLMs) have raised concerns about infer-002
ence costs, increasing the need for research003
into model compression. While knowledge dis-004
tillation (KD) is a prominent method for this,005
research on KD for generative language models006
like LLMs is relatively sparse, and the approach007
of distilling student-friendly knowledge, which008
has shown promising performance in KD for009
classification models, remains unexplored in010
generative language models. To explore this ap-011
proach, we propose PromptKD, a simple yet012
effective method that utilizes prompt tuning -013
for the first time in KD - to enable generative014
language models to transfer student-friendly015
knowledge. Unlike previous works in classifi-016
cation that require fine-tuning the entire teacher017
model for extracting student-friendly knowl-018
edge, PromptKD achieves similar effects by019
adding a small number of prompt tokens and020
tuning only the prompt with student guidance.021
Extensive experiments on instruction-following022
datasets using the GPT-2 model family show023
that PromptKD achieves state-of-the-art per-024
formance while adding only 0.0007% of the025
teacher’s parameters as prompts. Further anal-026
ysis suggests that distilling student-friendly027
knowledge alleviates exposure bias effectively028
throughout the entire training process, leading029
to performance enhancements.030

1 Introduction031

With the massive improvement of generative lan-032

guage models, such as the emerging abilities (Wei033

et al., 2022) observed in large language models034

(LLMs), there is a growing need for model com-035

pression research to efficiently deploy models in036

various tasks (Touvron et al., 2023; Taori et al.,037

2023). However, among notable compression meth-038

ods such as knowledge distillation (KD; Hinton039

et al., 2015; Kim and Rush, 2016; Gu et al., 2024),040

pruning (Ma et al., 2023), and quantization (Tao041
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Figure 1: Comparison of instruction-following perfor-
mance of KD methods using the GPT-2 model family.
Owing to the student-friendly knowledge, our Promp-
tKD outperforms others with only an additional 11K
parameters. Dashed reference line represents the perfor-
mance of the teacher model.

et al., 2022), KD has not been successfully applied 042

to generative language models. 043

Since most KD methods are devised with mod- 044

els like BERT (Devlin et al., 2019) for classifica- 045

tion tasks, the challenge arises when attempting 046

to directly apply these KD methods to generative 047

language models, which have different architec- 048

tures and are designed for tasks other than clas- 049

sification. While there have been some methods 050

proposed for generative language models, such as 051

Supervised KD (Sanh et al., 2019) or SeqKD (Kim 052

and Rush, 2016), they tend to be naive approaches. 053

Even recently proposed works (Agarwal et al., 054

2024; Gu et al., 2024), like previous research, 055

have focused on distribution discrepancy metrics 056

or pseudo-targets. Therefore, despite the rapid ad- 057

vancement of LLMs in recent times, the drawback 058

is that they are not designed with the extension to 059

LLMs in mind. 060

Moreover, attempts to distill student-friendly 061

knowledge in a generative language model have 062
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yet to be explored. Recent KD studies (Yang et al.,063

