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ABSTRACT

The need to represent a long data series using a sequence of line segments abiding
by a maximum error threshold arises in various domains. This problem, known as
Piecewise Linear Approximation (PLA), has a long history and has recently gained
attention with the rise of applications dealing with time-stamped data. State-of-
the-art PLA methods achieve space savings over lossless compression techniques
with tolerable precision loss by quantizing starting points and representing similar
line segments jointly. However, these methods do not tailor line segments for their
eventual joint representation and do not minimize the number of segments either.
In this paper, we present TAILORPIECE, a suite of algorithms for lossy PLA-based
compression that explicitly tailor linear segments for both small sequence length
and joint representation under a given error threshold and starting-value quantiza-
tion. Our first algorithm, TAILORPIECEDP, optimizes a mergeability criterion of
PLA segment descriptions; in a degenerate form, it reduces to an algorithm that
represents the data series by the minimum number of PLA segments. Our second
algorithm, TAILORPIECEGD, greedily selects the endpoint of each PLA segment
within a tunable search space that allows the subsequent segment to extend far-
ther, thereby balancing compression and runtime. Through experimentation, we
show that TAILORPIECEDP achieves improvements of up to 34% over prior art
in compression ratio and TAILORPIECEGD gains similar savings with a runtime
reduced by two orders of magnitude.

1 INTRODUCTION

Sectors like healthcare, food supply, and transportation increasingly rely on high-frequency time-
series data from diverse sources (Botta et al., 2016; Xu et al., 2014; Atzori et al., 2010), to support
automation, monitoring, and other advances (Gupta et al., 2020). Yet the sheer data volume renders
storage costly (Jensen et al., 2018). Various encodings advance lossless floating-point compres-
sion (Liakos et al., 2022; 2024; Kuschewski et al., 2023; Afroozeh et al., 2023), offering gains over
the widely used lossless compression algorithm, Gorilla (Pelkonen et al., 2015). Still, even these
representations usually attain a compression ratio below 2, hence remain costly (Chen et al., 2024).

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

ε = 1% ε = 5% ε = 10%

Slide
Mixed

MixPiece
TailorPiece

C
o
m
p
r
e
s
s
i
o
n
 
R
a
t
i
o

N
o
r
m
a
l
i
z
e
d
 
t
o
 
M
i
x
P
i
e
c
e

Figure 1: TAILORPIECE enhances PLA
sequence length and mergeability.

Lossy compression offers an alternative to lossless meth-
ods for storing large time-series datasets, allowing con-
trol of space requirements via a tunable maximum er-
ror threshold. Modern Time-Series Management Sys-
tems (TSMS) (Jensen et al., 2018; 2019) let users find
the shortest Piecewise Linear Approximation (PLA) se-
quence that approximates a time-series within a de-
sired maximum error threshold (Elmeleegy et al., 2009;
Hakimi & Schmeichel, 1991) to meet their compression
needs. The L∞ norm target is often preferred to L1 or L2,
as it bounds the error for each data record rather than just in aggregate (Karras & Mamoulis, 2008;
Luo et al., 2015). A recent proposal, MIXPIECE (Kitsios et al., 2024), compresses time-series with
maximum error guarantees by quantizing PLA segment starting values by the given error threshold
and jointly representing segments having common starting values and overlapping allowable slopes,
yielding extra space savings as Figure 1 shows. However, MIXPIECE does not ensure minimum se-
quence length (i.e., number of segments) nor configures segments for joint representation. Methods
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that minimize sequence length under an error bound (Elmeleegy et al., 2009; Hakimi & Schmeichel,
1991) disregard quantized starting values and are therefore inapplicable.

In this paper, we propose TAILORPIECE, a suite of algorithms that tailor PLA segments aiming at
small sequence length and joint representation:

• MINSEGMENTS, a dynamic programming algorithm that returns a minimum-length PLA repre-
sentation with quantized starting values under a maximum error threshold.

• TAILORPIECEDP, which, building on top of TAILORPIECEDP, produces segments with wide
permissible slope intervals to enhance their mergeability, and merges them.

• TAILORPIECEGD, a greedy algorithm that selects each segment’s end to maximize the next seg-
ment’s reach and allows tuning its endpoint search space to trade runtime for compression.

Our algorithms unlock the potential of grouping short PLA sequences, improving the average com-
pression ratio by up to 34% over MIXPIECE, as Figure 1 shows. Remarkably, TAILORPIECEGD
achieves slightly larger space savings than MINSEGMENTS, as it produces PLA segments more
likely to be grouped, while being two orders of magnitude faster.

2 BACKGROUND

PLA with maximum error guarantees PLA represents a series of timestamped values ⟨ti, vi⟩i≥1
by line segments. Some PLA methods join consecutive segments at their knots (Elmeleegy et al.,
2009; Gritzali & Papakonstantinou, 1983; Hakimi & Schmeichel, 1991), others assume disjoint
knots (Stone, 1961; Pavlidis, 1973; O’Rourke, 1981; Elmeleegy et al., 2009), and some consider
both (Luo et al., 2015). We consider disjoint knots, where each segment may be non-continuous with
its predecessor. We describe each segment by its start timestamp ti, value vi, and slope ai. Common
norms are L2 (Euclidean distance) and L∞ (maximum absolute error). We focus on L∞, to keep
each value within error ϵ. SLIDE (Elmeleegy et al., 2009; O’Rourke, 1981) finds the minimum-
length disjoint PLA sequence under a maximum error threshold, greedily building the convex hull
of data points in the segment under construction to maintain the admissible slope range.

