
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

TAILORING LINEAR MODELS
FOR JOINT REPRESENTATION

Anonymous authors
Paper under double-blind review

ABSTRACT

The need to represent a long data series using a sequence of line segments abiding
by a maximum error threshold arises in various domains. This problem, known as
Piecewise Linear Approximation (PLA), has a long history and has recently gained
attention with the rise of applications dealing with time-stamped data. State-of-
the-art PLA methods achieve space savings over lossless compression techniques
with tolerable precision loss by quantizing starting points and representing similar
line segments jointly. However, these methods do not tailor line segments for their
eventual joint representation and do not minimize the number of segments either.
In this paper, we present TAILORPIECE, a suite of algorithms for lossy PLA-based
compression that explicitly tailor linear segments for both small sequence length
and joint representation under a given error threshold and starting-value quantiza-
tion. Our first algorithm, TAILORPIECEDP, optimizes a mergeability criterion of
PLA segment descriptions; in a degenerate form, it reduces to an algorithm that
represents the data series by the minimum number of PLA segments. Our second
algorithm, TAILORPIECEGD, greedily selects the endpoint of each PLA segment
within a tunable search space that allows the subsequent segment to extend far-
ther, thereby balancing compression and runtime. Through experimentation, we
show that TAILORPIECEDP achieves improvements of up to 34% over prior art
in compression ratio and TAILORPIECEGD gains similar savings with a runtime
reduced by two orders of magnitude.

1 INTRODUCTION

Sectors like healthcare, food supply, and transportation increasingly rely on high-frequency time-
series data from diverse sources (Botta et al., 2016; Xu et al., 2014; Atzori et al., 2010), to support
automation, monitoring, and other advances (Gupta et al., 2020). Yet the sheer data volume renders
storage costly (Jensen et al., 2018). Various encodings advance lossless floating-point compres-
sion (Liakos et al., 2022; 2024; Kuschewski et al., 2023; Afroozeh et al., 2023), offering gains over
the widely used lossless compression algorithm, Gorilla (Pelkonen et al., 2015). Still, even these
representations usually attain a compression ratio below 2, hence remain costly (Chen et al., 2024).

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

ε = 1% ε = 5% ε = 10%

Slide
Mixed

MixPiece
TailorPiece

C
o
m
p
r
e
s
s
i
o
n

R
a
t
i
o

N
o
r
m
a
l
i
z
e
d

t
o

M
i
x
P
i
e
c
e

Figure 1: TAILORPIECE enhances PLA
sequence length and mergeability.

Lossy compression offers an alternative to lossless meth-
ods for storing large time-series datasets, allowing con-
trol of space requirements via a tunable maximum er-
ror threshold. Modern Time-Series Management Sys-
tems (TSMS) (Jensen et al., 2018; 2019) let users find
the shortest Piecewise Linear Approximation (PLA) se-
quence that approximates a time-series within a de-
sired maximum error threshold (Elmeleegy et al., 2009;
Hakimi & Schmeichel, 1991) to meet their compression
needs. The L∞ norm target is often preferred to L1 or L2,
as it bounds the error for each data record rather than just in aggregate (Karras & Mamoulis, 2008;
Luo et al., 2015). A recent proposal, MIXPIECE (Kitsios et al., 2024), compresses time-series with
maximum error guarantees by quantizing PLA segment starting values by the given error threshold
and jointly representing segments having common starting values and overlapping allowable slopes,
yielding extra space savings as Figure 1 shows. However, MIXPIECE does not ensure minimum se-
quence length (i.e., number of segments) nor configures segments for joint representation. Methods

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

that minimize sequence length under an error bound (Elmeleegy et al., 2009; Hakimi & Schmeichel,
1991) disregard quantized starting values and are therefore inapplicable.

In this paper, we propose TAILORPIECE, a suite of algorithms that tailor PLA segments aiming at
small sequence length and joint representation:

• MINSEGMENTS, a dynamic programming algorithm that returns a minimum-length PLA repre-
sentation with quantized starting values under a maximum error threshold.

• TAILORPIECEDP, which, building on top of TAILORPIECEDP, produces segments with wide
permissible slope intervals to enhance their mergeability, and merges them.

• TAILORPIECEGD, a greedy algorithm that selects each segment’s end to maximize the next seg-
ment’s reach and allows tuning its endpoint search space to trade runtime for compression.

Our algorithms unlock the potential of grouping short PLA sequences, improving the average com-
pression ratio by up to 34% over MIXPIECE, as Figure 1 shows. Remarkably, TAILORPIECEGD
achieves slightly larger space savings than MINSEGMENTS, as it produces PLA segments more
likely to be grouped, while being two orders of magnitude faster.

2 BACKGROUND

PLA with maximum error guarantees PLA represents a series of timestamped values ⟨ti, vi⟩i≥1
by line segments. Some PLA methods join consecutive segments at their knots (Elmeleegy et al.,
2009; Gritzali & Papakonstantinou, 1983; Hakimi & Schmeichel, 1991), others assume disjoint
knots (Stone, 1961; Pavlidis, 1973; O’Rourke, 1981; Elmeleegy et al., 2009), and some consider
both (Luo et al., 2015). We consider disjoint knots, where each segment may be non-continuous with
its predecessor. We describe each segment by its start timestamp ti, value vi, and slope ai. Common
norms are L2 (Euclidean distance) and L∞ (maximum absolute error). We focus on L∞, to keep
each value within error ϵ. SLIDE (Elmeleegy et al., 2009; O’Rourke, 1981) finds the minimum-
length disjoint PLA sequence under a maximum error threshold, greedily building the convex hull
of data points in the segment under construction to maintain the admissible slope range.

MIXPIECE (Kitsios et al., 2024), the leading PLA method, quantizes segment starting values and
jointly represents segments with common starting values and overlapping admissible slope intervals
with a minimum number of groups by partitioning an interval graph, whose edges denote overlap-
ping intervals, into the fewest cliques (Kitsios et al., 2023) in O(n log n) time (Gupta et al., 1982).

3 OVERVIEW

We aim to reduce the storage requirements of PLA representations under a maximum-error thresh-
old ϵ. While the MIXPIECE (Kitsios et al., 2024) storage model merges segment descriptions to
minimize the number of groups given a set of segments, it does not minimize the number of PLA
segments given a starting-value quantization and error threshold ϵ. We first address this open prob-
lem with a dynamic programming algorithm, MINSEGMENTS, that provably returns the shortest
PLA sequence for the same quantization and error threshold. With MINSEGMENTS as a foundation,
we propose TAILORPIECEDP, which enhances the mergeability of linear segments to attain further
space savings. Lastly, we propose TAILORPIECEGD, a greedy algorithm that attains space savings
similar to MINSEGMENTS at two orders of magnitude lower execution time.

