
Published as a conference paper at ICLR 2023

UNDERSTANDING THE GENERALIZATION OF ADAM IN
LEARNING NEURAL NETWORKS WITH PROPER REGU-
LARIZATION

Difan Zou1, Yuan Cao2, Yuanzhi Li3, Quanquan Gu4

1 Department of Computer Science & Institute of Data Science, The University of Hong Kong
dzou@cs.hku.hk
2 Department of Statistics & Actuarial Science, The University of Hong Kong
yuancao@hku.hk
3 Machine Learning Department, Carnegie Mellon University
yuanzhil@andrew.cmu.edu
4 Department of Computer Science, University of California, Los Angeles
qgu@cs.ucla.edu

ABSTRACT

Adaptive gradient methods such as Adam have gained increasing popularity in
deep learning optimization. However, it has been observed in many deep learn-
ing applications such as image classification, Adam can converge to a different
solution with a worse test error compared to (stochastic) gradient descent, even
with a fine-tuned regularization. In this paper, we provide a theoretical expla-
nation for this phenomenon: we show that in the nonconvex setting of learn-
ing over-parameterized two-layer convolutional neural networks starting from the
same random initialization, for a class of data distributions (inspired from image
data), Adam and gradient descent (GD) can converge to different global solutions
of the training objective with provably different generalization errors, even with
weight decay regularization. In contrast, we show that if the training objective is
convex, and the weight decay regularization is employed, any optimization algo-
rithms including Adam and GD will converge to the same solution if the training
is successful. This suggests that the generalization gap between Adam and SGD
in the presence of weight decay regularization is closely tied to the nonconvex
landscape of deep learning optimization, which cannot be covered by the recent
neural tangent kernel (NTK) based analysis.

1 INTRODUCTION

Adaptive gradient methods (Duchi et al., 2011; Hinton et al., 2012; Kingma & Ba, 2015; Reddi
et al., 2018) such as Adam are very popular optimizers for training deep neural networks. By
adjusting the learning rate coordinate-wisely based on historical gradient information, they are
known to be able to automatically choose appropriate learning rates to achieve fast convergence
in training. Because of this advantage, Adam and its variants are widely used in deep learning.

Models AlexNet VGG-16 ResNet-18

SGD 75.22 93.25 94.62
Adam 73.08 92.19 92.93

Table 1: Test accuracy (%) comparison between
Adam and SGD on the CIFAR-10 dataset.

Despite their fast convergence, adaptive gradient
methods have been observed to achieve worse
generalization performance compared with gra-
dient descent and stochastic gradient descent
(SGD) (Wilson et al., 2017; Luo et al., 2019;
Chen et al., 2020; Zhou et al., 2020) in many
deep learning tasks such as image classification
(we have done some simple deep learning exper-
iments to justify this, the results are reported in
Table 1). Even with explicit weight decay regu-
larization, achieving good test error with adaptive gradient methods seems to be challenging. More-
over, we have also visualized the first layer of AlexNet trained by Adam and SGD in Figure 1, where

1

Published as a conference paper at ICLR 2023

we can also observe a clear difference between Adam and SGD: the model learned by Adam is more
“noisy” than that learned by SGD.

Several recent works provided theoretical explanations of this generalization gap between Adam
and GD by showing that Adam and GD have different implicit bias. Wilson et al. (2017); Agarwal
et al. (2019) considered a setting of linear regression, and showed that Adam can fail when learning
an overparameterized linear model on certain specifically designed data, while SGD can learn the
linear model to achieve zero test error. This example in linear regression offers valuable insights into
the difference between SGD and Adam. However, there is a gap between their theoretical results
and the practical observations, since they consider a convex optimization setting, and the difference
between Adam and SGD will no longer be observed when adding weight decay regularization.
In fact, as we will show in this paper (Theorem 4.2), regularization can successfully correct the
different implicit bias and push different algorithms to find the same solution, since the regularized
training loss function of a convex model becomes strongly convex, which exhibits one unique global
optimum. For this reason, we argue that the example in the convex setting cannot fully capture the
differences between GD and Adam for training neural networks. More recently, Zhou et al. (2020)
studied the expected escaping time of Adam and SGD from a local basin, and utilized this to explain
the difference between SGD and Adam. However, their results do not take NN architecture into
consideration, and do not provide an analysis of test errors either.

In this paper, we aim at answering the following question
Why is there a generalization gap between Adam and gradient descent in learning neural networks,
even with weight decay regularization?
Specifically, we study Adam and GD for training neural networks with weight decay regularization
on an image-like data model, and demonstrate the different behaviors of Adam and GD based on
the notion of feature learning/noise memorization decomposition. Inspired by the experimental
observation in Figure 1 where Adam tends to overfit the noise component of the data, we consider
a model where the data are generated as a combination of feature and noise patches, and analyze
the convergence and generalization of Adam and GD for training a two-layer convolutional neural
network (CNN). The contributions of this paper are summarized as follows.

• We establish global convergence guarantees for Adam and GD with weight decay regularization.
We show that, starting at the same random initialization, Adam and GD can both train a two-layer
convolutional neural network to achieve zero training error after polynomially many iterations,
despite the nonconvex optimization landscape.

• We further show that GD and Adam in fact converge to different global solutions with different
generalization performance: when performed on the considered image-like data model, GD can
achieve nearly zero test error, while the generalization performance of the model found by Adam
is no better than a random guess. In particular, we show that the reason for this gap is due to the
different training behaviors of Adam and GD: Adam is more likely to fit dense noises and output
a model that is largely contributed by the noise patches; GD prefers to fit training data using their
feature patch and finds a solution that is mainly composed by the true features.

• We also show that for convex settings with weight decay regularization, both Adam and gradient
descent converge to the same solution and therefore have no test error difference. This suggests
that the difference between Adam and GD cannot be fully explained by linear models or neural
networks trained in the “almost convex” neural tangent kernel (NTK) regime (Jacot et al., 2018;
Allen-Zhu et al., 2019b; Du et al., 2019a; Zou et al., 2019). It also demonstrates that the inferior
generalization performance of Adam is closely tied to the nonconvex landscape of deep learning
optimization, and cannot be solved by adding regularization.

2 RELATED WORK

In this section, we discuss the works that are closely related to our paper.
Generalization gap between Adam and SGD. The worse generalization of Adam compared with
SGD has also been observed by some recent works and has motivated new variants of neural net-
work training algorithms. Keskar & Socher (2017) proposed to switch between Adam and SGD
to achieve better generalization. Merity et al. (2018) proposed a variant of the averaged stochastic
gradient method to achieve good generalization performance for LSTM language models. Luo et al.
(2019) proposed to use dynamic bounds on learning rates to achieve a smooth transition from adap-
tive methods to SGD to improve generalization. Our theoretical results for GD and Adam can also

2

Published as a conference paper at ICLR 2023

(a) Adam (b) SGD

Figure 1: Visualization of the first layer of AlexNet trained by Adam and SGD on the CIFAR-10
dataset. Both algorithms are run for 100 epochs with weight decay regularization and standard data
augmentations. Clearly, the model learned by Adam is more “noisy” than that learned by SGD,
implying that Adam is more likely to overfit the noise in the training data.
provide theoretical insights into the effectiveness of these empirical studies.
Optimization and generalization in deep learning. Our work is also closely related to the recent
line of work studying the optimization and generalization guarantees of neural networks in the neu-
ral tangent kernel (NTK) regime (Jacot et al., 2018) or lazy training regime (Chizat et al., 2019). In
particular, recent works (Du et al., 2019b;a; Allen-Zhu et al., 2019b; Zou et al., 2019) showed that
the optimization only happens within a small neighborhood region around the random initialization
and proved the global convergence of GD and SGD when the neural network is sufficiently wide.
Moreover, the generalization ability of GD/SGD has been further studied in the same setting (Allen-
Zhu et al., 2019a; Arora et al., 2019a;b; Ji & Telgarsky, 2020; Chen et al., 2021), which suggests
that wide neural network trained by GD/SGD can learn a low-dimensional function class. Moreover,
Allen-Zhu & Li (2019); Bai & Lee (2019) initiated the study of learning neural networks beyond the
NTK regime as it differs from the practical DNN training. Our analysis in this paper is also beyond
NTK, and gives a detailed comparison between GD and Adam.
Feature learning by neural networks. This paper is also closely related to several recent works
that studied how neural networks can learn features. Allen-Zhu & Li (2020a) showed that adversar-
ial training purifies the learned features by removing certain “dense mixtures” in the hidden layer
weights of the network. Allen-Zhu & Li (2020b) studied how ensemble and knowledge distillation
work in deep learning when the data have “multi-view” features. Frei et al. (2022b) studied the fea-
ture learning for two-layer networks, and demonstrated its superior performance than linear models.
Shen et al. (2022) explored the benefit of data augmentation by showing its ability to achieve more
effective feature learning. This paper studies a different aspect of feature learning by Adam and GD,
and shows that GD can learn the features while Adam may fail even with proper regularization.

3 PROBLEM SETUP AND PRELIMINARIES

We consider learning a CNN with Adam and GD based on n independent training examples
{(xi, yi)}ni=1 generated from a data model D. In the following. we first introduce our data model
D, and then explain our neural network model and the details of the training algorithms.
Data model. We consider a data model where the data inputs consist of feature and noise patches.
Such a data model is motivated by image classification problems where the label of an image usually
only depends on part of an image, and the other parts of the image showing random objects, or fea-
tures that belong to other classes, can be considered as noises. When using CNN to fit the data, the
convolution operation is applied to each patch of the data input separately. We claim that our data
model is more practical than those considered in Wilson et al. (2017); Reddi et al. (2018), which
are handcrafted for showing the failure of Adam in term of either convergence or generalization (de-
tailed illustrations of the data models in these works are deferred to the appendix). For simplicity, we
only consider the case where the data consists of one feature patch and one noise patch. However,
our result can be easily extended to cover the setting where there are multiple feature/noise patches.
The detailed definition of our data model is given in Definition 3.1 as follows.
Definition 3.1. Each data point (x, y) with x ∈ R2d and y ∈ {−1, 1} is generated as follows:
x = [x>1 ,x

>
2]>, where one of x1 and x2 denotes the feature patch that consists of a feature vector

3

Published as a conference paper at ICLR 2023

y · v, which is assumed to be 1-sparse, and the other one denotes the noise patch and consists of
a noise vector ξ. Without loss of generality, we assume v = [1, 0, . . . , 0]>. The noise vector ξ is
generated according to the following process:

• Randomly select s coordinates from [d]\{1} uniformly, denoted as a vector s ∈ {0, 1}d.
• Generate ξ from distributionN (0, σ2

pI), and then mask off the first coordinate and other d−s−1
coordinates, i.e., ξ = ξ � s.

• Add feature noise to ξ, i.e., ξ = ξ − αyv, where 0 < α < 1 is the strength of the feature noise.

In particular, throughout this paper we set d = Ω(n4), s = Θ
(
d1/2

n2

)
, σ2

p = Θ
(

1
s·polylog(n)

)
and

α = Θ
(
σp · polylog(n)

)
.

The most natural way to think of our data model is to treat x as the output of some intermediate
layer of a CNN. In literature, Papyan et al. (2017) pointed out that the outputs of an intermediate
layer of a CNN are usually sparse. Yang (2019) also discussed the setting where the hidden nodes
in such an intermediate layer are sampled independently. This motivates us to study sparse features
and entry-wisely independent noises in our model. In this paper, we focus on the case where the
feature vector v is 1-sparse and the noise vector is s-sparse for simplicity. However, these sparsity
assumptions can be generalized to the settings where the feature and the noises are denser, as long
as the sparsity gap between feature and noises exists.

Note that in Definition 3.1, each data input consists of two patches: a feature patch yv that is
positively correlated with the label, and a noise patch ξ which contains the “feature noise” −αyv
as well as random Gaussian noises. Importantly, the feature noise −αyv in the noise patch plays
a pivotal role in both the training and test processes, which connects the noise overfitting in the
training process and the inferior generalization ability in the test process.

Moreover, we would like to clarify that the data distribution considered in our paper is an extreme
case where we assume there is only one feature vector and all data has a feature noise, since we
believe this is the simplest model that captures the fundamental difference between Adam and SGD.
With this data model, we aim to show why Adam and SGD perform differently. Our theoretical
results and analysis techniques can also be extended to more practical settings where there are mul-
tiple feature vectors and multiple patches, each data can either contain a single feature or multiple
features, together with pure random noise or feature noise.

Two-layer CNN model. We consider a two-layer CNN model F using truncated polynomial acti-
vation function σ(z) = (max{0, z})q and fix the weights of second layer to be all 1’s, where q ≥ 3.
Given the data (x, y), the j-th output of the CNN can be formulated as

Fj(W,x) =

m∑
r=1

[
σ(〈wj,r,x1〉) + σ(〈wj,r,x2〉)

]
=

m∑
r=1

[
σ(〈wj,r, y · v〉) + σ(〈wj,r, ξ〉)

]
, (3.1)

wherem is the width of the network, wj,r ∈ Rd denotes the r-th CNN filter, and W is the collection
of model weights. For the ease of analysis, we set the output layer as all 1’s. Our analyses and results
can still be applied if we use random second layer weights.

Besides, the motivation of using polynomial ReLU activation function is to guarantee that the loss
function is (locally) smooth and the amplification ability of pattern learning. It can be replaced by a
smoothed ReLU activation function (e.g., the activation function used in Allen-Zhu & Li (2020b)).
If we assume the input data distribution is Gaussian, we can also deal with ReLU activation function
(Li et al., 2020). A set of similar smoothed ReLU-type activation functions have also been widely
considered to study the generalization performance of two-layer neural networks from different
aspects (Frei et al., 2022a; Cao et al., 2022; Shen et al., 2022; Chen et al., 2022). Moreover, we
would like to emphasize that x1 and x2 denote two data patches, which are randomly assigned with
feature vectors or noise vectors independently for each data point. The leaner has no knowledge
about which one is the feature patch (or noise patch).

In this paper we assume the width of the network is polylogarithmic in the training sample size, i.e.,
m = polylog(n). We assume j ∈ {−1, 1} in order to make the logit index be consistent with the
data label. Moreover, we assume that the each weight is initialized from a random draw of Gaussian
random variable ∼ N(0, σ2

0) with σ0 = Θ
(
d−1/4

)
.

4

Published as a conference paper at ICLR 2023

Training objective. Given the training data points {(xi, yi)}i=1,...,n, we consider to learn the model
parameter W by optimizing the empirical loss function with weight decay regularization

L(W) =
1

n

n∑
i=1

Li(W) +
λ

2
‖W‖2F , (3.2)

where Li(W) = − log eFyi (W,xi)∑
j∈{−1,1} e

Fj(W,xi)
denotes the individual loss for the data point (xi, yi) and

λ ≥ 0 is the regularization parameter. In particular, the regularization parameter can be arbitrary as
long as it satisfies λ ∈

(
0, λ0

)
with λ0 = Θ

(
1

d(q−1)/4n·polylog(n)

)
. We claim that the λ0 is the largest

feasible regularization parameter that the training process will not stuck at the origin point (recall
that L(W) admits zero gradient at W = 0.)

Training algorithms. In this paper, we consider full-batch gradient descent and Adam1. In particu-
lar, starting from W(0) = {w(0)

j,r , j = {±1}, r ∈ [m]}, the gradient descent update rule is

w
(t+1)
j,r = w

(t)
j,r − η · ∇wj,rL(W(t)),

where η is the learning rate. Meanwhile, Adam store historical gradient information in the momen-
tum m(t) and a vector v(t) as follows

m
(t+1)
j,r = β1m

(t)
j,r + (1− β1) · ∇wj,rL(W(t)), (3.3)

v
(t+1)
j,r = β2v

(t)
j,r + (1− β2) · [∇wj,rL(W(t))]2, (3.4)

and entry-wisely adjusts the learning rate:

w
(t+1)
j,r = w

(t)
j,r − η ·m

(t)
j,r/

√
v

(t)
j,r, (3.5)

where β1, β2 are the hyperparameters of Adam (a popular choice in practice is β1 = 0.9, and
β2 = 0.99), which are considered as constants in our paper, and in (3.4) and (3.5), the square
(·)2, square root

√
·, and division ·/· all denote entry-wise calculations. We would like to clarify the

original Adam paper (Kingma & Ba, 2015) considers to normalize the gradient m(t)
j,r via [v

(t)
j,r+ε]

1/2,
while the small bias term ε is ignored in our paper. In practice, tuning ε can help improve the
generalization ability of Adam (Choi et al., 2019), as it allows to make a trade-off between the
normalized gradient update and gradient update. We remark that considering tunable ε is beyond the
focus of this paper. For the ease of analysis, we do not consider the initialization bias correction in
the original Adam paper either and set m(0)

j,r = ∇wj,rL(W(0)) and v
(0)
j,r = [∇wj,rL(W(0))]2.

4 MAIN RESULTS

In this section we will state the main theorems in this paper. We first provide the learning guarantees
of Adam and Gradient descent for training a two-layer CNN model in the following theorem. Recall
that in this setting the training objective is nonconvex.
Theorem 4.1 (Nonconvex setting). Consider a two-layer CNN defined in (3.1) with d = Ω(n4)
and regularized training objective (3.2) with a regularization parameter λ > 0, suppose the network
width ism = polylog(n) and the data distribution follows Definition 3.1, then we have the following
guarantees on the training and test errors for the models trained by Adam and Gradient descent:

1. Suppose we run Adam for T = poly(n)
η iterations with η = 1

poly(n) , then with probability at least
1−O(n−1), we can find a NN model W∗

Adam such that ‖∇L(W∗
Adam)‖1 ≤ 1

Tη . Moreover, the
model W∗

Adam also satisfies:

• Training error is zero: 1
n

∑n
i=1 1

[
Fyi(W

∗
Adam,xi) ≤ F−yi(W∗

Adam,xi)
]

= 0.
• Test error is high: P(x,y)∼D

[
Fy(W∗

Adam,x) ≤ F−y(W∗
Adam,x)

]
≥ 1

2 .

2. Suppose we run gradient descent for T = poly(n)
η iterations with learning rate η = 1

poly(n) , then
with probability at least 1−O(n−1), we can find a NN model W∗

GD such that ‖∇L(W∗
GD)‖2F ≤

1
Tη . Moreover, the model W∗

GD also satisfies:

1Our theory can still hold for mini-batch stochastic gradient descent, which we will discuss in Appendix.

5

Published as a conference paper at ICLR 2023

• Training error is zero: 1
n

∑n
i=1 1

[
Fyi(W

∗
GD,xi) ≤ F−yi(W∗

GD,xi)
]

= 0.
• Test error is nearly zero: P(x,y)∼D

[
Fy(W∗

GD,x) ≤ F−y(W∗
GD,x)

]
= 1

poly(n) .