MIXPIECE (Kitsios et al., 2024), the leading PLA method, quantizes segment starting values and
jointly represents segments with common starting values and overlapping admissible slope intervals
with a minimum number of groups by partitioning an interval graph, whose edges denote overlap-
ping intervals, into the fewest cliques (Kitsios et al., 2023) in O(n log n) time (Gupta et al., 1982).

3 OVERVIEW

We aim to reduce the storage requirements of PLA representations under a maximum-error thresh-
old ϵ. While the MIXPIECE (Kitsios et al., 2024) storage model merges segment descriptions to
minimize the number of groups given a set of segments, it does not minimize the number of PLA
segments given a starting-value quantization and error threshold ϵ. We first address this open prob-
lem with a dynamic programming algorithm, MINSEGMENTS, that provably returns the shortest
PLA sequence for the same quantization and error threshold. With MINSEGMENTS as a foundation,
we propose TAILORPIECEDP, which enhances the mergeability of linear segments to attain further
space savings. Lastly, we propose TAILORPIECEGD, a greedy algorithm that attains space savings
similar to MINSEGMENTS at two orders of magnitude lower execution time.

3.1 QUANTIZED REACH

As a preparatory step, we extract Procedure 3.1 from MIXPIECE (Kitsios et al., 2024), which selects
the longest among the linear segments starting from each original value v, ϵ-quantized to the nearest
lower b− or higher b+ multiple of ϵ:

b− = ⌊v/ϵ⌋ × ϵ

b+ = ⌈v/ϵ⌉ × ϵ
(1)
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Procedure 3.1: ϵ˙quantized˙reach(s, i, ϵ)
input : Starting index i, data signal s: ⟨ti, vi⟩ ∀i ∈ {1, . . . , n}, error threshold ϵ
output : ϵ-quantized reach of i

1 reach← 0; s.seek(i); ⟨ts, vs⟩ ← s.next();
// quantize vs to the nearest lower (b−) and higher (b+) multiples

of ϵ

2 b− ← ⌊vs/ϵ⌋ϵ; b+ ← ⌈vs/ϵ⌉ϵ;
3 au− ←∞; al− ← −∞; au+ ←∞; al+ ← −∞;
4 floor ← true; ceil← true;
5 while s.hasNext() do
6 ⟨tc, vc⟩ ← s.next();
7 if vc > au− (tc − ts) + b− + ϵ or vc < al− (tc − ts) + b− − ϵ then
8 floor ← false; // stop b− segment

9 if vc > au+ (tc − ts) + b+ + ϵ or vc < al+ (tc − ts) + b+ − ϵ then
10 ceil← false; // stop b+ segment
11 if floor or ceil then reach + + ; // within bounds
12 else return reach ; // out of bounds

13 if vc < au− (tc − ts) + b− − ϵ then au− ← vc+ϵ−b−
tc−ts

; // lower slope

14 if vc > al− (tc − ts) + b− + ϵ then al− ←
vc−ϵ−b−

tc−ts
; // raise slope

15 if vc < au+ (tc − ts) + b+ − ϵ then au+ ← vc+ϵ−b+

tc−ts
; // lower slope

16 if vc > al+ (tc − ts) + b+ + ϵ then al+ ←
vc−ϵ−b+

tc−ts
; // raise slope

17 return reach;

For instance, with ϵ = 0.5, each of
values 1.1 and 1.4 yields b− = 1
and b+ = 1.5. Figure 2 illustrates
the process. Two angles, one initiated
from ⟨t1, b−⟩ (Figure 2a) with bound-
ing slopes a−u2

and a−l2 (Line 13–
Line 14) and one from ⟨t1, b+⟩ (Fig-
ure 2b) with bounding slopes a+u2

and a+l2 (Line 15–Line 16), both sub-
tended by ⟨t2, v2 + ϵ⟩ and ⟨t2, v2 −
ϵ⟩, enclose all lines starting from b−

or b+ that approximate the two seen
points within ϵ. As the next point,
⟨t3, v3⟩, lies within both angles, yet
more than ϵ away from their upper
and lower slopes, we reduce them
to (a−u3

, a−l3) (Figure 2a) and (a+u3
, a+l3) (Figure 2b), subtended by ⟨t3, v3 + ϵ⟩ and ⟨t3, v3 − ϵ⟩.

Next, point ⟨t4, v4⟩ lies outside the angle formed by (a−u3
, a−l3) (Figure 2a), hence cannot be approx-

imated by a segment starting at b− (Line 10). Contrariwise, a further reduction of the angle starting
from b+ approximates point ⟨t4, v4⟩ with ϵ, we thus set its upper slope to a+u4

, connecting ⟨t1, b+⟩
to ⟨t4, v4 + ϵ⟩ and retain the lower slope a+l3 , already within ϵ of ⟨t4, v4⟩. The gray area in Figure 2b
captures the candidate lines within ϵ of all four points.
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Figure 2: MIXPIECE opts for the segment starting from b+ (Figure 2b) and reaching t4 over that
starting from b− (Figure 2a) reaching t3. Figure 2c shows the longest segments from t1, t4, t6, t10.

We establish the correctness of Procedure 3.1 as follows.

Definition 1 The ϵ-quantized reach ri of timestamp ti in a signal s = ⟨ti, vi⟩, i ∈ {1, . . . , n}, is
the maximum length of a linear segment that starts from an ϵ-quantization of vi and approximates
subsequent values in s within ϵ.

Procedure 3.1 returns the ϵ-quantized reach of i.

Without loss of generality, assume Procedure 3.1 returns ri for point ⟨v1, t1⟩, while there exists
a linear segment of length ri + 1 that starts from a quantization of v1 and is within ϵ from all
points up to ⟨ti+1, vi+1⟩. This line necessarily belongs to the set computed by Procedure 3.1 up to
point ⟨ti, vi⟩. Then the procedure should not have stopped at timestamp ti, a contradiction. Thus,
Procedure 3.1 returns the maximum length.