2022; Park et al., 2021a; Zhou et al., 2022) for064

classification tasks aim to distill such knowledge.065

This idea emerges because previous works extract066

knowledge from fixed teacher without knowing067

the student’s capacity, and the observation (Cho068

and Hariharan, 2019) that larger teacher models069

do not necessarily improve student performance.070

However, there hasn’t been any exploration of ap-071

plying these ideas to generative language models.072

Since the capacity gap between teacher and student073

persists in KD for generative language models, it is074

reasonable to expect that distilling student-friendly075

knowledge would be beneficial.076

To address this issues, we propose PromptKD,077

which utilizes prompts in generative language mod-078

els to distill student-friendly knowledge. Extract-079

ing student-friendly knowledge from the teacher080

requires modifying the teacher, as in previous stud-081

ies (Ren et al., 2023; Zhou et al., 2022). However,082

modifying a large teacher model can incur signifi-083

cant computational costs. PromptKD addresses this084

concern by exploiting prompt tuning. By append-085

ing prompt tokens to the beginning of the input,086

we can efficiently fine-tune the teacher model with087

notably fewer parameters. While there are other088

parameter-efficient fine-tuning methods such as089

prefix-tuning (Li and Liang, 2021) and LoRA (Hu090

et al., 2022), they suffer from the disadvantage that091

the number of parameters to be trained increases092

proportionally with the number of layers. More-093

over, there is an observation (Lester et al., 2021)094

that prompt tuning shows similar performance to095

full-parameter fine-tuning as the model size in-096

creases, making prompt tuning a more reasonable097

choice. PromptKD learns prompts that stimulate098

the teacher to distill student-friendly knowledge099

with guidance from the student. Additionally, it em-100

ploys regularization loss during the early stages of101

training to prevent significant divergence from the102

original teacher when appending prompts, ensuring103

stable training.104

For evaluation, we measure the instruction-105

following performance (Ouyang et al., 2022), aim-106

ing to cover a variety of tasks that generative lan-107

guage models can perform. Compared to the exist-108

ing baseline, PromptKD achieves state-of-the-art109

performance by adding prompt parameters equiva-110

lent to only 0.0007% of the teacher parameters, as111

depicted in Figure 1. Additionally, the analysis of112

exposure bias suggests that remarkable alleviation113

of exposure bias through student-friendly knowl-114

edge is likely the cause of performance improve- 115

ment. Lastly, through ablation studies, we confirm 116

the necessity of regularization loss and the impor- 117

tance of prompt initialization. 118

To summarize, our contribution is four-fold: 119

• We investigate the effect of student-friendly 120

knowledge, which has not been previously 121

explored in knowledge distillation (KD) for 122

generation tasks. 123

• We propose PromptKD, the first usage of 124

prompt tuning in KD, enabling memory- 125

efficient extraction of student-friendly knowl- 126

edge from teacher. 127

• Through extensive experiments on 5 128

instruction-following datasets, PromptKD 129

achieves state-of-the-art performance. 130

• We suggest that the superiority of PromptKD 131

lies in its ability to fully mitigate exposure 132

bias in the training phase. 133

2 Related Work 134

KD for text classification Knowledge distilla- 135

tion (KD) (Hinton et al., 2015) is a model compres- 136

sion technique where the knowledge of a teacher 137

model is transferred to improve the performance 138

of a student model. Most KD research has been 139

focused on text classification tasks. It has evolved 140

from simple approaches (Song et al., 2020) that 141

match the class distributions between teacher and 142

student to more complex methods (Jiao et al., 2020; 143

Sun et al., 2019; Wang et al., 2020; Park et al., 144

2021b) that involve matching hidden states or at- 145

tention matrices between models. Recently, con- 146

cerns have been raised about the observation (Cho 147

and Hariharan, 2019) that larger teacher models 148

do not necessarily produce better students and the 149

issue of teachers distilling knowledge while being 150

unaware of the student’s capacity. To address this, 151

Park et al. (2021a); Zhou et al. (2022); Ren et al. 152

(2023) transfer student-friendly knowledge, which 153

requires the teacher to transform during the dis- 154

tillation process, influenced by specific objectives 155

aimed at benefiting the student. Additionally, fo- 156

cusing on the capacity gap between the teacher and 157

student during training, Yang et al. (2022) proposes 158

gradually pruning the teacher, while Liang et al. 159

(2023a) suggests initializing the student as a model 160

of the same size as the teacher and then pruning it 161

during training. 162
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KD for text generation For text generation,163

