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ABSTRACT

Recent advancements in large language models (LLMs) have shown promise
in multi-step reasoning tasks, yet their reliance on extensive manual labeling to
provide procedural feedback remains a significant impediment. To address this
challenge, in this paper, we propose a novel self-supervised framework AutoPRM
that efficiently enhances the fine-tuning of LLMs for intricate reasoning challenges.
Specifically, AutoPRM first decomposes complex problems into more manage-
able subquestions with a controllable granularity switch, then sequentially apply
reinforcement learning to iteratively improve the subquestion solver. Additionally,
we propose context-guided decoding to avoid reward tampering and guide the sub-
question solver towards the solution of the holistic problem. Extensive experiments
show that AutoPRM significantly improves performance on mathematical and
commonsense reasoning tasks over SOTA. More encouragingly, AutoPRM can be
easily integrated with other orthogonal reasoning pipelines.

1 INTRODUCTION

The landscape of natural language processing has been profoundly reshaped by the evolution of
large language models (LLMs), which have demonstrated remarkable capabilities in a variety of
complex tasks (Brown et al., 2020; Chen et al., 2021; Yuan et al., 2023). Among these, multi-
step reasoning has emerged as a particularly challenging area and has drawn significant research
attention (Bhattacharya, 2017; Hoffmann et al., 2022; Bubeck et al., 2023). To enhance the complex
reasoning capabilities for LLMs, recent prompting-based approaches, including chain-of-thought
(CoT) (Kojima et al.; Wei et al., 2022) and self-evaluation decoding (Wang et al., 2022; Yao et al.,
2023; Xie et al., 2023), have proven to be successful. However, while being effective on large-sized
models such as GPT-4 (OpenAI, 2023) and PaLM-2 (Anil et al., 2023), they are less effective for
smaller, non-finetuned models such as GPT-3 (Brown et al., 2020) and LLaMA-2-7B (Touvron et al.,
2023), which are poor reasoners by nature (Stolfo et al., 2022).

On the other hand, fine-tuning methods are also known to be effective for enhancing complex
reasoning capabilities, especially for smaller-sized models (Uesato et al., 2022; Luo et al., 2023;
Shridhar et al., 2023). Therein, procedural supervision-based fine-tuning (Wu et al., 2023; Lightman
et al., 2023) has proved to be particularly effective (Uesato et al., 2022), which emulates human
problem-solving process and provides step-by-step feedback, as opposed to outcome-based supervi-
sion which simply optimizes for the final-answers (Shridhar et al., 2023). Despite its advancements,
the reliance on step-wise human annotations for these process-supervised reward models (PRM)
presents a significant bottleneck. More specifically, such annotation is not only resource-intensive in
terms of both time and domain expertise (Lightman et al., 2023), but also introduces human bias due
to subjective judgements, which could potentially undermine the fine-tuning performance (Casper
et al., 2023; Lightman et al., 2023).
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†Lead authors.

1



Published at ICLR 2024 Workshop on Reliable and Responsible Foundation Models

To address these challenges, we propose a novel self-supervised procedural reward model termed
AutoPRM to boost the efficacy in fine-tuning and inference for long-chained, complex reasoning
problems. Concretely, AutoPRM first breaks down the problem into a sequence of sub-questions with
a trained question-decomposition (QD) model, then solves each subquestion with a Reinforcement
Learning (RL)-optimized question-answering (QA) model (Silver et al., 2017). More information on
how AutoPRM builds upon yet differs from related works is discussed in Appendix A.

2 AUTOPRM

In this section, we detail our proposed framework AutoPRM. Our key insight is that automating step-
wise question decomposition provides a natural perspective to reduce problem dimensions, through
which model inference and optimization can be more precise and efficient. With decomposition, the
fine-grained feedback can be obtained with a reliable step-wise verifier trained to predict intermediate
results, which leads to a more powerful and bias-free reasoning model.

Preliminaries and Notations. Our problem formulation involves a dataset D = {(pi, ai)}Ni=1, where
each problem pi is associated with a final answer ai that can be reached through reasoning. AutoPRM
breaks the problem into multiple steps and models the reasoning process as a Markov Decision Process
(MDP) ⟨S,A,Q,R, P, γ⟩ (Ramamurthy et al., 2022), where each MDP episode starts with a sampled
problem input pi and ends either when a final answer is generated or the model abstains. AutoPRM
manages each individual reasoning step as a subquestion-solution pair {(qt, st), qt ∈ Q, st ∈ S},
where S is the state (subsolution) space and Q is the subquestion space.1 The transition function
appends a subsolution st to the end of the cumulative state (pi, s0, s1, . . . , st−1) at each step. A
reward function (verifier) R : Q× S → R can be either outcome-based (Cobbe et al., 2021), which
provides a sparse feedback at the end of generation, or process-based (Uesato et al., 2022), which
evaluates each step individually and assigns a fine-grained score for each intermediate step (qt, st).

