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ABSTRACT

The need to represent a long data series using a sequence of line segments abiding
by a maximum error threshold arises in various domains. This problem, known as
Piecewise Linear Approximation (PLA), has a long history and has recently gained
attention with the rise of applications dealing with time-stamped data. State-of-
the-art PLA methods achieve space savings over lossless compression techniques
with tolerable precision loss by quantizing starting points and representing similar
line segments jointly. However, these methods do not tailor line segments for their
eventual joint representation and do not minimize the number of segments either.
In this paper, we present TAILORPIECE, a suite of algorithms for lossy PLA-based
compression that explicitly tailor linear segments for both small sequence length
and joint representation under a given error threshold and starting-value quantiza-
tion. Our first algorithm, TAILORPIECEDP, optimizes a mergeability criterion of
PLA segment descriptions; in a degenerate form, it reduces to an algorithm that
represents the data series by the minimum number of PLA segments. Our second
algorithm, TAILORPIECEGD, greedily selects the endpoint of each PLA segment
within a tunable search space that allows the subsequent segment to extend far-
ther, thereby balancing compression and runtime. Through experimentation, we
show that TAILORPIECEDP achieves improvements of up to 34% over prior art
in compression ratio and TAILORPIECEGD gains similar savings with a runtime
reduced by two orders of magnitude.

1 INTRODUCTION

Sectors like healthcare, food supply, and transportation increasingly rely on high-frequency time-
series data from diverse sources (Botta et al.,|2016; Xu et al., 2014; |Atzori et al., [2010), to support
automation, monitoring, and other advances (Gupta et al., 2020). Yet the sheer data volume renders
storage costly (Jensen et al., [2018). Various encodings advance lossless floating-point compres-
sion (Liakos et al., 2022} 2024; Kuschewski et al., 2023 |Afroozeh et al.| 2023), offering gains over
the widely used lossless compression algorithm, Gorilla (Pelkonen et al. 2015). Still, even these
representations usually attain a compression ratio below 2, hence remain costly (Chen et al.||2024).
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Figure 1: TAILORPIECE enhances PLA
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as it bounds the error for each data record rather than just in aggregate (Karras & Mamoulis, [2008;
Luo et al., [2015). A recent proposal, MIXPIECE (Kitsios et al.,|2024), compresses time-series with
maximum error guarantees by quantizing PLA segment starting values by the given error threshold
and jointly representing segments having common starting values and overlapping allowable slopes,
yielding extra space savings as Figure[T|shows. However, MIXPIECE does not ensure minimum se-
quence length (i.e., number of segments) nor configures segments for joint representation. Methods



that minimize sequence length under an error bound (Elmeleegy et al.l[2009; [Hakimi & Schmeichel,
1991)) disregard quantized starting values and are therefore inapplicable.

In this paper, we propose TAILORPIECE, a suite of algorithms that tailor PLA segments aiming at
small sequence length and joint representation:

* MINSEGMENTS, a dynamic programming algorithm that returns a minimum-length PLA repre-
sentation with quantized starting values under a maximum error threshold.

* TAILORPIECEDP, which, building on top of TAILORPIECEDP, produces segments with wide
permissible slope intervals to enhance their mergeability, and merges them.

* TAILORPIECEGD, a greedy algorithm that selects each segment’s end to maximize the next seg-
ment’s reach and allows tuning its endpoint search space to trade runtime for compression.

Our algorithms unlock the potential of grouping short PLA sequences, improving the average com-
pression ratio by up to 34% over MIXPIECE, as Figure |1 shows. Remarkably, TAILORPIECEGD
achieves slightly larger space savings than MINSEGMENTS, as it produces PLA segments more
likely to be grouped, while being two orders of magnitude faster.

2 BACKGROUND

PLA with maximum error guarantees PLA represents a series of timestamped values (t;, v;),~
by line segments. Some PLA methods join consecutive segments at their knots (Elmeleegy et al.
2009; |Gritzali & Papakonstantinoul {1983 [Hakimi & Schmeichel, [1991)), others assume disjoint
knots (Stone, 1961} |[Pavlidis, [1973]; |O’Rourke} |1981; |[Elmeleegy et al., [2009)), and some consider
both (Luo et al.,|2015). We consider disjoint knots, where each segment may be non-continuous with
its predecessor. We describe each segment by its start timestamp ¢;, value v;, and slope a;. Common
norms are Lo (Euclidean distance) and L., (maximum absolute error). We focus on L, to keep
each value within error e. SLIDE (Elmeleegy et al.l 2009} |O’Rourke, [1981) finds the minimum-
length disjoint PLA sequence under a maximum error threshold, greedily building the convex hull
of data points in the segment under construction to maintain the admissible slope range.

MIXPIECE (Kitsios et al.,|2024), the leading PLA method, quantizes segment starting values and
Jjointly represents segments with common starting values and overlapping admissible slope intervals
with a minimum number of groups by partitioning an interval graph, whose edges denote overlap-
ping intervals, into the fewest cliques (Kitsios et al.,2023) in O(n logn) time (Gupta et al.,[1982).

3 OVERVIEW

We aim to reduce the storage requirements of PLA representations under a maximum-error thresh-
old e. While the MIXPIECE (Kitsios et al. [2024) storage model merges segment descriptions to
minimize the number of groups given a set of segments, it does not minimize the number of PLA
segments given a starting-value quantization and error threshold e. We first address this open prob-
lem with a dynamic programming algorithm, MINSEGMENTS, that provably returns the shortest
PLA sequence for the same quantization and error threshold. With MINSEGMENTS as a foundation,
we propose TAILORPIECEDP, which enhances the mergeability of linear segments to attain further
space savings. Lastly, we propose TAILORPIECEGD, a greedy algorithm that attains space savings
similar to MINSEGMENTS at two orders of magnitude lower execution time.

