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Abstract001

Controllable speech generation methods typ-002
ically rely on single or fixed prompts, hin-003
dering creativity and flexibility. These limi-004
tations make it difficult to meet specific user005
needs in certain scenarios, such as adjusting006
the style while preserving a selected speaker’s007
timbre, or choosing a style and generating a008
voice that matches a character’s visual appear-009
ance. To overcome these challenges, we pro-010
pose FleSpeech, a novel multi-stage speech011
generation framework that allows for more012
flexible manipulation of speech attributes by013
integrating various forms of control. Fle-014
Speech employs a multimodal prompt encoder015
that processes and unifies different text, au-016
dio, and visual prompts into a cohesive rep-017
resentation. This approach enhances the adapt-018
ability of speech synthesis and supports cre-019
ative and precise control over the generated020
speech. Additionally, we develop a data collec-021
tion pipeline for multimodal datasets to facili-022
tate further research and applications in this023
field. Comprehensive subjective and objec-024
tive experiments demonstrate the effectiveness025
of FleSpeech. Audio samples are available at026
https://anyone499.github.io/FleSpeech/027

1 Introduction028

Speech synthesis plays a pivotal role in content029

creation and human-computer interaction. With030

the advancement of powerful generative models,031

such as large language models (Wang et al., 2023;032

Betker, 2023; Lajszczak et al., 2024; Anastassiou033

et al., 2024; Kim et al., 2024) and diffusion mod-034

els (Vyas et al., 2023; Eskimez et al., 2024; Chen035

et al., 2024a), speech synthesis has experienced036

rapid progress in recent years (Xie et al., 2024).037

Beyond a focus on realism, there is a growing em-038

phasis on flexible and controllable speech synthe-039

sis (Guan et al., 2024), such as the ability to manip-040

ulate the style of generated speech based on textual041

descriptions (Liu et al., 2023; Ji et al., 2024a; Leng042

FleSpeech

I want a voice...

Like this voice,
but slower.

One's style and
other one's timbre.

This is what I want

Sound like this
woman's voice,
but more angry.

A woman's voice, she
is surperised, with
strong variations in
tone.

Figure 1: FleSpeech can flexibly generate speech that
matches the given prompts.

et al., 2024; Zhu et al., 2024). 043

Despite the variety of available speech genera- 044

tion control methods, each approach has its inher- 045

ent limitations. For instance, while speech synthe- 046

sis based on natural language descriptions offers 047

flexibility, language often struggles to precisely 048

capture all desired attributes, particularly when it 049

comes to describing a speaker’s timbre, as textual 050

representations are inherently limited. In contrast, 051

the reference audio-based method can clearly de- 052

fine all attributes but relies on existing audio, which 053

lacks creativity and flexibility. These constraints 054

make it difficult to address specific user needs in 055

certain scenarios, such as adjusting style while pre- 056

serving a selected speaker timbre or choosing a 057

style and generating a voice that aligns with a char- 058

acter’s visual appearance. 059

To overcome these constraints and move beyond 060

controllable speech synthesis techniques based on a 061

single or a few control methods, we propose a more 062

flexible controllable speech generation method, 063

FleSpeech, which supports multiple forms of con- 064
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trol and allows for the combination of different065