Collecting Subquestion-Subsolution Pairs. First, we illustrate the procedures to prepare the
subquestion-subsolution dataset Dsub = {{qi,t, si,t}ni

t=1}Ni=1. Dsub will be used to train the QD and
QA models, which are the core parts of the proposed AutoPRM. Instead of manually providing
subquestions as seen in prior works (Xie et al., 2023), AutoPRM adopts an efficient and unified
framework to collect subquestions by training an auxiliary subquestion collection (SQC) Model. The
core idea behind SQC is based on the assumption that each sentence in the groundtruth solution
represents a valid step that progressively leads to the final solution (Lightman et al., 2023). In practice,
we treat each sentence in the groundtruth solution as a subsolution, and take these subsolutions as
inputs to SQC to generate the corresponding subquestions. To train this SQC model, we initially select
a small subset of the original dataset D and prompt GPT-3.5 (prompts are detailed in Appendix D.1)
to find appropriate subquestions that would reasonably induce these subsolutions. Next, we fine-tune
an open-source Language Model (LM) (e.g. LLaMA-2 (Touvron et al., 2023)) on this training set
to obtain the SQC model. We employ the SQC model to break each question-solution pair in the
original dataset D into corresponding subquestions and subsolutions, yielding a new dataset Dsub.

Reciprocal Question Answering. Fine-tuning LLMs via automatically generated intermediate
solutions involves two parts: question decomposition (QD), which divides each question into a
sequence of subquestions, and question answering (QA), which answers these subquestions and
generates corresponding subsolutions. Both QD and QA naturally connect and influence each other.
Therefore, to leverage the interconnections between them and better refine the overall effectiveness
of AutoPRM, we propose Reciprocal Question Answering (RQA), which is inspired and theoretically
grounded by the cognitive learning theory (Xu et al., 2023). Different from SQC which relies on the
ground truth solutions to obtain the subquestions, QD is designed to automatically break down any
arbitrary question without access to the ground truths. Precisely, QD model takes each problem pi
as input and generates a set of decomposed subquestions (qt, st)

ni

t=1. As exclusively training this
QD model may result in overfitting, we encompass the original QD objective with the additional
QA objective, which aims to infer subsolutions based on the corresponding subquestions and their
surrounding context. In practice, we adopt two separate prompting mechanisms specified for QD
and QA (prompts detailed in Appendix D.2). For QD, during the training phase, we concatenate
each subquestion with a special split token to form an ordered sequence of subquestions. And in
inference, we use the same prompt but parse the output directly into a set of subquestions. In terms

1Note that while state st ∈ S should strictly refer to the cumulative subsolutions
∑t

0 si (and action ai ∈ A
denotes the ith subsolution), we represent st as the tth subsolution for the simplification of notation.
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Figure 1: Overview illustrating 3 steps of AutoPRM: (1) supervised fine-tuning (SFT) on DQG∪DQA;
(2) stepwise result verifier trained on the LLMs generated solutions of DQA; and (3) RL fine-tuning.

of QA, we propose Context-Guided Decoding (CGD) that is similar to the Fill-In-the-Middle (FIM)
Decoding (Li et al., 2023; Liang et al., 2023), where each subquestion solver is guided by appending
the subsequent subquestion to the beginning of the subsolutions that have being inferred. The detailed
formulation of CGD is showed in Eq. (1)), with ◦ denoting the concatenation.

⟨PRE⟩ ◦ qt ◦ ⟨SUF⟩ ◦ qt+1 ◦ ⟨MID⟩ ◦ [s0, . . . , st−1] (1)

Through CGD, QA model is trained to derive holistically rational subsolutions that respond well to qt
while making good progress towards the final solution. We have the language modeling loss L(Dsub):

L(Dsub) =

N∑
i=1

(
−

ni∑
t=1

logP (qt|q<t, pi)︸ ︷︷ ︸
QD Loss

−
ni∑
t=0

logP (st|s<t, qt, qt+1)︸ ︷︷ ︸
QA Loss

)
(2)

where P (qt|q<t, pi) is the probability of generating subquestion qt conditioned on all the previous
subquestions q<t and input problem pi, aligning with the QD objective. And P (st|s<t, qt, qt+1) is the
probability of the model generating the subsolution st conditioned on all the preceding subsolutions
s<t, current subquestion qt and subsequent subquestion qt+1, aligning with the QA objective.

Empirically, we observe that some of the decomposed subquestion-subsolution pairs obtained in
§2 are redundant and do not significantly contribute to the original final solutions. To this end,
we propose a user-defined parameter ϵ ∈ [0, 1] to manage the granularity of the decomposition.
Switching between decomposition granularity is tied to the specific choice of words within the
problem context, which is equivalent to a linear transform in the embedding space (Han et al., 2023).
We refer more details to Appendix D.4.