From the optimization perspective, Theorem 4.1 shows that both Adam and GD can be guaranteed
to find a point with a very small gradient, which can also achieve zero classification error on the
training data. Moreover, it can be seen that given the same iteration number T and learning rate η,
Adam can be guaranteed to find a point with up to 1/(Tη) gradient norm in `1 metric, while gradient
descent can only be guaranteed to find a point with up to 1/

√
Tη gradient norm in `2 metric. More

specifically, let ε be a sufficiently small quantity and ignoring other problem parameters, we can
set η = O(ε) for Adam and η = O(ε2) for GD, then Adam and GD will need T = O(ε2) and
T = O(ε4) to find a first-order ε-stationary point. This suggests that Adam could enjoy a faster
convergence rate compared to SGD in the training process, which is consistent with the practice
findings. We would also like to point out that there is no contradiction between our result and the
recent work (Reddi et al., 2019) showing that Adam can fail to converge, as the counterexample in
Reddi et al. (2019) is for the online version of Adam, while we study the full batch Adam.

In terms of the test performance, their generalization abilities are largely different, even with weight
decay regularization. In particular, the output of gradient descent can generalize well and achieve
nearly zero test error, while the output of Adam gives nearly 1/2 test error. In fact, this gap is due
to two major aspects of the training process: (1) At the early stage of training where weight decay
exhibits negligible effect, Adam and GD behave very differently. In particular, Adam prefers the
denser and thus tends to fit the noise vectors ξ, gradient descent prefers the data patch of larger `2
norm and thus will learn the feature patch; (2) At the late stage of training where the weight decay
regularization cannot be ignored, both Adam and gradient descent will be enforced to converge to a
local minimum of the regularized objective, which maintains the pattern learned in the early stage.
Consequently, the model learned by Adam will be biased towards the noise patch to fit the feature
noise vector −αyv, which is opposite in direction to the true feature vector and therefore leads to a
test error no better than a random guess. More details about the training behaviors of Adam and GD
are given in Section 5. Experimental justification are provided in Appendix.

Theorem 4.1 shows that when optimizing a nonconvex training objective, Adam and gradient descent
will converge to different global solutions with different generalization errors, even with weight
decay regularization. In comparison, the following theorem gives the learning guarantees of Adam
and gradient descent when optimizing convex and smooth training objectives (e.g., linear model
F (w,x) = w>x with logistic loss).

Theorem 4.2 (Convex setting). For any convex and smooth training objective with positive regu-
larization parameter λ, suppose we run Adam and gradient descent for T = poly(n)

η iterations,
then with probability at least 1 − n−1, the obtained parameters W∗

Adam and W∗
GD satisfy that

‖∇L(W∗
Adam)‖1 ≤ 1

Tη and ‖∇L(W∗
Adam)‖22 ≤ 1

Tη respectively. Moreover, let F (W,x) ∈ R be
the output of the convex model with parameter W and input x, it holds that:

• Training errors are the same, 1
n

∑n
i=1 1

[
sgn
(
F (W∗

Adam,xi)
)
6= sgn

(
F (W∗

GD,xi)
]

= 0.
• Test errors are nearly the same: P(x,y)∼D

[
sgn
(
F (W∗

Adam,xi)
)
6= sgn

(
F (W∗

GD,xi)
]
≤ 1

poly(n) .

Theorem 4.2 shows that when optimizing a convex and smooth training objective (e.g., a linear
model with logistic loss) with weight decay regularization, both Adam and gradient can converge
to almost the same solution and enjoy very similar generalization performance. The proof will
be relying on the strong convexity of the training objective and the convergence (to the first-order
stationary) guarantee of Adam (Défossez et al., 2020) and GD. Combining this result and Theorem
4.1, it is clear that the inferior generalization performance is closely tied to the nonconvex landscape
of deep learning, and cannot be understood by standard weight decay regularization.

5 PROOF OUTLINE OF THE MAIN RESULTS

In this section we provide the proof sketch of Theorem 4.1 and explain the different generalization
abilities of the models found by gradient descent and Adam.

Before moving to the proof of main results, we first give the following lemma which shows that for
data generated from the data distribution D in Definition 3.1, with high probability all noise vectors
{ξi}i=1,...,n have nearly disjoint supports.

6

Published as a conference paper at ICLR 2023

Lemma 5.1. Let {(xi, yi)}i=1,...,n be the training dataset generated by Definition 3.1. Moreover,
recall that xi = [yiv

>, ξ>i]> (or xi = [ξ>i , yiv
>]>), let Bi = supp(ξi)\{1} be the support of ξi

except the first coordinate. Then with probability at least 1− n−2, Bi ∩ Bj = ∅ for all i 6= j.

This lemma implies that the optimization of each coordinate of the model parameter W, except for
the first one, is mostly determined by only one training data. Technically, this lemma can greatly
simplify the analysis for Adam so that we can better illustrate its optimization behavior and explain
the generalization performance gap between Adam and gradient descent.

Proof outline. For both Adam and gradient descent, we will show that the training process can be
decomposed into two stages. In the first stage, which we call pattern learning stage, the weight
decay regularization will be less important and can be ignored, while the algorithms tend to learn
the pattern from the training data. In particular, we will show that in the pattern learning stage, the
optimization algorithms have different algorithmic bias: Adam tends to fit the noise patch while
gradient descent will mainly learn the feature patch. In the second stage, which we call it regular-
ization stage, the effect of regularization cannot be neglected, which will regularize the algorithm
to converge at some local stationary points. However, due to the nonconvex landscape of the train-
ing objective, the pattern learned in the first stage will remain unchanged, even when running an
infinitely number of iterations.

5.1 PROOF SKETCH FOR ADAM

Recall that in each iteration of Adam, the model weight is updated by using a moving-averaged
gradient, normalized by a moving average of the historical gradient squares. As pointed out in
Balles & Hennig (2018); Bernstein et al. (2018), Adam behaves similarly to sign gradient descent
(signGD) when using sufficiently small step size or the moving average parameters β1, β2 are nearly
zero, which is also justified in our Lemma C.2. Specifically, we show that when considering constant
β1 and β2, the Adam update on the coordinates with large gradient (e.g., |∇L(W(t))[k]| > η)
can be well approximated by the signGD update (i.e., sign(∇L(W(t))[k])). This motivates us to
understand the optimization behavior of signGD and then extends it to Adam using their similarities.
In particular, signGD updates the model parameter according to the following rule:

w
(t+1)
j,r = w

(t+1)
j,r − η · sgn(∇wj,rL(W(t))).

Recall that each data has a feature patch and a noise patch. By Lemma 5.1 and the data distribution
(see Definition 3.1), all noise vectors {ξi}i=1,...,n are supported on disjoint coordinates except the
first coordinate. For xi, let Bi denote its support excluding the first coordinate. In the subsequent
analysis, we will always assume that those Bi’s are disjoint, i.e., Bi ∩ Bj = ∅ if i 6= j.

Next we will characterize two aspects of the training process: feature learning and noise memoriza-
tion. Mathematically, we focus on two quantities: 〈w(t)

j,r, j · v〉 and 〈w(t)
yi,r, ξi〉. In particular, given

the training data point (xi, yi) with xi = [yiv
>, ξ>i]>, larger 〈w(t)

yi,r, yi · v〉 implies better feature
learning and larger 〈w(t)

yi,r, ξi〉 represents better noise memorization. Then regarding the feature
vector v that only has nonzero entry at the first coordinate, we have the following for signGD:

〈w(t+1)
j,r , jv〉 = 〈w(t)

j,r, jv〉 − η ·
〈
sgn
(
∇wj,rL(W(t))

)
, jv
〉

(5.1)

= 〈w(t)
j,r, jv〉+ jη · sgn

(n∑
i=1

yi`
(t)
j,i

[
σ′(〈w(t)

j,r, yiv〉)− ασ
′(〈w(t)

j,r, ξi〉)
]
− nλw(t)

j,r[1]

)
,

where `(t)j,i := 1yi=j −logitj(F,xi) and logitj(F,xi) = eFj(W,xi)∑
k∈{−1,1} e

Fk(W,xi)
. From (5.1) we can

observe three terms in the signed gradient. Specifically, the first term represents the gradient over the
feature patch, the second term stems from the feature noise term in the noise patch (see Definition
3.1), and the last term is the gradient of the weight decay regularization. On the other hand, the
memorization of the noise vector ξi can be described as follows.

〈w(t+1)
yi,r , ξi〉 − 〈w(t)

yi,r, ξi〉 = −η ·
〈
sgn
(
∇wyi,r

L(W(t))
)
, ξi
〉

(5.2)

= η
∑

k∈Bi∪{1}

sgn

(
`
(t)
yi,i
σ′(〈w(t)

yi,r, ξi〉)ξi[k]− nλw(t)
yi,r[k]

)
· ξi[k].

7

Published as a conference paper at ICLR 2023

Throughout the proof, we will show that the training process of Adam can be decomposed into two
stages: pattern learning stage and regularization stage. In the first stage, the algorithm learns the
pattern of training data quickly, without being affected by the regularization term. In the second
stage, the training data has already been correctly classified since the pattern has been well captured,
the regularization will play an important role in the training process and guide the model to converge.
Stage I: Learning the pattern. At the beginning of training, the neural network output is smaller
than some constant for all data, and therefore all training data remain under-fitted and can provide
large gradient for model training. We specify this stage of training as Stage I. In this stage, the effect
of weight decay regularization can be ignored due to our choice of λ. We will show that in this stage
the inner product 〈w(t)

yi,r, ξi〉 grows much faster than 〈w(t)
j,r, jv〉 since feature learning only makes

use of the first coordinate of the gradient, while noise memorization could take advantage of all the
coordinates in Bi (see (5.2), note that |Bi| = s� 1).
Lemma 5.2 (General results in Stage I). Suppose the training data is generated according to Defi-
nition 3.1, assume λ = o(σq−2

0 σp/n) and η = 1/poly(d), then for any t ≤ T0 with T0 = Õ
(

1
ηsσp

)
and any i ∈ [n],

〈w(t+1)
j,r , j · v〉 ≤ 〈w(t)

j,r, j · v〉+ Θ(η), 〈w(t+1)
yi,r , ξi〉 = 〈w(t)

yi,r, ξi〉+ Θ̃(ηsσp).

Since 〈w(t)
j,r, ξi〉 enjoys a much faster increasing rate than that of 〈w(t)

j,r, j · v〉, after a certain
number of iterations, the learning of noise patch will dominate the learning of feature patch (i.e.,
ασ′(〈w(t)

j,r, ξi〉) > σ′(〈w(t)
j,r, yiv〉)). Thus, by (5.1), the model will tend to fit the feature noise in the

noise patch (i.e., −αyiv), leading to a flipped feature learning phenomenon.
Lemma 5.3 (Flipping the feature learning). Suppose the training data is generated according to
Definition 3.1, α ≥ Θ̃

(
(sσp)

1−q ∨ σq−1
0

)
and σ0 < Õ((sσp)

−1), then for any t ∈ [Tr, T0] with
Tr = Õ

(
σ0

ηsσpα1/(q−1)

)
≤ T0,

〈w(t+1)
j,r , j · v〉 = 〈w(t)

j,r, j · v〉 −Θ(η).

Moreover, it holds that (1) w(T0)
j,r [1] = −sgn(j) · Ω̃

(
1
sσp

)
; (2) w(T0)

j,r [k] = sgn(ξi[k]) · Ω̃
(

1
sσp

)
or

w
(T0)
j,r [k] = ±Õ(η) for k ∈ Bi with yi = j; and (3) w(T0)

j,r [k] = ±Õ(η) otherwise.

From Lemma 5.3 it can be observed that at the iteration T0, the sign of the first coordinate of w(T0)
j,r

is different from that of the true feature, i.e., j · v. This implies that at the end of the first training
stage, the model is biased towards the noise patch to fit the feature noise.
Stage II: Regularizing the model. In this stage, as the neural network output becomes larger, part of
training data starts to be well fitted and gives smaller gradient. As a consequence, the feature learning
and noise memorization processes will be slowed down and the weight decay regularization term
cannot be ignored. However, although weight decay regularization can prevent the model weight
from being too large, it will maintain the pattern learned in Stage I and cannot push the model back
to “forget” the noise and learn the feature and stops at some local stationary points. We summarize
these results in the following lemma.
Lemma 5.4 (Maintain the pattern). If α = O

(
sσ2
p/n

)
and η = o(λ), then let r∗ =

arg maxr∈[m]〈w
(t)
yi,r, ξi〉, for any t ≥ T0, i ∈ [n], j ∈ {±1} and r ∈ [m], it holds that

〈w(t)
yi,r∗ , ξi〉 = Θ̃(1),

∑
k∈Bi

|w(t)
yi,r∗ [k]| · |ξi[k]| = Θ̃(1), 〈w(t)

j,r, sgn(j) · v〉 ∈ [−o(1), O(λ−1η)].

Lemma 5.4 shows that in the second stage, 〈w(t)
yi,r, ξi〉 will always be large while 〈w(t)

yi,r, yi · v〉 is
still negative, or positive but extremely small. Next we will show that within polynomial steps, the
algorithm can be guaranteed to find a point with small gradient.

Lemma 5.5 (Convergence guarantee). If η = O(d−1/2), then for any t it holds that

L(W(t+1))− L(W(t)) ≤ −η‖∇L(W(t))‖1 + Θ̃(η2d).

Lemma 5.5 shows that we can pick a sufficiently small η and T = poly(n)/η to ensure that the
algorithm can find a point with up toO(1/(Tη)) in `1 norm. Then we can show that given the results
in Lemma 5.4, the formula of the algorithm output W∗ can be precisely characterized, which we

8

Published as a conference paper at ICLR 2023

can show that 〈w∗yi,r, yi · v〉 < 0. This implies that the output model will be biased to fit the feature
noise −αyv but not the true one v. Then when it comes to a fresh test example the model will fail
to recognize its true feature. Also note that the noise in the test data is nearly independent of the
noise in training data. Consequently, the model will not be able to identify the label of the test data
and therefore cannot be better than a random guess.

5.2 PROOF SKETCH FOR GRADIENT DESCENT

Similar to the proof for Adam, we also decompose the entire training process into two stages.
Stage I: Learning the pattern. In this stage the gradient from training loss function is large and
and the effect of regularization can be ignored. Unlike Adam that is sensitive to the sparsity of the
feature vector or noise vector, gradient descent is more focusing on the `2 norm of them, where the
vector (which can be either feature or noise) with larger `2 norm is more likely to be discovered and
learned by GD. Note that the feature vector has a larger `2 norm than the noise, we can show that
gradient descent will learn the feature vector very quickly, while barely memorize the noise.

Lemma 5.6. Let Λ
(t)
j = maxr∈[m]〈w

(t+1)
j,r , j · v〉, Γ

(t)
j,i = maxr∈[m]〈w

(t)
j,r, ξi〉, and Γ

(t)
j =

maxi:yi=j Γ
(t)
j,i . Let Tj be the iteration number that Λ

(t)
j reaches Θ(1/m) = Θ̃(1), then we have

Tj = Θ̃(σ2−q
0) for all j ∈ {−1, 1}. Moreover, let T0 = maxj{Tj}, then for all t ≤ T0 it holds that

Γ
(t)
j = Õ(σ0) for all j ∈ {−1, 1}.

Stage II: Regularizing the model. Similar to Lemma 5.4, we show that in the second stage at
which the impact of weight decay regularization cannot be ignored, the pattern of the training data
learned in the first stage will remain unchanged.

Lemma 5.7. If η ≤ O(σ0), it holds that Λ
(t)
j = Θ̃(1) and Γ

(t)
j = Õ(σ0) for all t ≥ minj Tj .

The following lemma further shows that within polynomial steps, gradient descent is guaranteed to
find a point with small gradient.
Lemma 5.8. If the learning rate satisfies η = o(1), then for any t ≥ 0 it holds that

L(W(t+1))− L(W(t)) ≤ −η
2
‖∇L(W(t))‖2F .

Lemma 5.8 shows that we can pick a sufficiently small η and T = poly(n)/η to ensure that gradient
descent can find a point with up to O(1/(Tη)1/2) in `2 norm. By Lemma 5.7, it is clear that the
output model of GD can well learn the feature vector while memorizing nearly nothing from the
noise vectors, which can therefore achieve nearly zero test error.

Experiments. We perform experiments on synthetic data (generated according to Definition 3.1) to
validate our theoretical findings: Adam performs stronger noise memorization than feature learning
while GD performs stronger feature learning than noise memorization, when conducted on the data
distribution constructed in Definition 3.1. We consider both the two-layer CNN model studied in
this paper and a 5-layer CNN model for further justification. Experimental setup and results are
deferred to Appendix A due to the page limit.

6 CONCLUDING REMARKS AND FUTURE WORK

In this paper, we study the generalization of Adam and compare it with gradient descent. We show
that when training neural networks, Adam and GD starting from the same initialization can con-
verge to different global solutions of the training objective with significantly different generalization
errors, even with proper regularization. Our analysis reveals the fundamental difference between
Adam and GD in learning features or noise, and demonstrates that this difference is closely tied to
the nonconvex landscape of neural networks.

We would also like to remark several important research directions. First, our current result is
for two-layer networks. Extending the results to deep networks could be an important next step,
where we will not only look at the input data but also consider the output of each intermediate layer
as “input”. Second, our current data model is motivated by the image data (i.e., sparse feature and
denser noise), where Adam has been observed to perform worse than SGD in terms of generalization.
In fact, our theoretical analysis can lead to an opposite conclusion on the generalization comparison
between Adam and GD if the noise is sparse and the feature is denser. Therefore, it would also
be interesting to explore whether this is the case in other machine learning tasks such as natural
language processing, where Adam is often observed to perform better than SGD.

9

Published as a conference paper at ICLR 2023

ACKNOWLEDGEMENTS

We thank the anonymous reviewers and area chair for their helpful comments. YL is supported by
the National Science Foundation CCF-2145703. QG is supported in part by the National Science
Foundation CAREER Award 1906169, IIS-2008981 and the Sloan Research Fellowship.

REFERENCES

Naman Agarwal, Rohan Anil, Elad Hazan, Tomer Koren, and Cyril Zhang. Revisiting the general-
ization of adaptive gradient methods. 2019.

Zeyuan Allen-Zhu and Yuanzhi Li. What can ResNet learn efficiently, going beyond kernels? In
Advances in Neural Information Processing Systems, 2019.

Zeyuan Allen-Zhu and Yuanzhi Li. Feature purification: How adversarial training performs robust
deep learning. arXiv preprint arXiv:2005.10190, 2020a.