Sanh et al. (2019) minimizes the KL divergence164

between the next token prediction distributions of165

the teacher and student at each time step. In addi-166

tion, some research (Calderon et al., 2023; Agarwal167

et al., 2024) focus on the sentences inputted to the168

teacher and student during the distillation process.169

For example, Kim and Rush (2016) uses sentences170

generated by the teacher as pseudo-targets instead171

of ground truth. Moreover, black-box KD meth-172

ods (Hsieh et al., 2023; Ho et al., 2023) that use173

inference-only black-box LLMs as teachers and174

augment existing data before training are proposed.175

Recently, Agarwal et al. (2024); Gu et al. (2024)176

explored discrepancy metrics between model dis-177

tributions and used sentences generated by the stu-178

dent as pseudo-targets to minimize exposure bias.179

However, there have been no attempts yet to dis-180

till student-friendly knowledge while the teacher181

is aware of the student’s capacity. Although Liang182

et al. (2023b) incorporates task-aware filters into183

both teacher and student to transfer knowledge, its184

scalability is limited due to the addition of filters185

at each layer for layer distillation. Crucially, it en-186

courages knowledge to be task-specific, making it187

diverges from what we aim to explore in this paper.188

Prompt tuning After Brown et al. (2020) demon-189

strates that pre-trained language models can per-190

form specific tasks by prepending text prompts to191

input, many studies have tried to either manually192

craft (Schick and Schütze, 2021) or automatically193

discover (Shin et al., 2020; Jiang et al., 2020; Gao194

et al., 2021) such hard prompts, which are discrete195

tokens. Subsequently, research (Hambardzumyan196

et al., 2021; Zhong et al., 2021) emerged to ad-197

vance prompts into the form of soft prompts com-198

posed of embeddings, making prompt updates via199

back-propagation easier and resulting in better per-200

formance compared to hard prompts. Presently,201

prompt tuning (Lester et al., 2021) has become202

a prominent parameter-efficient fine-tuning tech-203

nique. Although Ma et al. (2022) uses hard prompts204

to generate input data for knowledge extraction, we205

are pioneering the use of prompts for parameter-206

efficient fine-tuning in KD research.207

3 PromptKD208

PromptKD is devised in the instruction-209

following (Ouyang et al., 2022) setting for210

application to generative language models. We211

formulate instruction-following as a condi-212

tional text generation task, where the request 213

x = {x1, x2, . . . , xn} sampled from the data 214

distribution px comprises instruction and input 215

to describe the task. Then, given the request x 216

as a condition, the model generates a response 217

y = {y1, y2, . . . , yT }. For prompt tuning, soft 218

prompts P = {p1,p2, . . . ,pm}, where pi is an 219

embedding vector of the same dimension as the 220

token embedding, are initialized with text and 221

prepended to the input request x. Formally, given 222

the request x, the teacher model distribution 223

conditioned on the prompt P is denoted as 224

p(y|P,x) (here we suppress the teacher’s model 225

parameter since it is fixed), and the student’s model 226

distribution parameterized by θ is denoted as 227

qθ(y|x), where only the student model parameters 228

θ and the prompt P are trainable. The training 229

process consists of 3 steps per iteration, as shown 230

in Figure 2. First, generating input data used for 231

knowledge distillation (pseudo-target generation). 232

Then, updating the prompt based on guidance 233

from the student and teacher models to facilitate 234

adaptive teaching (prompt tuning for adaptive 235

teaching). Finally, distilling student-friendly 236

knowledge to the student using the updated prompt 237

(student-friendly knowledge distillation). 238

3.1 Pseudo-Target Generation 239

PromptKD uses the response y generated by the 240

student for the prompt tuning and knowledge distil- 241

lation processes, treating it as the pseudo-target. 242

This approach addresses exposure bias, which 243

arises due to the discrepancy between the sentences 244

used during training and those generated during 245

inference, leading to degraded performance in free- 246

run generation (Zhang et al., 2019). Based on the 247

insight (Agarwal et al., 2024) that incorporating 248

sentences that the model can generate during free- 249

run generation into the training process can miti- 250

gate exposure bias, we devise the approach accord- 251

ingly. It is worth noting that for the sake of method 252

simplicity, back-propagation during this sampling 253

process is not conducted. 254

3.2 Prompt Tuning for Adaptive Teaching 255

Initially, we concatenate the request x and response 256

y, including the prompt P for the teacher, and input 257

them into both models. Prompt P is updated to 258

minimize the KD loss Lkd, which computes the 259

distribution discrepancy of the response part. This 260

encourages the prompt to enable the teacher to 261

generate sentences at a similar level to the student 262
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Figure 2: Training procedure of PromptKD. To mitigate exposure bias, responses are generated by the student to be
used as pseudo-targets. Then, for adaptive teaching, the prompt input to the teacher is trained based on guidance
from the student. During this process, regularization loss is also employed to address instability stemming from the
prompt. Lastly, teacher distills student-friendly knowledge to the student using the trained prompt.

when it is prepended to the teacher’s input. Drawing263

inspiration from the concept of adaptive teaching264

in education, we design this objective with the aim265

of enabling students to receive knowledge from the266

teacher at a level they can comprehend.267

However, during the early stages of training, the268

influence of the prompt may cause significant devi-269

ations or inaccuracies in the teacher model distribu-270

tion, leading to unstable learning (Hou et al., 2022).271

To address this issue, we initialize the prompt with272

text embedding and devise an additional regulariza-273

tion lossLreg to ensure that the teacher model distri-274

bution remains similar whether the prompt is used275

or not. The regularization loss Lreg is computed in276

a similar manner to the KD loss Lkd, but with the277

difference that it is measured based on the teacher278

model distribution when the prompt is excluded279

from the input given to the teacher. This approach280

allows for the continued use of the fixed teacher281

model, making it memory-efficient. However, since282

the fixed teacher is unaware of the student’s capac-283

ity, Lreg deviates from our ultimate goal. Therefore,284

we introduce a coefficient that starts at 1 for Lreg285

and linearly decreases to 0 during training, focusing286

solely on stabilizing the early stages of learning.287

Regarding the two objectives, we opt for mini-288

mizing the reverse KL divergence instead of the for-289

ward KL divergence to measure the discrepancy, as290

it exhibits mode-seeking behavior (Nowozin et al.,291

2016) and benefits generation tasks. Hence, sum-292

marizing the two objectives, the final loss Lprompt,293

which updates only the prompt, is determined by294

Algorithm 1 PromptKD

Input: teacher T , student’s output distribution qθ,
data distribution px, prompt P , training step K,
learning rate η
for each step k = 1, ...,K do