3.1 QUANTIZED REACH

As a preparatory step, we extract Procedure@]from MIXPIECE (Kitsios et al.,|2024)), which selects
the longest among the linear segments starting from each original value v, e-quantized to the nearest
lower b~ or higher b multiple of e:

b~ = |v/e] xe€

bt = [v/e]l x € )



For instance, with ¢ = 0.5, each of
values 1.1 and 1.4 yields b~ 1
and b = 1.5. Figure [2] illustrates
the process. Two angles, one initiated
from (t1,b7) (Figure with bound-
ing slopes a,, and a;, (Line
Line [14) and one from (¢1,b") (Fig-
ure [2b) with bounding slopes a;f
and a;; (Line Line , both sub-
tended by (ta,v2 + €) and (t2,vo —
€), enclose all lines starting from b~

IProcedure 3.1: € quantized reach(s, 7, €)

input : Starting index i, data signal s: (t;,v;) Vi € {1,
utput  : e-quantized reach of ¢
each < 0; s.seek(i); (ts, vs ) 8. nexl()
quan
of €
b~ « |vs/ele b + [vs/ele
@,— ¢ 00;a;— ¢ —00,a,4 ¢ 00,4  —O0;
\floor <« true; ceil < true;
while s.hasNext() do
(te,ve) < s.next();
ifve >a, (tc —ts)+b" +f or v, <”z (te —ts) + b~ — ethen
| flom‘(—falw stop b~ segmen
ifve > a,+(te —ts )+b++s or v, <al+(t —ts) +b* — ethen
‘ ceil < false; op b
if floor or ceil then reach + + ;
else return reach ;

,,,,,

ze vs to the neares er (b™) and high

segmen

out of bounds

ifv. < a,—(te —ts) +b~ —ethen a, _

or b™ that approximate the two seen
points within e. As the next point,
(t3,v3), lies within both angles, yet
more than e away from their upper ,,

ifve > a;— (tc —ts) + b~ + ethen a;—

ifve <a,q(te—ts)+bt —ethen a, + ¥

ifve > a;q (te —ts) + b + ethen a4 + o=t
return reach;

and lower slopes, we reduce them
to (ag,,a;,) (Frgure and (af,, ng) (Figure , subtended by (t3,vs + €) and (t3,v3 — €).
Next, point (t4,v4) lies outside the angle formed by (a,,, a, ) (Figure , hence cannot be approx-

imated by a segment starting at b~ (Lme. Contrariwise, a further reducuon of the angle starting
from b approximates point (t4,v4) with €, we thus set its upper slope to a;f,, connecting (t1,b")

to (t4,v4 + €) and retain the lower slope aj;, already within € of (t4, v4). The gray area in Figure
captures the candidate lines within € of all four points.
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(c) Using best of b~ and b wrt r;.

Figure 2: MIXPIECE opts for the segment starting from b+ (Figure and reaching ¢4 over that
starting from b~ (Figure reaching t3. Figure shows the longest segments from ¢1, t4, tg, t10.

(a) Angle with b~ as origin. (b) Angle with b™ as origin.

We establish the correctness of Procedure 3.1 as follows.

Definition 1 The e-quantized reach r; of timestamp t; in a signal s = (t;,v;), i € {1,...,n}, is
the maximum length of a linear segment that starts from an e-quantization of v; and approximates
subsequent values in s within e.

Procedure 3.1 returns the e-quantized reach of i.

Without loss of generality, assume Procedure returns 7; for point (vq,t1), while there exists
a linear segment of length r; + 1 that starts from a quantization of v; and is within € from all
points up to (t;+1,v;+1). This line necessarily belongs to the set computed by Procedure up to
point (t;,v;). Then the procedure should not have stopped at timestamp t;, a contradiction. Thus,
Procedure [3.1|returns the maximum length.

We configure our implementation of Procedure [3.1] to return the bounding slopes of the longest
segment, in addition to its length.

3.2 MINIMIZING THE NUMBER OF SEGMENTS

The greedy strategy of Procedure [3.1] used in (Kitsios et al., 2024), maximizes reach from a given
point but ignores global optimality. On the signal of FrgureE 2c} it selects segment [¢1, t5], then [tg, to],
and [tlo, t12]
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Yet, as Figure [3] shows, reach ry spans farther LT

than 7g and r1¢ combined, so two segments— rads T e, i
[t1,t3] and [t4, t12]—suffice to approximate the /\ e
signal. This counterintuitive outcome arises be- PR e e
cause r;, being dependent on the quantization
of v; to either b; or b;-", exceeds 07 + Titsi, ) )
hence starting at 7 is preferable to starting at i+ rigure 3: Maximally extending each segment may
§i. The greedy algorithm is thus suboptimal. lead to a suboptimal sequence length: 74 sur-
We define the problem of finding a minimum- Passes 76 + 110, hence we reach ¢, with two seg-
length PLA under quantization as follows: ments by ending the first segment at ¢.

s i 3 | Optimal PLA

PR | Suboptimal PLA

-
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Problem 1 Given data sequence s: (t;,v;),i € {1,...,n} and error threshold e, find a minimum-
length PLA sequence of disjoint segments from e-quantized values, to approximate s within e.