control strategies, thereby meeting the flexible con-066

trol requirements across various scenarios as illus-067

trated in Fig. 1. To this end, we first introduce068

a multi-stage speech generation framework, with069

each stage modeling the style and timbre of speech.070

With this framework, we can provide different071

prompts at different stages, enabling flexibly con-072

trollable speech generation. Second, we propose a073

multimodal prompt encoder to embed multimodal074

prompts into a unified representation. Finally, con-075

sidering the scarcity of multimodal data, we built a076

data collection pipeline to facilitate research in this077

area. We will release this data collection pipeline078

upon the acceptance of this paper.079

In summary, the main contributions of this work080

are as follows:081

• We propose FleSpeech, a multi-stage speech082

generation framework that supports multiple083

prompt inputs to flexibly control different084

properties of speech. Experiments across dif-085

ferent tasks demonstrate both the objective086

and subjective superiority of this method.087

• We propose a unified multimodal prompt en-088

coder, which allows us to input any combina-089

tion of text, audio, and visual modal prompts090

and operate them in a unified embedding091

space.092

• We built a pipeline to facilitate data collection093

for subsequent multimodal speech generation094

work.095

2 Related Work096

2.1 Controllable Speech Synthesis097

The employment of category labels, such as098

speaker identity (Chen et al., 2020; Gibiansky et al.,099

2017) and emotion (Lee et al., 2017; Lorenzo-100

Trueba et al., 2018), serves as a prevalent tech-101

nique for controlling specific speech attributes. To102

address the limited control capabilities of labels,103

Skerry-Ryan et al. (Skerry-Ryan et al., 2018) intro-104

duced a style transfer method based on reference105

acoustic representation. Subsequently, this refer-106

ence audio-based approach has gained substantial107

popularity, particularly in the context of emotion108

transfer (Li et al., 2022; Lei et al., 2022) and zero-109

shot TTS (Wang et al., 2023; Kim et al., 2024; Du110

et al., 2024).111

To achieve more flexible control, In-112

structTTS (Yang et al., 2024) and PromptTTS (Guo113

et al., 2023) are pioneering text description-based 114

speech synthesis, employing natural language to 115

specify the attributes to be controlled. Subsequent 116

efforts (Lyth and King, 2024; Yamauchi et al., 117

2024; Ji et al., 2024b; Leng et al., 2024; Jin 118

et al., 2024) are focused on exploring the use of 119

automated methods to capture more diverse natural 120

language descriptions, thereby enabling control 121

over an expanded range of attributes. 122

Additionally, a speaker’s facial image can also 123

serve as a form of control information for speech 124

synthesis (Goto et al., 2020; Lee et al., 2023; Wang 125

et al., 2022; Lee et al., 2024). Specifically, Any- 126

oneNet (Wang et al., 2022) employs face embed- 127

dings, projecting them into the same embedding 128

space as reference audio embeddings. This ap- 129

proach aims to generate voices that align with 130

the character’s visual appearance, thus facilitating 131

the production of speaker videos that incorporate 132

speech, derived from a single facial image and ac- 133

companying text. 134

Most recently, research has begun to explore con- 135

trol methods beyond single-modality-based meth- 136

ods. MM-TTS (Guan et al., 2024) pioneers a 137

unified framework that accommodates multimodal 138

prompts from text, audio, or facial modalities. Fur- 139

ther advancing this field, StyleFusion TTS (Chen 140

et al., 2024b) introduces a multi-prompt framework 141

that leverages both style descriptions and an audio 142

prompt to simultaneously control audio style and 143

timbre. Unlike StyleFusion TTS, which necessi- 144

tates simultaneous input of both prompts during 145

inference, our proposed FleSpeech accommodates 146

inputs from any number of arbitrary modalities. 147

This flexibility significantly enhances the adaptabil- 148

ity and controllability of speech synthesis. 149

2.2 Speech Attribute Editing 150

Editing speech attributes typically involves modi- 151

fications to timbre or speaking styles. The former, 152

known as Voice Conversion (VC), specifically aims 153

to transform the timbre to match that of another tar- 154

get speaker while retaining the linguistic informa- 155

tion. A typical method employs pre-trained mod- 156

els to extract speaker timbre representations and 157

speech content features, which are then merged to 158

reconstruct the converted speech (Qian et al., 2019; 159

Wang et al., 2021; Ning et al., 2023). However, 160

this approach often struggles to generalize to un- 161

seen speakers due to model capacity constraints 162

when handling large-scale speech data. To address 163

this challenge, language model-based voice conver- 164
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Figure 2: The model architecture of FleSpeech.