Zeyuan Allen-Zhu and Yuanzhi Li. Towards understanding ensemble, knowledge distillation and
self-distillation in deep learning. arXiv preprint arXiv:2012.09816, 2020b.

Zeyuan Allen-Zhu, Yuanzhi Li, and Yingyu Liang. Learning and generalization in overparameter-
ized neural networks, going beyond two layers. In Advances in Neural Information Processing
Systems, 2019a.

Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory for deep learning via over-
parameterization. In International Conference on Machine Learning, pp. 242–252, 2019b.

Sanjeev Arora, Simon Du, Wei Hu, Zhiyuan Li, and Ruosong Wang. Fine-grained analysis of op-
timization and generalization for overparameterized two-layer neural networks. In International
Conference on Machine Learning, pp. 322–332, 2019a.

Sanjeev Arora, Simon S Du, Wei Hu, Zhiyuan Li, Ruslan Salakhutdinov, and Ruosong Wang. On ex-
act computation with an infinitely wide neural net. In Advances in Neural Information Processing
Systems, 2019b.

Yu Bai and Jason D Lee. Beyond linearization: On quadratic and higher-order approximation of
wide neural networks. In International Conference on Learning Representations, 2019.

Lukas Balles and Philipp Hennig. Dissecting adam: The sign, magnitude and variance of stochastic
gradients. In International Conference on Machine Learning, pp. 404–413. PMLR, 2018.

Jeremy Bernstein, Yu-Xiang Wang, Kamyar Azizzadenesheli, and Animashree Anandkumar.
signsgd: Compressed optimisation for non-convex problems. In International Conference on
Machine Learning, pp. 560–569. PMLR, 2018.

Yuan Cao, Zixiang Chen, Mikhail Belkin, and Quanquan Gu. Benign overfitting in two-layer con-
volutional neural networks. arXiv preprint arXiv:2202.06526, 2022.

Jinghui Chen, Dongruo Zhou, Yiqi Tang, Ziyan Yang, Yuan Cao, and Quanquan Gu. Closing the
generalization gap of adaptive gradient methods in training deep neural networks. In International
Joint Conferences on Artificial Intelligence, 2020.

Zixiang Chen, Yuan Cao, Difan Zou, and Quanquan Gu. How much over-parameterization is suf-
ficient to learn deep relu networks? In International Conference on Learning Representations,
2021.

Zixiang Chen, Yihe Deng, Yue Wu, Quanquan Gu, and Yuanzhi Li. Towards understanding mixture
of experts in deep learning. arXiv preprint arXiv:2208.02813, 2022.

Lenaic Chizat, Edouard Oyallon, and Francis Bach. On lazy training in differentiable programming.
In Advances in Neural Information Processing Systems, 2019.

Dami Choi, Christopher J Shallue, Zachary Nado, Jaehoon Lee, Chris J Maddison, and
George E Dahl. On empirical comparisons of optimizers for deep learning. arXiv preprint
arXiv:1910.05446, 2019.

10

Published as a conference paper at ICLR 2023

Alexandre Défossez, Léon Bottou, Francis Bach, and Nicolas Usunier. A simple convergence proof
of adam and adagrad. arXiv preprint arXiv:2003.02395, 2020.

Simon Du, Jason Lee, Haochuan Li, Liwei Wang, and Xiyu Zhai. Gradient descent finds global
minima of deep neural networks. In International Conference on Machine Learning, pp. 1675–
1685, 2019a.

Simon S Du, Xiyu Zhai, Barnabas Poczos, and Aarti Singh. Gradient descent provably optimizes
over-parameterized neural networks. In International Conference on Learning Representations,
2019b.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of Machine Learning Research, 12(Jul):2121–2159, 2011.

Spencer Frei, Niladri S Chatterji, and Peter Bartlett. Benign overfitting without linearity: Neural
network classifiers trained by gradient descent for noisy linear data. In Conference on Learning
Theory, pp. 2668–2703. PMLR, 2022a.

Spencer Frei, Niladri S Chatterji, and Peter L Bartlett. Random feature amplification: Feature
learning and generalization in neural networks. arXiv preprint arXiv:2202.07626, 2022b.

Geoffrey Hinton, Nitish Srivastava, and Kevin Swersky. Neural networks for machine learning
lecture 6a overview of mini-batch gradient descent, 2012.

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and gen-
eralization in neural networks. In Advances in neural information processing systems, pp. 8571–
8580, 2018.

Ziwei Ji and Matus Telgarsky. Polylogarithmic width suffices for gradient descent to achieve ar-
bitrarily small test error with shallow relu networks. In International Conference on Learning
Representations, 2020.

Nitish Shirish Keskar and Richard Socher. Improving generalization performance by switching from
adam to sgd. arXiv preprint arXiv:1712.07628, 2017.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. International
Conference on Learning Representations, 2015.

Yuanzhi Li, Tengyu Ma, and Hongyang R Zhang. Learning over-parametrized two-layer neural
networks beyond ntk. In Conference on Learning Theory, pp. 2613–2682. PMLR, 2020.

Liangchen Luo, Yuanhao Xiong, Yan Liu, and Xu Sun. Adaptive gradient methods with dynamic
bound of learning rate. arXiv preprint arXiv:1902.09843, 2019.

Stephen Merity, Nitish Shirish Keskar, and Richard Socher. Regularizing and optimizing lstm lan-
guage models. In International Conference on Learning Representations, 2018.

Vardan Papyan, Yaniv Romano, and Michael Elad. Convolutional neural networks analyzed via con-
volutional sparse coding. The Journal of Machine Learning Research, 18(1):2887–2938, 2017.

Sashank J Reddi, Satyen Kale, and Sanjiv Kumar. On the convergence of adam and beyond. In
International Conference on Learning Representations, 2018.

Sashank J Reddi, Satyen Kale, and Sanjiv Kumar. On the convergence of adam and beyond. arXiv
preprint arXiv:1904.09237, 2019.

Ruoqi Shen, Sebastien Bubeck, and Suriya Gunasekar. Data augmentation as feature manipulation.
In International Conference on Machine Learning, pp. 19773–19808. PMLR, 2022.

Ashia C Wilson, Rebecca Roelofs, Mitchell Stern, Nati Srebro, and Benjamin Recht. The marginal
value of adaptive gradient methods in machine learning. In Advances in Neural Information
Processing Systems, pp. 4151–4161, 2017.

11

Published as a conference paper at ICLR 2023

Greg Yang. Scaling limits of wide neural networks with weight sharing: Gaussian process behavior,
gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760,
2019.

Pan Zhou, Jiashi Feng, Chao Ma, Caiming Xiong, Steven Chu Hong Hoi, et al. Towards theoreti-
cally understanding why sgd generalizes better than adam in deep learning. Advances in Neural
Information Processing Systems, 33, 2020.

Difan Zou, Yuan Cao, Dongruo Zhou, and Quanquan Gu. Gradient descent optimizes over-
parameterized deep ReLU networks. Machine Learning, Oct 2019.

12

Published as a conference paper at ICLR 2023

A EXPERIMENTS

A.1 EXPERIMENT DETAILS FOR FIGURE 1

The experiments in Figure 1 are performed by running (stochastic gradient) Adam and SGD in
training AlexNet on the CIFAR-10 dataset. Specifically, the first layer of AlexNet is set as: ker-
nel size=11, stride=4, padding=2, in order to match the size of CIFAR-10 image. In terms of the
input data, we use standard random crop and horizontal flip data augmentations. In terms of the
model training, we set the batch size as 64, the epoch number as 100, the regularization parameter
as λ = 5× 10−4. Besides, we set the learning rate η = 0.01 for SGD and η = 1× 10−5 for Adam,
where β1 and β2 are set as their default values in pytorch.

A.2 NUMERICAL EXPERIMENTS ON SYNTHETIC DATA

In this section we perform numerical experiments on the synthetic data generated according to Def-
inition 3.1 to verify our main results. In particular, we set the problem dimension d = 1000,
the training sample size n = 200 (100 positive examples and 100 negative examples), fea-
ture vector v = [1, 0, . . . , 0]>, noise sparsity s = 0.1d = 100, standard deviation of noise
σp = 1/s1/2 = 0.1, feature noise strength α = 0.2, initialization scaling σ0 = 0.01, regularization
parameter λ = 1× 10−5.

Two-layer CNN model. We first consider the exact two-layer CNN model studied in the paper.
We set the network width m = 20, activation function σ(z) = max{0, z}3, total iteration number
T = 1×104, and the learning rate η = 5×10−5 for Adam (default choices of β1 and β2 in pytorch),
η = 0.02 for GD.

We first report the training error and test error achieved by the solutions found by SGD and Adam in
Table 2, where the test error is calculated on a test dataset of size 104. It is clear that both Adam and
SGD can achieve zero training error, while they have entirely different results on the test data: SGD
generalizes well and achieve zero test error; Adam generalizes worse than SGD and gives > 0.5 test
error, which verifies our main result (Theorem 4.1).

Algorithm Adam SGD

Training error 0 0
Test error 0.884 0

Table 2: Training and test errors achieved by GD and Adam.

Moreover, we also calculate the inner products: maxr〈w1,r,v〉 and mini maxr〈w1,r, ξi〉, repre-
senting feature learning and noise memorization respectively, to verify our key lemmas. Here we
only consider positive examples as the results for negative examples are similar. The results are
reported in Figure 2. For Adam, from Figure 2(a), it can be seen that the algorithm will perform fea-
ture learning in the first few iterations and then entirely forget the feature (but fit feature noise), i.e.,
the feature learning is flipped, which verifies Lemma 5.3. In the meanwhile, the noise memoriza-
tion happens in the entire training process and enjoys much faster rate than feature learning, which
verifies Lemma 5.2. In addition, we can also observe that there are two stages for the increasing
of mini maxr〈w1,r, ξi〉: in the first stage mini maxr〈w1,r, ξi〉 increases linearly, and in the second
stage its increasing speed gradually slows down and mini maxr〈w1,r, ξi〉 will remain in a constant
order. This verifies Lemma 5.2 and Lemma 5.4. For GD, from Figure 2(b), it can be seen that the
feature learning will dominate the noise memorization: feature learning will increase to a constant
in the first stage and then remain in a constant order in the second stage; noise memorization will
keep in a low level which is nearly the same as that at the initialization. This verifies Lemmas 5.6
and 5.7.

5-Layer CNN model. We further perform numerical simulations for the deep neural network mod-
els. In particular, we consider a 5-layer CNN model: the first layer is exactly the same as the two-
layer CNN model, followed by a 4-layer MLP with ReLU activation. The number of neurons is set

13

Published as a conference paper at ICLR 2023

0 2000 4000 6000 8000 10000
Iterations

0.2
0.0
0.2
0.4
0.6
0.8
1.0
1.2

Va
lu

e Feature Learning: max
r w1, r, v

Noise Memorization: min
i

max
r w1, r, i

(a) Adam

0 2000 4000 6000 8000 10000
Iterations

0.0

0.5

1.0

1.5

2.0

Va
lu

e Feature Learning: max
r w1, r, v

Noise Memorization: min
i

max
r w1, r, i

(b) GD

Figure 2: Visualization of the feature learning (maxr〈w1,r,v〉) and noise memorization
(mini maxr〈w1,r, ξi〉) for training the two-layer CNN model.

0 2000 4000 6000 8000 10000
Iterations

0.1

0.2

0.3

0.4

0.5

0.6

Va
lu

e

Feature Learning: max
r w1, r, v

Noise Memorization: min
i

max
r w1, r, i

(a) Adam

0 2000 4000 6000 8000 10000
Iterations

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Va
lu

e Feature Learning: max
r w1, r, v

Noise Memorization: min
i

max
r w1, r, i

(b) GD

Figure 3: Visualization of the feature learning (maxr〈w1,r,v〉) and noise memorization
(mini maxr〈w1,r, ξi〉) for training the 5-layer CNN model.

asm = 20 for all layers. The total iteration number is T = 1×104, the learning rate is η = 5×10−5

for Adam and η = 0.1 for GD.

We then show the feature learning and noise memorization of the first layer of this neural network
model by calculating the inner products: maxr〈w1,r,v〉 and mini maxr〈w1,r, ξi〉, where w1,r de-
notes the weights of the r-th neuron in the first layer. The results are shown in Figure 3. It can
be observed that, when applied on the data distribution in Definition 3.1, Adam tends to perform
stronger noise memorization than feature learning, while GD performs stronger feature learning and
nearly negligible noise memorization. Moreover, we also visualize the first layer of the 5-layer CNN
trained by Adam and GD in Figure 4. It can be seen that the CNN model found by Adam is clearly
more “noisy” than that found by GD. This is consistent with our theoretical findings and empirical
observation on the real-world dataset (i.e., Figure 1).

B EXTENSIONS TO MINI-BATCH STOCHASTIC GRADIENTS

One natural extension of our paper is proving the separation between mini-batch SGD (without
replacement) and mini-batch Adam, which we believe is not difficult. In particular, let It of size B
be the set of indices of the mini-batch data used in the t-th iteration, the update rule of SGD is

w
(t+1)
j,r = w

(t)
j,r − η ·

1

B

∑
i∈It

∇wj,rLi(W
(t))− λw(t)

j,r.

14

Published as a conference paper at ICLR 2023

(a) Adam (b) GD

Figure 4: Visualization of the first layer of the 5-layer CNN model on the synthetic dataset.

The update rule of mini-batch Adam is

m
(t+1)
j,r = β1m

(t)
j,r + (1− β1) ·

[
1

B

∑
i∈It

∇wj,rLi(W
(t)) + λw

(t)
j,r

]
,

v
(t+1)
j,r = β2v

(t)
j,r + (1− β2) ·

[
1

B

∑
i∈It

∇wj,rLi(W
(t)) + λw

(t)
j,r

]2

,

and

w
(t+1)
j,r = w

(t)
j,r − η ·m

(t)
j,r/

√
v

(t)
j,r + ε.

Here the bias term is set as ε = Θ̃(λσ0). We claim that this parameter is introduced to guarantee
that the regularization term will not dominate the training process when using stochastic gradients
in Adam.

Then we will take a deeper look at the speeds of feature learning and noise learning for mini-batch
SGD and Adam, where we focus on the period that |〈w(t)

j,r,v〉|, |〈w
(t)
j,r, ξi〉| = o(1) for all j, i, and r

(i.e., the pattern learning stage). This further implies that |`(t)j,i | = 0.5± o(1) for all j, i, and t. Thus

in the following, we will assume that all |`(t)j,i | has nearly the same quantity.

Feature Learning. First, according to Definition 3.1, we know that the feature vector v and feature
noise are the same for all data, which implies that the learning pattern of the feature coordinate will
be largely the same as that of full-batch algorithms. In particular, for mini-batch Adam, we can
show that the update of the first coordinate (i.e., feature coordinate) is similar to sign-GD when
using sufficiently small learning rate η = 1/poly(d) since all stochastic gradients ∇Li(W(t)) have
the same component in this coordinate. Then using the fact that |`(t)j,i |’s are nearly the same for all i,
we have

〈w(t+1)
j,r , jv〉 ∼ 〈w(t)

j,r, jv〉+ jη · sgn

(n∑
i=1

yi`
(t)
j,i

[
σ′(〈w(t)

j,r, yiv〉)− ασ
′(〈w(t)

j,r, ξi〉)
]
− nλw(t)

j,r[1]

)
.

which is the same as full-batch Adam (see (5.1)). For SGD, using the fact that |`(t)j,i |’s are nearly the
same for all i, we can get that

〈w(t+1)
j,r , jv〉 ∼ (1− ηλ) · 〈w(t)

j,r, j · v〉

+
η

n
· j ·

(n∑
i=1

yi`
(t)
j,iσ
′(〈w(t)

j,r, yiv〉)− α
n∑
i=1

yi`
(t)
j,iσ
′(〈w(t)

j,r, ξi〉)
)

which is also the same as that of GD (see (C.28)).

15

Published as a conference paper at ICLR 2023

Noise Memorization. Note that due to the normalization term v
(t)
j,r in the Adam update, all coor-

dinates will be updated with nearly the same amount. Therefore, we only need to count the number
of coordinates that are updated by full-batch Adam and mini-batch Adam.

Recall that we have shown that using mini-batch gradients will not affect the feature learning. How-
ever, the noise memorization will be slightly different, since in each iteration, full-batch Adam can
update Θ(ns) coordinates while mini-batch Adam can only update Θ̃(Bs) coordinates. To show
this, we note that for any coordinate k 6= 1, the gradient momentum of full-batch Adam is

m
(t)
j,r[k] ∼

τ̄∑
τ=0

βτ1 (1− β1) · 1

n

∑
i∈[n]

[
∇wj,rLi(W

(t−τ))[k] + λw
(t−τ)
j,r [k]

]
,

while for mini-batch Adam,

m
(t)
j,r[k] ∼

τ̄∑
τ=0

βτ1 (1− β1) · 1

B

∑
i∈It−τ

[
∇wj,rLi(W

(t−τ))[k] + λw
(t−τ)
j,r [k]

]
,

where we only maintain the recent τ̄ = polylog(n) gradients since for τ ≤ t − τ̄ , the decaying
terms (β1)τ ≤ (βi)

τ̄ becomes negligible. Therefore, by comparing the above two equations and
applying Definition 3.1, it is clear that for full-batch Adam can update all noise coordinates, i.e.,
k ∈ ∪i∈[n]Bi, which is of size Θ(ns). In contrast, mini-batch Adam can only update a subset of
noise coordinates, i.e., k ∈ ∪τ∈[τ̄]∪i∈[It−τ]Bi, which is of size τ̄Bs = Θ̃(Bs). This further implies
that in each epoch (one pass of the data, Θ(n/B) steps), the noise coordinates in Bi will be updated
by mini-batch Adam in at most τ̄ = Θ̃(1) steps, while within the same amount of iterations, the noise
coordinates in Bi will be updated by full-batch Adam for Θ(n/B) steps, suggesting that mini-batch
Adam admits a slower rate of noise memorization by a Θ̃(n/B) factor.

For SGD, it is easy to show that the rate of noise memorization will still be nearly the same as that
of GD. In particular, during each training epoch (Θ(n/B) steps), SGD will learn the noise vector ξi
in only one step with the mini-batch gradient 1

B∇Li(W
(τ)) for some τ in this epoch, while within

the same amount of steps, GD will learn the noise vector ξi in all Θ(n/B) steps but with strength
1
n∇Li(W

(τ)), giving the same total learning ability. This suggests that SGD admits a nearly the
same rate of noise memorization compared to GD.