We configure our implementation of Procedure 3.1 to return the bounding slopes of the longest
segment, in addition to its length.

3.2 MINIMIZING THE NUMBER OF SEGMENTS

The greedy strategy of Procedure 3.1, used in (Kitsios et al., 2024), maximizes reach from a given
point but ignores global optimality. On the signal of Figure 2c, it selects segment [t1, t5], then [t6, t9],
and [t10, t12].

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

t1

|
t2

|
t3

|
t4

|
t5

|
t6

|
t7

|
t8

|
t9

|
t10

|
t11

|
t12

|

reach1 reach6 reach10

reach4

Optimal PLA

Suboptimal PLA

Figure 3: Maximally extending each segment may
lead to a suboptimal sequence length: r4 sur-
passes r6 + r10, hence we reach t12 with two seg-
ments by ending the first segment at t3.

Yet, as Figure 3 shows, reach r4 spans farther
than r6 and r10 combined, so two segments—
[t1, t3] and [t4, t12]—suffice to approximate the
signal. This counterintuitive outcome arises be-
cause ri, being dependent on the quantization
of vi to either b−i or b+i , exceeds δi + ri+δi,
hence starting at i is preferable to starting at i+
δi. The greedy algorithm is thus suboptimal.
We define the problem of finding a minimum-
length PLA under quantization as follows:

Problem 1 Given data sequence s: (ti, vi), i ∈ {1, . . . , n} and error threshold ϵ, find a minimum-
length PLA sequence of disjoint segments from ϵ-quantized values, to approximate s within ϵ.

Algorithm 3.2: MINSEGMENTS (s, ϵ)
input : Signal s: (ti, vi) ∀i∈{1,. . ., n}, error threshold ϵ
output : A minimum-length PLA sequence on s

1 i← 1;
2 while s.hasNext() do
3 r[i]← ϵ quantized reach(s, i, ϵ);
4 s.next();
5 i + +;
6 i← N ;
7 while i ≥ 1 do
8 Compute L[i]; // by Equation (2)
9 i−−;

10 return L[1];

Algorithm 3.2 lists MINSEGMENTS, a dynamic-
programming solution to Problem 1 that gets each
starting point’s reach(Line 3) via Procedure 3.1 and
recursively derives the least PLA length from ti (Line 8):

L(i) =


mini<j≤i+ri{L(j + 1) + 1}, i < n

1, i = n

0, i > n

(2)

reach1 = 4 L(1) = 1 + L(4) = 2

reach2 = 2 L(2) = 1 + L(4) = 2

reach3 = 2 L(3) = 1 + L(6) = 3

reach4 = 8 L(4) = 1

reach5 = 4 L(5) = 1 + L(10) = 2

reach6 = 3 L(6) = 1 + L(10) = 2

reach7 = 5 L(7) = 1

reach8 = 4 L(8) = 1

reach9 = 3 L(9) = 1

reach10 = 2 L(10) = 1

reach11 = 1 L(11) = 1
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Figure 4: Computing least PLA sequence length.

Figure 4 depicts MINSEGMENTS’s computa-
tion for the signal of Figure 2c. The left
side shows the reach of starting points, while
the right side computes the optimal PLA se-
quence length starting from each point via
Equation (2). Since r1 = 4, the first segment
may end at any of ⟨t2, t3, t4, t5⟩. With L(2),
L(3), and L(5) larger than 1, and L(4) = 1,
we end the first segment at t3 and approximate
the signal using only two segments, exploit-
ing the large reach r4. MINSEGMENTS (Algo-
rithm 3.2) returns a globally optimal solution
to Problem 1 via the recursive minimization in
Equation (2) in O(Rn) time, where R is the maximum reach in the signal, as each recursion step
is linear in ri for each i. For small maximum error thresholds, R is typically a small constant.
Our implementation of Algorithm 3.2 also returns the starting points and bounding slopes (as in
Section 3.1) of segments in the minimum-length PLA sequence, along with the sequence length.

3.3 TAILORPIECEDP ALGORITHM

Each segment in the PLA of Algorithm 3.2 has two bounding slopes defining its admissible slope
range for line segments that approximate the data therein. We define slope interval size as follows.

Definition 2 The slope interval size Ik of segment kth is the gap between its upper and lower slopes.

In Figure 2a, I1 = a−u3
− a−l3 , and in Figure 2b, I1 = a+u4

− a+l3 .

By MIXPIECE’s storage model, we aim to merge and jointly represent segments with coinciding
starting points and overlapping slope intervals. However, Equation (2) may miss the best com-
pression: it shortens the PLA sequence yet overlooks the slope interval sizes of the segments it
creates. Larger intervals are preferable, as they are more likely to overlap. Accordingly, we en-
hance MINSEGMENTS to TAILORPIECEDP, which yields segments with larger slope intervals to
boost overlap among them and enable further segment grouping. To craft TAILORPIECEDP, we
refine TAILORPIECEDP’s objective to a composite function C(i) that favors both large slope inter-
vals and few segments starting at timestamp ti, i ≥ 1. The average slope interval size over L(i)

segments is
∑L(i)

k=1 Ik
L(i) . To modulate the influence of individual slope interval sizes, we introduce an

4
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exponent p ∈ [0, 1] on the numerator terms, yielding
∑L(i)

k=1 Ik
p

L(i) . To ease the recursion, we define the

numerator aggregate as S(i) =
∑L(i)

k=1 Ik
p. For p = 0, the fraction equals 1, as the number of seg-

ments divided by itself. For p > 0, it favors many short segments that yield large slope intervals. To
counter this effect and favor fewer segments, we additionally normalize by L(i), yielding a squared
denominator in our composite objective: C(i) = S(i)

L(i)2 .