sion methods have begun to emerge (Wang et al.,165

2024a,b).166

Instead of changing timbre, style editing focuses167

on modifying the speech style while preserving lin-168

guistic content and timbre. VoxEditor (Sheng et al.,169

2024) introduces a voice attribute editing model170

that facilitates the modification of speech style at-171

tributes using a given source audio and textual de-172

scription. Similarly, AudioBox (Vyas et al., 2023)173

presents a flow-matching-based framework that en-174

ables the restyling of any audio sample through175

text descriptions. Extending beyond just editing176

timbre or style, our proposed FleSpeech allows for177

the simultaneous editing of both speaker timbre178

and style.179

3 Method180

3.1 Overview181

FleSpeech is designed to flexibly control the syn-182

thesis of speech either through any single-form183

prompt or a combination of different prompt for-184

mats. For instance, it can control style using a text185

description while managing timbre with reference186

audio. To facilitate this, as illustrated in Fig. 2a,187

FleSpeech comprises a language model module for188

semantic token prediction and a Flow Matching-189

based module for acoustic feature prediction. To190

handle different forms of prompts, a multimodal191

prompt encoder (MPE) is proposed. Specifically,192

MPE is designed to handle prompts in any format,193

i.e., text, audio, or image, to obtain a unified repre-194

sentation. This unified representation serves as a195

condition in either the language model or the flow196

matching module, facilitating targeted control.197

Here, we first introduce the language model and198

flow matching, both of which play crucial roles in199

speech generation and are classified as components200

of the multimodal prompt-based speech generator. 201

Subsequently, we describe MPE, which is used to 202

control the generator. 203

3.2 Multimodal Prompt-based Speech 204

Generator 205

Langauge model for semantic generation In- 206

spired by the outstanding performance of language 207

models in speech synthesis tasks (Wang et al., 208

2023), we tokenize speech into semantic tokens and 209

then employ a decoder-only transformer-based lan- 210

guage model to predict these tokens. Specifically, 211

the input text is first converted into a phoneme 212

sequence. The language model then takes this 213

phoneme embedding sequence, concatenated with 214

the global condition embedding obtained via MPE, 215

to predict semantic tokens in an autoregressive man- 216

ner. Details about the model parameters are pro- 217

vided in Appendix A. 218

As for speech tokenization, inspired by Vec- 219

Tok (Zhu et al., 2023), our tokenizer employs 220

WavLM (Chen et al., 2022a), pre-trained on 94k 221

hour dataset1, to extract speech features. We then 222

use the K-means clustering method to discretize 223

these features into 300 tokens, primarily associated 224

with linguistic information. 225

Flow matching for acoustic feature genera- 226

tion The absence of acoustic details in semantic 227

tokens results in a gap with the corresponding au- 228

dio. To bridge this gap, a diffusion transformer 229

based flow-matching-based module, similar to Sta- 230

ble Diffusion 3 (Esser et al., 2024), is used to gener- 231

ate acoustic features from semantic tokens, supple- 232

mented by the conditional embedding created by 233

the MPE. Details about this module can be found 234

in Appendix A. 235

1https://huggingface.co/microsoft/wavlm-large
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Compared to pre-designed acoustic features such236