3.1 QUANTIZED REACH

As a preparatory step, we extract Procedure 3.1 from MIXPIECE (Kitsios et al., 2024), which selects
the longest among the linear segments starting from each original value v, ϵ-quantized to the nearest
lower b− or higher b+ multiple of ϵ:

b− = ⌊v/ϵ⌋ × ϵ

b+ = ⌈v/ϵ⌉ × ϵ
(1)

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Procedure 3.1: ϵ˙quantized˙reach(s, i, ϵ)
input : Starting index i, data signal s: ⟨ti, vi⟩ ∀i ∈ {1, . . . , n}, error threshold ϵ
output : ϵ-quantized reach of i

1 reach← 0; s.seek(i); ⟨ts, vs⟩ ← s.next();
// quantize vs to the nearest lower (b−) and higher (b+) multiples

of ϵ

2 b− ← ⌊vs/ϵ⌋ϵ; b+ ← ⌈vs/ϵ⌉ϵ;
3 au− ←∞; al− ← −∞; au+ ←∞; al+ ← −∞;
4 floor ← true; ceil← true;
5 while s.hasNext() do
6 ⟨tc, vc⟩ ← s.next();
7 if vc > au− (tc − ts) + b− + ϵ or vc < al− (tc − ts) + b− − ϵ then
8 floor ← false; // stop b− segment

9 if vc > au+ (tc − ts) + b+ + ϵ or vc < al+ (tc − ts) + b+ − ϵ then
10 ceil← false; // stop b+ segment
11 if floor or ceil then reach + + ; // within bounds
12 else return reach ; // out of bounds

13 if vc < au− (tc − ts) + b− − ϵ then au− ← vc+ϵ−b−
tc−ts

; // lower slope

14 if vc > al− (tc − ts) + b− + ϵ then al− ←
vc−ϵ−b−

tc−ts
; // raise slope

15 if vc < au+ (tc − ts) + b+ − ϵ then au+ ← vc+ϵ−b+

tc−ts
; // lower slope

16 if vc > al+ (tc − ts) + b+ + ϵ then al+ ←
vc−ϵ−b+

tc−ts
; // raise slope

17 return reach;

For instance, with ϵ = 0.5, each of
values 1.1 and 1.4 yields b− = 1
and b+ = 1.5. Figure 2 illustrates
the process. Two angles, one initiated
from ⟨t1, b−⟩ (Figure 2a) with bound-
ing slopes a−u2

and a−l2 (Line 13–
Line 14) and one from ⟨t1, b+⟩ (Fig-
ure 2b) with bounding slopes a+u2

and a+l2 (Line 15–Line 16), both sub-
tended by ⟨t2, v2 + ϵ⟩ and ⟨t2, v2 −
ϵ⟩, enclose all lines starting from b−

or b+ that approximate the two seen
points within ϵ. As the next point,
⟨t3, v3⟩, lies within both angles, yet
more than ϵ away from their upper
and lower slopes, we reduce them
to (a−u3

, a−l3) (Figure 2a) and (a+u3
, a+l3) (Figure 2b), subtended by ⟨t3, v3 + ϵ⟩ and ⟨t3, v3 − ϵ⟩.

Next, point ⟨t4, v4⟩ lies outside the angle formed by (a−u3
, a−l3) (Figure 2a), hence cannot be approx-

imated by a segment starting at b− (Line 10). Contrariwise, a further reduction of the angle starting
from b+ approximates point ⟨t4, v4⟩ with ϵ, we thus set its upper slope to a+u4

, connecting ⟨t1, b+⟩
to ⟨t4, v4 + ϵ⟩ and retain the lower slope a+l3 , already within ϵ of ⟨t4, v4⟩. The gray area in Figure 2b
captures the candidate lines within ϵ of all four points.

ϵ

ϵ

ϵ

ϵ

ϵ

ϵ

b+

v1

b−

t1

v2

t2

v3

t3

v4

t4

a−l2

a−u2

a−u3

a−l3

a−u4

a−l4

(a) Angle with b− as origin.

ϵ

ϵ

ϵ

ϵ

ϵ

ϵ

b+

v1

b−

t1

v2

t2

v3

t3

v4

t4

a+l2

a+u2

a+u3

a+l3

a+u4

a+l4

(b) Angle with b+ as origin.

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12

ϵ

4ϵ

8ϵ

12ϵ
v1

v2

v3

v4 v5 v6

v7 v8

v9
v10

v11

v12

(c) Using best of b− and b+ wrt ri.

Figure 2: MIXPIECE opts for the segment starting from b+ (Figure 2b) and reaching t4 over that
starting from b− (Figure 2a) reaching t3. Figure 2c shows the longest segments from t1, t4, t6, t10.

We establish the correctness of Procedure 3.1 as follows.

Definition 1 The ϵ-quantized reach ri of timestamp ti in a signal s = ⟨ti, vi⟩, i ∈ {1, . . . , n}, is
the maximum length of a linear segment that starts from an ϵ-quantization of vi and approximates
subsequent values in s within ϵ.

Procedure 3.1 returns the ϵ-quantized reach of i.

Without loss of generality, assume Procedure 3.1 returns ri for point ⟨v1, t1⟩, while there exists
a linear segment of length ri + 1 that starts from a quantization of v1 and is within ϵ from all
points up to ⟨ti+1, vi+1⟩. This line necessarily belongs to the set computed by Procedure 3.1 up to
point ⟨ti, vi⟩. Then the procedure should not have stopped at timestamp ti, a contradiction. Thus,
Procedure 3.1 returns the maximum length.

We configure our implementation of Procedure 3.1 to return the bounding slopes of the longest
segment, in addition to its length.

3.2 MINIMIZING THE NUMBER OF SEGMENTS

The greedy strategy of Procedure 3.1, used in (Kitsios et al., 2024), maximizes reach from a given
point but ignores global optimality. On the signal of Figure 2c, it selects segment [t1, t5], then [t6, t9],
and [t10, t12].

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

t1

|
t2

|
t3

|
t4

|
t5

|
t6

|
t7

|
t8

|
t9

|
t10

|
t11

|
t12

|

reach1 reach6 reach10

reach4

Optimal PLA

Suboptimal PLA

Figure 3: Maximally extending each segment may
lead to a suboptimal sequence length: r4 sur-
passes r6 + r10, hence we reach t12 with two seg-
ments by ending the first segment at t3.

Yet, as Figure 3 shows, reach r4 spans farther
than r6 and r10 combined, so two segments—
[t1, t3] and [t4, t12]—suffice to approximate the
signal. This counterintuitive outcome arises be-
cause ri, being dependent on the quantization
of vi to either b−i or b+i , exceeds δi + ri+δi,
hence starting at i is preferable to starting at i+
δi. The greedy algorithm is thus suboptimal.
We define the problem of finding a minimum-
length PLA under quantization as follows:

Problem 1 Given data sequence s: (ti, vi), i ∈ {1, . . . , n} and error threshold ϵ, find a minimum-
length PLA sequence of disjoint segments from ϵ-quantized values, to approximate s within ϵ.

Algorithm 3.2: MINSEGMENTS (s, ϵ)
input : Signal s: (ti, vi) ∀i∈{1,. . ., n}, error threshold ϵ
output : A minimum-length PLA sequence on s

1 i← 1;
2 while s.hasNext() do
3 r[i]← ϵ quantized reach(s, i, ϵ);
4 s.next();
5 i + +;
6 i← N ;
7 while i ≥ 1 do
8 Compute L[i]; // by Equation (2)
9 i−−;

10 return L[1];

Algorithm 3.2 lists MINSEGMENTS, a dynamic-
programming solution to Problem 1 that gets each
starting point’s reach(Line 3) via Procedure 3.1 and
recursively derives the least PLA length from ti (Line 8):

L(i) =


mini<j≤i+ri{L(j + 1) + 1}, i < n

1, i = n

0, i > n

(2)

reach1 = 4 L(1) = 1 + L(4) = 2

reach2 = 2 L(2) = 1 + L(4) = 2

reach3 = 2 L(3) = 1 + L(6) = 3

reach4 = 8 L(4) = 1

reach5 = 4 L(5) = 1 + L(10) = 2

reach6 = 3 L(6) = 1 + L(10) = 2

reach7 = 5 L(7) = 1

reach8 = 4 L(8) = 1

reach9 = 3 L(9) = 1

reach10 = 2 L(10) = 1

reach11 = 1 L(11) = 1

t1
|

t2
|

t3
|

t4
|

t5
|

t6
|

t7
|

t8
|

t9
|
t10
|
t11
|
t12
|

Figure 4: Computing least PLA sequence length.