Sample a request x from px
Sample a response y from qθ(·|x)
Update P ← P − η∇Lprompt ▷ Eq. (3)
Update θ ← θ − η∇Lstudent ▷ Eq. (4)

end for
return qθ

their summation, as follows: 295

Lkd =DKL

(
p(y|P,x) ∥ qθ(y|x)

)
, (1) 296

Lreg =DKL

(
p(y|P,x) ∥ p(y|x)

)
, (2) 297

Lprompt =Lkd +

(
K − k

K

)
Lreg, (3) 298

where K represents the total training steps, and k 299

denotes the current step. 300

3.3 Student-Friendly Knowledge Distillation 301

The updated prompt is utilized as a trigger to ex- 302

tract student-friendly knowledge from the teacher 303

and distill it to the student. The student loss Lstudent 304

minimizes the distribution discrepancy between 305

teacher and student through reverse KL divergence, 306

as follows: 307

Lstudent =DKL

(
qθ(y|x) ∥ p(y|P,x)

)
. (4) 308

For a clear understanding, we summarize the 309

PromptKD algorithm in Algorithm 1. 310
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#Params Method
Instruction-following datasets

Dolly SelfInst Vicuna S-NI UnNI
1.5B Teacher 27.3 14.5 16.2 27.1 31.6

120M

SFT 22.9 10.2 14.5 16.3 18.5
KD 22.6 11.0 15.1 18.0 20.1
SeqKD 23.3 10.3 14.7 16.6 19.2
MiniLLM 24.2 12.7 16.9† 25.1 26.2
GKD 24.8 11.1 17.7† 20.7 23.2
PromptKD 25.6 13.1 16.8† 26.8 28.9

340M

SFT 25.1 12.9 15.9 23.7 27.4
KD 25.1 13.0 15.6 24.5 27.7
SeqKD 25.3 12.7 16.0 23.8 27.5
MiniLLM 26.3 14.8† 17.9† 26.4 31.2
GKD 26.9 14.8† 17.8† 26.6 30.9
PromptKD 27.3† 15.0† 17.6† 27.1† 32.6†

760M

SFT 24.9 13.4 15.8 24.0 27.6
KD 25.7 13.7 15.9 24.0 27.7
SeqKD 25.2 13.3 15.8 24.0 27.4
MiniLLM 26.2 15.8† 16.9† 28.5† 33.5†

GKD 26.9 14.1 17.1† 25.4 29.6
PromptKD 26.9 16.4† 17.8† 29.5† 34.8†

Table 1: Evaluation results on 5 instruction-following datasets. Each ROUGE-L score is averaged over 5 random
seeds. The best score for each model size is highlighted in boldface. †Results surpass those of the teacher.