as the Mel-spectrum, Glow-WaveGAN (Cong et al.,237

2021) demonstrates that the acoustic latent rep-238

resentation learned by a variational autoencoder239

performs better in acoustic feature prediction and240

vocoder-based speech synthesis processes. There-241

fore, instead of using the Mel-spectrum as the242

acoustic feature to be predicted by the flow match-243

ing module as in CosyVoice (Du et al., 2024), we244

adopt WaveGAN implemented in Glow-WaveGAN245

to extract the latent representation as the acoustic246

feature via the encoder. The decoder is then used247

as a vocoder to generate the final audio.248

3.3 Multimodal Prompt Encoder249

The objective of the MPE is to obtain a unified con-250

dition embedding based on prompts from multiple251

modalities. Given that the reference audio con-252

tains the most comprehensive information and is253

always available during the speech generation train-254

ing process, the core idea behind MPE is to map the255

representations of textual and visual prompts to the256

space of reference audio embeddings. To achieve257

this, following the approach of IP-Adapter (Ye258

et al., 2023), a query-based encoder structure is259

employed, which uses some learnable query to-260

kens to extract speech-related information from the261

representations of different prompts. Additionally,262

due to the many-to-one relationship between ref-263

erence audio and other prompt modalities, such264

as multiple voices that correspond to the textual265

style description "a male speaking loudly and very266

fast", a diffusion-based method is adopted to model267

this diversity. Specifically, as shown in the Fig. 2b,268

the embeddings from different prompt modalities269

are input into the query-based encoder separately.270

These embeddings are then concatenated with the271

noisy audio embedding xt and fed into the diffusion272

process. The diffusion model subsequently predicts273

the ground truth audio embedding x0 through de-274

noising.275

The reference audio prompt embedding, serv-276

ing as the anchor for prompt embeddings from277

different modalities, captures all time-invariant in-278

formation, such as style and timbre. Consequently,279

the embedding created by the reference audio en-280

coder can be directly used as the conditional em-281

bedding in speech generation. Similar to Meta-282

StyleSpeech (Min et al., 2021), the reference audio283

encoder consists of six attention blocks, and the284

output of the last block is average-pooled to obtain285

a global audio embedding.286

The textual prompt embedding can be de- 287

rived from either the description of the speaking 288

style or facial visual information. In this case, the 289

description text is embedded using a pre-trained 290

BERT (Devlin et al., 2019)2, which is to capture 291

the semantic information of the descriptions. 292

The visual prompt embedding, specifically re- 293

ferring to the embedding of face information, is 294

inspired by ID-Animator (He et al., 2024) and aims 295

to capture both static and dynamic information nat- 296

urally present in face videos. Static information 297

encompasses the facial features of the speaker in 298

a specific frame, such as gender, age, hair colour, 299

and body type, and is closely related to the acoustic 300

features of the speaker. In contrast, dynamic infor- 301

mation reflects the speaker’s state and behaviour, 302

such as laughing or chatting. This dynamic infor- 303

mation complements the static facial features and 304

helps capture nuances that go beyond the capabili- 305

ties of static images. 306

MPE is designed to accept inputs from any 307

modality during both training and inference. Em- 308

beddings from non-input modalities are masked 309

prior to the diffusion process. Furthermore, given 310

that different speech attributes are modelled at vari- 311

ous stages, the parameters of MPE corresponding 312

to token prediction and acoustic feature generation 313

are not shared. 314

3.4 Training Strategy 315

To address the scarcity of multimodal data, we 316

propose a three-stage training strategy. We use 317

two types of data: 50,000 hours of large-scale low- 318

expressivity speech data from LibriHeavy and 616 319

hours of high-expressivity speech data collected 320

from the open-source dataset. 321

In the first stage, the model is trained on a com- 322

bination of two datasets to achieve basic speech 323

synthesis capabilities with the large-scale corpus 324

ensuring stability. In the second stage, the model 325

is fine-tuned on high-expressive data to achieve do- 326

main alignment. In the third stage, we freeze the 327

generation model backbone and start training the 328

multimodal encoder to enable the model to support 329

modal inputs other than speech prompts. Notably, 330

during this stage, the multimodal prompt encoder 331

is updated with the generation loss in addition to 332

the diffusion loss. 333

2https://huggingface.co/google-bert/bert-large-uncased
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4 Multimodal Dataset334

Due to the scarcity of multimodal controllable335

speech synthesis data, we propose a method for336

constructing such a database. Compared to exist-337

ing data, the collected data is not only larger in338

scale but also includes facial modality with richer339

facial annotation information. Details about the340

collected data and comparisons with other multi-341

modal speech synthesis datasets can be found in342

Appendix B.343

The collection of the talking head video344

dataset is based on the CelebV-HQ (Zhu et al.,345

2022), GRID (Cooke et al., 2006), LRS2 (Chung346

et al., 2017), and MEAD (Wang et al., 2020)347

datasets, which primarily feature talking faces with348

one person speaking most of the time. After web349

crawling, the videos are segmented according to350

the timestamps provided in the dataset. To ensure351

speech quality, we first apply the S-DCCRN (Lv352

et al., 2022) model to denoise the crawled videos,353

retaining only those with a Signal-to-Noise Ra-354

tio (SNR) test score greater than 0.6 and a DNS-355

MOS (Reddy et al., 2022) greater than 2.6. Finally,356

we use Whisper (Radford et al., 2023) 3 to get357

the speech transcription and filter out sentences358

with fewer than three words. Additionally, the face359

descriptions are also created, and the details are360

introduced in section 4.1.361

The collection of the speech dataset is based362

on a large-scale, high-quality TTS dataset, Textrol-363

Speech (Ji et al., 2024a), which concludes emo-364

tional content and attribute labels such as gender365

and emotion. Based on this, we re-caption the366

speaking style according to the distribution of our367

entire dataset. This re-caption method is detailed368

in section 4.2369

4.1 Face Description370

Following ID-Animator (He et al., 2024), we use371

both static and dynamic face descriptions. First,372

we crop all face videos based on timestamp and373

face range coordinates, selecting a random frame374

as the face image prompt. This image is processed375

ShareGPT4V (Chen et al., 2025) 4 to generate a376

static description focused on facial attributes (e.g.,377

gender, age, fatness). To capture the speaker tim-378

bre, influenced by facial expressions, we extract379

video clips and use Video-LLava (Lin et al., 2023)380

to generate dynamic descriptions focused on facial381

3https://huggingface.co/openai/whisper-large-v3
4https://huggingface.co/Lin-Chen/ShareGPT4V-7B