Automated procedural supervision. While the reciprocal QA model is sufficient to handle complex
reasoning problems, they suffer from partial context and a loss of holistic view to obtain the final
answer. Thus we aim to further enhance QA model with automated procedural supervision via RL.
Specifically, this is achieved by first letting the QD model decompose problem pi into intermediate
subquestions, and then acquiring feedback rt for each subsolution st via a step-wise binary verifier.
As shown in Fig. 1, we implement a step-wise verifier (reward model, RM) as a language model to
predict a binary label as either “correct" or “incorrect" after each step. To train this verifier, we first
obtain a sample set of subquestion-subsolution pairs, as shown in the middle step of Fig. 1. Then the
intermediate result of each subsolution is compared with the groundtruth and assigned values by:

I(QA(st,i), at,i) =

{
1 if QA(st,i) = at,i,

0 otherwise,
(3)
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Algorithm 1 AutoPRM Decoding Procedure
Require: Fine-tuned model M, problem p, granularity parameter ϵ, abstaining threshold τ .

1: The model M decomposes the problem p into multiple sub-questions {q1, q2, ..., qN}.
2: for t = 1, ..., N do
3: Take each one of the k generated solution s<t as prefix, append qt+1 to the end of st via

context-guided decoding
4: Sample m candidates of st
5: if the score of all mk candidates are less than τ then
6: Abstain.
7: else
8: Choose top k candidates of st from all mk samples according to the score Eq. (4).
9: end if

10: end for

where at,i is the intermediate groundtruth answer for the tth subquestion of problem pi. Notice
that the policy that maximizes the score of intermediate steps also maximizes the RM-estimated
probability of eventually reaching the correct final answer. Finally, the output label from Eq. (3) is
appended after each subsolution and trained via the QA loss as defined in Eq. (2).

RL Fine-tuning. After obtaining the step-wise verifier, the last step of our pipeline, as showed in
Fig. 1, is to apply RL via expert iteration (Silver et al., 2017) to further fine-tune the SFT models.
Different from policy gradient methods, expert iteration alternates between policy improvement
and policy distillation. In policy improvement, QA model produces k candidates for each problem
pi in the dataset Dsub via a decoding method. Then in policy distillation, we select the candidates
with the highest scores based on the verifier and perform supervised-learning to improve the policy.
When the training converges, we adopt Reward-Reranking (RR) decoding which selects the candidate
subsolutions by RM-weighted probability (Uesato et al., 2022; Xie et al., 2023). Mathematically, we
have:

st = argmax
st

PM(st|s<t, qt, qt+1) · R(st) (4)

where R(st) is the probability for predicting "correct" by reward model R. The insight here is
that a correct reasoning step should be confirmed by both the inference model and the verifier. In
the decoding process, RR is coupled with beam search (BS), a step-wise tree-based algorithm, to
select the most probable sequence of words or tokens. Specifically in AutoPRM, as QA generates m
candidate steps for each decomposed subquestion q, the top k candidates are selected according to
their decoding scores st. This process is repeated until the model outputs the final answer or abstains
from answering. The abstaining condition triggers when the scores of all mk candidates drop below
the threshold τ at any step (Geifman & El-Yaniv, 2017). The complete AutoPRM decoding procedure
for multi-step reasoning is illustrated in in Algorithm 1.

3 EXPERIMENTS

Datasets. We assess AutoPRM on two arithmetic reasoning datasets, namely GSM8K (Cobbe
et al., 2021), MATH (Hendrycks et al., 2021), and one additional commonsense reasoning dataset,
StrategyQA (Geva et al., 2021) in our experiments. We follow Shridhar et al. (2023) for preprocessing.

Baselines. We compare AutoPRM with a wide range of SOTA models. WizardMath (Luo et al.,
2023) and MetaMath (Yu et al., 2023) are two SOTA models that enhance mathematical reasoning
with external data augmentation. Distilling-LM (Shridhar et al., 2023) is a decomposition-based
reasoning framework that adopts two separate models for QD and QA, and then distills (SFT)
reasoning capabilities from GPT-3.5. We also compare reward-based (verifier-based) models such
as ORM-RL (Cobbe et al., 2021) and PRM-RL (Lightman et al., 2023). Except for LLaMA-2-70B
model that adopts a few-shot decoding without fine-tuning, all other approaches have been fine-tuned
based on LLaMA-2-7B (Touvron et al., 2023)2.