Figure 4 depicts MINSEGMENTS’s computa-
tion for the signal of Figure 2c. The left
side shows the reach of starting points, while
the right side computes the optimal PLA se-
quence length starting from each point via
Equation (2). Since r1 = 4, the first segment
may end at any of ⟨t2, t3, t4, t5⟩. With L(2),
L(3), and L(5) larger than 1, and L(4) = 1,
we end the first segment at t3 and approximate
the signal using only two segments, exploit-
ing the large reach r4. MINSEGMENTS (Algo-
rithm 3.2) returns a globally optimal solution
to Problem 1 via the recursive minimization in
Equation (2) in O(Rn) time, where R is the maximum reach in the signal, as each recursion step
is linear in ri for each i. For small maximum error thresholds, R is typically a small constant.
Our implementation of Algorithm 3.2 also returns the starting points and bounding slopes (as in
Section 3.1) of segments in the minimum-length PLA sequence, along with the sequence length.

3.3 TAILORPIECEDP ALGORITHM

Each segment in the PLA of Algorithm 3.2 has two bounding slopes defining its admissible slope
range for line segments that approximate the data therein. We define slope interval size as follows.

Definition 2 The slope interval size Ik of segment kth is the gap between its upper and lower slopes.

In Figure 2a, I1 = a−u3
− a−l3 , and in Figure 2b, I1 = a+u4

− a+l3 .

By MIXPIECE’s storage model, we aim to merge and jointly represent segments with coinciding
starting points and overlapping slope intervals. However, Equation (2) may miss the best com-
pression: it shortens the PLA sequence yet overlooks the slope interval sizes of the segments it
creates. Larger intervals are preferable, as they are more likely to overlap. Accordingly, we en-
hance MINSEGMENTS to TAILORPIECEDP, which yields segments with larger slope intervals to
boost overlap among them and enable further segment grouping. To craft TAILORPIECEDP, we
refine TAILORPIECEDP’s objective to a composite function C(i) that favors both large slope inter-
vals and few segments starting at timestamp ti, i ≥ 1. The average slope interval size over L(i)

segments is
∑L(i)

k=1 Ik
L(i) . To modulate the influence of individual slope interval sizes, we introduce an

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

exponent p ∈ [0, 1] on the numerator terms, yielding
∑L(i)

k=1 Ik
p

L(i) . To ease the recursion, we define the

numerator aggregate as S(i) =
∑L(i)

k=1 Ik
p. For p = 0, the fraction equals 1, as the number of seg-

ments divided by itself. For p > 0, it favors many short segments that yield large slope intervals. To
counter this effect and favor fewer segments, we additionally normalize by L(i), yielding a squared
denominator in our composite objective: C(i) = S(i)

L(i)2 .

Problem 2 Given a data sequence s: (ti, vi), i ∈ {1, . . . , n}, and a maximum absolute error thresh-
old ϵ, find a PLA sequence of disjoint linear segments, each starting from an ϵ-quantized value, that
approximates s within ϵ and maximizes C(i) = S(i)

L(i)2 .

Equation (3) solves Problem 2 by recursively maximizing C(i); I(i, j) denotes the slope interval
size of the segment from ti to tj , while S(i) and L(i) assume the values of the optimizing numerator
and denominator, respectively, in each recursion step.

C(i) =


maxi<j≤i+ri

{
S(j+1)+I(i,j)p

(L(j+1)+1)2

}
i < n

1 i = n

0 i > n

(3)

TAILORPIECEDP replaces L[i] with {C[i], S[i], L[i]} in Lines 8 and 10 and returns C[1] in
place of L[1] in Line 10 of Algorithm 3.2. Exponent p enables fine-grained control and links
TAILORPIECEDP to MINSEGMENTS: p = 0 reduces TAILORPIECEDP to minimizing segments,
as MINSEGMENTS does. In our experiments, TAILORPIECEDP with a broad range of p values
outperform MINSEGMENTS across datasets.

3.4 TAILORPIECEGD ALGORITHM

t1

|
t2

|
t3

|
t4

|
t5

|
t6

|
t7

|
t8

|
t9

|
t10

|
t11

|
t12

|

reach1

reach3

reach4

reach5

reach6

TailorPieceGD PLA

Figure 5: TAILORPIECEGD ends the first
segment at t3 to reach t12 with two segments.

TAILORPIECEDP seeks a PLA sequence that ap-
proximates a signal within a threshold ϵ using seg-
ments with ϵ-quantized starting values and maxi-
mizes C(i) = S(i)

L(i)2 . However, optimality comes
at the cost of higher computational overhead.

Algorithm 3.3: TAILORPIECEGD (s, ϵ)
Input: Data signal s: ⟨ti, vi⟩ ∀i ∈ {1, . . . , n}, error threshold ϵ
Output: Array b intervals mapping each quantized value to ⟨al, au, t⟩ tuple list

1 Function TAILORPIECEGD (s, ϵ)
2 b intervals← {{}, . . . , {}}; ⟨ts, vs⟩ ← s.next();
3 b− ← ⌊vs/ϵ⌋ϵ; b+ ← ⌈vs/ϵ⌉ϵ; // quantized starting points
4 au−←∞; al−←−∞; au+←∞; al+←−∞; // slope intervals
5 floor ← true; ceil← true; diff ← 0; i← 1;
6 jmin ← min{argmaxj∈[i+r

q
i
,i+ri]

{j + rj+1}}; // Equation (4)

7 while s.hasNext() do
8 ⟨tc, vc⟩ ← s.next();
9 i + +;

10 if vc>au−(tc−ts)+b−+ϵ or vc<al−(tc−ts)+b−−ϵ then
11 floor ← false;
12 if vc>au+(tc−ts)+b++ϵ or vc<al+(tc−ts)+b+−ϵ then
13 ceil← false;
14 if floor then diff + + ;
15 if ceil then diff −− ;
16 if i > jmin then // close segment when reaching jmin

17 if diff > 0 then b intervals[b−].add(
〈
al− , au− , ts

〉
) ;

18 else b intervals[b+].add(
〈
al+ , au+ , ts

〉
) ;

19 ⟨ts, vs⟩ ← ⟨tc, vc⟩;
20 b− ← ⌊vs/ϵ⌋ϵ; b+ ← ⌈vs/ϵ⌉ϵ;
21 au− ←∞; al− ← −∞; au+ ←∞; al+ ← −∞;
22 floor ← true; ceil← true; diff ← 0;
23 jmin ← argmaxj∈[i+r

q
i
,i+ri]

{j+rj+1}; // Equation (4)

24 if vc < au− (tc − ts) + b− − ϵ then // lower slope

25 au− ← vc+ϵ−b−
tc−ts

;

26 if vc > al− (tc − ts) + b− + ϵ then // raise slope

27 al− ←
vc−ϵ−b−

tc−ts
;

28 if vc < au+ (tc − ts) + b+ − ϵ then // lower slope

29 au+ ← vc+ϵ−b+

tc−ts
;