changes and movements during speech. Finally, we 382

combine both descriptions using a large language 383

model (LLM) 5 to ensure cohesive and high-quality 384

outputs with relevant details and human-like ex- 385

pression. 386

4.2 Speaking Style Description 387

To obtain text descriptions of speaking style, we 388

extract gender and emotion labels from the Tex- 389

trolSpeech and MEAD datasets. For other talking 390

head video datasets, we use a face gender classi- 391

fication model (Serengil and Ozpinar, 2021) 6 to 392

extract gender labels. Acoustic attributes, including 393

pitch, speech rate, and Root Mean Square(RMS) 394

of energy are extracted using the signal process- 395

ing method. Silent frames are filtered by checking 396

for zero pitch values. In addition, we calculate the 397

mean and variance of pitch to measure the pitch and 398

its fluctuation, and the average RMS to measure 399

the volume. 400

After feature extraction, we analyze their distri- 401

bution and apply Mean and One Standard Devia- 402

tion Splitting to divide each attribute into three in- 403

tervals: "low," "normal," and "high" intervals. We 404

then use a LLM to generate multiple synonymous 405

words or phrases for each attribute category. Using 406

different prompts, we combine these into single 407

sentences to create various speech style descrip- 408

tions with the same method. This stage enables the 409

simultaneous generation of multiple speech style 410

descriptions with similar meanings. This method 411

has been shown to provide rich and diverse contex- 412

tual clues to enhance the effectiveness of zero-shot 413

control. 414

5 Experiment Setup 415

5.1 Test Dataset 416

To comprehensively evaluate the performance and 417

generalization of the proposed model, two groups 418

of datasets are used for testing. One test set is re- 419

served from the collected multimodal data, which 420

includes 20 voice prompts from TextrolSpeech and 421

20 facial prompts from the talking head video 422

dataset. The other test set is an out-of-domain 423

dataset from the HDTF dataset (Zhang et al., 2021), 424

consisting of image and audio prompts that undergo 425

the same data processing procedures as the training 426

set. Additionally, we selected 16 emotional au- 427

dio and image prompts from the MEAD dataset to 428

5We use ChatGPT (gpt-3.5-turbo) as the LLM.
6https://github.com/serengil/deepface
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evaluate emotion accuracy. The synthesized tran-429