Experimental settings. To fairly compare with PRM baselines, we follow Uesato et al. (2022) and
annotate a comparative amount of procedural feedback data equivalent to the subquestion-subsolution

2Since Distilling-LM did not publish its results on LLaMA-2 nor its training data, we report the result using
our dataset.
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Model GSM8K MATH
LLaMA-2 (70B) 56.8 13.5
LLaMA-2 (7B) 41.6 4.7
WizardMath* 54.9 10.7
MetaMath* 66.4 19.4
Distilling-LM 51.8 10.2
ORM-RL 52.9 6.9
PRM-RL 56.1 10.5
AutoPRM 59.3 (+3.2%) 13.2 (+2.7%)
AutoPRM* 70.8 (+4.4%) 23.6 (+4.2%)

Table 1: Comparison on GSM8K and MATH dataset. All models are fine-tuned based on LLaMA-2
7B by default. * indicates SFT on external data.

Approach Final-Answer Trace Result
SFT 56.8 61.0
SFT+ORM-RL 58.2 60.5
SFT+PRM-RL 65.1 66.0
SFT-AutoPRM-RL 66.3 (+1.2) 67.4 (+1.4)

Table 2: The accuracy of final-answer and stepwise (trace) result on StrategyQA dataset. The result
indicates that while AutoPRM still improve upon ORM and PRM-based methods, its improvement is
not as significant as in arithmetic reasoning tasks, probably due to model scale.

pairs used to train our step-wise verifier in AutoPRM. Detailed annotation procedures are shown in
Appendix D.3. And the detailed hyperparameters of AutoPRM are reported in Appendix D.

Results. For arithmetic reasoning tasks, we have trained two sets of models: one is based on the
groundtruth training dataset provided in GSM8K Cobbe et al. (2021) and MATH Hendrycks et al.
(2021), and the other one is augmented using MetaMath Yu et al. (2023). The results are reported in
Table 1. Table 1 indicates that AutoPRM achieves the best performance compared with other models.
Specifically, AutoPRM reaches 59.3% on GSM8K and 13.2% on MATH with beam search, which
outperforms PRM-RL by 3.2% and 2.7% respectively. Additionally, when applying our proposed
pipeline to the MetaMath dataset for data augmentation and fine-tuning the model 3, AutoPRM’s
effectiveness is further improved, reaching 70.8% (+4.4%) on GSM8K and 23.6% (+4.2%) on MATH.

For the commonsense reasoning task tested with StrategyQA Geva et al. (2021), we consider the
fine-tuned model on LLaMA-2-7B as our baseline. For ORM-RL, we directly train an outcome
verifier based on the final binary prediction. And for PRM-RL, we follow Uesato et al. (2022) and
annotate step-by-step to train a procedural supervised reward. The results are reported in Table 2.
More detailed analysis is illustrated in Appendix B. These results highlight AutoPRM’s substantial
performance improvements and its versatility when combining with other methods.

Analysis. We further investigate the contributions of each sub-module of AutoPRM, the trace error
as well as examine the correlation between AutoPRM’s performance and problem length. The results
are discussed in Appendix C.

4 CONCLUSIONS

In this paper, we introduce AutoPRM, a novel framework that automates procedural supervision for
multi-step reasoning in LLMs. The core of AutoPRM consists of two reciprocal components: a QD
model that systematically breaks down complex problems into manageable subquestions, and a QA
model that accurately answers these subquestions. AutoPRM employs a robust training methodology,
incorporating supervised fine-tuning, feedback-based step-wise verifier, and a final RL fine-tuning for
the best performance. Through extensive experiments, we demonstrate that AutoPRM significantly
outperforms SOTA methods in terms of efficiency and accuracy on three arithmetic and commonsense
reasoning tasks. Results show that our automated QD process, coupled with a RL-optimized QA
model, leads to a substantial improvement in handling complex reasoning tasks.

3https://huggingface.co/meta-math/MetaMath-7B-V1.0
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A RELATED WORK

LLMs struggle with complex reasoning tasks Lu et al. (2022). To mitigate this limitation, prompt-
based methods including Chain-of-Thought (CoT) Wei et al. (2022) and its variants such as automatic
CoT Zhang et al. (2022), Complex CoT Fu et al. (2022), Tree-of-Thought Yao et al. (2023), Graph-
of-Thought Besta et al. (2023) and Exchange-of-Thought Yin et al. (2023) are developed. Although
effective for larger LLMs, the performance of these methods is limited in smaller models OpenAI
(2023); Anil et al. (2023); Lewkowycz et al. (2022), which leads to the exploration of problem
decomposition into subquestions and sequential handling Wei et al. (2022); Gao et al. (2023); Chen
et al. (2022; 2024c), coupled with step-wise feedback using self-verification Miao et al. (2023); Chen
et al. (2024b;a), external LLMs Miao et al. (2023); Xie et al. (2023), heuristics Yao et al. (2023),
and human-annotated rewards Uesato et al. (2022); Lightman et al. (2023). However, these methods
often either depend on external large models Xiang et al. (2024), or require intensive human effort or
specific designs Lightman et al. (2023), which severely limit their applicability.