Algorithm [3.2] lists MINSEGMENTS, a dynamic- [Algorithm 3.2: MINSEGMENTS (s, ¢)
programming solution to Problem E] that gets each jnput :sSignals: (¢, v:) ¥i€{L,.... n}. error hreshold e
starting point’s reach(Line [3) via Procedure and | fopy A minmumdensth PLA sequence on s
recursively derives the least PLA length from ¢; (Line|[S): 2 phile shasNex() do_ _
3 r[i] < e_quantized_reach(s, i, €);
4 s.next();
mini<j§i+”{L(j + 1) + 1}, 1< n : {_;\j— +
L(Z) = 1’ i=n (2) ; hileCioflplul?:OL[i]; by Equation {]
; 9 i——;
0’ t>n 10 feturn L[1];
Figure [ depicts MINSEGMENTS’s computa- veachy =1 L(11) = 1
tion for the signal of Figure The left reachn =2 L(10) = 1
side shows the reach of starting points, while reachy =3 L(9) =1
the right side computes the optimal PLA se- reachs = 4 L(8) =1
quence length starting from each point via o reachi=5 o L(7) =1
Equation (2). Since r; = 4, the first segment % Lo =1+ L(10) =2
may end at any of (t2,t3,t4,t5). With L(2), E—— é((;i;j+L<ll)):2
L(3), and L(5) larger than 1, and L(4) =1 reacn— 2 L(3) =1+ L(6) =3
we end the first segment at ¢3 and approximate reachy =2 L(2) =1+ L) =2
the signal using only two segments, exploit- reach; = 4 L)=1+L(4) =2

ing the large reach ry. MINSEGMENTS (Algo-
rithm [3.2)) returns a globally optimal solution
to Problem [T] via the recursive minimization in
Equation (2)) in O(Rn) time, where R is the maximum reach in the signal, as each recursion step
is linear in 7; for each ¢. For small maximum error thresholds, R is typically a small constant.
Our implementation of Algorithm also returns the starting points and bounding slopes (as in
Section[3.1)) of segments in the minimum-length PLA sequence, along with the sequence length.
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Figure 4: Computing least PLA sequence length.

3.3 TAILORPIECEDP ALGORITHM

Each segment in the PLA of Algorithm [3.2] has two bounding slopes defining its admissible slope
range for line segments that approximate the data therein. We define slope interval size as follows.

Definition 2 The slope interval size Ij, of segment k™™ is the gap between its upper and lower slopes.

In Figure I = ay, —a;,,andin Figure I =af, — al';.

By MIXPIECE’s storage model, we aim to merge and jointly represent segments with coinciding
starting points and overlapping slope intervals. However, Equation may miss the best com-
pression: it shortens the PLA sequence yet overlooks the slope interval sizes of the segments it
creates. Larger intervals are preferable, as they are more likely to overlap. Accordingly, we en-
hance MINSEGMENTS to TAILORPIECEDP, which yields segments with larger slope intervals to
boost overlap among them and enable further segment grouping. To craft TAILORPIECEDP, we
refine TAILORPIECEDP’s objective to a composite function C(¢) that favors both large slope inter-
vals and few segments starting at timestamp ¢;,7 > 1. The average slope interval size over L(%)

. LG) g . T . . .
segments is % To modulate the influence of individual slope interval sizes, we introduce an



L(L)

exponent p € [0, 1] on the numerator terms, yielding =% 10 )I . To ease the recursion, we define the

numerator aggregate as S(i) = ZL(Z) I;P. For p = 0, the fraction equals 1, as the number of seg-
ments divided by itself. For p > 0, it favors many short segments that yield large slope intervals. To
counter this effect and favor fewer segments, we additionally normalize by L(i), yielding a squared

denominator in our composite objective: C'(i) = 5((5)2 .

Problem 2 Given a data sequence s: (t;,v;),1 € {1,...,n}, and a maximum absolute error thresh-
old ¢, find a PLA sequence of disjoint linear segments, each starting from an e-quantized value, that
approximates s within € and maximizes C (i) = %
Equation (3) solves Problem [2| by recursively maximizing C(i); I (%, j) denotes the slope interval
size of the segment from ¢; to ¢;, while S(¢) and L(z) assume the values of the optimizing numerator
and denominator, respectively, in each recursion step.
S(j+1)+1(3,5)" .
Cl) =141 i=n 3)
0 1>n

TAILORPIECEDP replaces L[i] with {C[i],S[i], L[:]} in Lines [§] and [10] and returns C[1] in
place of L[1] in Line of Algorithm Exponent p enables fine-grained control and links
TAILORPIECEDP to MINSEGMENTS: p = 0 reduces TAILORPIECEDP to minimizing segments,
as MINSEGMENTS does. In our experiments, TAILORPIECEDP with a broad range of p values
outperform MINSEGMENTS across datasets.

3.4 TAILORPIECEGD ALGORITHM

reachy

TAILORPIECEDP seeks a PLA sequence that ap-
proximates a signal within a threshold € using seg-

ments with e-quantized starting values and maxi-

1 - S(i . . | TailorPieceGD PLA
mizes C(i) = 15s. However, optimality comes Figure 5: TAILORPIECEGD ends the first

at the cost of higher computational overhead. segment at ¢3 to reach ¢12 with two segments.

reach
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Here, we propose TAILORPIECEGD, a greedy
algorithm that offers an attractive tradeoff be-

|Algorithm 3.3: TAILORPIECEGD (s, €)