Overall, we are able to deliver the following lemmas that characterize the feature learning and noise
memorization of SGD and stochastic gradient Adam in training Stage I.
Lemma B.1 (SGD, Informal). Suppose the training data is generated according to Definition
3.1, then given proper configurations of λ and ε and sufficiently small learning rate η, define
Λ

(t)
j = maxr∈[m]〈w

(t)
j,r, j · v〉 and Γ

(t)
j,i = maxr∈[m]〈w

(t)
j,r, ξi〉, for any t0 satisfying Λ

(t0)
j ,Γ

(t0)
j,i =

o(1/polylog(n)), we have the following one-epoch update of feature learning and noise memoriza-
tion for SGD

Λ
(t0+bn/Bc)
j ≥ Λ

(t0)
j + η ·Θ

(
n

B
· (Λ(t0)

j)q−1

)
Γ

(t0+bn/Bc)
j ≤ Γ

(t0)
j + η ·Θ

(
ηsσ2

p

B
· (Γ(t0)

j)q−1

)
.

Lemma B.2 (Stochastic gradient Adam, Informal). Suppose the training data is generated according
to Definition 3.1, then given proper configurations of λ and ε, for any t0 ≤ T0 with T0 = Õ

(
n

ηBsσp

)
and any i ∈ [n], we have the following one-epoch update of feature learning and noise memorization

〈w(t0+bn/Bc)
j,r , j · v〉 ≤ 〈w(t0)

j,r , j · v〉+ Θ(nη/B), 〈w(t0+bn/Bc)
yi,r , ξi〉 = 〈w(t0)

yi,r, ξi〉+ Θ̃(ηsσp).

To sum up, we have shown that (1) mini-batch SGD and mini-batch Adam will not change the learn-
ing speed of feature vector v compared to their full-batch counterparts, i.e., Lemma C.3 and (C.31)
(needs to covert to bn/Bc iterations); (2) mini-batch Adam reduces the noise memorization speed
of full-batch Adam by a Θ̃(n/B) factor, while mini-batch SGD has nearly the same noise memo-
rization speed compared to full-batch GD, by comparing to Lemma C.3 and (C.32)). Additionally,

16

Published as a conference paper at ICLR 2023

recall that in our paper, the separation between Adam and GD is characterized by a poly(d) factor:
the speed of feature learning in Adam and GD, and the rate of noise memorization in GD are both in
the order of O(η) (in each step), while the rate of noise memorization in Adam is proportional to the
number of nonzero entries, which is in the order of η · poly(d). Therefore, the separation between
mini-batch SGD and mini-batch Adam in terms of the generalization error can still hold under a
stronger over-parameterization condition sσp = Θ

(
d1/4/(npolylog(n))

)
= ω(n/B) (in contrast,

the over-parameterization condition for full-batch Adam is sσp = ω(1)).

C PROOF OF THEOREM 4.1: NONCONVEX CASE

In the beginning of the proof we first present the following useful lemma.

C.1 PRELIMINARIES

We first recall the magnitude of all parameters:

d = poly(n), η =
1

poly(n)
, s = Θ

(
d1/2

n2

)
, σ2

p = Θ

(
1

s · polylog(n)

)
, σ2

0 = Θ

(
1

d1/2

)
,

m = polylog(n), α = Θ
(
σp · polylog(n)

)
, λ = O

(
1

d(q−1)/4n · polylog(n)

)
.

Here poly(n) denotes a polynomial function of n with degree of a sufficiently large constant,
poly(n) denotes a polynomial function of log(n) with degree of a sufficiently large constant. Based
on the parameter configuration, we claim that the following equations hold, which will be frequently
used in the subsequent proof.

λ = o

(
σq−2

0 σp
n

)
, α = ω

(
(sσp)

1−qσq−1
0

)
, σ0 = o

(
1

sσp

)
, α = o

(
sσ2
p

n

)
, η = o

(
λσq0σ

q
p

)
.

Lemma C.1 (Non-overlapping support). Let {(xi, yi)}i=1,...,n be the training dataset sampled ac-
cording to Definition 3.1. Moreover, let Bi = supp(ξi)\{1} be the support of xi except the first
coordinate2. Then with probability at least 1− n−2, Bi ∩ Bj = ∅ for all i, j ∈ [n].

Proof of Lemma C.1. For any fixed k ∈ [n] and j ∈ supp(ξk)\{1}, by the model assumption we
have

P{(ξi)j 6= 0} = s/(d− 1),

for all i ∈ [n]\{k}. Therefore by the fact that the data samples are independent, we have

P(∃i ∈ [n]\{k} : (ξi)j 6= 0) = 1− [1− s/(d− 1)]n.

Applying a union bound over all k ∈ [n] and j ∈ supp(ξk)\{1}, we obtain

P(∃k ∈ [n], j ∈ supp(ξk)\{1}, i ∈ [n]\{k} : (ξi)j 6= 0) ≤ n · s · {1− [1− s/(d− 1)]n}. (C.1)

By the data distribution assumption we have s ≤
√
d/(2n2), which clearly implies s/(d−1) ≤ 1/2.

Therefore we have

n · s · [1− (1− s/d)n] = n · s · {1− exp[n log(1− s/(d− 1))]}
≤ n · s · [1− exp(n · 2s/(d− 1))]

≤ n · s · [1− exp(n · 4s/d)]

≤ n · s · (4ns/d)

= 4n2s2/d

≤ n−2,

where the first inequality follows by the inequalities log(1− z) ≥ −2z for z ∈ [0, 1/2], the second
inequality follows by s/(d−1) ≥ 2s/d, the third inequality follows by the inequality 1−exp(−z) ≤
z for z ∈ R, and the last inequality follows by the assumption that s ≤

√
d/(2n2). Plugging the

bound above into (C.1) finishes the proof.

2Recall that all data inputs have nonzero first coordinate by Definition 3.1

17

Published as a conference paper at ICLR 2023

C.2 PROOF FOR ADAM

Before moving to the detailed proof, we first state the update rules of feature learning and noise
memorization when the sign gradient is applied.

〈w(t+1)
j,r , jv〉 = 〈w(t)

j,r, jv〉 − η ·
〈
sgn
(
∇wj,rL(W(t))

)
, jv
〉

= 〈w(t)
j,r, jv〉+ jη · sgn

(n∑
i=1

yi`
(t)
j,i

[
σ′(〈w(t)

j,r, yiv〉)− ασ
′(〈w(t)

j,r, ξi〉)
]
− nλw(t)

j,r[1]

)
,

(C.2)

where `(t)j,i := 1yi=j −logitj(F,xi) and logitj(F,xi) = eFj(W,xi)∑
k∈{−1,1} e

Fk(W,xi)
. From (C.2) we can

observe three terms in the signed gradient. Specifically, the first term represents the gradient over the
feature patch, the second term stems from the feature noise term in the noise patch (see Definition
3.1), and the last term is the gradient of the weight decay regularization. On the other hand, the
memorization of the noise vector ξi can be described by the following update rule,

〈w(t+1)
yi,r , ξi〉 = 〈w(t)

yi,r, ξi〉 − η ·
〈
sgn
(
∇wyi,r

L(W(t))
)
, ξi
〉

= 〈w(t)
yi,r, ξi〉+ η ·

∑
k∈Bi

〈
sgn

(
`
(t)
yi,i
σ′(〈w(t)

yi,r, ξi〉)ξi[k]− nλw(t)
yi,r[k]

)
, ξi[k]

〉

− αyiη · sgn

(n∑
i=1

yi`
(t)
yi,i

[
σ′(〈w(t)

yi,r, yiv〉)− ασ
′(〈w(t)

yi,r, ξi〉)
]
− nλw(t)

yi,r[1]

)
.

(C.3)

In this subsection we first provide the following lemma that shows for most of the coordinate (with
slightly large gradient), the Adam update is similar to signGD update (up to some constant factors).
In the remaining proof for Adam, we will largely apply this lemma to get a signGD-like result for
Adam (similar to the technical lemmas in Section 5). Besides, the proofs for all lemmas in Section 5
can be viewed as a simplified version of the proofs for technical lemmas for Adam, thus are omitted
in the paper.

Lemma C.2 (Closeness to SignGD). Recall the update rule of Adam, let W(t) be the t-th iterate of
the Adam algorithm. Suppose that 〈w(t)

j,r,v〉, 〈w
(t)
j,r, ξi〉 = Θ̃(1) for all j ∈ {±1} and r ∈ [m]. Then

if β2 ≥ β2
1 , we have

• For all k ∈ [d], ∣∣∣∣ m(t)
j,r[k]√
v

(t)
j,r[k]

∣∣∣∣ ≤ Θ(1).

• For every k /∈ ∪ni=1Bi (including k = 1) we have either |∇wj,rL(W(t))[k]| ≤ Θ̃(η) or

m
(t)
j,r[k]√
v

(t)
j,r[k]

= sgn
(
∇wj,rL(W(t))[k]

)
·Θ(1).

• For every k ∈ Bi, we have |∇wj,rL(W(t))[k]| ≤ Θ̃
(
ηn−1sσp|`(t)j,i |

)
≤ Θ̃(ηsσp) or

m
(t)
j,r[k]√
v

(t)
j,r[k]

= sgn
(
∇wj,rL(W(t))[k]

)
·Θ(1).

Proof. First recall that the gradient∇wj,rL(W(t)) can be calculated as

∇wj,rL(W(t)) = − 1

n

[n∑
i=1

yi`
(t)
j,iσ
′(〈w(t)

j,r, yiv〉) · v +

n∑
i=1

`
(t)
j,i · σ

′(〈w(t)
j,r, yiξi〉) · ξi

]
+ λw

(t)
j,r.

18

Published as a conference paper at ICLR 2023

More specifically, for the first coordinate of∇wj,rL(W(t)), we have

∇wj,rL(W(t))[1] = − 1

n

[n∑
i=1

yi`
(t)
j,iσ
′(〈w(t)

j,r, yiv〉)− α
n∑
i=1

yi`
(t)
j,i · σ

′(〈w(t)
j,r, ξi〉)

]
+ λw

(t)
j,r[1].

(C.4)

For any k ∈ Bi, by Lemma C.1 we know that the gradient over this coordinate only depends on the
training data ξi, therefore, we have

∇wj,rL(W(t))[k] = − 1

n
`
(t)
j,iσ
′(〈w(t)

j,r, ξi〉)ξi[k] + λw
(t)
j,r[k]. (C.5)

For the remaining coordinates, we have

∇wj,rL(W(t))[k] = λw
(t)
j,r[k]. (C.6)

Now let us focus on the moving averaged gradient m(t)
j,r and squared gradient v(t)

j,r. We first show
that for all k ∈ [d], it holds that ∣∣m(t)

j,r[k]
∣∣√

v
(t)
j,r[k]

≤ Θ(1). (C.7)

By the update rule of m(t)
j,r, we have

m
(t)
j,r[k] = β1m

(t−1)
j,r [k] + (1− β1) · ∇wj,rL(W(t))[k]

=

t∑
τ=0

βτ1 (1− β1) · ∇wj,rL(W(t−τ))[k].

Similarly, we also have

v
(t)
j,r[k] =

t∑
τ=0

βτ2 (1− β2) · ∇wj,rL(W(t−τ))[k]2.

Then by Cauchy-Schwartz inequality we have

(
m

(t)
j,r[k]

)2 ≤ (t∑
τ=0

[βτ1 (1− β1)]2

α2
τ

· ∇wj,rL(W(t−τ))[k]2
)
·
(t∑
τ=0

α2
τ

)
.

Let α2
τ =

[βτ1 (1−β1)]2

βτ2 (1−β2) , which forms an exponentially decaying sequence if β2 ≥ β2
1 . Therefore, we

have
∑t
τ=0 α

2
τ = Θ(1) and the above inequality implies that(

m
(t)
j,r[k]

)2 ≤ v
(t)
j,r[k] ·Θ(1),

which proves (C.7).

Now we are going to prove the main argument of this lemma. Note that m(t)
j,r, which is a weighted

average of all historical gradients, where the weights decay exponentially fast, then we can take on
a threshold τ̄ = polylog(η−1) such that

∑t
τ=τ̄ β

τ
1 (1 − β1) = 1

poly(η−1) . Then for each k ∈ [d] we
have

m
(t)
j,r[k] =

τ̄∑
τ=0

βτ1 (1− β1) · ∇wj,rL(W(t−τ))[k] +

t∑
τ=τ̄

βτ1 (1− β1) · ∇wj,rL(W(t−τ))[k]

=

τ̄∑
τ=0

βτ1 (1− β1) · ∇wj,rL(W(t−τ))[k]± 1

poly(η−1)
,

19

Published as a conference paper at ICLR 2023

where in the last equality we use the fact that |∇wj,rL(W(t−τ))[k]| = Õ(1) for all k ∈ [d]. Simi-
larly, we can also have the following on v

(t)
j,r,

v
(t)
j,r[k] =

τ̄∑
τ=0

βτ2 (1− β2) · ∇wj,rL(W(t−τ))[k]2 ± 1

poly(η−1)
.

Here we slightly abuse the notation by using the same τ̄ . Then we have

m
(t)
j,r[k]√
v

(t)
j,r[k]

=

∑τ̄
τ=0 β

τ
1 (1− β1) · ∇wj,rL(W(t−τ))[k]± 1

poly(η−1)√∑τ̄
τ=τ̄ β

τ
2 (1− β2) · ∇wj,rL(W(t−τ))[k]2 ± 1

poly(η−1)

.

In order to prove the main argument of this lemma, the key is to show that within τ̄ iterations,
the gradient ∇wj,rL(W(t))[k] barely changes. In particular, by (C.7), we have the update of each
coordinate in one step is at most Θ(η). This implies that∣∣〈w(t)

j,r,v〉 − 〈w
(τ)
j,r ,v〉

∣∣ ≤ Θ(ητ̄),∣∣〈w(t)
j,r, ξi〉 − 〈w

(τ)
j,r , ξi〉

∣∣ ≤ Θ(ητ̄sσp),

|w(t)
j,r[k]−w

(τ)
j,r [k]| ≤ Θ(ητ̄).

Then applying the fact that |〈w(τ)
j,r ,v〉| ≤ Θ̃(1) and |〈w(τ)

j,r , ξi〉| ≤ Θ̃(1), we further have∣∣Fj(W(τ),xi)− Fj(W(t),xi)
∣∣ ≤ Θ(mητ̄sσp) = Θ̃(ητ̄sσp),

where we use the fact that m = Θ̃(1) and sσp = ω(1). Then it holds that

`
(τ)
j,i =

eFj(W
(τ),xi)∑

k∈{−1,1} e
Fk(W(τ),xi)

≤ eFj(W
(t),xi)+Θ̃(ητ̄sσp)

eFj(W
(t),xi)+Θ̃(ητ̄sσp) + eF−j(W

(t),xi)−Θ̃(ητ̄sσp)

= sgn(`
(t)
j,i) ·Θ(|`(t)j,i |),

where we use the fact that Θ̃(ητ̄sσp) = o(1). Similarly, we can also show that `(τ)
j,i ≥ sgn(`

(t)
j,i) ·

Θ(|`(t)j,i |), which further implies

`
(τ)
j,i = sgn(`

(t)
j,i) ·Θ(|`(t)j,i |)

for all τ ∈ [t− τ̄ , t]. Note that |`(τ)
j,i | ≤ 1, then it holds that

`
(τ)
j,i σ

′(〈w(τ)
j,r ,v〉) = sgn(`

(t)
j,i) ·Θ(|`(t)j,i |) · σ

′(〈w(τ)
j,r ,v〉)

≤ sgn(`
(t)
j,i) ·Θ(|`(t)j,i |) · σ

′(〈w(t)
j,r,v〉) + Θ(|`(t)j,i |) · Θ̃(ητ̄).

We can also similarly derive the following

`
(τ)
j,i σ

′(〈w(τ)
j,r ,v〉) ≥ sgn(`

(t)
j,i) ·Θ(|`(t)j,i |) · σ

′(〈w(t)
j,r,v〉)−Θ(|`(t)j,i |) · Θ̃(ητ̄),

`
(τ)
j,i σ

′(〈w(τ)
j,r , ξi〉) ≤ sgn(`

(t)
j,i) ·Θ(|`(t)j,i |) · σ

′(〈w(t)
j,r, ξi〉) + Θ(|`(t)j,i |) · Θ̃(ητ̄sσp),

`
(τ)
j,i σ

′(〈w(τ)
j,r , ξi〉) ≥ sgn(`

(t)
j,i) ·Θ(|`(t)j,i |) · σ

′(〈w(t)
j,r, ξi〉)−Θ(|`(t)j,i |) · Θ̃(ητ̄sσp).

Combining the above results, applying (C.4), (C.5), and (C.6), we can show that for the first coordi-
nate, we have

∇wj,rL(W(τ))[1] = Θ
(
∇wj,rL(W(t))[1]

)
±Θ

(
1

n

n∑
i=1

|`(t)j,i |
)
· Õ(ητ̄)±Θ(λητ̄);

20

Published as a conference paper at ICLR 2023

for any k ∈ Bi, we have

∇wj,rL(W(τ))[k] = Θ
(
∇wj,rL(W(t))[k]

)
±Θ

(|`(t)j,i |
n

)
· Õ(ητ̄sσp)±Θ(λητ̄);

and for remaining coordinates, we have

∇wj,rL(W(τ))[k] = Θ
(
∇wj,rL(W(t))[k]

)
±Θ(λητ̃).

Now we can plug the above results into the formula of m(t)
j,r and v

(t)
j,r. Using the fact that τ̄ = Θ̃(1),

λ = o(1), and |`(t)j,i | ≤ 1, we have for all k = 1 or k /∈ Bi for any i,

m
(t)
j,r[k]√
v

(t)
j,r[k]

=
∇wj,rL(W(t))[k]± Θ̃(η)

Θ
(
|∇wj,rL(W(t))[k]|

)
± Θ̃(η))

.

For k ∈ Bi we have

m
(t)
j,r[k]√
v

(t)
j,r[k]

=
∇wj,rL(W(t))[k]± Θ̃

(
ηsσp|`(t)j,i |

n

)
± Θ̃(λη)

Θ
(
|∇wj,rL(W(t))[k]|

)
± Θ̃

(
ηsσp|`(t)j,i |

n

)
± Θ̃(λη)

.

Then, we can conclude that for all k = 1 or k /∈ Bi for any i, we have either |∇wj,rL(W(t))[k]| ≤
Θ̃(η) or

m
(t)
j,r[k]√
v

(t)
j,r[k]

= sgn
(
∇wj,rL(W(t))[k]

)
·Θ(1).

For any k ∈ Bi, we have either |∇wj,rL(W(t))[k]| ≤ Θ̃
(
ηn−1sσp|`(t)j,i |+ λη

)
or

m
(t)
j,r[k]√
v

(t)
j,r[k]

= sgn
(
∇wj,rL(W(t))[k]

)
·Θ(1).