4 Experiments311

4.1 Experimental Setup312

Following Gu et al. (2024), we evaluate PromptKD313

using 5 instruction-following datasets.314

Settings We split the Dolly (Conover et al.,315

2023), consisting of 15,000 human-written316

instruction-response pairs, into 14,000 for train-317

ing and 500 for validation and testing. For evalua-318

tion, we employ not only the Dolly but also 4 addi-319

tional datasets: SelfInst (Wang et al., 2023), consist-320

ing of user-oriented instruction-following sets; Vi-321

cuna (Chiang et al., 2023), comprising 80 questions322

used in the Vicuna evaluation; S-NI, the test set323

of SUPER-NATURALINSTRUCTIONS (Wang et al.,324

2022); and UnNI, the core dataset of UNNATU-325

RALINSTRUCTIONS (Honovich et al., 2023). Sim-326

ilar to Gu et al. (2024), data samples with ground327

truth response lengths of 11 or more are utilized328

for S-NI and UnNI. We generate 5 responses for329

each request in each dataset using different ran-330

dom seeds and evaluate them to report the aver-331

age scores for reliability. We choose the ROUGE-332

L score (Lin, 2004) as the metric for evaluation,333

as it aligns well with human preferences (Wang334

et al., 2022) in instruction-following evaluations.335

The best checkpoint based on the ROUGE-L score 336

on the validation set is used for evaluation. 337

Models To evaluate the instruction-following per- 338

formance of PromptKD, we utilize pre-trained 339

models from the GPT-2 family. GPT-2 XL (1.5B 340

params) is employed for the teacher model, and 341

GPT-2 Base (120M params), GPT-2 Medium 342

(340M params), GPT-2 Large (760M params) are 343

used for the student model. Before knowledge dis- 344

tillation, the teacher model undergoes supervised 345

fine-tuning on the Dolly training set. Similarly, the 346

student model is also fine-tuned on the same train- 347

ing data for only three epochs, following the previ- 348

ous works (Agarwal et al., 2024; Gu et al., 2024). 349

Baselines PromptKD is compared with various 350

approaches ranging from supervised fine-tuning 351

(SFT), which does not involve knowledge distil- 352

lation, to commonly used methods in generation 353

tasks such as Supervised KD (KD; Sanh et al., 354

2019), SeqKD (Kim and Rush, 2016), and more 355

recent proposals like MiniLLM (Gu et al., 2024) 356

and GKD (Agarwal et al., 2024). KD and SeqKD 357

both aim to minimize the discrepancy between the 358

model distributions of teacher and student at each 359

token step. The difference lies in whether the input 360
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(b) exposure bias against training progress

Figure 3: The measurement of exposure bias. Excess accumulated error (ExAccErr) is measured with respect to
generation steps and training progress, where values closer to 0 indicate alleviation of exposure bias.

sentence is ground truth or pseudo-target generated361

by the teacher. MiniLLM replaces forward KL di-362

vergence with reverse KL divergence and updates363

the student model using policy gradient. On the364

other hand, GKD focuses on distribution discrep-365

ancy metrics and pseudo-targets to propose a gen-366

eral method. In this paper, GKD computes reverse367

KL divergence and utilizes sentences generated by368

the student as pseudo-targets, and this choice is369

based on the reported performance in their paper.370

Additionally, it is worth noting that the students371

for MiniLLM, GKD, and PromptKD all commence372

from the same supervised fine-tuned checkpoint,373

while other methods start from pre-trained models.374

For training details, please see the Appendix A.375

4.2 Experimental Results376

We report the instruction-following performance of377

PromptKD and baselines on 5 datasets in Table 1.378

Firstly, PromptKD achieves state-of-the-art per-379

formance overall in the instruction-following set-380

ting, outperforming other KD baselines. Addition-381

ally, it also outperforms on 4 datasets not used in382

training, demonstrating PromptKD’s superb gen-383

eralization ability. It’s worth noting that despite384

MiniLLM incorporating language modeling loss385

through the corpus used for pre-training, Promp-386

tKD exhibits better performance.387

Furthermore, only PromptKD shows superior388

performance to the teacher across all datasets. This389

demonstrates that modifying the teacher to extract390

student-friendly knowledge for distillation works391

not only for classification tasks but also for gener-392

ation tasks. Moreover, the better performance of 393

PromptKD, MiniLLM, and GKD, which utilize re- 394

sponses generated by the student as pseudo-targets, 395

compared to other baselines, can be interpreted as 396

exposure bias mitigation contributing to the perfor- 397

mance improvement. 398

Lastly, as the model size increases, PromptKD 399

outperforms in more datasets. This can be at- 400

tributed to the fact that prompt tuning exhibits a 401

similar effect to full-parameter fine-tuning as the 402

model size grows (Lester et al., 2021). Thanks 403

to the scalability and efficiency of prompt tuning, 404

PromptKD can be expected to yield outstanding 405

results even when applied to larger models. 406

PromptKD and the baselines’ qualitative results 407

are summarized in the Appendix B, where it is 408

shown that PromptKD generates responses most 409

similar to the ground truth. 410

4.3 Analysis 411

Exposure bias In this section, we investigate ex- 412

posure bias to understand why PromptKD performs 413

well. Exposure bias refers to the mismatch in distri- 414

bution between the sentences seen during training 415

and those generated during inference. If exposure 416

bias is significant, the tokens generated during in- 417

ference may diverge from those seen during train- 418

ing, leading to accumulated errors in the generation 419

process. Following Arora et al. (2022), exposure 420

bias up to l generation steps can be quantified as 421

follows: 422

ExAccErr(l) =
R(l)− E(l)