30 if vc > al+ (tc − ts) + b+ + ϵ then // raise slope

31 al+ ←
vc−ϵ−b+

tc−ts
;

32 if diff > 0 then b intervals[b−].add(
〈
al− , au− , ts

〉
) ;

33 else b intervals[b+].add(
〈
al+ , au+ , ts

〉
) ;

34 return b intervals;

Here, we propose TAILORPIECEGD, a greedy
algorithm that offers an attractive tradeoff be-
tween the efficiency of MIXPIECE (Kitsios
et al., 2024) and the effectiveness of TAILOR-
PIECEDP. Its core idea is to reduce the myopic
behavior of MIXPIECE by enhancing lookahead
when forming a segment. Figure 5 illustrates
an example where a segment starting at t1 may
reach t5. MIXPIECE would create this segment
and begin the next one at t6. However, we may
instead end the first segment earlier—at t2, t3
or t4—and start the next segment at the follow-
ing point. Among these alternatives, ending the
first segment at t3 leads to the best outcome, as
the long reach of r4 allows the next segment to
extend to t12, whereas segments starting after t2,
t4, or t5, may only reach up to t9. TAILOR-
PIECEGD, outlined in Algorithm 3.3, considers
several candidate endpoints j (beyond the de-
fault i+ ri used by MIXPIECE) for the segment
starting at i. For each j, it evaluates the reach of
the next segments starting at j + 1, and selects
the earliest point jmin among those that yield
the largest combined reach of the two segments.
Choosing the earliest qualifying endpoint pro-
motes larger slope intervals, as the breadth of a slope interval is a non-increasing function of seg-
ment length, and thereby enables more effective groupings. This exhaustive examination of end-

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

points reduces PLA sequence length and increases slope interval breadth, yet it also incurs a runtime
overhead. To manage this cost, we restrict the set of candidate endpoints for each segment using an
exponent parameter q ∈ [0, 1]:

jmin = min

{
argmax

j∈[i+rqi ,i+ri]

{
j + rj+1

}}
(4)

The rqi term in Equation (4) sets the minimum segment length. For q = 0, Equation (4) checks all el-
igible endpoints j, and, as our experiments show, gains space savings on par with or better than those
of MINSEGMENTS. The growth of q drops candidate endpoints near the segment’s start. Intuitively,
segments that underuse a starting point’s reach are unlikely to serve in the shortest PLA sequence.
By contrast, q near 1 curbs both search space and compression. At q = 1, TAILORPIECEGD reduces
to MIXPIECE, considering only the endpoint i+ ri for a segment starting at i.

4 EXPERIMENTAL RESULTS

We ran experiments on a 3.3GHz Intel® Core™i5-4590 machine with 6MB L3 cache and 16GB
DDR3 1.6GHz RAM. We implemented1 our algorithms in Java and compared performance against:

• Methods for the L∞ error metric:

– SLIDE2 (Elmeleegy et al., 2009), which optimally solves disjoint PLA using a convex hull.
– MIXED 2 (Luo et al., 2015), which finds a least-length PLA of mixed joint and disjoint segments.
– MIXPIECE3 (Kitsios et al., 2024), the leading method for jointly representing PLA segments.

• Methods designed for the L2 error metric:

– Bottom-Up4 (Keogh et al., 2001b), which merges in turn adjacent segments yielding least error.
– PAA (Keogh et al., 2001a), which represent equi-sized segments, each with the mean of its values.
– DFT (Cooley & Tukey, 1965), which uses the first few Discrete Fourier Transform features.
– HIRE5 (Barbarioli et al., 2023), which constructs a synopsis data structure through a recursion of

partitioning, piecewise approximation, and residualization steps at increasingly finer granularity.

• Camel6 (Yao et al., 2024), which separately compresses the integer and decimal parts of double-
precision floating-point numbers, to a precision of four decimal places.

We evaluate solutions on all datasets of the UCR Time Series Classification Archive7 that do not
contain undefined values. Given that lossless algorithms (Yao et al., 2024) achieve compression
ratios up to 4, we relegated data that cannot be compressed by a ratio of at least 10 with ϵ = 1%
as unsuitable for PLA-based compression. Used SLIDE (Elmeleegy et al., 2009) to ensure fairness,
we compressed all data with a maximum error at 1% of the signal’s range and selected those that
attained compression greater than 10, ending up with 41 datasets, which we use in our experiments.
For completeness, we also report aggregate results for the entire archive.

4.1 PLA SEQUENCE LENGTH

We commence by assessing the length of produced PLA sequences. Table 1 reports the number of
segments MIXPIECE, MINSEGMENTS, TAILORPIECEGD and TAILORPIECEDP furnish, expressed
as a percentage over the minimum achievable disjoint PLA sequence length under a maximum error
threshold (Luo et al., 2015), obtained using SLIDE (Elmeleegy et al., 2009; O’Rourke, 1981), for
ten maximum error values in [1%, 10%] of the signal’s range.

1
https://anonymous.4open.science/r/pla-compression

2
https://cse.hkust.edu.hk/˜yike/PLAcode.rar

3
https://github.com/xkitsios/Mix-Piece_Sim-Piece

4
https://github.com/NickFoubert/simple-segment

5
https://github.com/gmersy/HIRE

6
https://github.com/yoyo185644/camel

7
https://www.cs.ucr.edu/˜eamonn/time_series_data/

6

https://anonymous.4open.science/r/pla-compression
https://cse.hkust.edu.hk/~yike/PLAcode.rar
https://github.com/xkitsios/Mix-Piece_Sim-Piece
https://github.com/NickFoubert/simple-segment
https://github.com/gmersy/HIRE
https://github.com/yoyo185644/camel
https://www.cs.ucr.edu/~eamonn/time_series_data/

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Table 1: Extra segments over the least floating-starting-
value disjoint segments by SLIDE.

Slide TAILORPIECEGD TAILORPIECEDP
ϵ (segments) MIXPIECE MINSEGMENTS

(q = 0) (p = 2−20)
1% 2786.0 +9.3% +6.6% +6.7% +6.6%
2% 1805.6 +7.9% +5.3% +5.4% +5.3%
3% 1419.0 +7.9% +5.5% +5.6% +5.5%
4% 1209.3 +7.5% +5.5% +5.6% +5.5%
5% 1051.1 +8.3% +6.0% +6.1% +6.0%
6% 939.7 +8.2% +6.1% +6.2% +6.1%
7% 839.2 +8.9% +6.7% +6.8% +6.7%
8% 758.4 +8.4% +6.6% +6.7% +6.6%
9% 696.9 +9.1% +7.4% +7.5% +7.4%

10% 646.3 +8.8% +7.0% +7.2% +7.0%

Table 1 shows that MIXPIECE pro-
duces PLA sequences 7.5% − −9.3%
longer than the minimum, leaving room
for improvement. MINSEGMENTS cuts
this to 5.3% − −7.4%, minimizing dis-
joint segments with ϵ−quantized start-
ing points, which favor grouping, while
SLIDE selects starting points freely,
thus produces shorter PLA sequences.
TAILORPIECEGD performs even bet-
ter: despite its greedy strategy, it adds only 0.1–0.2% segments over MINSEGMENTS for ϵ =
1% − −10%, yielding PLA lengths close to the optimum. TAILORPIECEDP produces the same
segments as MINSEGMENTS for small p (e.g., 2−20). Section 4.6 discusses the effect of p on TAI-
LORPIECEDP in more detail.