Problem 2 Given a data sequence s: (ti, vi), i ∈ {1, . . . , n}, and a maximum absolute error thresh-
old ϵ, find a PLA sequence of disjoint linear segments, each starting from an ϵ-quantized value, that
approximates s within ϵ and maximizes C(i) = S(i)

L(i)2 .

Equation (3) solves Problem 2 by recursively maximizing C(i); I(i, j) denotes the slope interval
size of the segment from ti to tj , while S(i) and L(i) assume the values of the optimizing numerator
and denominator, respectively, in each recursion step.

C(i) =


maxi<j≤i+ri

{
S(j+1)+I(i,j)p

(L(j+1)+1)2

}
i < n

1 i = n

0 i > n

(3)

TAILORPIECEDP replaces L[i] with {C[i], S[i], L[i]} in Lines 8 and 10 and returns C[1] in
place of L[1] in Line 10 of Algorithm 3.2. Exponent p enables fine-grained control and links
TAILORPIECEDP to MINSEGMENTS: p = 0 reduces TAILORPIECEDP to minimizing segments,
as MINSEGMENTS does. In our experiments, TAILORPIECEDP with a broad range of p values
outperform MINSEGMENTS across datasets.

3.4 TAILORPIECEGD ALGORITHM
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Figure 5: TAILORPIECEGD ends the first
segment at t3 to reach t12 with two segments.

TAILORPIECEDP seeks a PLA sequence that ap-
proximates a signal within a threshold ϵ using seg-
ments with ϵ-quantized starting values and maxi-
mizes C(i) = S(i)

L(i)2 . However, optimality comes
at the cost of higher computational overhead.

Algorithm 3.3: TAILORPIECEGD (s, ϵ)
Input: Data signal s: ⟨ti, vi⟩ ∀i ∈ {1, . . . , n}, error threshold ϵ
Output: Array b intervals mapping each quantized value to ⟨al, au, t⟩ tuple list

1 Function TAILORPIECEGD (s, ϵ)
2 b intervals← {{}, . . . , {}}; ⟨ts, vs⟩ ← s.next();
3 b− ← ⌊vs/ϵ⌋ϵ; b+ ← ⌈vs/ϵ⌉ϵ; // quantized starting points
4 au−←∞; al−←−∞; au+←∞; al+←−∞; // slope intervals
5 floor ← true; ceil← true; diff ← 0; i← 1;
6 jmin ← min{argmaxj∈[i+r

q
i
,i+ri]

{j + rj+1}}; // Equation (4)

7 while s.hasNext() do
8 ⟨tc, vc⟩ ← s.next();
9 i + +;

10 if vc>au−(tc−ts)+b−+ϵ or vc<al−(tc−ts)+b−−ϵ then
11 floor ← false;
12 if vc>au+(tc−ts)+b++ϵ or vc<al+(tc−ts)+b+−ϵ then
13 ceil← false;
14 if floor then diff + + ;
15 if ceil then diff −− ;
16 if i > jmin then // close segment when reaching jmin

17 if diff > 0 then b intervals[b−].add(
〈
al− , au− , ts

〉
) ;

18 else b intervals[b+].add(
〈
al+ , au+ , ts

〉
) ;

19 ⟨ts, vs⟩ ← ⟨tc, vc⟩;
20 b− ← ⌊vs/ϵ⌋ϵ; b+ ← ⌈vs/ϵ⌉ϵ;
21 au− ←∞; al− ← −∞; au+ ←∞; al+ ← −∞;
22 floor ← true; ceil← true; diff ← 0;
23 jmin ← argmaxj∈[i+r

q
i
,i+ri]

{j+rj+1}; // Equation (4)

24 if vc < au− (tc − ts) + b− − ϵ then // lower slope

25 au− ← vc+ϵ−b−
tc−ts

;

26 if vc > al− (tc − ts) + b− + ϵ then // raise slope

27 al− ←
vc−ϵ−b−

tc−ts
;

28 if vc < au+ (tc − ts) + b+ − ϵ then // lower slope

29 au+ ← vc+ϵ−b+

tc−ts
;

30 if vc > al+ (tc − ts) + b+ + ϵ then // raise slope

31 al+ ←
vc−ϵ−b+

tc−ts
;

32 if diff > 0 then b intervals[b−].add(
〈
al− , au− , ts

〉
) ;

33 else b intervals[b+].add(
〈
al+ , au+ , ts

〉
) ;

34 return b intervals;

Here, we propose TAILORPIECEGD, a greedy
algorithm that offers an attractive tradeoff be-
tween the efficiency of MIXPIECE (Kitsios
et al., 2024) and the effectiveness of TAILOR-
PIECEDP. Its core idea is to reduce the myopic
behavior of MIXPIECE by enhancing lookahead
when forming a segment. Figure 5 illustrates
an example where a segment starting at t1 may
reach t5. MIXPIECE would create this segment
and begin the next one at t6. However, we may
instead end the first segment earlier—at t2, t3
or t4—and start the next segment at the follow-
ing point. Among these alternatives, ending the
first segment at t3 leads to the best outcome, as
the long reach of r4 allows the next segment to
extend to t12, whereas segments starting after t2,
t4, or t5, may only reach up to t9. TAILOR-
PIECEGD, outlined in Algorithm 3.3, considers
several candidate endpoints j (beyond the de-
fault i+ ri used by MIXPIECE) for the segment
starting at i. For each j, it evaluates the reach of
the next segments starting at j + 1, and selects
the earliest point jmin among those that yield
the largest combined reach of the two segments.
Choosing the earliest qualifying endpoint pro-
motes larger slope intervals, as the breadth of a slope interval is a non-increasing function of seg-
ment length, and thereby enables more effective groupings. This exhaustive examination of end-
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points reduces PLA sequence length and increases slope interval breadth, yet it also incurs a runtime
overhead. To manage this cost, we restrict the set of candidate endpoints for each segment using an
exponent parameter q ∈ [0, 1]:

jmin = min

{
argmax

j∈[i+rqi ,i+ri]