E(l)
× 100%, (5) 423
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R(l) =
l∑

t=1

E
y<t∼qθ(·|x)
yt∼p(·|y<t,x)

log
p(yt|y<t,x)

qθ(yt|y<t,x)
, (6)424

E(l) =
l∑

t=1

E
y<t∼p(·|x)

yt∼p(·|y<t,x)

log
p(yt|y<t,x)

qθ(yt|y<t,x)
. (7)425

R(l) represents the average forward KL divergence426

up to l time steps when the student-generated re-427

sponse is used as the pseudo-target, while E(l) is428

similar to R(l) but differs in that it uses the teacher-429

generated response as the pseudo-target. R(l) can430

be interpreted as the distribution gap between the431

teacher and the student due to low-quality pseudo-432

targets generated by the student, while E(l) serves433

as a lower-bound of distribution gap between the434

teacher and the student. Therefore, ExAccErr cal-435

culates the relative error caused solely by expo-436

sure bias. If exposure bias is alleviated, the student437

should exhibit a nearly identical distribution gap438

regardless of which model generated the response.439

Therefore, the ExAccErr value should approach 0.440

We depict the ExAccErr at each generation step441

and the variation of ExAccErr up to 50 generation442

steps during the model training in Figure 3. In this443

experiment, a fixed pre-trained teacher is used as444

the teacher, while the student employs models dis-445

tilled using each KD method.446

When examining the ExAccErr over generation447

steps in Figure 3(a), it can be observed that for most448

methods, the error due to exposure bias accumu-449

lates as the generation length increases, increasing450

ExAccErr values. In the case of GKD, the objective451

used in training leads the student to minimize R(l).452

Consequently, the value becomes negative, indicat-453

ing that the distribution gap between the student454

and the teacher approaches 0 when using a student-455

generated response as a pseudo-target. However,456

there still exists a distribution gap for the teacher’s457

oracle response, and this means exposure bias also458

still exists. Nevertheless, PromptKD maintains Ex-459

AccErr values close to 0 at all generation steps,460

indicating that error accumulation does not occur.461

This demonstrates that PromptKD is the most effec-462

tive in alleviating exposure bias compared to other463

baselines.464

Furthermore, ExAccErr is measured up to 50465

generation steps in Figure 3(b) to focus on the early466

generations where errors tend to accumulate. To467

observe how it changes during the training process,468

the total training step of best checkpoint is divided469

by 10, and the model is saved at each time step for470

Method
MA CA Time
(GB) (GB) (hour)

SFT 2.36 2.75 0.43
KD 5.91 6.45 0.85
SeqKD 5.91 6.45 0.86
MiniLLM 12.63 21.45 7.59
GKD 6.23 6.93 8.48
PromptKD 13.47 14.40 9.78

Table 2: Comparison of computational costs. Where
MA denotes the maximum allocated memory on the
GPU and CA denotes the maximum cached memory
on the GPU. Time indicates the total training time for
each method. All computational costs are calculated on
8 NVIDIA GeForce RTX 3090 (24 GB) GPUs.

ExAccErr measurement. It is apparent that Promp- 471

tKD, MiniLLM, and GKD, which utilize student’s 472

responses, exhibit consistently lower ExAccErr val- 473

ues compared to other baselines from the early 474

stages of training. Among them, PromptKD demon- 475

strates the most stable maintenance of ExAccErr 476

close to 0, signifying that distilling student-friendly 477

knowledge aids in mitigating exposure bias during 478

training. 479

Computational cost To demonstrate the effi- 480

ciency of PromptKD, we compare its computa- 481

tional cost with baselines in Table 2. GPT-2 XL 482

and GPT-2 Base are used as the teacher and the stu- 483

dent, with measurements conducted on 8 NVIDIA 484

GeForce RTX 3090 GPUs. From a time perspec- 485

tive, methods that sample the student at each it- 486

eration to create pseudo-targets take significantly 487

more time than those that do not. Additionally, 488

while PromptKD introduces only a small amount 489

of additional parameters, namely the product of 490

the prompt length and input embedding dimen- 491

sion, it requires a considerable amount of memory 492

due to back-propagation during training. In con- 493

trast, MiniLLM, which does not add parameters, 494

requires more cached memory than PropmtKD. 495

This is because it receives guidance not only from 496

the teacher but also from the corpus used in pre- 497

training and calculates rewards in advance at every 498

iteration. When compared to MiniLLM and GKD, 499

which show superior performance to other base- 500

lines, PromptKD shows competitive advantages 501

because it performs reliably better despite requir- 502

ing similar or slightly more time and memory re- 503

sources. 504
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#Params w/o Lreg w/ Lreg

120M 21.97 22.25
340M 24.13 23.92
760M 24.47 25.08

Table 3: Ablation on regularization loss. We assess the
average instruction-following performance of student
models without and with regularization loss to verify
the effectiveness of regularization.