Input: Data signal s: (t;,v;) Vi € {1,..., n}, error threshold e
Output: Array b_intervals mapping each quantized value to (a;, a,, t) tuple list

tween the efficiency of MIXPIECE (Kits10S| 1 Function TAILORPIECEGD (s, c)

et al, 2024) and the effectiveness of TAILOR- ; :f"fﬁ“l/ff”H( {/}r%f e

PIECEDP. Its core idea is to reduce the myopic || 4 <o Zooians@ocms oo/ cione frere

behavior of MIXPIECE by enhancing lookahead ¢ || Jjuin < minfargmax;cpig iy + e}k // savacion ]
: H . hile s.hasNext() de

when forming a segment. Figure E] illustrates ; ey e next(:

an example where a segment starting at ¢; may ° X :fjia et bt or o (b t) £ —cthen

reach t5. MIXPIECE would create this segment i | Floor « false;

and begin the next one at t5. However, we may };
instead end the first segment earlier—at 9,3 1

or t4—and start the next segment at the follow- lﬁ
ing point. Among these alternatives, ending the 1
first segment at ¢3 leads to the best outcome, as
the long reach of r, allows the next segment to 2
extend to t12, whereas segments startlng after ¢o, zs
ty4, or t5, may only reach up to t9. TAILOR-
PIECEGD, outlined in Algorithm considers **
several candidate endpoints j (beyond the de- »
fault 7 4+ r; used by MIXPIECE) for the segment »
starting at 4. For each j, it evaluates the reach of »
the next segments starting at 7 + 1, and selects »

ifve>a, 1 (te —ts)+bt4e or v.< a,+(te —ts)+b" —ethen
ceil + false;

if floor then diff + +;

if ceil then dif f — —

ifi > jmin then close segment when a
ifdiff > Othen b_intervals[b™] ddd((al S, — t >
else bintervals[b™].add((a,4,a,+,ta)):
(ts,vs) = (te,ve):
b |vs/e)erbt « [ve/ele
Ay — £ 005 a;— <= —00;a, 4 00} A 4+ & —O0;
floor « true; ceil < true; dif f < 0;

Jmin < arg "‘“XJs[zﬁ;‘,wrl]U*"ﬂr‘ I8 Equation E]
ifve <a,— (tc —ts) + b7 — ethen ower slope
a, _ +— M

u
ifve > a,— (tL—t)+b + € then
—
- = Crk(—zb 5
ifoe < a,y(te—ts)+bT — cthen ower slope
vete— z+

+ + ¢ then aise slope

a4+

ifdiff > 0then bointervals[b™].add((a,,a,—,t.)):
else b_intervals[b™].add({a,4,a,+,ts));
return b_intervals;

the earliest point ji, among those that yleld »
the largest combined reach of the two segments.
Choosing the earliest qualifying endpoint pro-

motes larger slope intervals, as the breadth of a slope interval is a non-increasing function of seg-
ment length, and thereby enables more effective groupings. This exhaustive examination of end-




points reduces PLA sequence length and increases slope interval breadth, yet it also incurs a runtime
overhead. To manage this cost, we restrict the set of candidate endpoints for each segment using an
exponent parameter g € [0, 1]:

jmin =min{  argmax {j 4741} )
JElitr]itri]

The r{ term in Equation (4) sets the minimum segment length. For ¢ = 0, Equation (4) checks all el-
igible endpoints j, and, as our experiments show, gains space savings on par with or better than those
of MINSEGMENTS. The growth of ¢ drops candidate endpoints near the segment’s start. Intuitively,
segments that underuse a starting point’s reach are unlikely to serve in the shortest PLA sequence.
By contrast, g near 1 curbs both search space and compression. At g = 1, TAILORPIECEGD reduces
to MIXPIECE, considering only the endpoint ¢ + r; for a segment starting at 4.

4 EXPERIMENTAL RESULTS

We ran experiments on a 3.3GHz Intel® Core™'i5-4590 machine with 6MB L3 cache and 16GB
DDR3 1.6GHz RAM. We implementecﬂ our algorithms in Java and compared performance against:

e Methods for the L, error metric:

- SLIDEE] (Elmeleegy et al.,|2009), which optimally solves disjoint PLA using a convex hull.
— MIXED“ (Luo et al.;|2015)), which finds a least-length PLA of mixed joint and disjoint segments.
- MIXPIECEE] (Kitsios et al., [2024), the leading method for jointly representing PLA segments.

* Methods designed for the Ly error metric:

- Bottom-U (Keogh et al., 2001b)), which merges in turn adjacent segments yielding least error.
—PAA (Keogh et al.,[2001a)), which represent equi-sized segments, each with the mean of its values.
—DFT (Cooley & Tukey} |1965)), which uses the first few Discrete Fourier Transform features.

- HIREE] (Barbarioli et al.,2023)), which constructs a synopsis data structure through a recursion of
partitioning, piecewise approximation, and residualization steps at increasingly finer granularity.

. Camef] (Yao et al., |2024), which separately compresses the integer and decimal parts of double-
precision floating-point numbers, to a precision of four decimal places.

We evaluate solutions on all datasets of the UCR Time Series Classification Archive] that do not
contain undefined values. Given that lossless algorithms (Yao et al., |2024) achieve compression
ratios up to 4, we relegated data that cannot be compressed by a ratio of at least 10 with ¢ = 1%
as unsuitable for PLA-based compression. Used SLIDE (Elmeleegy et al.,[2009) to ensure fairness,
we compressed all data with a maximum error at 1% of the signal’s range and selected those that
attained compression greater than 10, ending up with 41 datasets, which we use in our experiments.
For completeness, we also report aggregate results for the entire archive.