{
j + rj+1

}}
(4)

The rqi term in Equation (4) sets the minimum segment length. For q = 0, Equation (4) checks all el-
igible endpoints j, and, as our experiments show, gains space savings on par with or better than those
of MINSEGMENTS. The growth of q drops candidate endpoints near the segment’s start. Intuitively,
segments that underuse a starting point’s reach are unlikely to serve in the shortest PLA sequence.
By contrast, q near 1 curbs both search space and compression. At q = 1, TAILORPIECEGD reduces
to MIXPIECE, considering only the endpoint i+ ri for a segment starting at i.

4 EXPERIMENTAL RESULTS

We ran experiments on a 3.3GHz Intel® Core™i5-4590 machine with 6MB L3 cache and 16GB
DDR3 1.6GHz RAM. We implemented1 our algorithms in Java and compared performance against:

• Methods for the L∞ error metric:

– SLIDE2 (Elmeleegy et al., 2009), which optimally solves disjoint PLA using a convex hull.
– MIXED 2 (Luo et al., 2015), which finds a least-length PLA of mixed joint and disjoint segments.
– MIXPIECE3 (Kitsios et al., 2024), the leading method for jointly representing PLA segments.

• Methods designed for the L2 error metric:

– Bottom-Up4 (Keogh et al., 2001b), which merges in turn adjacent segments yielding least error.
– PAA (Keogh et al., 2001a), which represent equi-sized segments, each with the mean of its values.
– DFT (Cooley & Tukey, 1965), which uses the first few Discrete Fourier Transform features.
– HIRE5 (Barbarioli et al., 2023), which constructs a synopsis data structure through a recursion of

partitioning, piecewise approximation, and residualization steps at increasingly finer granularity.

• Camel6 (Yao et al., 2024), which separately compresses the integer and decimal parts of double-
precision floating-point numbers, to a precision of four decimal places.

We evaluate solutions on all datasets of the UCR Time Series Classification Archive7 that do not
contain undefined values. Given that lossless algorithms (Yao et al., 2024) achieve compression
ratios up to 4, we relegated data that cannot be compressed by a ratio of at least 10 with ϵ = 1%
as unsuitable for PLA-based compression. Used SLIDE (Elmeleegy et al., 2009) to ensure fairness,
we compressed all data with a maximum error at 1% of the signal’s range and selected those that
attained compression greater than 10, ending up with 41 datasets, which we use in our experiments.
For completeness, we also report aggregate results for the entire archive.

4.1 PLA SEQUENCE LENGTH

We commence by assessing the length of produced PLA sequences. Table 1 reports the number of
segments MIXPIECE, MINSEGMENTS, TAILORPIECEGD and TAILORPIECEDP furnish, expressed
as a percentage over the minimum achievable disjoint PLA sequence length under a maximum error
threshold (Luo et al., 2015), obtained using SLIDE (Elmeleegy et al., 2009; O’Rourke, 1981), for
ten maximum error values in [1%, 10%] of the signal’s range.

1
https://anonymous.4open.science/r/pla-compression

2
https://cse.hkust.edu.hk/˜yike/PLAcode.rar

3
https://github.com/xkitsios/Mix-Piece_Sim-Piece

4
https://github.com/NickFoubert/simple-segment

5
https://github.com/gmersy/HIRE

6
https://github.com/yoyo185644/camel

7
https://www.cs.ucr.edu/˜eamonn/time_series_data/

6

https://anonymous.4open.science/r/pla-compression
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https://github.com/xkitsios/Mix-Piece_Sim-Piece
https://github.com/NickFoubert/simple-segment
https://github.com/gmersy/HIRE
https://github.com/yoyo185644/camel
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Table 1: Extra segments over the least floating-starting-
value disjoint segments by SLIDE.

Slide TAILORPIECEGD TAILORPIECEDP
ϵ (segments) MIXPIECE MINSEGMENTS

(q = 0) (p = 2−20)
1% 2786.0 +9.3% +6.6% +6.7% +6.6%
2% 1805.6 +7.9% +5.3% +5.4% +5.3%
3% 1419.0 +7.9% +5.5% +5.6% +5.5%
4% 1209.3 +7.5% +5.5% +5.6% +5.5%
5% 1051.1 +8.3% +6.0% +6.1% +6.0%
6% 939.7 +8.2% +6.1% +6.2% +6.1%
7% 839.2 +8.9% +6.7% +6.8% +6.7%
8% 758.4 +8.4% +6.6% +6.7% +6.6%
9% 696.9 +9.1% +7.4% +7.5% +7.4%

10% 646.3 +8.8% +7.0% +7.2% +7.0%

Table 1 shows that MIXPIECE pro-
duces PLA sequences 7.5% − −9.3%
longer than the minimum, leaving room
for improvement. MINSEGMENTS cuts
this to 5.3% − −7.4%, minimizing dis-
joint segments with ϵ−quantized start-
ing points, which favor grouping, while
SLIDE selects starting points freely,
thus produces shorter PLA sequences.
TAILORPIECEGD performs even bet-
ter: despite its greedy strategy, it adds only 0.1–0.2% segments over MINSEGMENTS for ϵ =
1% − −10%, yielding PLA lengths close to the optimum. TAILORPIECEDP produces the same
segments as MINSEGMENTS for small p (e.g., 2−20). Section 4.6 discusses the effect of p on TAI-
LORPIECEDP in more detail.