This completes the proof.

Lemma C.3 (Lemma 5.2, restated). Suppose the training data is generated according to Defini-
tion 3.1, assume λ = o(σq−2

0 σp/n) and η = 1/poly(d), then for any t ≤ T0 with T0 = Õ
(

1
ηsσp

)
and any i ∈ [n],

〈w(t+1)
j,r , j · v〉 ≤ 〈w(t)

j,r, j · v〉+ Θ(η),

〈w(t+1)
yi,r , ξi〉 = 〈w(t)

yi,r, ξi〉+ Θ̃(ηsσp).

Proof. At the initialization, we have

|〈w(0)
j,r ,v〉| = Θ̃(σ0), |〈w(0)

j,r , ξi〉| = Θ̃(s1/2σpσ0 + α) = Θ̃(s1/2σpσ0), w
(0)
j,r [k] = Θ̃(σ0),

which also imply that |`(0)
j,i | = Θ(1). Then recalling that λ = o(σq−2

0 σp/n), α = o(1), s1/2σp =

Õ(1), we have

sgn

(n∑
i=1

yi`
(0)
j,i σ

′(〈w(0)
j,r , yiv〉)− α

n∑
i=1

yi`
(0)
j,i σ

′(〈w(0)
j,r , ξi〉)− nλw

(0)
j,r [1]

)
= sgn

[
j · Θ̃(nσq−1

0)− j · Θ̃(αn(s1/2σpσ0)q−1)± o
(
σq−1

0 σp)
]

= sgn(j).

21

Published as a conference paper at ICLR 2023

Since v is 1-sparse, then by Lemma C.2, we have

〈w(1)
j,r , j · v〉 ≤ 〈w

(0)
j,r , j · v〉 − η

〈
m

(0)
j,r/

√
v

(0)
j,r , j · v

〉
≤ 〈w(0)

j,r , j · v〉+ Θ(η).

Now suppose that the first inequality holds for iterations 0, . . . , t− 1. Then we have

〈w(t)
j,r, j · v〉 ≤ Θ(η · T0) ≤ O(σ0).

Besides, note that `(t)j,i = 1j=yi −logitj(F
(t),xi), we have

sgn
(
yi`

(t)
j,i

)
= sgn(j),

where we recall that j ∈ {−1, 1}. Therefore, given that λ = o(σq−2
0 σp/n), α = o(1), s1/2σp =

Õ(1), and assume `(t)j,i = Θ(1) (which will be verified later),

sgn

(n∑
i=1

yi`
(t)
j,iσ
′(〈w(t)

j,r, yiv〉)− α
n∑
i=1

yi`
(t)
j,iσ
′(〈w(t)

j,r, ξi〉)− nλw
(t)
j,r[1]

)
= sgn

[
j · Θ̃(nσq−1

0)− j · Θ̃(αn(s1/2σpσ0)q−1)± o
(
σq−1

0 σp)
]

= sgn(j).

Since v is 1-sparse, then by Lemma C.2, the following inequality naturally holds,

〈w(t+1)
j,r , j · v〉 ≤ 〈w(t)

j,r, j · v〉 − η
〈
m

(t)
j,r/

√
v

(t)
j,r, j · v

〉
≤ 〈w(t)

j,r, j · v〉+ Θ(η).

Additionally, in terms of the memorization of noise, we first consider the iterate in the initialization.
By the condition that η = o(1/d) = o(1/(sσp)) and note that for a sufficiently large fraction of
k ∈ Bi (e.g., 0.99), we have |ξi[k]| ≥ Θ̃(σp) ≥ Θ̃(ηn−1sσp|`(0)

j,i |) and thus

sgn
(
∇wyi,r

L(W(0))[k]
)

= sgn

(
`
(0)
yi,i
σ′(〈w(0)

yi,r, ξi〉)ξi[k]− nλw(0)
yi,r[k]

)
= −sgn

[
Θ̃
(
(d1/2σpσ0)q−1σp · sgn(ξi[k])

)
± o(σq−1

0 σp)
]

= −sgn(ξi[k]).
(C.8)

Therefore, by Lemma C.2 we have the following according to (C.3),

〈w(1)
yi,r, ξi〉 = 〈w(0)

yi,r, ξi〉 − η
〈
m

(0)
j,r/

√
v

(0)
yi,r, ξi

〉
≥ 〈w(0)

yi,r, ξi〉+ Θ(η) ·
∑
k∈Bi

〈sgn(ξi[k]), ξi[k]〉 −O(ηsσp)−O(ηα)

= 〈w(0)
yi,r, ξi〉+ Θ̃(ηsσp),

where in the first inequality the term O(ηsσp) represents the coordinates that |ξi[k]| ≤ O(σp) (so
that we cannot use the sign information of∇yi,rL(W(0)) but directly bound it by Θ(1)) and the last
inequality is due to the fact that |Bi| ≥ s − 1 and α = o(1). For general t, we will consider the
following induction hypothesis:

〈w(t+1)
yi,r , ξi〉 = 〈w(t)

yi,r, ξi〉+ Θ̃(ηsσp), (C.9)

which has already been verified for t = 0. By Hypothesis (C.9), the following holds at time t,

〈w(t)
yi,r, ξi〉 = 〈w(0)

yi,r, ξi〉+ Θ̃(tηsσp) = Θ̃(s1/2σpσ0 + tηsσp).

In the meanwhile, we have the following upper bound for |w(t)
j,r[k]|,

|w(t)
j,r[k]| ≤ |w(t−1)

j,r [k]|+ η| sign(∇wj,rL(W(t−1)))| ≤ |w(0)
j,r [k]|+ tη = Θ̃(σ0 + tη). (C.10)

22

Published as a conference paper at ICLR 2023

Besides, it is also easy to verify that for any t ≤ T0 = Θ̃
(

1
sσpηm

)
= Θ̃

(
1

sσpη

)
, we have

〈w(t)
yi,r, ξi〉, 〈w

(t)
yi,r, j · v〉 < Θ(1/m) and thus |`(t)j,i | = Θ(1). Then similar to (C.8), we have

sgn
(
∇wyi,r

L(W(t))[k]
)

= sgn

(
`
(t)
yi,i
σ′(〈w(t)

yi,r, ξi〉)ξi[k]− nλw(t)
yi,r[k]

)
= −sgn

(
Θ̃
[
(s1/2σpσ0 + tηsσp)

q−1σp · sgn(ξi[k])± o
(
σq−2

0 σp · (σ0 + tη)
)])

= −sgn(ξi[k]). (C.11)
This further implies that

〈w(t+1)
yi,r , ξi〉 ≥ 〈w(t)

yi,r, ξi〉 −Θ(η) ·
∑
k∈Bi

〈sgn
(
∇wyi,r

L(W(t))[k]
)
, ξi[k]〉 −O(η2s2σ2

p)−O(ηα)

= 〈w(t)
yi,r, ξi〉+ Θ̃(ηsσp),

where the term −O(η2s2σ2
p) is contributed by the gradient coordinates that are smaller than

Θ(ηsσp). This verifies Hypothesis (C.9) at time t and thus completes the proof.

From Lemma C.3, note that sσp = ω(1), then it can be seen that 〈w(t)
j,r, j · v〉 increases much faster

than 〈w(t)
j,r, j · v〉. By looking at the update rule of 〈w(t)

j,r, j · v〉 (see (C.2)), it will keeps increasing

only when, roughly speaking, σ′(〈w(t)
j,r, j · v〉) > ασ′(〈w(t)

j,r, ξi〉). Since 〈w(t)
j,r, ξi〉 increases much

faster than 〈w(t)
j,r, j · v〉, it can be anticipated after a certain number of iterations, 〈w(t)

j,r, j · v〉 will
start to decrease. In the following lemma, we provide an upper bound on the iteration number such
that this decreasing occurs.
Lemma C.4 (Lemma C.4, restated). Suppose the training data is generated according to Defini-
tion 3.1, α ≥ Θ̃

(
(sσp)

1−q ∨ σq−1
0

)
and σ0 < Õ((sσp)

−1), then for any t ∈ [Tr, T0] with
Tr = Õ

(
σ0

ηsσpα1/(q−1)

)
≤ T0,

〈w(t+1)
j,r , j · v〉 = 〈w(t)

j,r, j · v〉 −Θ(η).

Moreover, it holds that

w
(T0)
j,r [k] =

−sgn(j) · Ω̃

(
1
sσp

)
, k = 1,

sgn(ξi[k]) · Ω̃
(

1
sσp

)
or ± Õ(η), k ∈ Bi, with yi = j,

±Õ(η), otherwise.

Proof. Recall from Lemma C.3 that for any t ≤ T0 we have

〈w(t+1)
j,r , j · v〉 ≤ 〈w(t)

j,r, j · v〉+ Θ(η) ≤ 〈w(0)
j,r , j · v〉+ Θ(tη),

〈w(t+1)
ys,r , ξs〉 = 〈w(t)

ys,r, ξs〉+ Θ̃(ηsσp) ≤ 〈w(0)
ys,r, ξs〉+ Θ̃(tηsσp).

Besides, by Lemma C.2 we also have |w(t)
j,r[k]| ≤ |w(0)

j,r [k]|+O(tη). Then it can be verified that for
some Tr = Õ

(
σ0

ηsσpα1/(q−1)

)
, we have for all i ∈ [n] and t ∈ [Tr, T0]

ασ′(〈w(t)
yi,r, ξi〉) ≥ C ·

[
σ′(〈w(t)

j,r, j · v〉) + λn|w(t)
j,r[1]|

]
for some constant C. This further implies that

sgn
(
∇wj,rL(W(t))[1]

)
= −sgn

(n∑
i=1

yi`
(t)
j,iσ
′(〈w(t)

j,r, yiv〉)− α
n∑
i=1

yi`
(t)
j,iσ
′(〈w(t)

j,r, ξi〉)− nλw
(t)
j,r[1]

)

= −sgn
[
− α

n∑
i=1

yi`
(t)
j,iσ
′(〈w(t)

j,r, ξi〉)
]

= sgn(j),

23

Published as a conference paper at ICLR 2023

where we use the fact that sgn(yi`
(t)
j,i) = sgn(j) for all i ∈ [n]. Then by Lemma C.2 and (C.2), we

have for all t ∈ [Tr, T0],

〈w(t+1)
j,r , j · v〉 = 〈w(t)

j,r, j · v〉 −Θ(η) · sgn(j) · sgn
(
∇wj,rL(W(t))[1]

)
= 〈w(t)

j,r, j · v〉 −Θ(η).

Then at iteration T0, for the first coordinate we have

w
(T0)
j,r [1] = w

(0)
j,r [1] + sgn(j) ·Θ(Trη)− sgn(j) ·Θ((T0 − Tr)η) ≥ −sgn(j) · Ω̃

(
1

sσp

)
For any k ∈ Bi with yi = j, we have either the coordinate will increase at a rate of Θ(1) or fall into
0. As a consequence we have either w(T0)

j,r [k] ∈ [−Θ̃(η), Θ̃(η)] or

w
(T0)
j,r [k] = w

(0)
j,r [k] + sgn(ξi[k]) ·Θ(T0η) ≥ sgn(ξi[k]) · Ω̃

(
1

sσp

)
.

For the remaining coordinate, its update will be determined by the regularization term, which will
finally fall into the region around zero since we have T0η = ω(σ0). By Lemma C.2 it is clear that
w

(T0)
j,r [k] ∈ [−Θ̃(η), Θ̃(η)].

Lemma C.5 (Lemma 5.4, restated). If α = O
(sσ2

p

n

)
and η = o(λ), then let r∗ =

arg maxr∈[m]〈w
(t)
yi,r, ξi〉, for any t ≥ T0, i ∈ [n], j ∈ [2] and r ∈ [m], it holds that

〈w(t)
yi,r∗ , ξi〉 = Θ̃(1),

∑
k∈Bi

|w(t)
yi,r∗ [k]| · |ξi[k]| = Θ̃(1),

∀r ∈ [m], 〈w(t)
j,r, sgn(j) · v〉 ∈ [−Õ

(nα
sσ2
p

)
, O(λ−1η)].

Proof. The proof will be relying on the following three induction hypothesis:

〈w(t)
yi,r∗ , ξi〉 = Ω̃(1), (C.12)∑

k∈Bi

|w(t+1)
yi,r∗ [k]| · |ξi[k]| = Θ̃(1), (C.13)

∀r ∈ [m], 〈w(t)
j,r, sgn(j) · v〉 ∈

[
− Õ

(nα
sσ2
p

)
, O(λ−1η)

]
, (C.14)

which we assume they hold for all τ ≤ t and r ∈ [m], i ∈ [n], and j ∈ [2]. It is clear that all
hypothesis hold when t = T0 according to Lemma C.4.

Verifying Hypothesis (C.12). We first verify Hypothesis (C.12). Recall that the update rule for
〈w(t)

yi,r, ξi〉 is given as follows,

〈w(t+1)
yi,r , ξi〉

= 〈w(t)
yi,r, ξi〉 − η ·

〈
m(t)
yi,r/

√
v

(t)
yi,r, ξi

〉
≥ 〈w(t)

yi,r, ξi〉 −Θ(η) ·
〈
sgn
(
∇wyi,r

L(W(t))
)
, ξi
〉
− Θ̃(η2s2σ2

p)

= 〈w(t)
yi,r, ξi〉+ Θ(η) ·

∑
k∈Bi

〈
sgn

(
`
(t)
yi,i
σ′(〈w(t)

yi,r, ξi〉)ξi[k]− nλw(t)
yi,r[k]

)
, ξi[k]

〉

− αyiΘ(η) · sgn

(n∑
i=1

yi`
(t)
j,iσ
′(〈w(t)

j,r, yiv〉)− α
n∑
i=1

yi`
(t)
j,iσ
′(〈w(t)

j,r, ξi〉)− nλw
(t)
j,r[1]

)
− Θ̃(η2s2σ2

p). (C.15)

Note that for any a and b we have sgn(a− b) · a ≥ |a| − 2|b|. Then it follows that∑
k∈Bi

〈
sgn

(
`
(t)
yi,i
σ′(〈w(t)

yi,r, ξi〉)ξi[k]− nλw(t)
yi,r[k]

)
, ξi[k]

〉
≥
∑
k∈Bi

(
|ξi[k]| − 2nλ|w(t)

yi,r[k]|
`
(t)
yi,i
σ′(〈w(t)

yi , ξi〉)

)
≥ Θ̃(sσp)− Θ̃

(
nλ

`
(t)
yi,i
σp

)
,

24

Published as a conference paper at ICLR 2023

where the last inequality follows from Hypothesis (C.12) and (C.13). Further recall that λ =
o(σq−2

0 σp/n), plugging the above inequality to (C.15) gives

〈w(t+1)
yi,r , ξi〉 ≥ 〈w(t)

yi,r, ξi〉+ Θ̃(ηsσp)− Θ̃

(
ηnλ

`
(t)
yi,i
σp

)
− Θ̃(η2s2σ2

p)

≥ 〈w(t)
yi,r, ξi〉+ Θ̃(ηsσp)−Θ(αη)− Θ̃

(
ησq−2

0

`
(t)
yi,i

)
. (C.16)

Then it is clear that 〈w(t)
yi,r, ξi〉 will increase by Θ̃(ηsσp) if `(t)yi,i is larger than some constant of

order Ω̃(nλsσ2
p
) = Ω̃(

σq−2
0

sσp
). We will first show that as soon as there is a iterate W(τ) satisfying

`
(τ)
yi,i
≤ Õ

(
nλ
sσ2
p

)
for some τ ≤ t, then it must hold that `(τ

′)
yi,i

will also be smaller than some constant

in the order of Õ
(
nλ
sσ2
p

)
for all τ ′ ∈ [τ, t + 1]. To prove this, we first note that if `(t)yi,i reaches some

constant in the order of Õ
(
nλ
sσ2
p

)
, we have for all r ∈ [m] by (C.16)

〈w(t+1)
yi,r , ξi〉 ≥ 〈w(t)

yi,r, ξi〉+ Θ̃(ηsσp),

〈w(t+1)
−yi,r, ξi〉 ≤ 〈w

(t)
−yi,r, ξi〉+O(αη),

|〈w(t+1)
j,r ,v〉| ≤ |〈w(t)

j,r,v〉|+O(η). (C.17)

Therefore, we have

`
(t+1)
yi,i

=
eF−yi (W

(t+1),xi)∑
j∈{−1,1} e

Fj(W(t+1),xi)

=
1

1 + exp
[∑m

r=1

[
σ(〈w(t+1)

yi,r ,v〉) + σ(〈w(t+1)
yi,r , ξi〉)− σ(〈w(t+1)

−yi,r,v〉)− σ(〈w(t+1)
−yi,r, ξi〉)

]
≤ 1

1 + exp
[∑m

r=1

[
σ(〈w(t)

yi,r,v〉) + σ(〈w(t)
yi,r, ξi〉)− σ(〈w(t)

−yi,r,v〉)− σ(〈w(t)
−yi,r, ξi〉)

]
+ Θ̃(ηsσ2

p)
]

≤ 1

1 + exp
[∑m

r=1

[
σ(〈w(t)

yi,r,v〉) + σ(〈w(t)
yi,r, ξi〉)

]
− σ(〈w(t)

−yi,r,v〉)− σ(〈w(t)
−yi,r, ξi〉)

]]
= `

(t)
yi,i
,

where inequality follows from (C.17). Therefore, this implies that as long as `(t)yi,i is larger than some
constant b = Õ

(
nλ
sσ2
p

)
, then the adam algorithm will prevent it from further increasing. Besides, since

mησ2
p = o(1), then we must have `(t+1)

yi,i
∈ [0.5`

(t)
yi,i
, 2`

(t)
yi,i

]. As a consequence, we can deduce that

`
(t)
yi,i

cannot be larger than 2b, since otherwise there must exists a iterate W(τ) with τ ≤ t such that

`
(τ)
yi,i
∈ [b, 2b] and `(τ+1)

yi,i
≥ `

(τ)
yi,i

, which contradicts the fact that `(τ)
yi,i

should decreases if `(τ)
yi,i
≥ b.