4.4 Ablation Study505

Regularization loss To confirm the effectiveness506

of the introduced regularization loss in alleviat-507

ing instability when the prompt is prepended, we508

conduct experiments by excluding this objective.509

The average performance across the 5 datasets is510

reported in Table 3. Although there is a slight per-511

formance drop when using regularization loss with512

GPT-2 Medium, we observe a more significant per-513

formance increase with the other two models. This514

suggests the necessity of regularization loss for515

improving performance.516

Prompt settings Although the regularization517

loss effectively mitigates the initial instability, the518

prompt’s length and initialization also significantly519

influence the prompt tuning process (Hou et al.,520

2022). Therefore, the average instruction-following521

performance is measured by varying the prompt522

length m from 5, 7, 10 and the initialization method523

from random, padding, text. Results are summa-524

rized in Figure 4. In the padding method, all prompt525

tokens are initialized with the embedding of the526

"[PAD]" token, while in the text method, the sen-527

tence "Suppose you are a student." is tokenized, and528

these embeddings are used for initializing prompt529

tokens from the beginning. In this case, if the num-530

ber of prompt tokens is smaller, the sentence is531

truncated, while if it is larger, all embeddings of532

the sentence are assigned, and then the embeddings533

are assigned again from the beginning for the next534

prompt token.535

Firstly, considering the emphasis on the impor-536

tance of prompt initialization in previous works,537

it is found that training does not proceed properly538

with random initialization. Moreover, generally, the539

text initialization method shows better performance540

than the padding method. Regarding length, when541

initialized with text, better performance is observed542

with a length of 7, while with padding initialization,543

shorter lengths exhibit better performance. This is544

presumably because, in text initialization, the sen-545

5 7 1 07
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Figure 4: Ablation on prompt settings. To validate the
impact of prompt initialization method and length, we
evaluate the average ROUGE-L score over varying these
settings.

tence is fully encoded since it is tokenized into 546

7 tokens, while in padding initialization, longer 547

lengths exert a greater influence on the instabil- 548

ity of teacher model distribution when prepended. 549

Therefore, all experiments in this paper are per- 550

formed with a prompt length of 7, initialized using 551

text initialization. 552

KL divergences To assess the impact of distribu- 553

tion discrepancy metrics, we conduct ablation study 554

on this. We observe the best performance when 555

measuring discrepancy using reverse KL diver- 556

gence in both KD loss Lkd and regularization loss 557

Lreg, similar to previous observations. Detailed ex- 558

perimental results are provided in the Appendix C. 559

5 Conclusions 560

In this work, we have pioneered the exploration 561

of extracting and distilling student-friendly knowl- 562

edge for generative language models. To achieve 563

this, we have proposed a novel method called 564

PromptKD, which leverages prompt tuning in 565

knowledge distillation for the first time. Thanks 566

to the memory-efficient nature of prompts and the 567

advantage of replacing full-parameter fine-tuning, 568

particularly beneficial for larger models like LLMs, 569

PromptKD has proven to be an efficient approach. 570

Through extensive experiments, PromptKD has 571

achieved state-of-the-art performance, confirming 572

the effectiveness of student-friendly knowledge in 573

generation tasks. Additionally, through exposure 574

bias analysis, we have demonstrated that Promp- 575

tKD successfully alleviates exposure bias through- 576

out the training process. 577
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Limitations578

While PromptKD has achieved state-of-the-art per-579

formance by distilling student-friendly knowledge,580

it still has limitations in terms of its naive extraction581

approach. Considering that knowledge distillation582

(KD) research for classification tasks employs vari-583

ous methods to distill student-friendly knowledge,584

it is expected that there are alternative approaches585

to effectively transfer student-friendly knowledge586

in a generative language model. Furthermore, al-587

though PromptKD is designed for instruction-588

following settings based on task-specific KD, there589

is a need for expansion towards task-agnostic KD590

to make it applicable during the pre-training pro-591

cess.592

Ethics Statement593

PromptKD utilizes pre-trained models, exposing594

it to risks similar to those highlighted by Wei-595

dinger et al. (2021); Bommasani et al. (2021), re-596

garding the vulnerability of pre-trained language597

models to ethical and social risks. Additionally,598

Hooker et al. (2020) mentions that the process of599

model compression can introduce biases. However,600

since most model compression studies leverage pre-601

trained models, these issues are general risks and602

not specific to PromptKD. Nevertheless, these risks603

should be addressed in the future through advanced604

pre-training objectives and dataset collection meth-605

ods (Lee et al., 2023).606
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A Training Details939