4.2 COMPRESSION RATIO COMPARISON

Next, we evaluate the effectiveness of our approaches against solutions that provide maximum error
guarantees, i.e., SLIDE (Elmeleegy et al., 2009), MIXED (Luo et al., 2015) and MIXPIECE (Kitsios
et al., 2024). We also report results for Camel (Yao et al., 2024), without considering the over-
head of timestamps, to provide a reference point with regard to the requirements of lossless data
representation. For the sake of brevity, we exclude PMC-MR (Lazaridis & Mehrotra, 2003), and
Swing (Elmeleegy et al., 2009) from this comparison, as these algorithms have been shown to un-
derperform compared to MIXPIECE in (Kitsios et al., 2024). Lastly, we discuss the results of the
Serf-XOR (Li et al., 2025) streaming floating-point compression algorithm, which produces very
modest savings compared to the PLA approaches evaluated here.

We measure compression ratio, i.e., the ratio of the number of bytes in the uncompressed represen-
tation to that in the compressed one, including the representation of values and timestamps, for each
method and dataset, considering that the timestamp and value of each point in the original signal
require 4 + 4 = 8 bytes.

Table 2 (in the Appendix) presents detailed results for maximum error8 5% and 10% of the sig-
nal’s range for the 41 selected time-series, as well as averages for the remaining ones, in the UCR
archive. Both MINSEGMENTS and TAILORPIECEGD improve compression ratio over MIXPIECE.
On average, MINSEGMENTS provides improvements over 18% and 16% for maximum error values
of 5% and 10% of the signal’s range, respectively, as the myopic nature of MIXPIECE’s first phase
hinders joint representation. TAILORPIECEGD attains space savings commensurate to, and at times
higher than, those of MINSEGMENTS, with a gain of 20% over MIXPIECE on average, as it explores
a larger search space than MIXPIECE. More impressively, TAILORPIECEGD gains over MINSEG-
MENTS; even though TAILORPIECEGD produces more segments than MINSEGMENTS (as Table 1
documents), it yields larger slope intervals, which are more likely to allow joint representations.
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Figure 6: Using max instead of min
in Equation (4) hurts performance.

Figure 6 shows the effect of using the latest instead of the
earliest endpoint j among those that provide the largest com-
bined reach for each pair of consecutive segments in TAILOR-
PIECEGD, replacing the min with max in Equation (4). In-
terestingly, the use of max forfeits the advantage of TAILOR-
PIECEGD over MINSEGMENTS, yielding segments that are
less likely to be grouped. TAILORPIECEDP with a small value
of p yields the best compression ratio on all datasets (including
those that do not fit in Table 2), with average gains over MIX-
PIECE, surpassing 32% with ϵ at 5% and 10% and reaching a
maximum of 34% with ϵ = 7%. Table 2 (rest, all) also shows
that our solutions offer considerable improvements for the en-
tire UCR archive, which includes datasets that are inherently
harder to compress due to an unusually large variance among
their neighboring values. We omit the detailed results for the

8We omit detailed results for ϵ = 1% due to space constraints, but present average results in Figure 11a.
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Serf-XOR (Li et al., 2025)9 streaming compression method from Table 2, as it provides very modest
space savings, offering an average compression ratio of 12.08 and 13.01 for maximum error values
of 5% and 10% of the signal’s range, respectively, for the 41 time series in our dataset. Considering
all time series, the compression ratio of Serf-XOR is 10.08 and 11.71 for ϵ = 5% and 10%, respec-
tively. The attained compression ratio does not improve significantly even with ϵ = 50%. As these
results are non-competitive, we exclude Serf-XOR from the remainder of our experimental analysis.

4.3 QUALITY OF APPROXIMATION
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(a) Selected datasets of Table 2.
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(b) All UCR archive datasets.
Figure 7: NRMSE vs. compression ratio; y-axis on log scale.

Our next experiment reports the
Normalized Root Mean Squared
Error (NRMSE) to assess approx-
imation quality; we use normalized
instead of plain RMSE, as value
ranges vary largely across datasets.
Figure 7 plots average NRMSE val-
ues vs. compression ratio, Fig-
ure 7a on the selected datasets of
Table 2 and Figure 7b on the entire
UCR archive. We include all algorithms that operate under a maximum error threshold and three
approaches that target L2, namely PAA (Keogh et al., 2001a), DFT (Cooley & Tukey, 1965), and
Bottom-Up (Keogh et al., 2001b). For each compression ratio, algorithms with maximum error
guarantees offer higher average approximation quality than those targeting L2, such as PAA (Keogh
et al., 2001a), DFT (Cooley & Tukey, 1965) and Bottom-Up (Keogh et al., 2001b). Our methods ad-
vance the state of the art, achieving lower NRMSE, hence more accurate PLA representations, than
SLIDE, MIXED and MIXPIECE under the same space limits. TAILORPIECEGD slightly outperforms
MINSEGMENTS, while TAILORPIECEDP attains the best quality by a wide margin. Figure 8 visu-
alizes the segments TAILORPIECEDP yields for Car dataset sample at ϵ = 1% and 5%, illustrating
how segment count and approximation quality drop as ϵ rises.
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Figure 8: PLA segments, Car data sample.
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Figure 9: General compression.