Therefore, we can claim that if `(τ)
yi,i
≤ b = Õ

(
nλ
sσ2
p

)
for some τ ≤ t, then we have

`
(τ ′)
yi,i
≤ Õ

(
nλ

sσ2
p

)
(C.18)

for all τ ′ ∈ [τ, t+ 1]. Then further note that

2`
(t+1)
yi,i

≥ `(t)yi,i =
eF−yi (W

(t),xi)∑
j∈{−1,1} e

Fj(W(t),xi)

≥ exp

(
−

m∑
r=1

[
σ(〈w(t)

yi,r, yiv〉) + σ(〈w(t)
yi,r, ξi〉)

])
≥ exp

(
−Θ

(
m max
r∈[m]

σ(〈w(t)
yi,r, ξi〉)

))
, (C.19)

25

Published as a conference paper at ICLR 2023

where in the last inequality we use Hypothesis (C.14). Then by the fact that `(t+1)
yi,i

≤ Õ
(
nλ
sσ2
p

)
=

o(1) and m = Θ̃(1), it is clear that exp
(
− Θ

(
mmaxr∈[m] σ(〈w(t+1)

yi,r , ξi〉)
))

= o(1) so that
maxr∈[m]〈w

(t+1)
yi,r , ξi〉 = Ω̃(1). This verifies Hypothesis (C.12).

Verifying Hypothesis (C.13). Now we will verify Hypothesis (C.13). First, note that we have
already shown that 〈w(t+1)

yi,r∗ , ξi〉 = Ω̃(1) so it holds that∑
k∈Bi

|w(t+1)
yi,r∗ [k]| · |ξi[k]|+ α|w(t+1)

yi,r∗ [1]| ≥ 〈w(t+1)
yi,r∗ , ξi〉 = Ω̃(1).

By Hypothesis (C.14), we have |w(t+1)
yi,r∗ [1]| ≤ |w(t)

yi,r∗ [1]|+η = o(1). Besides, since each coordinate
in ξi is a Gaussian random variable, then maxk∈Bi |ξi[k]| = Õ(σp). This immediately implies that∑

k∈Bi

|w(t+1)
yi,r∗ [k]| · |ξi[k]| = Ω̃(1).

Then we will prove the upper bound of
∑
k∈Bi |w

(t+1)
yi,r [k]| · |ξi[k]|. Recall that by Lemma C.2, for

any k ∈ Bi such that∇wyi,r
L(W(t))[k] ≥ Θ̃(n−1ηsσp`

(t)
yi,i

), we have

w(t+1)
yi,r [k] = w(t)

yi,r[k] + Θ(η) · sgn

(
`
(t)
yi,i
σ′(〈w(t)

yi,r, ξi〉)ξi[k]− nλw(t)
yi,r[k]

)
.

Note that by Lemma C.4, for every k ∈ Bi, we have either w
(T0)
yi,r [k] = sgn(ξi[k]) · Θ̃

(
1
sσp

)
or |w(T0)

yi,r [k]| ≤ η. Then during the training process after T0, we have either sgn(w
(t)
yi,r[k]) =

sgn(ξi[k]) or sgn(ξi[k]) · w(t)
yi,r ≥ −Õ(η) since if for some iteration number t′ that we have

sgn(w
(t′)
yi,r[k]) = −sgn(ξi[k]) but sgn(w

(t′−1)
yi,r [k]) = sgn(ξi[k]), then after τ̄ = Õ(1) steps (see

the proof of Lemma C.2 for the definition of τ̄) in the constant number of steps the gradient will
must be in the same direction of ξi[k], which will push wyi,r[k] back to zero or become positive
along the direction of ξi[k]. Therefore, based on this property we have the following regarding the
inner product 〈w(t)

yi,r, ξi〉,

〈w(t)
yi,r, ξi〉 =

∑
k∈Bi∪{1}

w(t)
yi,r[k] · ξi[k]

≥
∑

k∈Bi∪{1}

|w(t)
yi,r[k]| · |ξi[k]| − Õ(η) ·

∑
k∈Bi∪{1}

|ξi[k]|

=
∑

k∈Bi∪{1}

|w(t)
yi,r[k]| · |ξi[k]| − Õ(ηsσp),

where the second inequality follows from the fact that the entry w
(t)
yi,r[k] that has different sign of

ξi[k] satisfies |w(t)
yi,r[k]| ≤ Õ(η). Then let B(t)

i =
∑
j∈Bi∪{1}

∣∣w(t)
yi,r[k] · 1(|w(t)

yi,r[k]| ≥ Õ(η))
∣∣ ·

|ξi[k]|, which satisfies B(T0)
i = Θ̃(1) by Lemma C.4. Then assume B(t)

i keeps increasing and
reaches some value in the order of Θ

(
log(dnη−1)

)
, it holds that according to the inequality above

〈w(t)
yi,r, ξi〉 = Θ

(
log(dnη−1)

)
− Θ̃(ηsσp) = Θ

(
log(dnη−1)

)
,

where we use the condition that η = O
(
(sσp)

−1
)
. Then by Hypothesis (C.12) and (C.14) we know

that |〈w(t)
j,r,v〉| = o(1), 〈w(t)

yi,r∗ , ξi〉 = Ω̃(1), and |〈w(t)
−yi,r∗ , ξi〉| = Õ(dη)+α|〈w(t)

−yi,r∗ ,v〉| = o(1)
then similar to (C.19), it holds that

`
(t)
yi,i

=
eF−yi (W

(t),xi)∑
j∈{−1,1} e

Fj(W(t),xi)
≤ exp

(
−Θ

(
σ(〈w(t)

yi,r∗ , ξi〉)
))
≤ poly(d−1, n−1, η).

Therefore, at this time we have for all k ∈ Bi,

`
(t)
yi,i
σ〈(w(t)

yi,r, ξi〉)ξi[k] ≤ poly(d−1, n−1, η) ·Θ
(

logq−1(dnη−1)
)
· Θ̃(σp) ≤ nλη.

26

Published as a conference paper at ICLR 2023

Then for all |w(t)
yi,r[k]| ≥ Õ(η), the sign of the gradient satisfies

sgn
(
∇wyi,r

L(W(t))[k]
)

= −sgn

(
`
(t)
yi,i
σ′(〈w(t)

yi,r, ξi〉)ξi[k]− nλw(t)
yi,r[k]

)
= sgn(nλη −w(t)

yi,r[k])

= sgn(w(t)
yi,r[k]).

Then note that |∇wyi,r
L(W(t))[k]| = Θ(|λw(t)

yi,r[k]|) ≥ Θ
(
n−1ηsσp`

(t)
yi,i

+ λη
)
, by the update

rule of w
(t)
yi,r[k] and Lemma C.2, we know the sign gradient will dominate the update process.

Then we have |w(t+1)
yi,r [k]| = |w(t)

yi,r[k] − Θ(η) · sgn(w
(t)
yi,r[k])| ≤ |w(t)

yi,r[k]|, which implies that∣∣w(t)
yi,r[k] ·1(|w(t)

yi,r[k]| ≥ Õ(η))
∣∣ decreases so that B(t)

i also decreases. Therefore, we can conclude
that B(t)

i will not exceed Θ
(

log(dnη−1)
)
. Then combining the results for all i ∈ [n] gives∑

k∈Bi

|w(t)
yi,r∗ [k]| · |ξi[k]| ≤ B(t)

i + Õ(sησp) ≤ Θ
(

log(dnη−1)
)

+O(1) = Θ̃(1),

where in the first inequality we again use the condition that η = o(1/d) = o
(
(sσp)

−1
)
. This verifies

Hypothesis (C.13). Notably, this also implies that 〈w(t)
yi,r∗ , ξi〉 = maxr∈[m]〈w

(t)
yi,r, ξi〉 ≤ Θ̃(1).

Verifying Hypothesis (C.14). In order to verify Hypothesis (C.14), let us first recall the update
rule of 〈w(t)

j,r,v〉:

〈w(t+1)
j,r ,v〉 = 〈w(t)

j,r,v〉 − η

〈
m

(t)
j,r√
v

(t)
j,r

,v

〉
.

Then by Lemma C.2, we know that if |∇wj,rL(W(t))[1]| ≤ Θ̃(η), then |m(t)
j,r/
√

v
(t)
j,r| ≤ Θ(1) and

otherwise〈
m

(t)
j,r√
v

(t)
j,r

,v

〉
= −sgn

(n∑
i=1

yi`
(t)
j,iσ
′(〈w(t)

j,r, yiv〉)− α
n∑
i=1

yi`
(t)
j,iσ
′(〈w(t)

j,r, ξi〉)− nλw
(t)
j,r[1]

)
·Θ(1).

Without loss of generality we assume j = 1, then by Lemma C.4 we know that w
(T0)
1,r [1] =

−Ω̃
(

1
sσp

)
. In the remaining proof, we will show that either w(t+1)

1,r [1] ∈ [0, Θ̃(λ−1η)] or w(t+1)
1,r [1] ∈[

− Õ
(
nα
sσ2
p

)
, 0
)
.

First we will show that w(t+1)
1,r [1] ∈ [0, Θ̃(λ−1η)] for all r. Note that in the beginning of this stage,

we have w
(T0)
1,r [1] < 0. In order to make the sign of w(t′)

1,r [1] flip, we must have, in some iteration

t′ ≤ t that satisfies w(t′)
1,r [1] ∈ [0, Θ̃(λ−1η)], therefore

−n∇w1,r
L(W(t′))[1] =

n∑
i=1

yi`
(t′)
j,i σ

′(〈w(t′)
j,r , yiv〉)− α

n∑
i=1

yi`
(t′)
j,i σ

′(〈w(t′)
j,r , ξi〉)− nλw

(t′)
j,r [1]

≤ n
[(
w

(t′)
j,r [1]

)q−2 − λ
]
·w(t′)

j,r [1] ≤ −Θ̃(nη) ≤ 0,

where the second inequality holds since η = o(λ(q−1)/(q−2)). Note that |∇w1,rL(W(t′))[1]| ≥
Θ̃(η), then by Lemma C.2 we know that Adam is similar to sign gradient descent and thus
w

(t′+1)
1,r [1] = w

(t′)
1,r [1] − Θ(η) which starts to decrease. This implies that if w(t+1)

1,r [1] is positive,
then it cannot exceed Θ̃(λ−1η) = o(1).

27

Published as a conference paper at ICLR 2023

Then we can prove that if w(t+1)
1,r [1] is negative, then |w(t+1)

1,r [1]| = Õ
(
nα
sσ2
p

)
. In this case we have

for all t′ ≤ t,

−n∇
w

(t)
1,r
L(W(t′))[1] =

n∑
i=1

yi`
(t′)
1,i σ

′(〈w(t′)
1,r , yiv〉)− α

n∑
i=1

yi`
(t′)
1,i σ

′(〈w(t′)
1,r , ξi〉)− nλw

(t′)
1,r [1]

≥ −
∑
i:yi=1

|`(t
′)

1,i | · Θ̃(α) + nλ|w(t′)
1,r [1]|+

∑
i:yi=−1

|`(t
′)

1,i | · |w
(t′)
1,r [1]|q−1,

≥ −
∑
i:yi=1

|`(t
′)

1,i | · Θ̃(α) + nλ|w(t′)
1,r [1]|,

where in the inequality we use Hypothesis (C.13) and (C.14) to get that

〈w(t′)
yi,r, ξi〉 ≤

∑
k∈Bi

|w(t′)
yi,r[k]| ·max

k∈Bi
|ξi[k]|+ α|〈w(t′)

yi,r,v〉| = Θ̃(1).

Recall from (C.18) that we have |`(t
′)

j,i | = Õ
(
nλ
sσ2
p

)
, therefore we have if w(t′)

j,r [1] is smaller than some

value in the order of −Θ̃
(
nα
sσ2
p

)
· polylog(d), then

−n∇
w

(t)
1,r
L(W(t′))[1] ≥ −Θ̃

(
αn2λ

sσ2
p

)
+ Θ̃

(
nλ · nα
sσ2
p

)
· polylog(d) ≥ Θ̃(nη),

which by Lemma C.2 implies that w(t′)
j,r [1] will increase. Therefore, we can conclude that w(t+1) ∈[

− Õ
(
nα
sσ2
p

)
, 0
)

in this case, which verifies Hypothesis (C.14).

Lemma C.6 (Lemma 5.5, restated). If the step size satisfies η = O(d−1/2), then for any t it holds
that

L(W(t+1))− L(W(t)) ≤ −η‖∇L(W(t))‖1 + Θ̃(η2d).

Proof. Let ∆Fj,i = Fj(W
(t+1),xi)− Fj(W(t),xi). Then regarding the loss function

Li(W) = − log
eFyi (W,xi)∑
j e
Fj(W,xi)

= −Fyi(W,xi) + log
(∑

j

eFj(W,xi)
)
.

It is clear that the function Li(W) is 1-smooth with respect to the vector [F−1(W,xi), F1(W,xi)].
Then based on the definition of ∆Fj,i, we have

Li(W
(t+1))− Li(W(t)) ≤

∑
j

∂Li(W
(t))

∂Fj(W(t),xi)
·∆Fj,i +

∑
j

(∆Fj,i)
2. (C.20)

Moreover, note that

Fj(W
(t),xi) =

m∑
r=1

[
σ(〈w(t)

j,r, yiv〉) + σ(〈w(t)
j,r, ξi〉)

]
.

By the results that 〈w(t)
j,r,v〉 ≤ Θ̃(1) and 〈w(t)

j,r, ξ〉 ≤ Θ̃(1), for any η = O(d−1/2), we have

〈w(t+1)
j,r ,v〉 ≤ 〈w(t)

j,r,v〉+ η ≤ Θ̃(1), 〈w(t+1)
j,r , ξi〉 ≤ 〈w(t)

j,r, ξi〉+ Θ̃(ηs1/2) ≤ Θ̃(1),

which implies that the smoothness parameter of the functions σ(〈w(t)
j,r, yiv〉) and σ(〈w(t)

j,r, ξi〉) are at

most Θ̃(1) for any w in the path between w
(t)
j,r and w

(t+1)
j,r . Then we can apply first Taylor expansion

on σ(〈w(t)
j,r, yiv〉) and σ(〈w(t)

j,r, ξi〉) and bound the second-order error as follows,∣∣σ(〈w(t+1)
j,r , yiv〉)− σ(〈w(t)

j,r, yiv〉)−
〈
∇wj,rσ(〈w(t)

j,r, yiv〉),w
(t+1)
j,r −w

(t)
j,r〉
∣∣

≤ Θ̃
(
‖w(t+1)

j,r −w
(t)
j,r‖

2
2

)
= Θ̃(η2d), (C.21)

28

Published as a conference paper at ICLR 2023

where the last inequality is due to Lemma C.2 that

[w
(t+1)
j,r −w

(t)
j,r]

2 = η2

∥∥∥∥∥ m
(t)
j,r√
v

(t)
j,r

∥∥∥∥∥
2

2

≤ Θ(η2d).

Similarly, we can also show that∣∣σ(〈w(t+1)
j,r , ξi〉)− σ(〈w(t)

j,r, ξi〉)−
〈
∇wj,rσ(〈w(t)

j,r, ξi〉),w
(t+1)
j,r −w

(t)
j,r〉
∣∣ ≤ Θ(η2d). (C.22)

Combining the above bounds on the second-order errors, we have∣∣∆Fj,i − 〈∇WFj(W
(t),xi),W

(t+1) −W(t)〉
∣∣ ≤ Θ̃(mη2d) = Θ̃(η2d), (C.23)

where the last equation is due to our assumption that m = Θ̃(1). Besides, by (C.21) and (C.22) the
convexity property of the function σ(x), we also have∣∣σ(〈w(t+1)

j,r , yiv〉)− σ(〈w(t)
j,r, yiv〉)

∣∣ ≤ |〈∇wj,rσ(〈w(t)
j,r, yiv〉),w

(t+1)
j,r −w

(t)
j,r〉|+ Θ̃(η2d)

= Θ̃
(
η|σ′(〈w(t+1)

j,r , yiv〉)| · ‖v‖1
)

+ Θ̃(η2d)

= Θ̃(η + η2d);∣∣σ(〈w(t+1)
j,r , ξi〉)− σ(〈w(t)

j,r, ξi〉)
∣∣ ≤ |〈∇wj,rσ(〈w(t)

j,r, ξi〉),w
(t+1)
j,r −w

(t)
j,r〉|+ Θ̃(η2d)

= Θ̃
(
η|σ′(〈w(t+1)

j,r , ξi〉)| · ‖ξ‖1
)

+ Θ̃(η2d)

= Θ̃(ηsσp + η2d).

These bounds further imply that

|∆Fj,i| ≤ Θ̃
(
m · (ηsσp + η2d)

)
= Θ̃

(
ηsσp + η2d

)
. (C.24)

Now we can plug (C.23) and (C.24) into (C.20) and get

Li(W
(t+1))− Li(W(t)) ≤

∑
j

∂Li(W
(t))

∂Fj(W(t),xi)
·∆Fj,i +

∑
j

(∆Fj,i)
2

≤
∑
j

∂Li(W
(t))

∂Fj(W(t),xi)
· 〈∇WFj(W

(t),xi),W
(t+1) −W(t)〉

+ Θ̃(η2d) + Θ̃
(
(ηsσp + η2d)2

)
= 〈∇Li(W(t)),W(t+1) −W(t)〉+ Θ̃(η2d), (C.25)

where in the second inequality we use the fact that Li(W) is 1-Lipschitz with respect to Fj(W,xi)

and the last equation is due to our assumption that σp = O(s−1/2) so that Θ̃((ηsσp + η2d)2) =

Õ(η2d).

Now we are ready to characterize the behavior on the entire training objective L(W) =
n−1

∑n
i=1 Li(W) + λ‖W‖2F . Note that λ‖W‖2F is 2λ-smoothness, where λ = o(1). Then ap-

plying (C.25) for all i ∈ [n] gives

L(W(t+1))− L(W(t)) =
1

n

n∑
i=1

[
Li(W

(t+1))− Li(W(t))
]

+ λ
(
‖W(t+1)‖2F − ‖W(t)‖2F

)
≤ 〈∇L(W(t)),W(t+1) −W(t)〉+ Θ̃(η2d),

where the second equation uses the fact that ‖W(t+1) −W(t)‖2F = Θ̃(η2d). Recall that we have

w
(t+1)
j,r −w

(t)
j,r = −η ·

m
(t)
j,r√
v

(t)
j,r

.

29

Published as a conference paper at ICLR 2023

Then by Lemma C.2, we know that m(t)
j,r[k]/

√
v

(t)
j,r[k] is close to sign gradient if ∇L(w(t))[k] is

large. Then we have〈
∇wj,rL(W(t)),

m
(t)
j,r√
v

(t)
j,r

〉
≥ Θ

(∥∥∇wj,rL(W(t))
∥∥

1

)
− Θ̃

(
d · η

)
− Θ̃(ns · ηsσp)

≥ Θ
(∥∥∇wj,rL(W(t))

∥∥
1

)
− Θ̃(dη),

where the second and last terms on the R.H.S. of the first inequality are contributed by the small
gradient coordinates k /∈ ∪ni=1Bi and k ∈ ∪ni=1Bi respectively, and the last inequality is by the fact
that ns2σp = O(d). Therefore, based on this fact (C.25) further leads to

L(W(t+1))− L(W(t)) ≤ −η‖∇L(W(t))‖1 + Θ̃(η2d),

which completes the proof.