Besides these prompt-based methods, fine-tuning has been another main line of research showing
promise in enhancing LLMs reasoning capabilities for both large and smaller models Uesato et al.
(2022); Luo et al. (2023); Shridhar et al. (2023), especially when pairing with data augmentation
techniques such as multi-view question bootstrapping Luo et al. (2023) and instruction evaluation Yu
et al. (2023). Among numerous fine-tuning approaches, existing studies suggest procedural super-
vision yields better accuracy than outcome-only methods Wu et al. (2023); Lightman et al. (2023);
Shridhar et al. (2023). However, procedural supervision approaches often require extensive, unbiased
manual labeling, which greatly limits their generalizability Uesato et al. (2022).

Inspired by the step-wise approaches as seen in the prompt-based methods, as well as procedural
supervision used in fine-tuning approaches, in this paper, we introduce a novel self-supervised
fine-tuning approach AutoPRM that significantly enhances LLMs reasoning capabilities while not
requiring either external large models, or additional human efforts. Specially, inspired by human
cognitive process where questioning and answering reciprocally enhances each other Xu et al. (2023),
AutoPRM trains one unified model to handle both QD and QA.4 Notably, instead of training a PRM
that requires extensive manual annotations, AutoPRM adopts a more natural approach by directly
training an intermediate outcome verifier to optimize the subquestion solver.

B DETAILED EXPERIMENTAL RESULTS

B.1 RESULTS ON COMMONSENSE REASONING

For the commonsense reasoning task tested with StrategyQA Geva et al. (2021), we consider the
fine-tuned model on LLaMA-2-7B as our baseline. For ORM-RL, we directly train an outcome
verifier based on the final binary prediction. And for PRM-RL, we follow Uesato et al. (2022) and
annotate step-by-step to train a procedural supervised reward. The results are reported in Table 2.

The final-answer accuracy is verified with the groundtruth binary label. And to supervise step-wise
(trace) result, we transform all open-ended subquestions to be close-ended, which can be answered
with either "yes" or "no". Results confirm that procedural-supervised methods outperform outcome-
based methods, and AutoPRM further achieves an accuracy gain of 1.2% on final-answer and 1.4%
on intermediate result thanks to our precise and unbiased feedback. While the positive result indicates
the effectiveness of our proposed method, the performance gain is less significant comparing to the
large gains we observe in the arithmetic reasoning tasks.

We suspect that such result could be due to the model knowledge gap Petroni et al. (2019), as
StrategyQA highly depends on factual truthfulness, which cannot be further enhanced by simply
improving the reasoning framework. Therefore, we believe increasing model scale is the key factor
to further improve accuracy on such knowledge-dependent reasoning tasks Anil et al. (2023).

C ADDITIONAL ANALYSIS ON EXPERIMENTAL RESULTS

In this subsection, we investigate the contributions of each sub-module to the overall improvement
of AutoPRM, including decoding methods and controllable question decomposition. Additionally,

4Note that while we refer to QD and QA separately, they refer to the dual functions of a unified model in the
remaining of the paper.
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Approach GSM8K MATH
SFT 41.6 4.7
ORM-RL+Greedy 45.4 5.1
ORM-RL+SC 51.9 6.9
PRM-RL+Greedy 51.3 7.4
PRM-RL+BS 56.1 10.5
AutoPRM+Greedy 52.8 10.4
AutoPRM+BS 58.2 (+2.1) 11.9 (+1.4)
AutoPRM+RR 58.9 (+2.8) 12.7 (+2.2)
AutoPRM+GD 59.3 (+3.2) 13.2 (+2.7)

Table 3: Comparison of testing accuracy on two arithmetic dataset w.r.t. reward models and decoding
strategies. All approaches is fine-tuned based on LLaMA-2-7B model and use naive greedy decoding
by default. RR refers to Reward Ranking. (+Number) indicates the improvement performance
compared to the best baseline PRM-RL+BS.
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Figure 2: Assessment on GSM8K dataset w.r.t decomposition granularity ϵ. We evaluate the final-
answer accuracy, perplexity and BERT similarity (to groundtruth solutions). Accuracy demonstrates
that an intermediate granularity level (ϵ=0.8) yields best performance. Perplexity denotes that fine-
grained guidance enhances the model’s certainty in problem-solving. The increased similarity to
the groundtruth solutions imply that AutoPRM effectively decompose questions that align with the
human labeller.

we analyze the trace error as well as examine the correlation between AutoPRM’s performance and
problem length.

Decoding methods. First, we compare AutoPRM’s performance against various reward models and
decoding strategies. To start, we analyze the performance of ORM, PRM and AutoPRM coupled
with different decoding strategies. From the results in Table 3, we can observe that: Since ORM-RL
is an outcome-supervised method, we apply self-consistency and use the majority answer as the final-
answer. All other methods apply a beam search process to yield the final-answer. The beam search
baseline selects candidates by maximizing the RM score at each step, while the Reward-Reranking
(RR) decoding, as outlined in Xie et al. (2023), maximizes the RM-reweighted score in Eq. (4).