4.2 COMPRESSION RATIO COMPARISON

Next, we evaluate the effectiveness of our approaches against solutions that provide maximum error
guarantees, i.e., SLIDE (Elmeleegy et al., 2009), MIXED (Luo et al., 2015) and MIXPIECE (Kitsios
et al., 2024). We also report results for Camel (Yao et al., 2024), without considering the over-
head of timestamps, to provide a reference point with regard to the requirements of lossless data
representation. For the sake of brevity, we exclude PMC-MR (Lazaridis & Mehrotra, 2003), and
Swing (Elmeleegy et al., 2009) from this comparison, as these algorithms have been shown to un-
derperform compared to MIXPIECE in (Kitsios et al., 2024). Lastly, we discuss the results of the
Serf-XOR (Li et al., 2025) streaming floating-point compression algorithm, which produces very
modest savings compared to the PLA approaches evaluated here.

We measure compression ratio, i.e., the ratio of the number of bytes in the uncompressed represen-
tation to that in the compressed one, including the representation of values and timestamps, for each
method and dataset, considering that the timestamp and value of each point in the original signal
require 4 + 4 = 8 bytes.

Table 2 (in the Appendix) presents detailed results for maximum error8 5% and 10% of the sig-
nal’s range for the 41 selected time-series, as well as averages for the remaining ones, in the UCR
archive. Both MINSEGMENTS and TAILORPIECEGD improve compression ratio over MIXPIECE.
On average, MINSEGMENTS provides improvements over 18% and 16% for maximum error values
of 5% and 10% of the signal’s range, respectively, as the myopic nature of MIXPIECE’s first phase
hinders joint representation. TAILORPIECEGD attains space savings commensurate to, and at times
higher than, those of MINSEGMENTS, with a gain of 20% over MIXPIECE on average, as it explores
a larger search space than MIXPIECE. More impressively, TAILORPIECEGD gains over MINSEG-
MENTS; even though TAILORPIECEGD produces more segments than MINSEGMENTS (as Table 1
documents), it yields larger slope intervals, which are more likely to allow joint representations.

 0

 50

 100

 150

 200

 250

 1 2 3 4 5 6 7 8 9 10

TailorPieceGD (q=0, min)
MinSegments

TailorPieceGD (q=0, max)

C
o
m
p
r
e
s
s
i
o
n

R
a
t
i
o

ε (% range)

Figure 6: Using max instead of min
in Equation (4) hurts performance.

Figure 6 shows the effect of using the latest instead of the
earliest endpoint j among those that provide the largest com-
bined reach for each pair of consecutive segments in TAILOR-
PIECEGD, replacing the min with max in Equation (4). In-
terestingly, the use of max forfeits the advantage of TAILOR-
PIECEGD over MINSEGMENTS, yielding segments that are
less likely to be grouped. TAILORPIECEDP with a small value
of p yields the best compression ratio on all datasets (including
those that do not fit in Table 2), with average gains over MIX-
PIECE, surpassing 32% with ϵ at 5% and 10% and reaching a
maximum of 34% with ϵ = 7%. Table 2 (rest, all) also shows
that our solutions offer considerable improvements for the en-
tire UCR archive, which includes datasets that are inherently
harder to compress due to an unusually large variance among
their neighboring values. We omit the detailed results for the

8We omit detailed results for ϵ = 1% due to space constraints, but present average results in Figure 11a.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Serf-XOR (Li et al., 2025)9 streaming compression method from Table 2, as it provides very modest
space savings, offering an average compression ratio of 12.08 and 13.01 for maximum error values
of 5% and 10% of the signal’s range, respectively, for the 41 time series in our dataset. Considering
all time series, the compression ratio of Serf-XOR is 10.08 and 11.71 for ϵ = 5% and 10%, respec-
tively. The attained compression ratio does not improve significantly even with ϵ = 50%. As these
results are non-competitive, we exclude Serf-XOR from the remainder of our experimental analysis.

4.3 QUALITY OF APPROXIMATION

 0.01

 0.1

 60 70 80 90 100 110

PAA

DFT

Bottom-Up

Slide

Mixed

Mix-Piece

MinSegments

TailorPieceGD
(q=0)

TailorPieceDP

(p=2
-20

)

N
R
M
S
E

Compression Ratio

(a) Selected datasets of Table 2.

 0.01

 0.1

 30 40 50 60

PAA

DFT

Bottom−Up

Slide

Mixed

Mix−Piece

MinSegments

TailorPieceGD
(q=0)

TailorPieceDP

(p=2
−20

)

N
R
M
S
E

Compression Ratio

(b) All UCR archive datasets.
Figure 7: NRMSE vs. compression ratio; y-axis on log scale.

Our next experiment reports the
Normalized Root Mean Squared
Error (NRMSE) to assess approx-
imation quality; we use normalized
instead of plain RMSE, as value
ranges vary largely across datasets.
Figure 7 plots average NRMSE val-
ues vs. compression ratio, Fig-
ure 7a on the selected datasets of
Table 2 and Figure 7b on the entire
UCR archive. We include all algorithms that operate under a maximum error threshold and three
approaches that target L2, namely PAA (Keogh et al., 2001a), DFT (Cooley & Tukey, 1965), and
Bottom-Up (Keogh et al., 2001b). For each compression ratio, algorithms with maximum error
guarantees offer higher average approximation quality than those targeting L2, such as PAA (Keogh
et al., 2001a), DFT (Cooley & Tukey, 1965) and Bottom-Up (Keogh et al., 2001b). Our methods ad-
vance the state of the art, achieving lower NRMSE, hence more accurate PLA representations, than
SLIDE, MIXED and MIXPIECE under the same space limits. TAILORPIECEGD slightly outperforms
MINSEGMENTS, while TAILORPIECEDP attains the best quality by a wide margin. Figure 8 visu-
alizes the segments TAILORPIECEDP yields for Car dataset sample at ϵ = 1% and 5%, illustrating
how segment count and approximation quality drop as ϵ rises.

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5 TailorPieceDP (p=2
-20

) ε=1%
Time series

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5 TailorPieceDP (p=2
-20

) ε=5%
Time series

Figure 8: PLA segments, Car data sample.

 0

 50

 100

 150

 200

 250

Slide
Slide (Zst)

Mixed
Mixed (Zst)

Mix-Piece
Mix-Piece (Zst)

MinSegments
MinSegments (Zst)

TailorPieceGD (q=0)
TailorPieceGD (q=0, Zst)

TailorPieceDP (p=2
-20

)
TailorPieceDP (p=2

-20
, Zst)

C
o
m
p
r
e
s
s
i
o
n

r
a
t
i
o

(

ε

=

5
%
)

Figure 9: General compression.

4.4 GENERAL-PURPOSE COMPRESSION GAINS

 0.01

 0.1

 80 100 120 140 160

PAA (Zst)

DFT (Zst)

HIRE (TRC)

Bottom-Up (Zst)

Slide (Zst)

Mixed (Zst)

Mix-Piece (Zst)

MinSegments (Zst)

TailorPieceGD
(q=0, Zst)

TailorPieceDP

(p=2
-20

, Zst)

N
R
M
S
E

Compression Ratio

Figure 10: NMRSE with general com-
pression on outputs; y-axis on log scale.