4.1 PLA SEQUENCE LENGTH

We commence by assessing the length of produced PLA sequences. Table [I]reports the number of
segments MIXPIECE, MINSEGMENTS, TATLORPIECEGD and TAILORPIECEDP furnish, expressed
as a percentage over the minimum achievable disjoint PLA sequence length under a maximum error
threshold (Luo et al.l [2015), obtained using SLIDE (Elmeleegy et al., 2009; |(O’Rourkel [1981), for
ten maximum error values in [1%, 10%)] of the signal’s range.
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Table [I] shows that MIXPIECE pro- Table 1: Extra segments over the least floating-starting-

duces PLA sequences 7.5% — —9.3% value disjoint segments by SLIDE.
longer than the minimum, leaving room Shide TAILORPIECEGD | TAILORPIECEDP
for improvement. MINSEGMENTS cuts °J¢ ) | MIXPIECE | MINSEGMENTS | (4 = 0) (p=2"%)
. p : Auah . 1% | 2786.0 +9.3% +6.6% +6.1% +6.6%
this to 5.3% — —7.4%, minimizing dis- 2%| 1805.6 | +7.9% +5.3% +5.4% +5.3%
joint segments with e—quantized start- | 4g | i3 | G | i3 Ise Iss
ing points, which favor grouping, while 5% | 1051.1 +8.3% +6.0% +6.1% +6.0%
. . 6% 939.7 +8.2% +6.1% +6.2% +6.1%
SLIDE selects starting points freely, T%| 8392 | +8.9% +6.7% +6.8% +6.7%
8%| 7584 | +84% +6.6% +6.7% +6.6%
thus produces shorter PLA sequences. 0| 665 | toro eyt o il
TAILORPIECEGD performs even bet- 10%| 6463 | +8.8% +7.0% +7.2% +7.0%

ter: despite its greedy strategy, it adds only 0.1-0.2% segments over MINSEGMENTS for ¢ =
1% — —10%, yielding PLA lengths close to the optimum. TAILORPIECEDP produces the same
segments as MINSEGMENTS for small p (e.g., 272Y). Sectiondiscusses the effect of p on TAI-
LORPIECEDP in more detail.

4.2 COMPRESSION RATIO COMPARISON

Next, we evaluate the effectiveness of our approaches against solutions that provide maximum error
guarantees, i.e., SLIDE (Elmeleegy et al.,[2009), MIXED (Luo et al.,|2015) and MIXPIECE (Kitsios
et al., 2024). We also report results for Camel (Yao et al., [2024), without considering the over-
head of timestamps, to provide a reference point with regard to the requirements of lossless data
representation. For the sake of brevity, we exclude PMC-MR (Lazaridis & Mehrotra, [2003), and
Swing (Elmeleegy et al., 2009) from this comparison, as these algorithms have been shown to un-
derperform compared to MIXPIECE in (Kitsios et al. [2024). Lastly, we discuss the results of the
Serf-XOR (Li et al., |2025) streaming floating-point compression algorithm, which produces very
modest savings compared to the PLA approaches evaluated here.

We measure compression ratio, i.e., the ratio of the number of bytes in the uncompressed represen-
tation to that in the compressed one, including the representation of values and timestamps, for each
method and dataset, considering that the timestamp and value of each point in the original signal
require 4 + 4 = 8 bytes.

Table |2| (in the Appendix) presents detailed results for maximum errmﬂ 5% and 10% of the sig-
nal’s range for the 41 selected time-series, as well as averages for the remaining ones, in the UCR
archive. Both MINSEGMENTS and TAILORPIECEGD improve compression ratio over MIXPIECE.
On average, MINSEGMENTS provides improvements over 18% and 16% for maximum error values
of 5% and 10% of the signal’s range, respectively, as the myopic nature of MIXPIECE’s first phase
hinders joint representation. TAILORPIECEGD attains space savings commensurate to, and at times
higher than, those of MINSEGMENTS, with a gain of 20% over MIXPIECE on average, as it explores
a larger search space than MIXPIECE. More impressively, TAILORPIECEGD gains over MINSEG-
MENTS; even though TAILORPIECEGD produces more segments than MINSEGMENTS (as Table|T]
documents), it yields larger slope intervals, which are more likely to allow joint representations.

Figure [0] shows the effect of using the lafest instead of the
earliest endpoint j among those that provide the largest com-
bined reach for each pair of consecutive segments in TAILOR-
PIECEGD, replacing the min with max in Equation (). In-
terestingly, the use of max forfeits the advantage of TAILOR-
PIECEGD over MINSEGMENTS, yielding segments that are
less likely to be grouped. TAILORPIECEDP with a small value 100
of p yields the best compression ratio on all datasets (including v

those that do not fit in Table [2), with average gains over MIX- /

PIECE, surpassing 32% with € at 5% and 10% and reaching a Eeitorpiecets (a0, min
maximum of 34% with € = 7%. Table 2] (rest, all) also shows Tailorpiecesd (oot aay. B
that our solutions offer considerable improvements for the en- 12 3 4 5 6 7 8 9 10
tire UCR archive, which includes datasets that are inherently & (% range) .
harder to compress due to an unusually large variance among 1gure 6: Using max instead of min
their neighboring values. We omit the detailed results for the 11 Equation (@ hurts performance.
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8We omit detailed results for e = 1% due to space constraints, but present average results in Figure



Serf-XOR (Li et al., ZOZSﬂ streaming compression method from Table as it provides very modest
space savings, offering an average compression ratio of 12.08 and 13.01 for maximum error values
of 5% and 10% of the signal’s range, respectively, for the 41 time series in our dataset. Considering
all time series, the compression ratio of Serf-XOR is 10.08 and 11.71 for ¢ = 5% and 10%, respec-
tively. The attained compression ratio does not improve significantly even with € = 50%. As these
results are non-competitive, we exclude Serf-XOR from the remainder of our experimental analysis.