Lemma C.7 (Generalization Performance of Adam). Let

W∗ = argmin
W∈{W(1),...,W(T)}

‖∇L(W)‖1.

Then for all training data, we have

1

n

n∑
i=1

1
[
Fyi(W

∗,xi) ≤ F−yi(W∗,xi)
]

= 0.

Moreover, in terms of the test data (x, y) ∼ D, we have

P(x,y)∼D
[
Fy(W∗,x) ≤ F−y(W∗,x)

]
≥ 1

2
.

Proof. By Lemma C.6, we know that the algorithm will converge to a point with very small gradient
(up to O(ηd) in `1 norm). Then in terms of a noise vector ξi, we have∑

k∈Bi

∣∣∇wyi,r
L(W∗)[k]

∣∣ ≤ O(ηd). (C.26)

Note that

n∇wyi,r
L(W∗)[k] = `∗yi,iσ

′(〈w∗yi,r, ξi〉)ξi[k]− nλw∗yi,r[k],

where `∗yi,i = 1− logityi(F
∗,xi). Then by triangle inequality and (C.26), we have for any r ∈ [m],∣∣∣∣ ∑

k∈Bi

|`∗yi,i|σ
′(〈w∗yi,r, ξi〉)|ξi[k]| − nλ

∑
k∈Bi

|w∗yi,r[k]|
∣∣∣∣ ≤ n∑

k∈Bi

∣∣∇wyi,r
L(W∗)[k]

∣∣ ≤ O(nηd).

Then by Lemma C.5, let r∗ = arg maxr∈[m]〈w∗yi,r, ξi〉, we have 〈wyi,r∗ , ξi〉 = Θ̃(1) and∑
k∈Bi |w

∗
yi,r∗ [k]| · |ξi[k]| = Θ̃(1). Note that |ξi[k]| = Õ(σp), we have

∑
k∈Bi |w

∗
yi,r∗ [k]| ≥

Θ̃(1/σp). Then according to the inequality above, it holds that

|`∗yi,i| · Θ̃(sσp) ≥ Θ̃

(
nλ
∑
k∈Bi

|w∗yi,r[k]| − nηd
)
≥ Θ̃

(
nλ

σp

)
,

where the second inequality is due to our choice of η. This further implies that |`∗yi,i| = |`∗−yi,i| =

Θ̃
(
nλ
sσ2
p

)
by combining the above results with (C.18). Then let us move to the gradient with respect

to the first coordinate. In particular, since ‖∇L(W∗)‖1 ≤ O(ηd), we have

|n∇wj,rL(W∗)[1]| =
∣∣∣∣ n∑
i=1

yi`
∗
j,iσ
′(〈w∗j,r, yiv〉)− α

n∑
i=1

yi`
∗
j,iσ
′(〈w∗j,r, ξi〉)− nλw∗j,r[1]

∣∣∣∣
≤ O(nηd). (C.27)

30

Published as a conference paper at ICLR 2023

Then note that sgn(yi`
∗
j,i) = sgn(j), it is clear that w∗j,r∗ [1] · j ≤ 0 since otherwise

|n∇wj,r∗L(W∗)[1]| ≥
∣∣∣∣α n∑

i=1

yi`
∗
j,i

[
σ′(〈w∗j,r∗ , ξi〉)− σ′(〈w∗j,r∗ , yiv〉)

]∣∣∣∣ ≥ Θ̃

(
αn2λ

sσ2
p

)
≥ Ω̃(nηd),

which contradicts (C.27). Therefore, using the fact that w∗j,r∗ [1] · j ≤ 0, we have

|n∇wj,r∗L(W∗)[1]| =
∣∣∣∣α n∑

i:yi=j

yi`
∗
j,iσ
′(〈w∗j,r∗ , ξi〉)−

n∑
i:yi=−j

yi`
∗
j,iσ
′(|w∗j,r∗ [1]|)

]
− nλ|w∗j,r∗ [1]|

∣∣∣∣.
Then applying (C.27)and using the fact that |`∗yi,i| = |`∗−yi,i| = Θ̃

(
nλ
sσ2
p

)
for all i ∈ [n], it is clear

that

|w∗j,r∗ [1]| ≥ Θ̃

(
α1/(q−1) ∧ nα

sσ2
p

)
≥ Θ̃

(
nα

sσ2
p

)
,

where the second equality is due to our choice of σp and α. Then combining with Lemma C.5 and
the fact that w∗j,r∗ [1] · j < 0, we have

w∗j,r∗ [1] · j ≤ −Θ̃

(
nα

sσ2
p

)
.

Now we are ready to evaluate the training error and test error. In terms of training error, it is clear
that by Lemma C.5, we have 〈w∗yi,r∗ , ξi〉 ≥ Θ̃(1), 〈w∗yi,r, ξi〉 ≥ −o(1), and |〈w∗yi,r,v〉| = o(1),
|〈w∗−yi,r, ξi〉| = o(1). Then we have for any training data (xi, yi),

Fyi(W
∗,xi) =

m∑
r=1

[
σ(〈w∗yi,r, yiv〉) + σ(〈w∗yi,r, ξi〉)

]
= Θ̃(1),

F−yi(W
∗,xi) =

m∑
r=1

[
σ(〈w∗−yi,r,−yiv〉) + σ(〈w∗−yi,r, ξi〉)

]
= o(1),

which directly implies that the NN model W∗ can correctly classify all training data and thus achieve
zero training error.

In terms of the test data (x, y) where x = [yv, ξ], which is generated according to Definition 3.1.
Note that for each neural, its weight w∗j,r can be decomposed into two parts: the first coordinate
and the rest d − 1 coordinates. As previously discussed, for any j ∈ [2] and r = r∗, we have
sgn(j) ·w∗j,r[1] ≤ −Θ̃

(
nα/(sσ2

p)
)

and sgn(j) ·w∗j,r[1] ≤ Θ̃(λ−1η) for r 6= r∗. Therefore, using
the fact that Θ̃

(
nα/(sσ2

p)
)

= ω(λ−1η) and Lemma C.5, given the test data (x, y), we have

Fy(W∗,x) =

m∑
r=1

[
σ(〈w∗y,r, yv〉) + σ(〈w∗y,r, ξ〉)

]
≤

m∑
r=1

Θ̃

([
α · nα

sσ2
p

+ ζy,r

]q
+

)
,

F−y(W∗,x)) =

m∑
r=1

[
σ(〈w∗−y,r, yv〉) + σ(〈w∗−y,r, ξ〉)

]
≥ Θ̃

[
|w∗−y,r∗ [1]|q + [ζ−y,r∗]

q
+

]
≥ Θ

([
nα

sσ2
p

]q
+

+ [ζ−y,r∗]
q
+

)
,

where the random variables ζy,r and ζy,r are symmetric and independent of v. Besides, note that
α = o(1), it can be clearly shown that α · nα/(sσ2

p) � nα/(sσ2
p). Therefore, if the random

noise ζy,r and ζ−y,r are dominated by the feature noise term 〈w∗−y,r∗ , yv〉, we can directly get that
Fy(W∗,x) ≤ F−y(W∗,x)) (recall that m = Θ̃(1)), which implies that the model has been biased
by the feature noise and the true feature vector in the test dataset will not give any “positive” effect
to the classification. Also note that ζy and ζ−y are also independent of v, which implies that if the
random noise dominates the feature noise term, the model W∗ will give at least 0.5 error on test data.
In sum, we can conclude that with probability at least 1/2 it holds that Fy(W∗,x) ≤ F−y(W∗,x),
which implies that the output of Adam achieves 1/2 test error.

31

Published as a conference paper at ICLR 2023

C.3 PROOF FOR GRADIENT DESCENT

Recall the feature learning and noise memorization of gradient descent can be formulated by

〈w(t+1)
j,r , j · v〉 = (1− ηλ) · 〈w(t)

j,r, j · v〉

+
η

n
· j ·

(n∑
i=1

yi`
(t)
j,iσ
′(〈w(t)

j,r, yiv〉)− α
n∑
i=1

yi`
(t)
j,iσ
′(〈w(t)

j,r, ξi〉)
)
,

〈w(t+1)
yi,r , ξi〉 = (1− ηλ) · 〈w(t)

yi,r, ξi〉+
η

n
·
∑
k∈Bi

`
(t)
yi,i
σ′(〈w(t)

yi,r, ξi〉) · ξi[k]2

+
ηα

n
·
(
α

n∑
s=1

`(t)yi,sσ
′(〈w(t)

yi,r, ξs〉)−
n∑
s=1

ys`
(t)
yi,sσ

′(〈w(t)
yi,r, ysv〉)

)
. (C.28)

Then similar to the analysis for Adam, we decompose the gradient descent process into multiple
stages and characterize the algorithmic behaviors separately. The following lemma characterizes the
first training stage, i.e., the stage where all outputs Fj(W(t),xi) remain in the constant level for all
j and i.
Lemma C.8. [Lemma 5.6, restated] Suppose the training data is generated according to Definition
3.1 and λ = o(σq−2

0 σp/n). Let Λ
(t)
j = maxr∈[m]〈w

(t+1)
j,r , j · v〉, Γ

(t)
j,i = maxr∈[m]〈w

(t)
j,r, ξi〉, and

Γ
(t)
j = maxi:yi=j Γ

(t)
j,i . Then let Tj be the iteration number that Λ

(t)
j reaches Θ(1/m), we have

Tj = Θ̃(σ2−q
0 /η) for all j ∈ {−1, 1}.

Moreover, let T0 = minj∈{±1}{Tj}, then for all t ≤ T0 it holds that Γ
(t)
j = Õ(σ0) for all j ∈

{−1, 1}.

We first provide the following useful lemma.
Lemma C.9. Let {xt, yt}t=1,... be two positive sequences that satisfy

xt+1 ≥ xt + η ·Axq−1
t ,

yt+1 ≤ yt + η ·Byq−1
t ,

for some A = Θ(1) and B = o(1). Then for any q ≥ 3 and suppose y0 = O(x0) and η < O(x0),
we have for every C ∈ [x0, O(1)], let Tx be the first iteration such that xt ≥ C, then we have
Txη = Θ(x2−q

0) and

yTx ≤ O(x0).

Proof. By Claim C.20 in Allen-Zhu & Li (2020b), we have Txη = Θ(x2−q
0). Then we will show

yt ≤ 2x0

for all t ≤ Tx. In particular, let Txη = C ′x2−q
0 for some absolute constant C ′ and assume

C ′B2q−1 < 1 (this is true since B = o(1)), we first made the following induction hypothesis
on yt for all t ≤ Ta,

yt ≤ y0 + tηB′(2x0)q−1.

Note that for any t ≤ T0, this hypothesis clearly implies that

yt ≤ y0 + TxηB
′2q−1xq−1

0 ≤ x0 + CB2q−1x2−q
0 · xq−1

0 ≤ 2x0.

Then we are able to verify the hypothesis at time t+1 based on the recursive upper bound of yt, i.e.,

yt+1 ≤ yt + η ·Byq−1
t

≤ y0 + tηB(2x0)q−1 + η ·Byq−1
t

≤ y0 + (t+ 1)ηB(2x0)q−1.

Therefore, we can conclude that yt ≤ 2x0 for all t ≤ Tx. This completes the proof.

32

Published as a conference paper at ICLR 2023

Now we are ready to complete the proof of Lemma C.8.

Proof of Lemma C.8. Note that at the initialization, we have |〈w(0)
j,r ,v〉| = Θ̃(σ0) and |〈w(0)

j,r , ξi〉| =
Θ̃(s1/2σpσ0). Then based on the parameter scaling summarized in Appendix C.1, we have

Fj(W
(0),xi) =

m∑
r=1

[
σ(〈w(0)

j,r , yiv〉) + σ(〈w(0)
j,r , ξi〉)

]
= o(1)

for all j ∈ {−1, 1}. Then we have

|`(0)
j,i | ≥ min

{
eFj(W

(0),xi)∑
j e
F+1(W(0),xi)

,
eF−1(W(0),xi)∑
j e
Fj(W(0),xi)

}
= Θ(1).

Then we will consider the training period where |`(t)j,i | = Θ(1) for all j, i, and t. Besides, note that

sgn(yi`
(t)
j,i) = j. Therefore, let r∗ = arg maxr〈w(t−1)

j,r , j · v〉, (C.28) implies that

Λ
(t)
j = 〈w(t−1)

j,r∗ , j · v〉

= (1− ηλ) · 〈w(t−1)
j,r∗ , j · v〉

+
η

n
·
(n∑
i=1

|`(t−1)
j,i |σ′(〈w(t−1)

j,r∗ , yiv〉)− α
n∑
i=1

|`(t−1)
j,i |σ′(〈w(t−1)

j,r∗ , ξi〉)
)

≥ (1− ηλ) · 〈w(t−1)
j,r∗ , j · v〉+ Θ(η) ·

[
σ′(〈w(t−1)

j,r∗ , j · v〉)− ασ′(Γ(t−1)
j)

]
≥ (1− ηλ)Λ

(t−1)
j + η ·Θ

(
(Λ

(t−1)
j)q−1

)
− η ·Θ

(
α(Γ

(t−1)
j)q−1

)
. (C.29)

Similarly, let r∗ = arg maxr〈w(t)
yi,r, ξi〉, we also have the following according to (C.28)

Γ
(t)
yi,i

= 〈w(t)
yi,r∗ , ξi〉

≤ (1− ηλ)〈w(t−1)
yi,r∗ , ξi〉+ Θ̃

(
ηsσ2

p

n

)
· σ′(〈w(t−1)

yi,r∗ , ξi〉) + Θ

(
ηα2

n

)
·
n∑
s=1

σ′(〈w(t−1)
yi,r∗ , ξs〉)

≤ Γ
(t−1)
yi,i

+ Θ̃

(
ηsσ2

p

(
Γ

(t−1)
yi,i

)q−1

n

)
+ Θ

(
ηα2

n
·
n∑
s=1

(
Γ(t−1)
yi,s

)q−1
)
.

Then by our definition of Γ
(t)
j = maxi∈[n] Γ

(t)
j,i , we further get the following for all j ∈ {−1, 1},

Γ
(t)
j ≤ Γ

(t−1)
j + Θ̃

(
ηsσ2

p + nηα2

n
·
(
Γ

(t−1)
j

)q−1
)

= Γ
(t−1)
j + Θ

(
ηsσ2

p

n
·
(
Γ

(t−1)
j

)q−1
)
,

(C.30)

where the last equation is by our assumption that α = Õ(sσ2
p/n).

Then we will prove the main argument for general t, which is based on the following two induction
hypotheses

Λ
(t)
j ≥ Λ

(t−1)
j + η ·Θ

(
(Λ

(t−1)
j)q−1

)
, (C.31)

Γ
(t)
j ≤ Γ

(t−1)
j + Θ

(
ηsσ2

p

n
·
(
Γ

(t−1)
j

)q−1
)
. (C.32)

Note that when t = 0, we have already verified these two hypotheses in (C.29) and (C.30), where
we use the fact that λ = o(σq−2

0 σp/n) ≤
(
Λ

(0)
j

)q−2
and α = o(1). Suppose that (C.29) and (C.30)

hold for iterations τ ≤ t. At time t+ 1, for all τ ≤ t, we have

Γ
(τ)
j ≤ O(Λ

(τ)
j),

33

Published as a conference paper at ICLR 2023

as sσ2/n = o(1) and Λ
(t)
j increases faster than Γ

(t)
j . Besides, we can also show that λΓ

(t)
j ≤(

Γ
(t)
j

)q−1
, which has been verified at time t = 0, since Γ

(t)
j keeps increasing. Therefore, we have

λΓ
(t)
j ≤

(
Γ

(t)
j

)q−1 ≤ O
((

Λ
(t)
j

)q−1)
,

and hence (C.29) implies

Λ
(t+1)
j ≥ (1− ηλ)Λ

(t)
j + η ·Θ

(
(Λ

(t)
j)q−1

)
− η ·Θ

(
α(Γ

(t)
j)q−1

)
≥ Λ

(t)
j + η ·Θ

(
(Λ

(t)
j)q−1

)
,

which verifies Hypothesis (C.31) at t+ 1. Additionally, (C.30) implies

Γ
(t+1)
j ≤ Γ

(t)
j + Θ

(
ηsσ2

p

n
·
(
Γ

(t)
j

)q−1
)
,

which verifies Hypothesis (C.32) at t + 1. Then by Lemma C.9, we have that Λ
(t)
j = Õ(1) for

all t ≤ T0 = Θ̃
(
(Λ

(0)
j)2−q/η

)
= Θ̃(σ2−q

0 /η). Moreover, Lemma C.9 also shows that Γ
(t+1)
j =

O(Λ
(0)
j) = Õ(σ0). This completes the proof.

Lemma C.10. For all i ∈ [n] and t ≤ T−yi , it holds that 〈w(t)
−yi,r, ξi〉 ≤ Θ̃(α).

Proof. First of all, for j ∈ {±1}, by the definition of Tj , we have

〈w(t)
j,r, j · v〉 ≤ Θ̃(1).

Moreover, with the same proof as Lemma C.8, it is clear that −〈w(t)
j,r, j · v〉 is decreasing in t for

t ≤ Tj . Therefore, by the fact that |〈w(0)
j,r ,v〉| ≤ Θ̃(1), we have

|〈w(t)
j,r,v〉| ≤ Θ̃(1) (C.33)

for all t ≤ Tj .
Now by the update form of GD, we have for any k ∈ Bi,

w
(t+1)
−yi,r[k] · ξi[k] = (1− ηλ) ·w(t)

−yi,r[k] · ξi[k] +
η

n
·
∑
k∈Bi

`
(t)
−yi,iσ

′(〈w(t)
−yi,r, ξi〉) · ξi[k]2.

Note that `(t)−yi,iσ
′(〈w(t)

−yi,r, ξi〉) < 0, which implies that w(t)
−yi,r[k] · ξi[k] is decreasing in t. There-

fore, for all r and i, we have

〈w(t)
−yi,r, ξi〉 = w

(t)
−yi,r[1] · ξi[1] +

∑
k∈Bi

w
(t)
−yi,r[k]ξi[k]

≤ w
(t)
−yi,r[1] · ξi[1] +

∑
k∈Bi

w
(0)
−yi,r[k]ξi[k]

≤ |w(t)
−yi,r[1] · ξi[1]|+

∣∣∣∣ ∑
k∈Bi

w
(0)
−yi,r[k]ξi[k]

∣∣∣∣
≤ Θ̃(α) + Θ̃(σ0σps

1/2)

= Θ̃(α),

where the third inequality follows by (C.33). This completes the proof.