In our study, we employ the AdamW (Loshchilov940

and Hutter, 2019) optimizer for training, with941

batch sizes of 32 for GPT-2 Base and 8 for GPT-2942

Medium and Large. The learning rates of prompt943

and student are set at 5e-5 for Base, 1e-5 for944

Medium, and 5e-6 for Large. For the generation,945

we sample with top-k and top-p parameters at 0946

and 1.0, respectively, and use a fixed temperature947

of 1.0. Training and generation phases both have948

a maximum sequence length of 512 and a maxi-949

mum prompt length of 256. Please note that we pre-950

process each instruction-following dataset by con-951

verting the instruction-response pairs into a stan-952

dardized sentence structure, as shown in Table 4.953

For reproducibility of our PromptKD, we will make954

both the code and the checkpoints public.955

B Qualitative Results956

For the qualitative results, we present samples gen-957

erated by student models trained using various958

methods. The prompts are drawn from the S-NI959

dataset and utilize GPT-2 XL as the teacher model,960

with GPT-2 Large employed as the student model.961

Results are shown in Table 6.962

Prompt Format
Below is an instruction that describes a task.
Write a response that appropriately completes
the request.
### Instruction:
{instruction}
### Input:
{input}
### Response:

Table 4: Prompt format used for training and evaluation.

Lkd & Lreg ROUGE-L
Reverse KL & Reverse KL 22.25
Reverse KL & Forward KL 21.91
Forward KL & Reverse KL 22.20
Forward KL & Forward KL 22.13

Table 5: Ablation on distribution discrepancy metric.
Since each loss can compute distribution discrepancy
with either forward or reverse, we report the average
instruction-following performance for each pair.

C Ablation on KL Divergences 963

During prompt tuning, PromptKD minimizes the 964

reverse KL divergence between the teacher distribu- 965

tion and the student distribution (Lkd) or between 966

the teacher distribution and the teacher distribu- 967

tion excluding the prompt (Lreg). In this context, 968

forward KL divergence can also be considered in- 969

stead of reverse KL divergence. As shown in Ta- 970

ble 5, experimental results indicate that using re- 971

verse KL divergence yields the best performance. 972

However, there is barely any significant difference. 973

We conjecture that since the model distribution 974

being trained is derived from the teacher, result- 975

ing in similar or even more modes in distribution, 976

which prevent undesirable behaviors such as mode- 977

covering even during forward KL divergence mini- 978

mization. 979
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Case 1
Instruction Convert a disfluent question to a proper question. A disfluent question is a question

that has some interruptions in it while framing. A proper question is the correct form
of the question without any disfluency.

Input What do no I meant Who do some tax agents want to make an impression on during
an arrest?

Ground Truth Who do some tax agents want to make an impression on during an arrest?
SFT Some tax agents want to make an impression on during an arrest.
KD The tax agents want to make an impression on during an arrest.
SeqKD No I meant to ask who are some tax agents that want to make an impression on an

arrest.
MiniLLM A disfluent question is one that has some interruptions while framing. A proper

questions is the correct form of a question without any disfluidity.
GKD No I mean that there are no tax agents who want to make an impression on the arrest.
PromtKD Who do some tax agents want make an impression on during a arrest?

Case 2
Instruction Given an entity, a before event, an after event, and an attribute related to the entity,

generate a sentence as output. Your sentence should show the changes in the attribute
of the entity.

Input entity: rope, before: separate from ball, after: through slot in ball, attr: location
Ground Truth The location of the rope was separate from the ball before and through a slot in the

ball afterwards.
SFT Rope was previously connected to a ball through a slot in the ball. When the rope is

pulled through the ball, it changes location and is no longer connected to the ball.
KD Rope is a string. before: ball, after: rope stroke
SeqKD Rope is made of rope.
MiniLLM through slot in ball
GKD before: separate from Ball, after: through slot In Ball, attr: location
PromptKD Rope was separate from Ball until through slot in Ball.

Table 6: Sample response from the S-NI dataset. PromptKD follows the instructions most accurately.
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