4.3 QUALITY OF APPROXIMATION

Our next experiment reports the . ——— R s e
Normalized Root Mean Squared I I
Error (NRMSE) to assess approx- T
imation quality; we use normalized § .
instead of plain RMSE, as value
ranges vary largely across datasets.
Figure[7]plots average NRMSE val-

ues vs. compression ratio, Fig- " Ccompression ratte | comrossion ravie
ure [7a on the selected datasets of (a) Selected datasets of Table (b) All UCR archive datasets.

Table 2] and Figure [75on the entire Figure 7: NRMSE vs. compression ratio; y-axis on log scale.

UCR archive. We include all algorithms that operate under a maximum error threshold and three
approaches that target Lo, namely PAA (Keogh et al., |2001a), DFT (Cooley & Tukey, [1965), and
Bottom-Up (Keogh et al.| 2001b). For each compression ratio, algorithms with maximum error
guarantees offer higher average approximation quality than those targeting Lo, such as PAA (Keogh
et al.,|2001a), DFT (Cooley & Tukeyl|1965) and Bottom-Up (Keogh et al.,2001b)). Our methods ad-
vance the state of the art, achieving lower NRMSE, hence more accurate PLA representations, than
SLIDE, MIXED and MIXPIECE under the same space limits. TAILORPIECEGD slightly outperforms
MINSEGMENTS, while TAILORPIECEDP attains the best quality by a wide margin. Figure §] visu-
alizes the segments TAILORPIECEDP yields for Car dataset sample at ¢ = 1% and 5%, illustrating
how segment count and approximation quality drop as e rises.

NRMSE
i

NRMSE
o

TailorPieceDP (p=2 20) e=1%
Time series - - ;-

TailorPieceDP (p=22") e=5%
Time series - ;-

Compression ratio (¢ = 5%)

-1

Figure 8: PLA segments, Car data sample.

4.4 GENERAL-PURPOSE COMPRESSION GAINS

Figure [ shows the effect of lossless general-purpose
compression, Zstandard (Collet, 2015), on outputs T (zsty
with € = 5%. Our methods yield the largest over- . HIRE (TRO) —a
all savings. Figure [I0] shows results for Lo-targeting | Botton—Up (2st) —e—
algorithms—PAA (Keogh et al.l 2001a), DFT (Cooley

& Tukeyl [1965), Bottom-Up (Keogh et al.| [2001b), and pired (zst)
HIRE (Barbarioli et al, 2023)—using ZStandard, except / R :Z: L
for HIRE, which uses TRA'"| General-purpose compres- . rettorsiecaco
sion boosts the quality-space tradeoff but retains the algo- //: . {Seplecant
rithm ranking: MINSEGMENTS, TAILORPIECEGD, and
TAILORPIECEDP still offer the best tradeoff. HIRE per- Compression Ratio

forms significantly worse. Figure 10: NMRSE with general com-
pression on outputs; y-axis on log scale.

PAA (Zst) —®—

Slide (Zst)

NRMSE

TailorPieceDP
_ (p=2"%%, zst)

9https ://github.com/Spatio—-Temporal-Lab/Serf
]Ohttps ://github.com/powturbo/Turbo-Range—-Coder
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4.5 COMPRESSION/TIME TRADEOFF

Figure [11| reports compression times and ratios for our algorithms and competitors. We average
measurements over the datasets of Table 2] and normalize times by dataset size. TAILORPIECEGD
and TAILORPIECEDP traces show performance across ¢ € [0,0.99] and p € [0,272%], with MIN-
SEGMENTS corresponding to TAILORPIECEDP at p = 0. Our methods outperform competitors:
TAILORPIECEDP at p = 2720 achieves the highest space savings, improved by 20%, 32% and 32%
over MIXPIECE for € = 1%, 5% and 10%, respectively. TAILORPIECEGD with ¢ = 0 ranks sec-
ond, improving by 13%, 20% and 20% over MIXPIECE. MINSEGMENTS (i.e., TAILORPIECEDP
with p = 0) yields slightly worse compression than TAILORPIECEGD, despite shorter PLA se-
quences, due to larger slope intervals that enable grouping.

Epsilon = 1% Epsilon = 5% Epsilon = 10%
10000

10000

1000 1000

Compression time (Ws)
Compression time (Ws)
Compression time (Ws)

30 40 50 80 100 120 140 160 140 170 200 230 260

Compression Ratio Compression Ratio Compression Ratio

(@ (b) ©
Figure 11: Compression time per data record vs ratio at different error thresholds.

Whereas TAILORPIECEDP incurs a notable runtime overhead, as its compression time matches that
of MINSEGMENTS, making TAILORPIECEDP with small p the preferred choice when reducing
space is key. TAILORPIECEGD runs two orders of magnitude faster than the dynamic-programming
approaches with ¢ = 0, offering an attractive tradeoff between compression ratio and execution
time. As Figure [T1] shows, higher ¢ further enhances this tradeoff, with compression time on par
with MIXPIECE and space savings competitive vs. ¢ = 0. In effect, TAILORPIECEGD excels when
compression speed matters most.

Figure [I2] (in the Appendix) plots average decompression time, which is often more crucial than
compression time, as data is written once but read repeatedly. Our methods surpass MIXPIECE.
SLIDE and MIXED lag due to computing slope-intercept equations during decompression.