4.4 GENERAL-PURPOSE COMPRESSION GAINS
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Figure 10: NMRSE with general com-
pression on outputs; y-axis on log scale.

Figure 9 shows the effect of lossless general-purpose
compression, Zstandard (Collet, 2015), on outputs
with ϵ = 5%. Our methods yield the largest over-
all savings. Figure 10 shows results for L2-targeting
algorithms—PAA (Keogh et al., 2001a), DFT (Cooley
& Tukey, 1965), Bottom-Up (Keogh et al., 2001b), and
HIRE (Barbarioli et al., 2023)—using ZStandard, except
for HIRE, which uses TRC10. General-purpose compres-
sion boosts the quality-space tradeoff but retains the algo-
rithm ranking: MINSEGMENTS, TAILORPIECEGD, and
TAILORPIECEDP still offer the best tradeoff. HIRE per-
forms significantly worse.

9
https://github.com/Spatio-Temporal-Lab/Serf

10
https://github.com/powturbo/Turbo-Range-Coder
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4.5 COMPRESSION/TIME TRADEOFF

Figure 11 reports compression times and ratios for our algorithms and competitors. We average
measurements over the datasets of Table 2 and normalize times by dataset size. TAILORPIECEGD
and TAILORPIECEDP traces show performance across q ∈ [0, 0.99] and p ∈ [0, 2−20], with MIN-
SEGMENTS corresponding to TAILORPIECEDP at p = 0. Our methods outperform competitors:
TAILORPIECEDP at p = 2−20 achieves the highest space savings, improved by 20%, 32% and 32%
over MIXPIECE for ϵ = 1%, 5% and 10%, respectively. TAILORPIECEGD with q = 0 ranks sec-
ond, improving by 13%, 20% and 20% over MIXPIECE. MINSEGMENTS (i.e., TAILORPIECEDP
with p = 0) yields slightly worse compression than TAILORPIECEGD, despite shorter PLA se-
quences, due to larger slope intervals that enable grouping.
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Figure 11: Compression time per data record vs ratio at different error thresholds.

Whereas TAILORPIECEDP incurs a notable runtime overhead, as its compression time matches that
of MINSEGMENTS, making TAILORPIECEDP with small p the preferred choice when reducing
space is key. TAILORPIECEGD runs two orders of magnitude faster than the dynamic-programming
approaches with q = 0, offering an attractive tradeoff between compression ratio and execution
time. As Figure 11 shows, higher q further enhances this tradeoff, with compression time on par
with MIXPIECE and space savings competitive vs. q = 0. In effect, TAILORPIECEGD excels when
compression speed matters most.

Figure 12 (in the Appendix) plots average decompression time, which is often more crucial than
compression time, as data is written once but read repeatedly. Our methods surpass MIXPIECE.
SLIDE and MIXED lag due to computing slope-intercept equations during decompression.

4.6 FAVORING SEGMENTS WITH LARGE INTERVALS

The dynamic-programming MINSEGMENTS algorithm minimizes PLA sequence length. However,
compression also depends on slope intervals. Larger intervals increase the chance of grouping sim-
ilar segments, boosting space savings, thus we favor segments with large slope intervals. Figure 13
(in the Appendix) illustrates the effect of exponent p of TAILORPIECEDP, which adjusts the effect
of slope interval size in the objective, on the datasets of Table 2. Large p values hurt compression,
as they drag TAILORPIECEDP to use more PLA segments (e.g., for p = 2−1 and ϵ = 10%, the
compression of TAILORPIECEDP is 15% worse than MINSEGMENTS). However, smaller p yields
sequence length on par with MINSEGMENTS and also enlarges average interval size, as it is apparent
for p < 2−6, yielding space savings above 7%, 12% and 13.9%, for ϵ equal to 1%, 5% and 10%,
respectively. The plateau beyond this point arises as p is small enough for TAILORPIECEDP to
match the optimal number of segments while creating larger intervals via Equation (1).

5 CONCLUSIONS

We presented techniques to build and compress piecewise linear segments for time-series storage:
MINSEGMENTS computes a minimum-length PLA with quantized starting values under a maximum
error threshold. TAILORPIECEDP refines this objective to render segments more amenable to joint
representation by common starting values and overlapping slope intervals, yielding extra space sav-
ings. Drawing on these insights, TAILORPIECEGD offers a tunable tradeoff between compression
and runtime by limiting its greedy-search space. Experiments show TAILORPIECEGD attains space
savings near MINSEGMENTS, vastly exceeding the state of the art, and runs two orders of magnitude
faster and on par with existing approaches.