Note that for different j, the iteration numbers when Λ
(t)
j reaches Θ̃(1/m) are different. Without

loss of generality, we can assume T1 ≤ T−1. Lemma C.8 has provided a clear understanding about
how Λ

(t)
j varies within the iteration range [0, Tj]. However, it remains unclear how Γ

(t)
1 varies within

the iteration range [T1, T−1] since in this period we no longer have |`(t)j,i | = Θ(1) and the effect of
gradient descent on the feature learning (i.e., increase of 〈wj,r, j · v〉) becomes weaker. In the
following lemma we give a characterization of Λ

(t)
1 for every t ∈ [T1, T−1].

34

Published as a conference paper at ICLR 2023

Lemma C.11 (Stage I of GD: part II). Without loss of generality assuming T1 < T−1. Then it holds
that Λ

(t)
1 = Θ̃(1) for all t ∈ [T1, T−1].

Proof. Recall from (C.29) that we have the following general lower bound for the increase of Λ
(t)
j

Λ
(t+1)
j ≥ (1− ηλ) · 〈w(t)

j,r∗ , j · v〉+
η

n
·
(n∑
i=1

|`(t)j,i |σ
′(〈w(t)

j,r∗ , yiv〉)− α
n∑
i=1

|`(t)j,i |σ
′(〈w(t)

j,r∗ , ξi〉)
)

≥ (1− ηλ)Λ
(t)
j + Θ

(
η

n

)
·
∑
i:yi=j

|`(t)j,i | ·
(
Λ

(t)
j

)q−1 −Θ(αη) ·
(
Γ

(t)
j ∨ Θ̃(α)

)q−1
, (C.34)

where the last inequality is by Lemma C.10. Note that by Lemma C.8, we have Γ
(t)
j = Õ(σ0) for

all t ≤ T−1 and . Then the above inequality leads to

Λ
(t+1)
j ≥ (1− ηλ)Λ

(t)
j + Θ

(
η

n

)
·
∑
i:yi=j

|`(t)j,i | ·
(
Λ

(t)
j

)q−1 −Θ(αqη), (C.35)

where we use the fact that α = ω(σ0). The the remaining proof consists of two parts: (1) proving
Λ

(t)
j ≥ Θ(1/m) = Θ̃(1) and (2) Λ

(t)
j ≤ Θ(log(1/λ)).

Without loss of generality we consider j = 1. Regarding the first part, we first note that Lemma C.8
implies that Λ

(T1)
1 ≥ Θ(1/m). Then we consider the case when Λ

(t)
1 ≤ Θ(log(1/α)/m), it holds

that for all yi = 1,

`
(t)
1,i =

eF−1(W(t),xi)∑
j∈{−1,1} e

Fj(W(t),xi)

= exp

(
Θ

(m∑
r=1

[
σ(〈w(t)

−1,r, yiv〉) + σ(〈w(t)
−1,r, ξi〉)

]
−

m∑
r=1

[
σ(〈w(t)

1,r, yiv〉) + σ(〈w(t)
1,r, ξi〉)

]))
≥ exp

(
−Θ(mΛ

(t)
1)
)

≥ exp(−Θ(log(1/α)))

= Θ̃(α).

Then (C.35) implies that if Γ
(t)
1 ≤ Θ(log(1/σ0)/m), we have

Λ
(t+1)
1 ≥ (1− ηλ)Λ

(t)
1 + Θ(ηα) · Λ(t)

1 −Θ(αqη) ≥ Λ
(t)
1 + Θ(ηα) · Λ(t)

1 ≥ Λ
(t)
1 ,

where the second inequality is due to λ = o(α). This implies that Λ
(t)
1 will keep increases in this

case so that it is impossible that Λ
(t)
1 ≤ Θ(1/m), which completes the proof of the first part.

For the second part, (C.28) implies that

Λ
(t+1)
1 ≤ (1− ηλ)Λ

(t)
1 + Θ

(
η

n

)
·
∑
i:yi=1

|`(t)1,i| ·
(
Λ

(t)
1

)q−1
. (C.36)

Consider the case when Γ
(t)
1 ≥ Θ(log(d)), then for all yi = 1,

`
(t)
1,i =

eF−1(W(t),xi)∑
j∈{−1,1} e

Fj(W(t),xi)

= exp

(
Θ

(m∑
r=1

[
σ(〈w(t)

−1,r, yiv〉) + σ(〈w(t)
−1,r, ξi〉)

]
−

m∑
r=1

[
σ(〈w(t)

1,r, yiv〉) + σ(〈w(t)
1,r, ξi〉)

]))
≤ exp

(
−Θ(Λ

(t)
1)
)

≤ exp(−Θ(log(1/λ))

= Θ̃(poly(λ)).

35

Published as a conference paper at ICLR 2023

Then (C.36) further implies that

Λ
(t+1)
1 ≤ (1− ηλ)Λ

(t)
1 + Θ

(
η

poly(d)

)
·
(
Λ

(t)
1

)q−1

≤ Λ
(t)
1 −Θ

(
ηΛ

(t)
1

)
·
(
λ− poly(λ) ·

(
Λ

(t)
1

)q−2
)
≤ Λ

(t)
1 ,

which implies that Λ
(t)
1 will decrease. As a result, we can conclude that λ(t)

1 will not exceed
Θ(log(1/λ)), this completes the proof of the second part.

Lemma C.12 (Lemma 5.7, restated). If η ≤ O(σ0), it holds that Λ
(t)
j = Θ̃(1) and Γ

(t)
j = Õ(σ0)

for all t ∈ [T−1, T].

Proof. We will prove the desired argument based on the following three induction hypothesis:

Λ
(t+1)
j ≥ (1− λη)Λ

(t)
j + Θ̃

(
η

n

) ∑
i:yi=j

|`(t)j,i | − Θ̃(αqη) · 1

n

n∑
i=1

|`(t)j,r|, (C.37)

Γ
(t)
j = Õ(σ0), (C.38)

Λ
(t)
j = Θ̃(1). (C.39)

In terms of Hypothesis (C.37), we can apply Hypothesis (C.38) and (C.39) to (C.34) and get that

Λ
(t+1)
j ≥ (1− ηλ)Λ

(t)
j + Θ

(
η

n

)
·
∑
i:yi=j

|`(t)j,i | ·
(
Λ

(t)
j

)q−1 −Θ(αη) ·
(
Γ

(t)
j ∨ Θ̃(α)

)q−1 · 1

n

n∑
i=1

|`(t)j,r|

≥ (1− λη)Λ
(t)
j + Θ̃

(
η

n

) ∑
i:yi=j

|`(t)j,i | − Θ̃(αqη) · 1

n

n∑
i=1

|`(t)j,r|.

where the last inequality we use the fact that α ≥ σ0. This verifies Hypothesis (C.37).

In order to verify Hypothesis (C.38), we have the following according to (C.37),

∑
j∈{−1,1}

Λ
(t+1)
j ≥ (1− λη)

∑
j∈{−1,1}

[
Λ

(t)
j + Θ̃

(
η

n

) n∑
i=1

|`(t)j,i | − Θ̃(αqη) · 1

n

n∑
i=1

|`(t)j,r|

]

= (1− λη)
∑

j∈{−1,1}

[
Λ

(t)
j + Θ̃

(
η

n

) n∑
i=1

|`(t)j,i |

]
,

where the last equality holds since α = o(1). Recursively applying the above inequality from T−1

to t gives

∑
j∈{−1,1}

Λ
(t)
j ≥ (1− λη)t−T−1

∑
j∈{−1,1}

[
Λ

(T−1)
j + Θ̃

(
η

n

)
·
t−T−1−1∑
τ=0

(1− λη)τ
n∑
i=1

|`(t−1−τ)
j,i |

]
.

Then by Hypothesis (C.39) we have

Θ̃

(
η

n

)
·
t−T−1−1∑
τ=0

(1− λη)τ
n∑
i=1

|`(t−1−τ)
j,i | ≤ Θ̃(1).

36

Published as a conference paper at ICLR 2023

Now let us look at the rate of memorizing noises. By (C.28) and use the fact that α2 ≤ O(sσ2
p/n),

we have

Γ
(t)
j ≤ (1− ηλ)Γ

(t−1)
j + Θ̃

(
ηsσ2

p

n

)
·
∑
i=1

|`j,i| ·
(
Γ

(t−1)
j

)q−1

≤ (1− ηλ)Γ
(t−1)
j + Θ̃

(
ηsσ2

pσ
q−1
0

n

)
·
∑
i=1

|`j,i|

≤ Γ
(T−1)
j + Θ̃

(
ηsσ2

pσ
q−1
0

n

)
·
t−T−1−1∑
τ=0

(1− λη)τ
n∑
i=1

|`(t−1−τ)
j,i |

≤ Θ̃
(
σ0 + sσ2

pσ
q−1
0

)
≤ Θ̃(σ0),

which verifies Hypothesis (C.38).

Given Hypothesis (C.37) and (C.38), the verification of (C.39) is straightforward by applying the
same proof technique of Lemma C.11 and thus we omit it here.

Lemma C.13 (Lemma 5.8, restated). If the step size satisfies, then for any t ≥ T−1 it holds that

L(W(t+1))− L(W(t)) ≤ −η
2
‖∇L(W(t))‖2F .

Proof. The proof of this lemma is similar to that of Lemma C.6, which is basically relying the
smoothness property of the loss function L(W) given certain constraints on the inner products
〈wj,r,v〉 and 〈wj,r, ξi〉.

Let ∆Fj,i = Fj(W
(t+1),xi) − Fj(W(t),xi), we can get the following Taylor expansion on the

loss function Li(W(t+1)),

Li(W
(t+1))− Li(W(t)) ≤

∑
j

∂Li(W
(t))

∂Fj(W(t),xi)
·∆Fj,i +

∑
j

(∆Fj,i)
2. (C.40)

In particular, by Lemma C.12, we know that 〈w(t)
j,r, yiv〉 ≤ Θ̃(1) and 〈w(t)

j,r, ξi〉 ≤ Θ̃(σ0) ≤ Θ̃(1).
Then similar to (C.21), we can apply first-order Taylor expansion to Fj(W(t+1),xi), which re-
quires to characterize the second-order error of the Taylor expansions on σ(〈w(t+1)

j,r , yiv〉) and

σ(〈w(t+1)
j,r , ξi〉),∣∣σ(〈w(t+1)

j,r , yiv〉)− σ(〈w(t)
j,r, yiv〉)−

〈
∇wj,rσ(〈w(t)

j,r, yiv〉),w
(t+1)
j,r −w

(t)
j,r〉
∣∣

≤ Θ̃
(
‖w(t+1)

j,r −w
(t)
j,r‖

2
2

)
= Θ̃(η2‖∇wj,rL(W(t))‖22),∣∣σ(〈w(t+1)

j,r , ξi〉)− σ(〈w(t)
j,r, ξi〉)−

〈
∇wj,rσ(〈w(t)

j,r, ξi〉),w
(t+1)
j,r −w

(t)
j,r〉
∣∣

≤ Θ̃
(
‖w(t+1)

j,r −w
(t)
j,r‖

2
2

)
= Θ̃(η2‖∇wj,rL(W(t))‖22). (C.41)

Then combining the above bounds for every r ∈ [m], we can get the following bound for ∆Fj,i∣∣∆Fj,i − 〈∇WFj(W
(t),xi),W

(t+1) −W(t)〉
∣∣ ≤ Θ̃

(
η2
∑
r∈[m]

‖∇wj,rL(W(t))‖22
)

= Θ̃
(
η2‖∇L(W(t))‖2F

)
. (C.42)

Moreover, since 〈w(t)
j,r, yiv〉 ≤ Θ̃(1) and 〈w(t)

j,r, ξi〉 ≤ Θ̃(1) and σ(·) is convex, then we have

|σ(〈w(t+1)
j,r , yiv〉)− σ(〈w(t)

j,r, yiv〉)| ≤ max
{
|σ′(〈w(t+1)

j,r , yiv〉)|, |σ′(〈w(t)
j,r, yiv〉)|

}
· |〈v,w(t+1)

j,r −w
(t)
j,r〉|

≤ Θ̃
(
‖w(t+1)

j,r −w
(t)
j,r‖2

)
.

37

Published as a conference paper at ICLR 2023

Similarly we also have

|σ(〈w(t+1)
j,r , ξi〉)− σ(〈w(t)

j,r, ξi〉)| ≤ Θ̃
(
‖w(t+1)

j,r −w
(t)
j,r‖2

)
.

Combining the above inequalities for every r ∈ [m], we have∣∣∆Fj,i∣∣2 ≤ Θ̃

([∑
r∈[m]

‖w(t+1)
j,r −w

(t)
j,r‖2

]2)
≤ Θ̃

(
mη2‖∇L(W(t))‖2F

)
= Θ̃

(
η2‖∇L(W(t))‖2F

)
.

(C.43)

Now we can plug (C.42) and (C.43) into (C.40), which gives

Li(W
(t+1))− Li(W(t)) ≤

∑
j

∂Li(W
(t))

∂Fj(W(t),xi)
·∆Fj,i +

∑
j

(∆Fj,i)
2

= 〈∇Li(W(t)),W(t+1) −W(t)〉+ Θ̃(η2‖∇L(W(t))‖2F). (C.44)

Taking sum over i ∈ [n] and applying the smoothness property of the regularization function
λ‖W‖2F , we can get

L(W(t+1))− L(W(t)) =
1

n

n∑
i=1

[
Li(W

(t+1))− Li(W(t))
]

+ λ
(
‖W(t+1)‖2F − ‖W(t)‖2F

)
≤ 〈∇L(W(t)),W(t+1) −W(t)〉+ Θ̃(η2‖∇L(W(t))‖2F)

= −
(
η − Θ̃(η2)

)
· ‖∇L(W(t))‖2F

≤ −η
2
‖∇L(W(t))‖2F ,

where the last inequality is due to our choice of step size η = o(1) so that gives η − Θ̃(η2) ≥ η/2.
This completes the proof.

Lemma C.14 (Generalization Performance of GD). Let

W∗ = arg min
{W(1),...,W(T)}

‖∇L(W(t))‖F .

Then for all training data, we have

1

n

n∑
i=1

1
[
Fyi(W

∗,xi) ≤ F−yi(W∗,xi)
]

= 0.

Moreover, in terms of the test data (x, y) ∼ D, we have

P(x,y)∼D
[
Fy(W∗,x) ≤ F−y(W∗,x)

]
= o(1).

Proof. By Lemma C.12 it is clear that all training data can be correctly classified so that the training
error is zero. Besides, for test data (x, y) with x = [yv>, ξ>]>, it is clear that with high probability
〈w∗y,r, yv〉 = Θ̃(1) and [〈w∗y,r, ξ〉]+ ≤ Õ(σ0), then

Fy(W∗,x) =

m∑
r=1

[
σ(〈w∗y,r, yv〉) + σ(〈w∗y,r, ξ〉)

]
≥ Ω̃(1).

If j = −y, we have with probability at least 1 − 1/poly(n), 〈w∗−y,r, yv〉 ≤ 0 and [w∗−y,r, ξ〉]+ ≤
Õ(α), which leads to

F−y(W∗,x) =

m∑
r=1

[
σ(〈w∗−y,r, yv〉) + σ(〈w∗−y,r, ξ〉)

]
≤ Õ(mαq) = Õ(αq) = o(1).

This implies that GD can also achieve nearly at most 1/poly(n) test error. This completes the
proof.

38

Published as a conference paper at ICLR 2023

D PROOF OF THEOREM 4.2: CONVEX CASE

Theorem D.1 (Convex setting, restated). Assume the model is over-parameterized. Then for
any convex and smooth training objective with positive regularization parameter λ, suppose we
run Adam and gradient descent for T = poly(n)

η iterations, then with probability at least
1 − n−1, the obtained parameters W∗

Adam and W∗
GD satisfy that ‖∇L(W∗

Adam)‖1 ≤ 1
Tη and

‖∇L(W∗
Adam)‖22 ≤ 1

Tη respectively. Moreover, it holds that:

• Training errors are the same:

1

n

n∑
i=1

1
[
sgn
(
F (W∗

Adam,xi)
)
6= yi

]
=

1

n

n∑
i=1

1
[
sgn
(
F (W∗

GD,xi)
)
6= yi

]
.

• Test errors are nearly the same:

P(x,y)∼D
[
sgn
(
F (W∗

Adam,xi)
)
6= y
]

= P(x,y)∼D
[
sgn
(
F (W∗

GD,x)
)
6= y
]
± o(1).

Proof. The proof is straightforward by applying the same proof technique used for Lemmas C.6
and C.13, where we only need to use the smoothness property of the loss function. Then it is clear
that both Adam and GD can provably find a point with a sufficiently small gradient. Note that
the training objective becomes strongly convex when adding weight decay regularization, implying
that the entire training objective only has one stationary point, i.e., point with a sufficiently small
gradient. This further implies that the points found by Adam and GD must be exactly the same and
thus GD and Adam must have nearly the same training and test performance.

Besides, when the problem is sufficiently over-parameterized, with proper regularization (feasibly
small), we can still guarantee zero training errors.

E DISCUSSION ON THE DATA MODELS IN WILSON ET AL. (2017); REDDI
ET AL. (2018)

Data model in Wilson et al. (2017). In particular, given the binary label yi ∈ {−1, 1}, the feature
vector xi is set as

xi[j] =

yi, j = 1

1, j = 2, 3

1, j = 4 + 5(i− 1), . . . , 4 + 5(i− 1) + 2(1− yi)
0, otherwise.

Data model in Reddi et al. (2018). In particular, Reddi et al. (2018) considers a one-dimensional
optimization objective. Besides, in each iteration of Adam, the stochastic gradient is taken based on
the function ft(x) defined as follows:

ft(x) =

{
Cx, t mod 3 = 1

−x, otherwise.

Then it can be seen that in these two prior works, each coordinate of the feature vector (or the
objective function) is hard coded. In contrast, our data model allows randomness in the data gen-
eration process. This implies that our theory can hold for the data points generated from a certain
distribution, while these prior works can only cover one particular data or optimization objective.

39

	Introduction
	Related Work
	Problem Setup and Preliminaries
	Main Results
	Proof Outline of the Main Results
	Proof sketch for Adam
	Proof sketch for gradient descent

	Concluding Remarks and Future Work
	Experiments
	Experiment Details for Figure 1
	Numerical Experiments on Synthetic Data

	Extensions to Mini-batch Stochastic Gradients
	Proof of Theorem 4.1: Nonconvex Case
	Preliminaries
	Proof for Adam
	Proof for Gradient Descent

	Proof of Theorem 4.2: Convex Case
	Discussion on the Data Models in wilson2017marginal,reddi2018convergence