Notice that RR achieves a better performance than beam search since they can select a more rational
candidate by incorporating signals from both the LM and verifier. Similar to the RR decoding,
our CGD decoding, which guides the individual subsolutions towards solving the original problem,
can further mitigate the intrinsic issues brought by decomposition (e.g., diminished context, topic
deviation) and effectively enchance final performance.

Decomposition granularity. We evaluate AutoPRM performance across varying decomposition
granularity on GSM8K. As shown in Fig. 2, while we can see that more precise and fine-grained
decomposition generally leads to better accuracy and more certain factual inference Chuang et al.
(2023), interestingly, an intermediate level of granularity (ϵ = 0.8) achieves the highest accuracy in
final answers. Additionally, the increased similarity to the groundtruth solutions indicate that our
model can effectively break down questions in a manner that aligns with human cognitive process to
solve multi-step reasoning problems.
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Approach GSM8K MATH
SFT+ORM-RL 53.4 6.5
SFT+PRM-RL 70.5 13.1
AutoPRM-SFT 71.2 14.5
AutoPRM-SFT+RL 72.0 14.7

Table 4: Comparison of different fine-tuning methods in solving the decomposed dataset of
subquestion-solution pairs. The results indicate that models with process-supervision can also
solve the individual subquestions effectively. Conversely, the poor performance of ORM methods in
solving the subquestions confirms that direct fine-tuning against ORM can lead to correct final-answer
with the incorrect reasoning trace Uesato et al. (2022).
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Figure 3: Comparing AutoPRM and CoT+SC decoding on problems of varing complexity and with
different number of subquestions. AutoPRM outperforms CoT+SC by a large margin, especially for
problems with longer reasoning chains.

Step-wise (Trace) Error Analysis.To evaluate the internal reasoning reliability, we assess the
performance on each decomposed subquestion-subsolution pair and present the results in Table 4.
Results show that while process-supervised models adeptly solves subquestions, AutoPRM gains
more from precise, unbiased, and fine-grained feedback. Additionally, the fact that ORM-based
methods only show slight improvements in original question solving (Table 3), suggests that they
struggle to link correct final answers with their reasoning traces, which is also discussed in Lightman
et al. (2023).

Varying problem length. In this section, we access the reasoning performance with respect to
the length of the questions, which is a natural reflection of the question complexity as well as an
approximation of the amount of reasoning needed to derive the final answers.

The results are showed in Fig. 3. In general, we notice that the performance gain (the absolute
accuracy gain over self-consistency) increases as the reasoning chain becomes longer, which verifies
the effectiveness of our method in guiding the reasoning trace to attain the correct final-answer,
especially for longer-chained problems.
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D DETAILED TRAINING PROCEDURES

The complete procedures and hyperparameters (Table 5) for fine-tuning AutoPRM are detailed in
this section. All models including SFT and RL-fine-tuned models are fully fine-tuned based on
LLaMA-2-7B Touvron et al. (2023). Specifically, the RL via expert iteration process is iterated five
epochs, with the best model being selected based on its performance in final-answer error on the
validation set. All model training was conducted using Huggingface Library Wolf et al. (2020).

Parameters Value
learning rate (SFT) 1e-4
learning rate (RL) 5e-5
learning rate scheduler cosine
batch size 32
weight decay 0.05
warmup steps 100

Table 5: AutoPRM hyperparameter settings
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D.1 DATA RETRIEVAL PROMPTS

D.1.1 SUBQUESTION COLLECTION (SQC) PROMPTS

Here is is a subsolution to a grade school math question. You should first (1) rephrase
information (e.g. numbers, conditions) from the context necessary to reconstruct the
subsolution, (2) delete redundant information not used in the subsolution, (3) ask a
subquestion based on this subsolution. Please make sure you include all the necessary
information in the subsolution.

Example 1:

Context: Janet’s ducks lay 16 eggs per day. She eats three for breakfast every morning
and bakes muffins for her friends every day with four. She sells the remainder at the
farmers’ market daily for $2 per fresh duck egg.

Subsolution: Janet sells 16 - 3 - 4 = «16-3-4=9»9 duck eggs a day.
Subquestion: Janet’s ducks lay 16 eggs per day. She eats three herself and bakes muffins
with four. She sells the remainder to the market. How many duck eggs does Janet sell a
day?

Example 2:

Context: Every day, Wendi feeds each of her chickens three cups of mixed chicken
feed, containing seeds, mealworms and vegetables to help keep them healthy. She gives
the chickens their feed in three separate meals. In the morning, she gives her flock of
chickens 15 cups of feed. In the afternoon, she gives her chickens another 25 cups of
feed.