4.6 FAVORING SEGMENTS WITH LARGE INTERVALS

The dynamic-programming MINSEGMENTS algorithm minimizes PLA sequence length. However,
compression also depends on slope intervals. Larger intervals increase the chance of grouping sim-
ilar segments, boosting space savings, thus we favor segments with large slope intervals. Figure [I3]
(in the Appendix) illustrates the effect of exponent p of TAILORPIECEDP, which adjusts the effect
of slope interval size in the objective, on the datasets of Table [2| Large p values hurt compression,
as they drag TAILORPIECEDP to use more PLA segments (e.g., for p = 27! and € = 10%, the
compression of TAILORPIECEDP is 15% worse than MINSEGMENTS). However, smaller p yields
sequence length on par with MINSEGMENTS and also enlarges average interval size, as it is apparent
for p < 279, yielding space savings above 7%, 12% and 13.9%, for ¢ equal to 1%, 5% and 10%,
respectively. The plateau beyond this point arises as p is small enough for TAILORPIECEDP to
match the optimal number of segments while creating larger intervals via Equation (TJ).

5 CONCLUSIONS

We presented techniques to build and compress piecewise linear segments for time-series storage:
MINSEGMENTS computes a minimum-length PLA with quantized starting values under a maximum
error threshold. TAILORPIECEDP refines this objective to render segments more amenable to joint
representation by common starting values and overlapping slope intervals, yielding extra space sav-
ings. Drawing on these insights, TAILORPIECEGD offers a tunable tradeoff between compression
and runtime by limiting its greedy-search space. Experiments show TAILORPIECEGD attains space
savings near MINSEGMENTS, vastly exceeding the state of the art, and runs two orders of magnitude
faster and on par with existing approaches.
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A APPENDIX

Table 2: Compression ratio comparison for ¢ = 5% and ¢ = 10% of the signal’s range.

5% 10.0%

a A @ a A
a | 2B _ |8 2 R - -

sleg|g| 2| e8| g|s|2| ¢ |5
=| g £ | & 2 |81 |8 || 5 | £ g | &l | &Y

S| & | = B 2 | Eo | @ | = Z 2 | Ex | B
= $a 2= | 2 = Z 2= | 2q
g |2 |3~ s | = 3=

= 3 3 =
Adiac 3.83] 24.65 | 36.00 | 53.44 | 58.24 | 58.81 | 63.25 || 29.02 | 43.41 | 75.00 | 80.61 80.23 83.98
Beef 3.95| 41.20 | 53.41 | 66.75 | 77.50 | 77.42 | 85.91 || 70.06 | 88.54 |113.65| 133.57 | 135.25 | 147.93
BirdChicken 3.81| 40.35 | 56.34 | 59.60 | 71.20 | 70.77 | 77.06 || 55.65 | 78.77 | 84.45 | 109.74 | 107.86 | 126.61
Car 3.82| 55.00 | 78.64 | 89.00 | 108.83|109.80 | 125.27 || 85.43 | 122.66 | 146.54 | 178.00 | 176.63 | 214.53
CinCECGTorso 4.03 [ 248.45(349.04 | 352.11 | 419.07 | 432.90 | 477.04 || 413.22 | 523.56 | 558.27 | 669.46 | 713.65 | 746.27
DiatomSizeReduction 3.82| 46.87 | 69.42 | 93.60 | 110.10|108.14 | 122.19 || 56.72 | 85.07 | 135.96| 152.41 | 151.00 | 164.54
EthanolLevel 3.46 | 152.44 | 224.22 [ 224.09 | 282.88 | 286.02 | 348.43 || 233.65 | 327.33 | 332.36 | 421.50 | 437.16 | 528.40
Fish 3.81| 92.42 [ 115.61 | 168.31 | 203.15 | 214.65 | 222.10 || 308.17 | 312.01 | 414.29 | 440.77 | 463.77 | 517.46
FreezerRegularTrain 3.70| 63.23 | 67.68 | 131.30| 148.42 | 148.89 | 152.58 || 91.66 | 95.56 |238.59 | 233.78 | 244.28 | 248.68
Fungi 3.65| 33.32 | 47.87 | 64.98 | 69.39 | 72.54 | 80.50 || 47.93 | 67.78 | 104.74 | 102.00 | 107.73 | 121.49
GunPoint 3.70| 22.93 | 33.22 | 44.73 | 52.08 | 50.97 | 58.20 || 33.71 | 44.38 | 57.69 | 65.22 68.95 74.01
GunPointAgeSpan 2.84| 30.12 | 37.88 | 54.95 | 63.39 | 64.24 | 71.23 || 57.72 | 67.48 | 100.93 | 120.45 | 125.54 | 132.10

GunPointMaleVersusFemale |2.99 | 30.63 | 38.30 | 55.97 | 64.47 | 65.36 | 72.37 || 59.24 | 72.16 | 103.80| 123.56 | 128.09 | 135.57
GunPointOld VersusYoung 2.85| 31.42 | 39.09 | 56.40 | 65.28 | 65.44 | 73.03 || 60.43 | 69.38 | 104.18 | 127.40 | 129.72 | 138.17

HandOutlines 3.90|180.02269.91|293.15|377.18 | 374.71 | 473.93 || 212.77 | 280.90 | 292.72 | 423.73 | 444.20 | 487.51
Haptics 3.82|105.76 | 122.32 | 171.90 | 206.61 | 210.53 | 223.84 || 247.53 | 307.69 | 402.62 | 478.18 | 481.93 | 510.86
Herring 3.77| 41.60 | 59.17 | 69.53 | 85.33 | 85.47 | 96.29 || 66.57 | 90.08 | 117.21| 145.19 | 146.00 | 166.02
HouseTwenty 4.71| 23.07 | 24.62 | 65.37 | 65.12 | 65.52 | 65.61 || 29.13 | 29.87 | 76.42 | 76.58 | 77.23 | 78.34
InlineSkate 3.81(226.50 | 306.28 | 304.18 | 373.66 | 378.79 | 418.63 || 386.85 | 536.19 | 519.82 | 616.33 | 638.98 | 746.97
LargeKitchenAppliances 4.23|104.06 | 121.80 | 195.79 | 205.66 | 211.42 | 214.02 || 162.34 | 182.15 | 314.22 | 324.68 | 332.23 | 354.93
Lightning2 3.90 | 80.00 [100.17 | 141.95 | 154.08 | 159.54 | 169.40 || 185.95 | 226.03 | 313.00 | 330.27 | 358.71 | 373.48
Mallat 3.75| 31.79 | 43.90 | 56.27 | 65.55 | 65.63 | 72.44 || 56.53 | 72.39 | 98.11 | 114.56 | 117.13 | 129.09
Meat 4.04| 51.03 | 69.73 | 123.59 | 132.25 | 131.68 | 144.03 || 61.86 | 82.14 |150.38| 154.37 | 161.08 | 172.45