Figure 9 shows the effect of lossless general-purpose
compression, Zstandard (Collet, 2015), on outputs
with ϵ = 5%. Our methods yield the largest over-
all savings. Figure 10 shows results for L2-targeting
algorithms—PAA (Keogh et al., 2001a), DFT (Cooley
& Tukey, 1965), Bottom-Up (Keogh et al., 2001b), and
HIRE (Barbarioli et al., 2023)—using ZStandard, except
for HIRE, which uses TRC10. General-purpose compres-
sion boosts the quality-space tradeoff but retains the algo-
rithm ranking: MINSEGMENTS, TAILORPIECEGD, and
TAILORPIECEDP still offer the best tradeoff. HIRE per-
forms significantly worse.

9
https://github.com/Spatio-Temporal-Lab/Serf

10
https://github.com/powturbo/Turbo-Range-Coder

8

https://github.com/Spatio-Temporal-Lab/Serf
https://github.com/powturbo/Turbo-Range-Coder

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

4.5 COMPRESSION/TIME TRADEOFF

Figure 11 reports compression times and ratios for our algorithms and competitors. We average
measurements over the datasets of Table 2 and normalize times by dataset size. TAILORPIECEGD
and TAILORPIECEDP traces show performance across q ∈ [0, 0.99] and p ∈ [0, 2−20], with MIN-
SEGMENTS corresponding to TAILORPIECEDP at p = 0. Our methods outperform competitors:
TAILORPIECEDP at p = 2−20 achieves the highest space savings, improved by 20%, 32% and 32%
over MIXPIECE for ϵ = 1%, 5% and 10%, respectively. TAILORPIECEGD with q = 0 ranks sec-
ond, improving by 13%, 20% and 20% over MIXPIECE. MINSEGMENTS (i.e., TAILORPIECEDP
with p = 0) yields slightly worse compression than TAILORPIECEGD, despite shorter PLA se-
quences, due to larger slope intervals that enable grouping.

 0.01

 0.1

 1

 10

 100

 1000

 10000

 30 40 50

TailorPieceDP
TailorPieceDP (p=0)

TailorPieceDP (p=2
-20

)
TailorPieceGD

TailorPieceGD (q=0)
TailorPieceGD (q=0.99)

Mix-Piece
Mixed
Slide

C
o
m
p
r
e
s
s
i
o
n

t
i
m
e

(

µ
s
)

Compression Ratio

Epsilon = 1%

(a)

 0.01

 0.1

 1

 10

 100

 1000

 10000

 80 100 120 140 160

TailorPieceDP
TailorPieceDP (p=0)

TailorPieceDP (p=2
-20

)
TailorPieceGD

TailorPieceGD (q=0)
TailorPieceGD (q=0.99)

Mix-Piece
Mixed
Slide

C
o
m
p
r
e
s
s
i
o
n

t
i
m
e

(

µ
s
)

Compression Ratio

Epsilon = 5%

(b)

 0.01

 0.1

 1

 10

 100

 1000

 10000

 140 170 200 230 260

TailorPieceDP
TailorPieceDP (p=0)

TailorPieceDP (p=2
-20

)
TailorPieceGD

TailorPieceGD (q=0)
TailorPieceGD (q=0.99)

Mix-Piece
Mixed
Slide

C
o
m
p
r
e
s
s
i
o
n

t
i
m
e

(

µ
s
)

Compression Ratio

Epsilon = 10%

(c)
Figure 11: Compression time per data record vs ratio at different error thresholds.

Whereas TAILORPIECEDP incurs a notable runtime overhead, as its compression time matches that
of MINSEGMENTS, making TAILORPIECEDP with small p the preferred choice when reducing
space is key. TAILORPIECEGD runs two orders of magnitude faster than the dynamic-programming
approaches with q = 0, offering an attractive tradeoff between compression ratio and execution
time. As Figure 11 shows, higher q further enhances this tradeoff, with compression time on par
with MIXPIECE and space savings competitive vs. q = 0. In effect, TAILORPIECEGD excels when
compression speed matters most.

Figure 12 (in the Appendix) plots average decompression time, which is often more crucial than
compression time, as data is written once but read repeatedly. Our methods surpass MIXPIECE.
SLIDE and MIXED lag due to computing slope-intercept equations during decompression.

4.6 FAVORING SEGMENTS WITH LARGE INTERVALS

The dynamic-programming MINSEGMENTS algorithm minimizes PLA sequence length. However,
compression also depends on slope intervals. Larger intervals increase the chance of grouping sim-
ilar segments, boosting space savings, thus we favor segments with large slope intervals. Figure 13
(in the Appendix) illustrates the effect of exponent p of TAILORPIECEDP, which adjusts the effect
of slope interval size in the objective, on the datasets of Table 2. Large p values hurt compression,
as they drag TAILORPIECEDP to use more PLA segments (e.g., for p = 2−1 and ϵ = 10%, the
compression of TAILORPIECEDP is 15% worse than MINSEGMENTS). However, smaller p yields
sequence length on par with MINSEGMENTS and also enlarges average interval size, as it is apparent
for p < 2−6, yielding space savings above 7%, 12% and 13.9%, for ϵ equal to 1%, 5% and 10%,
respectively. The plateau beyond this point arises as p is small enough for TAILORPIECEDP to
match the optimal number of segments while creating larger intervals via Equation (1).

5 CONCLUSIONS

We presented techniques to build and compress piecewise linear segments for time-series storage:
MINSEGMENTS computes a minimum-length PLA with quantized starting values under a maximum
error threshold. TAILORPIECEDP refines this objective to render segments more amenable to joint
representation by common starting values and overlapping slope intervals, yielding extra space sav-
ings. Drawing on these insights, TAILORPIECEGD offers a tunable tradeoff between compression
and runtime by limiting its greedy-search space. Experiments show TAILORPIECEGD attains space
savings near MINSEGMENTS, vastly exceeding the state of the art, and runs two orders of magnitude
faster and on par with existing approaches.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

REFERENCES

Azim Afroozeh, Leonardo X. Kuffo, and Peter A. Boncz. ALP: adaptive lossless floating-point
compression. Proc. ACM Manag. Data, 1(4):230:1–230:26, 2023.

Luigi Atzori, Antonio Iera, and Giacomo Morabito. The internet of things: A survey. Com-
puter Networks, 54(15):2787–2805, 2010. ISSN 1389-1286. doi: https://doi.org/10.1016/j.
comnet.2010.05.010. URL https://www.sciencedirect.com/science/article/
pii/S1389128610001568.

Bruno Barbarioli, Gabriel Mersy, Stavros Sintos, and Sanjay Krishnan. Hierarchical residual en-
coding for multiresolution time series compression. Proc. ACM Manag. Data, 1(1):99:1–99:26,
2023.

Alessio Botta, Walter de Donato, Valerio Persico, and Antonio Pescapé. Integration of cloud
computing and internet of things: A survey. Future Generation Computer Systems, 56:684–
700, 2016. ISSN 0167-739X. doi: https://doi.org/10.1016/j.future.2015.09.021. URL https:
//www.sciencedirect.com/science/article/pii/S0167739X15003015.

Xinyu Chen, Jiannan Tian, Ian Beaver, Cynthia Freeman, Yan Yan, Jianguo Wang, and Dingwen
Tao. FCBench: Cross-domain benchmarking of lossless compression for floating-point data,
2024.

Yann Collet. Zstd, 2015. URL https://facebook.github.io/zstd.

James W. Cooley and John W. Tukey. An algorithm for the machine calculation of complex fourier
series. Mathematics of Computation, 19(90):297–301, 1965. ISSN 00255718, 10886842. URL
http://www.jstor.org/stable/2003354.