9
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A APPENDIX

Table 2: Compression ratio comparison for ϵ = 5% and ϵ = 10% of the signal’s range.
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Adiac 3.83 24.65 36.00 53.44 58.24 58.81 63.25 29.02 43.41 75.00 80.61 80.23 83.98
Beef 3.95 41.20 53.41 66.75 77.50 77.42 85.91 70.06 88.54 113.65 133.57 135.25 147.93
BirdChicken 3.81 40.35 56.34 59.60 71.20 70.77 77.06 55.65 78.77 84.45 109.74 107.86 126.61
Car 3.82 55.00 78.64 89.00 108.83 109.80 125.27 85.43 122.66 146.54 178.00 176.63 214.53
CinCECGTorso 4.03 248.45 349.04 352.11 419.07 432.90 477.04 413.22 523.56 558.27 669.46 713.65 746.27
DiatomSizeReduction 3.82 46.87 69.42 93.60 110.10 108.14 122.19 56.72 85.07 135.96 152.41 151.00 164.54
EthanolLevel 3.46 152.44 224.22 224.09 282.88 286.02 348.43 233.65 327.33 332.36 421.50 437.16 528.40
Fish 3.81 92.42 115.61 168.31 203.15 214.65 222.10 308.17 312.01 414.29 440.77 463.77 517.46
FreezerRegularTrain 3.70 63.23 67.68 131.30 148.42 148.89 152.58 91.66 95.56 238.59 233.78 244.28 248.68
Fungi 3.65 33.32 47.87 64.98 69.39 72.54 80.50 47.93 67.78 104.74 102.00 107.73 121.49
GunPoint 3.70 22.93 33.22 44.73 52.08 50.97 58.20 33.71 44.38 57.69 65.22 68.95 74.01
GunPointAgeSpan 2.84 30.12 37.88 54.95 63.39 64.24 71.23 57.72 67.48 100.93 120.45 125.54 132.10
GunPointMaleVersusFemale 2.99 30.63 38.30 55.97 64.47 65.36 72.37 59.24 72.16 103.80 123.56 128.09 135.57
GunPointOldVersusYoung 2.85 31.42 39.09 56.40 65.28 65.44 73.03 60.43 69.38 104.18 127.40 129.72 138.17
HandOutlines 3.90 180.02 269.91 293.15 377.18 374.71 473.93 212.77 280.90 292.72 423.73 444.20 487.51
Haptics 3.82 105.76 122.32 171.90 206.61 210.53 223.84 247.53 307.69 402.62 478.18 481.93 510.86
Herring 3.77 41.60 59.17 69.53 85.33 85.47 96.29 66.57 90.08 117.21 145.19 146.00 166.02
HouseTwenty 4.71 23.07 24.62 65.37 65.12 65.52 65.61 29.13 29.87 76.42 76.58 77.23 78.34
InlineSkate 3.81 226.50 306.28 304.18 373.66 378.79 418.63 386.85 536.19 519.82 616.33 638.98 746.97
LargeKitchenAppliances 4.23 104.06 121.80 195.79 205.66 211.42 214.02 162.34 182.15 314.22 324.68 332.23 354.93
Lightning2 3.90 80.00 100.17 141.95 154.08 159.54 169.40 185.95 226.03 313.00 330.27 358.71 373.48
Mallat 3.75 31.79 43.90 56.27 65.55 65.63 72.44 56.53 72.39 98.11 114.56 117.13 129.09
Meat 4.04 51.03 69.73 123.59 132.25 131.68 144.03 61.86 82.14 150.38 154.37 161.08 172.45
MixedShapesRegularTrain 3.84 67.32 94.30 104.41 123.80 124.15 143.88 95.60 128.95 149.25 188.19 188.28 221.42
NonInvasiveFetalECGThorax1 3.79 78.59 116.35 142.73 169.28 176.91 194.46 114.09 150.26 209.81 239.81 258.98 286.33
NonInvasiveFetalECGThorax2 3.79 75.99 113.19 139.25 163.03 171.27 184.97 115.08 146.31 209.15 235.71 253.49 278.45
PigAirwayPressure 3.93 199.20 287.36 296.52 390.24 391.39 425.99 284.09 416.67 442.97 536.19 569.80 643.09
PigArtPressure 3.65 38.66 52.77 66.51 80.92 82.14 90.59 75.47 92.29 129.01 140.40 161.65 170.87
PigCVP 3.73 48.08 60.42 66.81 82.35 80.89 90.39 118.69 133.33 159.05 201.26 197.53 210.80
Rock 3.92 357.14 465.12 466.74 519.48 539.81 557.10 719.42 847.46 911.16 1012.66 1010.10 1084.01
ShapesAll 3.82 42.03 58.31 70.65 84.87 84.46 96.25 61.26 84.14 105.08 133.38 131.73 152.56
SmallKitchenAppliances 4.21 38.39 45.45 93.09 93.20 95.03 96.15 50.02 59.56 113.99 114.81 120.59 121.10
StarLightCurves 3.81 170.79 234.74 231.68 287.36 293.79 332.23 236.97 343.05 344.38 428.95 456.36 541.64
Symbols 3.81 53.19 70.95 86.68 102.59 104.78 117.23 79.52 106.44 145.83 176.80 179.01 198.91
Trace 3.69 49.46 67.20 104.31 112.65 117.96 123.77 75.86 93.86 166.41 168.78 183.49 190.48
UMD 4.58 17.61 25.45 42.16 41.27 44.19 45.37 31.51 34.62 66.69 69.72 73.87 76.49
UWaveGestureLibraryX 3.83 50.26 66.38 83.02 98.79 101.37 113.07 107.99 120.85 169.24 209.42 212.99 228.57
UWaveGestureLibraryY 3.80 45.53 59.47 76.23 88.17 90.49 99.96 88.73 107.58 141.94 177.31 179.13 192.91
UWaveGestureLibraryZ 3.84 38.68 51.15 65.80 76.20 78.05 86.26 71.05 87.18 114.91 141.37 144.01 157.26
Wafer 3.74 25.40 26.56 63.87 66.05 66.81 68.06 100.81 118.27 198.12 194.03 215.69 226.12
Yoga 3.82 37.15 51.83 63.88 76.00 77.43 86.59 51.91 71.12 95.82 116.01 116.03 134.00
Average 3.80 77.81 105.16 126.86 149.16 151.95 167.31 133.91 169.45 212.87 246.52 255.61 280.84
Average (rest) 3.79 13.54 17.50 28.70 30.95 31.35 32.99 29.70 35.60 58.24 63.22 64.99 68.19
Average (all) 3.79 38.40 51.41 66.67 76.67 78.00 84.94 70.00 87.37 118.05 134.12 138.72 150.44
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Figure 12: Decompression time per record.
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Figure 13: Average improvement vs. p.
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