MixedShapesRegularTrain 3.84| 67.32 | 94.30 | 104.41 | 123.80 | 124.15 | 143.88 || 95.60 | 128.95|149.25| 188.19 | 188.28 | 221.42
NonlInvasiveFetalECGThorax1 | 3.79 | 78.59 | 116.35|142.73 | 169.28 | 176.91 | 194.46 || 114.09 | 150.26 | 209.81 | 239.81 | 258.98 | 286.33
NonlInvasiveFetalECGThorax2 | 3.79 | 75.99 | 113.19|139.25|163.03 | 171.27 | 184.97 || 115.08 | 146.31 | 209.15 | 235.71 | 253.49 | 278.45

PigAirwayPressure 3.93|199.20 | 287.36 | 296.52 | 390.24 | 391.39 | 425.99 || 284.09 | 416.67 | 442.97 | 536.19 | 569.80 | 643.09
PigArtPressure 3.65| 38.66 | 52.77 | 66.51 | 80.92 | 82.14 | 90.59 || 75.47 | 92.29 |129.01 | 140.40 | 161.65 | 170.87
PigCVP 3.73 | 48.08 | 60.42 | 66.81 | 82.35 | 80.89 | 90.39 || 118.69|133.33 | 159.05| 201.26 | 197.53 | 210.80
Rock 3.92 1357.14 | 465.12 | 466.74 | 519.48 | 539.81 | 557.10 || 719.42 | 847.46 | 911.16 | 1012.66 | 1010.10 | 1084.01
ShapesAll 3.82| 42.03 | 58.31 | 70.65 | 84.87 | 84.46 | 96.25 || 61.26 | 84.14 | 105.08 | 133.38 | 131.73 | 152.56
SmallKitchenAppliances 4.21| 3839 | 4545 | 93.09 | 93.20 | 95.03 | 96.15 || 50.02 | 59.56 |113.99| 114.81 | 120.59 | 121.10
StarLightCurves 3.81|170.79 | 234.74 | 231.68 | 287.36 | 293.79 | 332.23 || 236.97 | 343.05 | 344.38 | 428.95 | 456.36 | 541.64
Symbols 3.81| 53.19 | 70.95 | 86.68 |102.59|104.78 | 117.23 || 79.52 | 106.44 | 145.83 | 176.80 | 179.01 | 198.91
Trace 3.69| 49.46 | 67.20 | 104.31 | 112.65|117.96 | 123.77 || 75.86 | 93.86 | 166.41 | 168.78 | 183.49 | 190.48
UMD 4.58 | 17.61 | 2545 | 42.16 | 41.27 | 44.19 | 45.37 || 31.51 | 34.62 | 66.69 | 69.72 73.87 76.49
UWaveGestureLibraryX 3.83| 50.26 | 66.38 | 83.02 | 98.79 | 101.37 | 113.07 || 107.99 | 120.85 | 169.24 | 209.42 | 212.99 | 228.57
UWaveGestureLibraryY 3.80 | 45.53 | 59.47 | 76.23 | 88.17 | 90.49 | 99.96 || 88.73 | 107.58 | 141.94 | 177.31 | 179.13 | 192.91
UWaveGestureLibraryZ 3.84| 38.68 | 51.15 | 65.80 | 76.20 | 78.05 | 86.26 || 71.05 | 87.18 | 114.91| 141.37 | 144.01 | 157.26
Wafer 3.74 | 25.40 | 26.56 | 63.87 | 66.05 | 66.81 | 68.06 || 100.81|118.27|198.12| 194.03 | 215.69 | 226.12
Yoga 3.82| 37.15 | 51.83 | 63.88 | 76.00 | 77.43 | 86.59 || 51.91 | 71.12 | 95.82 | 116.01 | 116.03 | 134.00
Average 3.80| 77.81 |105.16|126.86 | 149.16 | 151.95|167.31 || 133.91 | 169.45 | 212.87 | 246.52 | 255.61 | 280.84
Average (rest) 3.79 | 13.54 | 17.50 | 28.70 | 30.95 | 31.35 | 32.99 || 29.70 | 35.60 | 58.24 | 63.22 64.99 68.19
Average (all) 3.79| 38.40 | 51.41 | 66.67 | 76.67 | 78.00 | 84.94 || 70.00 | 87.37 |118.05| 134.12 | 138.72 | 150.44
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Figure 12: Decompression time per record. Figure 13: Average improvement vs. p.

12



	Introduction
	Background
	Overview
	Quantized reach
	Minimizing the number of segments
	TailorPieceDP algorithm
	TailorPieceGD algorithm

	Experimental Results
	PLA sequence length
	Compression Ratio Comparison
	Quality of Approximation
	General-Purpose Compression Gains
	Compression/time tradeoff
	Favoring segments with large intervals

	Conclusions
	Appendix