Hazem Elmeleegy, Ahmed K. Elmagarmid, Emmanuel Cecchet, Walid G. Aref, and Willy
Zwaenepoel. Online piece-wise linear approximation of numerical streams with precision guar-
antees. Proc. VLDB Endow., 2(1):145–156, 2009.

F. Gritzali and G. Papakonstantinou. A fast piecewise linear approximation algorithm. Signal Pro-
cessing, 5(3):221–227, 1983.

Peeyush Gupta, Michael J. Carey, Sharad Mehrotra, and Roberto Yus. SmartBench: A benchmark
for data management in smart spaces. Proc. VLDB Endow., 13(11):1807–1820, 2020.

Udaiprakash I. Gupta, D. T. Lee, and Joseph Y.-T. Leung. Efficient algorithms for interval graphs
and circular-arc graphs. Networks, 12(4):459–467, 1982.

S. Louis Hakimi and Edward F. Schmeichel. Fitting polygonal functions to a set of points in the
plane. CVGIP Graph. Model. Image Process., 53(2):132–136, 1991.

Søren Kejser Jensen, Torben Bach Pedersen, and Christian Thomsen. Modelardb: Modular model-
based time series management with spark and cassandra. Proc. VLDB Endow., 11(11):1688–1701,
2018.

Søren Kejser Jensen, Torben Bach Pedersen, and Christian Thomsen. Demonstration of ModelarDB:
Model-based management of dimensional time series. In SIGMOD, pp. 1933–1936, 2019.

Panagiotis Karras and Nikos Mamoulis. Hierarchical synopses with optimal error guarantees. ACM
Trans. Database Syst., 33(3):18:1–18:53, 2008.

Eamonn J. Keogh, Kaushik Chakrabarti, Michael J. Pazzani, and Sharad Mehrotra. Dimensionality
reduction for fast similarity search in large time series databases. Knowl. Inf. Syst., 3(3):263–286,
2001a. doi: 10.1007/PL00011669. URL https://doi.org/10.1007/PL00011669.

Eamonn J. Keogh, Selina Chu, David M. Hart, and Michael J. Pazzani. An online algorithm for
segmenting time series. In Proc. IEEE International Conference on Data Mining, pp. 289–296,
2001b.

10

https://www.sciencedirect.com/science/article/pii/S1389128610001568
https://www.sciencedirect.com/science/article/pii/S1389128610001568
https://www.sciencedirect.com/science/article/pii/S0167739X15003015
https://www.sciencedirect.com/science/article/pii/S0167739X15003015
https://facebook.github.io/zstd
http://www.jstor.org/stable/2003354
https://doi.org/10.1007/PL00011669

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Xenophon Kitsios, Panagiotis Liakos, Katia Papakonstantinopoulou, and Yannis Kotidis. Sim-piece:
Highly accurate piecewise linear approximation through similar segment merging. Proc. VLDB
Endow., 16(8):1910–1922, 2023.

Xenophon Kitsios, Panagiotis Liakos, Katia Papakonstantinopoulou, and Yannis Kotidis. Flexible
grouping of linear segments for highly accurate lossy compression of time series data. VLDB J.,
33(5):1569–1589, 2024.

Maximilian Kuschewski, David Sauerwein, Adnan Alhomssi, and Viktor Leis. BtrBlocks: Efficient
columnar compression for data lakes. Proc. ACM Manag. Data, 1(2):118:1–118:26, 2023.

Iosif Lazaridis and Sharad Mehrotra. Capturing sensor-generated time series with quality guaran-
tees. In ICDE, pp. 429–440, 2003.

Ruiyuan Li, Zechao Chen, Ruyun Lu, Xiaolong Xu, Guangchao Yang, Chao Chen, Jie Bao, and
Yu Zheng. Serf : Streaming error-bounded floating-point compression. Proc. ACM Manag. Data,
3(3):216:1–216:27, 2025.

Panagiotis Liakos, Katia Papakonstantinopoulou, and Yannis Kotidis. Chimp: Efficient lossless
floating point compression for time series databases. Proc. VLDB Endow., 15(11):3058–3070,
2022.

Panagiotis Liakos, Katia Papakonstantinopoulou, Thijs Bruineman, Mark Raasveldt, and Yannis
Kotidis. How to make your duck fly: Advanced floating point compression to the rescue. In Pro-
ceedings 27th International Conference on Extending Database Technology, EDBT 2024, Paes-
tum, Italy, March 25 - March 28, pp. 826–829. OpenProceedings.org, 2024.

Ge Luo, Ke Yi, Siu-Wing Cheng, Zhenguo Li, Wei Fan, Cheng He, and Yadong Mu. Piecewise linear
approximation of streaming time series data with max-error guarantees. In ICDE, pp. 173–184,
2015.

Joseph O’Rourke. An on-line algorithm for fitting straight lines between data ranges. Commun.
ACM, 24(9):574–578, 1981.

Theodosios Pavlidis. Waveform segmentation through functional approximation. IEEE Trans. Com-
puters, 22(7):689–697, 1973.

Tuomas Pelkonen, Scott Franklin, Paul Cavallaro, Qi Huang, Justin Meza, Justin Teller, and Kaushik
Veeraraghavan. Gorilla: A fast, scalable, in-memory time series database. Proc. VLDB Endow.,
8(12):1816–1827, 2015.

Henry Stone. Approximation of curves by line segments. Mathematics of Computation, 15(73):
40–47, 1961.

Li Da Xu, Wu He, and Shancang Li. Internet of things in industries: A survey. IEEE Trans. Ind.
Informatics, 10(4):2233–2243, 2014.

Yuanyuan Yao, Lu Chen, Ziquan Fang, Yunjun Gao, Christian S. Jensen, and Tianyi Li. Camel:
efficient compression of floating-point time series. Proc. ACM Manag. Data, 2(6):227:1–227:26,
2024.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

A APPENDIX

Table 2: Compression ratio comparison for ϵ = 5% and ϵ = 10% of the signal’s range.

5% 10.0%

C
A

M
E

L

SL
ID

E

M
IX

E
D

M
IX

P
IE

C
E

M
IN

SE
G

M
E

N
T

S

TA
IL

O
R

P
IE

C
E

G
D

(q
=

0
)

TA
IL

O
R

P
IE

C
E

D
P

(p
=

2
−
2
0
)

SL
ID

E

M
IX

E
D

M
IX

P
IE

C
E

M
IN

SE
G

M
E

N
T

S

TA
IL

O
R

P
IE

C
E

G
D

(q
=

0
)

TA
IL

O
R

P
IE

C
E

D
P

(p
=

2
−
2
0
)