Subsolution: If each chicken eats 3 cups of feed per day, then for 20 chickens they
would need 3*20=«3*20=60»60 cups of feed per day.
Subquestion: Each day Wendi feeds each of her chickens three cups of mixed chicken
feed. How many cups of feed do 20 chickens need per day?
Now let’s find the subquestion for some subsolutions!
Context:
Subsolution:
Subquestion:

Table 6: The prompt input to GPT-3.5 for subq-question collection on
GSM8K dataset
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Here is a solution of multiple steps to a grade school math question. Please break the
question down into several intermediate questions that ask the result of each intermediate
step of the solution. You should provide the context of the original question first, then
provide the intermediate questions and corresponding interemediate solutions. For
example:

Original Question: Lana is brewing cups of tea for her friends. She has 27 cups, and
she divides these into 3 rows. In each row, she creates equal amounts of chamomile and
mint tea cups. She then uses the remaining cups to brew a total of 15 cups of cinnamon
tea. How many cups of mint tea are in each row?

Original Solution: If there are 15 cups of cinnamon tea, then there are a total of 27 - 15
= «27-15=12» 12 cups of chamomile or mint tea.
As there are equal amounts of chamomile tea and mint tea, there is a total of 12 cups / 2
= «12/2=6»6 cups of mint tea.
Dividing these into rows shows that each row holds 6 / 3 = «6/3=2»2 cups of mint tea.
#### 2
The answer is: 2

Break Down:
Context: Lana is brewing cups of tea for her friends. She has 27 cups, and she divides
these into 3 rows. In each row, she creates equal amounts of chamomile and mint tea
cups. She then uses the remaining cups to brew a total of 15 cups of cinnamon tea.

Intermediate Question 1: How many cups of chamomile or mint tea are there?
Intermediate Solution 1: If there are 15 cups of cinnamon tea, then there are a total of
27 - 15 = «27-15=12»12 cups of chamomile or mint tea.
#### 12
The answer is: 12

Intermediate Question 2: How many cups of mint tea are there?
Intermediate Solution 2: If there are 15 cups of cinnamon tea, then there are a total of
27 - 15 = «27-15=12»12 cups of chamomile or mint tea.
As there are equal amounts of chamomile tea and mint tea, there is a total of 12 cups / 2
= «12/2=6»6 cups of mint tea.
#### 6
The answer is: 6

Intermediate Question 3: How many cups of mint tea are in each row?
Intermediate Solution 3:If there are 15 cups of cinnamon tea, then there are a total of
27 - 15 = «27-15=12»12 cups of chamomile or mint tea.
As there are equal amounts of chamomile tea and mint tea, there is a total of 12 cups / 2
= «12/2=6»6 cups of mint tea.
Dividing these into rows shows that each row holds 6 / 3 = «6/3=2»2 cups of mint tea.
#### 2
The answer is: 2

Please strictly follow the format I give you.
Table 7: The prompt input to GPT-3.5 for question decomposition on
GSM8K dataset
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Let’s generate the subquestions(or sub-instructions) and subsolutions to obtain the final
answer for this math problem. Use exactly one operation per step. Mathematical
expression should be in latex format (e.g.

(
5
2

)
53). Put your final answer in a box (e.g.

625

648
).

Example 1:

Original Question: Find the value of n that satisfies 2(n+1)!+6n! = 3(n+1)!, where
n! = n · (n− 1) · (n− 2) · · · 2 · 1.
Groundtruth answer: 5
Subquestion 1: Move all terms to the right side.
Subsolution 1: Moving all terms to the right side:

0 = 3(n+ 1)!− 2(n+ 1)!− 6n!

0 = (n+ 1)!− 6n!

Subquestion 2: Take out a factor of n!.
Subsolution 2:

0 = n!(n+ 1− 6)

0 = n!(n− 5)

Subquestion 3: Divide out n!.
Subsolution 3: We know that n! ̸= 0, so we can divide out n! and solve for n:

0 = n− 5

n = 5

Example 2:

Original Question: Steve has one quarter, two nickels and three pennies. Assuming no
items are free, for how many different-priced items could Steve individually pay for with
exact change?
Groundtruth answer: 23
Subquestion 1: How many possibilities does the quaters contribute?
Subsolution 1: Steve can use no quarters or one quarter, for 2 possibilities.
Subquestion 2: How many possibilities do the nickels provide?
Subsolution 2: Steve can use 0, 1, or 2 nickels, for 3 possibilities.

Subquestion 3: How many possibilities will the pennies provide?
Subsolution 3: Steve can use 0, 1, 2, or 3 pennies, for 4 possibilities.
Subquestion 4: How many possibilies in total?
Subsolution 4: That gives 2 · 3 · 4 = 24 possible combinations. But we must remove
the combination where Steve does not use any coins, leaving us with 24− 1 = 23 .