Adiac 3.83 24.65 36.00 53.44 58.24 58.81 63.25 29.02 43.41 75.00 80.61 80.23 83.98
Beef 3.95 41.20 53.41 66.75 77.50 77.42 85.91 70.06 88.54 113.65 133.57 135.25 147.93
BirdChicken 3.81 40.35 56.34 59.60 71.20 70.77 77.06 55.65 78.77 84.45 109.74 107.86 126.61
Car 3.82 55.00 78.64 89.00 108.83 109.80 125.27 85.43 122.66 146.54 178.00 176.63 214.53
CinCECGTorso 4.03 248.45 349.04 352.11 419.07 432.90 477.04 413.22 523.56 558.27 669.46 713.65 746.27
DiatomSizeReduction 3.82 46.87 69.42 93.60 110.10 108.14 122.19 56.72 85.07 135.96 152.41 151.00 164.54
EthanolLevel 3.46 152.44 224.22 224.09 282.88 286.02 348.43 233.65 327.33 332.36 421.50 437.16 528.40
Fish 3.81 92.42 115.61 168.31 203.15 214.65 222.10 308.17 312.01 414.29 440.77 463.77 517.46
FreezerRegularTrain 3.70 63.23 67.68 131.30 148.42 148.89 152.58 91.66 95.56 238.59 233.78 244.28 248.68
Fungi 3.65 33.32 47.87 64.98 69.39 72.54 80.50 47.93 67.78 104.74 102.00 107.73 121.49
GunPoint 3.70 22.93 33.22 44.73 52.08 50.97 58.20 33.71 44.38 57.69 65.22 68.95 74.01
GunPointAgeSpan 2.84 30.12 37.88 54.95 63.39 64.24 71.23 57.72 67.48 100.93 120.45 125.54 132.10
GunPointMaleVersusFemale 2.99 30.63 38.30 55.97 64.47 65.36 72.37 59.24 72.16 103.80 123.56 128.09 135.57
GunPointOldVersusYoung 2.85 31.42 39.09 56.40 65.28 65.44 73.03 60.43 69.38 104.18 127.40 129.72 138.17
HandOutlines 3.90 180.02 269.91 293.15 377.18 374.71 473.93 212.77 280.90 292.72 423.73 444.20 487.51
Haptics 3.82 105.76 122.32 171.90 206.61 210.53 223.84 247.53 307.69 402.62 478.18 481.93 510.86
Herring 3.77 41.60 59.17 69.53 85.33 85.47 96.29 66.57 90.08 117.21 145.19 146.00 166.02
HouseTwenty 4.71 23.07 24.62 65.37 65.12 65.52 65.61 29.13 29.87 76.42 76.58 77.23 78.34
InlineSkate 3.81 226.50 306.28 304.18 373.66 378.79 418.63 386.85 536.19 519.82 616.33 638.98 746.97
LargeKitchenAppliances 4.23 104.06 121.80 195.79 205.66 211.42 214.02 162.34 182.15 314.22 324.68 332.23 354.93
Lightning2 3.90 80.00 100.17 141.95 154.08 159.54 169.40 185.95 226.03 313.00 330.27 358.71 373.48
Mallat 3.75 31.79 43.90 56.27 65.55 65.63 72.44 56.53 72.39 98.11 114.56 117.13 129.09
Meat 4.04 51.03 69.73 123.59 132.25 131.68 144.03 61.86 82.14 150.38 154.37 161.08 172.45
MixedShapesRegularTrain 3.84 67.32 94.30 104.41 123.80 124.15 143.88 95.60 128.95 149.25 188.19 188.28 221.42
NonInvasiveFetalECGThorax1 3.79 78.59 116.35 142.73 169.28 176.91 194.46 114.09 150.26 209.81 239.81 258.98 286.33
NonInvasiveFetalECGThorax2 3.79 75.99 113.19 139.25 163.03 171.27 184.97 115.08 146.31 209.15 235.71 253.49 278.45
PigAirwayPressure 3.93 199.20 287.36 296.52 390.24 391.39 425.99 284.09 416.67 442.97 536.19 569.80 643.09
PigArtPressure 3.65 38.66 52.77 66.51 80.92 82.14 90.59 75.47 92.29 129.01 140.40 161.65 170.87
PigCVP 3.73 48.08 60.42 66.81 82.35 80.89 90.39 118.69 133.33 159.05 201.26 197.53 210.80
Rock 3.92 357.14 465.12 466.74 519.48 539.81 557.10 719.42 847.46 911.16 1012.66 1010.10 1084.01
ShapesAll 3.82 42.03 58.31 70.65 84.87 84.46 96.25 61.26 84.14 105.08 133.38 131.73 152.56
SmallKitchenAppliances 4.21 38.39 45.45 93.09 93.20 95.03 96.15 50.02 59.56 113.99 114.81 120.59 121.10
StarLightCurves 3.81 170.79 234.74 231.68 287.36 293.79 332.23 236.97 343.05 344.38 428.95 456.36 541.64
Symbols 3.81 53.19 70.95 86.68 102.59 104.78 117.23 79.52 106.44 145.83 176.80 179.01 198.91
Trace 3.69 49.46 67.20 104.31 112.65 117.96 123.77 75.86 93.86 166.41 168.78 183.49 190.48
UMD 4.58 17.61 25.45 42.16 41.27 44.19 45.37 31.51 34.62 66.69 69.72 73.87 76.49
UWaveGestureLibraryX 3.83 50.26 66.38 83.02 98.79 101.37 113.07 107.99 120.85 169.24 209.42 212.99 228.57
UWaveGestureLibraryY 3.80 45.53 59.47 76.23 88.17 90.49 99.96 88.73 107.58 141.94 177.31 179.13 192.91
UWaveGestureLibraryZ 3.84 38.68 51.15 65.80 76.20 78.05 86.26 71.05 87.18 114.91 141.37 144.01 157.26
Wafer 3.74 25.40 26.56 63.87 66.05 66.81 68.06 100.81 118.27 198.12 194.03 215.69 226.12
Yoga 3.82 37.15 51.83 63.88 76.00 77.43 86.59 51.91 71.12 95.82 116.01 116.03 134.00
Average 3.80 77.81 105.16 126.86 149.16 151.95 167.31 133.91 169.45 212.87 246.52 255.61 280.84
Average (rest) 3.79 13.54 17.50 28.70 30.95 31.35 32.99 29.70 35.60 58.24 63.22 64.99 68.19
Average (all) 3.79 38.40 51.41 66.67 76.67 78.00 84.94 70.00 87.37 118.05 134.12 138.72 150.44

 0

 20

 40

 60

 80

 100

 120

 140

 160
Slide (1%)

Slide (5%)

Slide (10%)

Mixed (1%)

Mixed (5%)

Mixed (10%)

Mix-Piece (1%)

Mix-Piece (5%)

Mix-Piece (10%)

MinSegments (1%)

MinSegments (5%)

MinSegments (10%)

TailorPieceGD (q=0) (1%)

TailorPieceGD (q=0) (5%)

TailorPieceGD (q=0) (10%)

TailorPieceDP (p=2
-20

) (1%)

TailorPieceDP (p=2
-20

) (5%)

TailorPieceDP (p=2
-20

) (10%)

D
e
c
o
m
p
r
e
s
s
i
o
n

t
i
m
e

(
n
s
)

Figure 12: Decompression time per record.

-15%

-10%

-5%

0%

5%

10%

15%

2
-50

2
-40

2
-30

2
-20

2
-10

2
-2

ε = 10%
ε = 5%
ε = 1%

T
a
i
l
o
r
P
i
e
c
e
D
P

C
o
m
p
r
e
s
s
i
o
n

R
a
t
i
o

I
m
p
r
o
v
e
m
e
n
t

o
v
e
r

M
i
n
-
S
e
g
m
e
n
t
s

p

Figure 13: Average improvement vs. p.

12

	Introduction
	Background
	Overview
	Quantized reach
	Minimizing the number of segments
	TailorPieceDP algorithm
	TailorPieceGD algorithm

	Experimental Results
	PLA sequence length
	Compression Ratio Comparison
	Quality of Approximation
	General-Purpose Compression Gains
	Compression/time tradeoff
	Favoring segments with large intervals

	Conclusions
	Appendix