Original Question:
Groundtruth answer:

Table 8: The prompt input to GPT-3.5 for question decomposition on
MATH dataset
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Here are several facts that will help answer a question. Please organize an inference with
the given facts to answer the question, with an explicit answer of either True or False at
the end. Then break the question down into several intermediate questions that ask the
stage of each intermediate step of your inference. For example:

Original Question: Do the anchors on Rede Globo speak Chinese?

Facts:
1. Rede Globo is a Brazilian television network.
2. The official language of Brazil is Portuguese.

Inference Solution: No. Rede Globo is a Brazilian television network, and Brazil’s
official language is Portuguese. Thus anchors on Rede Globo do not speak Chinese. The
answer is: False.

Break Down:
Intermediate Question 1: What country broadcasts Rede Globo?
Intermediate Solution 1: Rede Globo is a Brazilian television network.
The answer is: Brazil.

Intermediate Question 2: What is the official language of Brazil?
Intermediate Solution 2: The official language of Brazil is Portuguese.
The answer is: Portuguese.

Intermediate Question 3: Is Portuguese Chinese?
Intermediate Solution 3: The Portuguese is not Chinese.
The answer is: False.

Please strictly follow the format I give you. Generate the Inference Solution first,
and then break down the question into several Intermediate Question and Intermediate
Solution.

Table 9: The prompt input to GPT-3.5 for question decomposition on
StrategyQA dataset
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D.2 AUTOPRM MODEL PROMPT

D.2.1 QUESTION DECOMPOSITION (QD) MODEL PROMPT

Let’s break down this question into a chain of subquestions.
Context: John is buying a new pair of shoes that costs $95. He has been saving up his
money each month for the past three months. He gets a $5 allowance a month. He also
mows lawns and shovels driveways. He charges $15 to mow a lawn and $7 to shovel.
After buying the shoes, he has $15 in change.
Question: If he mows 4 lawns, how many driveways did he shovel?

Chain of subquestions: How much money did John save up in total? -> How much
money did John save from his allowance? -> How much money did John earn from
mowing lawns? -> How much money did John earn from shoveling driveways? -> How
many driveways did he shovel?

Table 10: The prompt input to AutoPRM for question decomposition
(QD)

D.2.2 QUESTION ANSWERING (QA) MODEL PROMPT

Below is a math question. Write a solution that answers to the question. The solution
may not use all the conditions provided in the question.
Question:
Solution

Table 11: The prompt input to AutoPRM for question answering (QA)
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D.3 PROCESS-SUPERVISED DATA ANNOTATIONS

In this section, we detail the data annotation procedure to train Process-supervised Reward Model
(PRM) baselines Lightman et al. (2023); Uesato et al. (2022) to compare with our proposed model.
As outlined in §3, the PRM is trained using step-wise labels to assess the correctness of each step. We
gather this data by having human annotators review the original question and standard solution from
the arithmetical and commonsense reasoning dataset (GSM8K Cobbe et al. (2021), MATH Hendrycks
et al. (2021), and StrategyQA Geva et al. (2021)), as well as the solution generated by the model.
Specifically, annotators are asked to identify the first step in the model solution that contains a
significant error, if any. A significant error, as defined in existing works Uesato et al. (2022), is
a step where the reasoning is either incorrect or makes it impossible to reach the correct solution
anymore without revising that step. Based on these assessments, each step receives a binary label:
steps preceding the first significant error are marked as ’correct’, while subsequent steps are labeled
’incorrect’.

D.4 DATA PREPARATION FOR INTERPRETING DECOMPOSITION GRANULARITY

When ϵ = 1, the original question-solution pairs are fully-decomposed into the subquestion-
subsolution pairs, while decomposition with ϵ = 0 being practically the same as the one-shot
CoT results. For an intermediate ϵ, we select a subset of ñi subquestions from the fully-decomposed
pairs that significantly contribute to the final answer via a heuristic, and assign ϵ = ñi/ni. Finally,
this ϵ is integrated into the QD prompt and optimized using Eq. (2).

To prepare data to train AutoPRM to interprete with the decomposition granularity parameter, we
follow Han et al. (2023) and assign ϵ = 1 to all the fully-decomposed subquestion-subsolution pairs
and ϵ = 0 to the one-shot CoT prompt of each problem pi. Specifically, for an intermediate ϵ, we
select a subset of ñi subquestions from the fully-decomposed pairs that significantly contribute to the
final answer via a heuristic, and assign ϵ = ñi/ni.

The heuristic determines if a subsolution in a reasoning process is important by checking if it
introduces a new condition or calculation into the reference context. Specifically, we adopt a simple
token-matching method via regex to sequentially check for new conditions. For example, for GSM8K
we extract two types of tokens: entities and numbers. Sequentially, we check if each subsolution
in the decomposed subquestion-solution pairs set introduces a new entity (implying new condition)
or new number (implying calculation). If yes, we consider this subsolution as contributive to the
final-answer. Finally, this ϵ is integrated into the QD prompt and optimized using Eq. (2).
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