scripts were derived from a random selection of430

100 sentences from the multimodal dataset.431

5.2 Evaluation Metrics432

Objective metrics includes Word Error Rate433

(WER), Speaker Similarity (SPK-Sim), UT-434

MOS (Saeki et al., 2022) 7, Emotion Accuracy,435

Gender Accuracy, and other speech attribute accu-436

racy. Details about these objective metrics can be437

found in Appendix C.1.438

Subjective metrics include the Mean Opinion439

Score (MOS) to evaluate speech naturalness (N-440

MOS) and similarity (Sim-MOS). Higher N-MOS441

means better naturalness while higher Sim-MOS442

indicates better similarity with the specific target.443

Details about the subjective metrics can be found444

in Appendix C.2445

6 Experimental Results446

We evaluated FleSpeech using both single-type447

prompts and various combinations of prompt types.448

Additionally, the extended capabilities of Fle-449

Speech, including speech editing and voice con-450

version, were also assessed. The introduction451

to the various comparison methods, including452

MM-TTS (Guan et al., 2024), Salle (Ji et al.,453

2024a), NaturalSpeech2 (Shen et al., 2024), and454

PromptTTS2 (Leng et al., 2024) can be found in455

the Appendix D.456

6.1 Single-Prompt Controllable TTS457

To evaluate FleSpeech’s single-prompt control ca-458

pabilities, we compared it with other models using459

text, face image, or audio as the prompt. We also460

conducted an ablation study to show the effective-461

ness of FleSpeech’s design.462

6.1.1 Comparsion with Other Methods463

Speech generation with text prompt was con-464

ducted using a set of text prompts with various465

emotional and prosodic attributes. As shown in466

the Text section of Table 1, FleSpeech achieved ex-467

cellent results in terms of different style attributes468

and emotional accuracy. Subjective testing results469

indicate that the speech generated by FleSpeech470

closely follows the text prompts and exhibits high471

naturalness.472

Speech generation with audio prompt is pre-473

sented in the Audio section of Table 1. Compared474

7https://github.com/tarepan/SpeechMOS

to MM-TTS, FleSpeech demonstrates significantly 475

better speaker similarity, primarily due to the model 476

capacity of the large-scale speech synthesis sys- 477

tem. Furthermore, FleSpeech outperforms Natural- 478

Speech2 in terms of emotion accuracy, gender ac- 479

curacy, and speaker similarity, highlighting that its 480

multi-stage framework is more effective at captur- 481

ing various attributes, such as style and tone from 482

the audio prompts. With the cascading structure of 483

LM and flow matching, FleSpeech has significantly 484

improved naturalness and audio quality. 485

Speech generation with face prompt presented 486

in the Face section of Table 1 showcases that Fle- 487

Speech achieved optimal performance across most 488

metrics except for speaker similarity. This is pri- 489

marily due to the absence of an explicit objective 490

relationship between speaker timbre and facial fea- 491

tures. Instead, the matching is more subjective in 492

nature. Subjective results indicate that the speech 493

generated by FleSpeech has a higher correlation 494

with the facial images, suggesting its ability to cap- 495

ture key information from the face and synthesize 496

matching speaker timbre. 497

6.1.2 Ablation Study 498

To evaluate the effectiveness of face captions, an 499

ablation study was conducted, which can be found 500

in the Face section of Table 1. We first removed 501

the dynamic attributes of the face description (w/o 502

Face dyn-cap), which resulted in a sharp decline 503

in emotional similarity, indicating a reduced abil- 504

ity of the model to capture emotional information 505

from the face. Moreover, when we eliminated both 506

the static and dynamic attributes of the face de- 507

scription (w/o Face cap), the model relied solely 508

on Clip representations for speaker-timbre-related 509

information. The experimental results show a com- 510

prehensive decline in terms of all metrics, demon- 511

strating the effectiveness of combining Clip and 512

facial descriptions. Finally, we replaced Clip with 513

FaceNet (w/ FaceNet emb), a facial recognition 514

model capable of extracting embeddings that repre- 515

sent unique attributes among different individuals 516

for face-driven speech synthesis. The experimental 517

results indicated that FaceNet’s ability to capture 518

facial information is insufficient for synthesizing 519

speech corresponding to the face prompt. 520

We further visualized the speaker embedding 521

similarity matrix between different generated sen- 522

tences. As shown in Fig. 3, compared to the results 523

with w/ FaceNet emb, Clip (i.e., w/o Face cap) ex- 524

hibits higher speaker consistency, indicating the 525

6



Table 1: Experimental results on speech generation based on a single prompt. ♢ means the results are obtained from
the authors. † means the reproduced results.

Prompt Model
Accuracy(%)↑

WER(%)↓ SPK-Sim↑ UTMOS↑ N-MOS↑ Sim-MOS↑
Emotion Gender Speed Pitch Fluctuation Volum

Text

MM-TTS♢ 58.3 - - - - - 13.2 - 1.311 3.25 ± 0.08 3.32 ± 0.03
SaLLE† 22.4 55.2 58.3 53.5 56.8 61.7 27.2 - 1.764 3.02 ± 0.11 3.17 ± 0.09
PromptTTS2† 63.5 82.6 94.6 90.6 83.2 95.2 8.7 - 1.778 3.91 ± 0.08 3.61 ± 0.07
FleSpeech 66.7 89.3 95.1 93.3 95.5 92.9 7.5 - 2.351 3.95 ± 0.09 4.05 ± 0.07

Audio
MM-TTS♢ 58.8 79.3 - - - - 12.8 0.553 1.430 3.56 ± 0.12 3.38 ± 0.10
NaturalSpeech2† 64.4 88.1 - - - - 7.6 0.663 2.602 3.84 ± 0.04 3.52 ± 0.04
FleSpeech 66.8 89.9 - - - - 5.8 0.725 2.835 3.94 ± 0.04 3.75 ± 0.06

Face

MM-TTS♢ 56.6 70.6 - - - - 17.2 0.572 2.155 3.01 ± 0.04 3.08 ± 0.09
PromptTTS2† 63.2 72.7 - - - - 11.1 0.643 2.643 3.73 ± 0.08 3.88 ± 0.05
FleSpeech 64.5 87.3 - - - - 7.0 0.629 2.457 3.91 ± 0.08 3.96 ± 0.07
w/o Face dyn-cap 64.0 87.1 - - - - 7.1 0.629 2.393 3.82 ± 0.06 3.91 ± 0.03
w/o Face cap 63.0 83.7 - - - - 7.2 0.631 2.442 3.72 ± 0.06 3.83 ± 0.06
w/ FaceNet emb 58.5 63.8 - - - - 8.2 0.560 2.524 3.58 ± 0.04 3.25 ± 0.08

Table 2: Experimental results on speech generation based on multiple prompts.

Model Text2Token Token2Latent
Accuracy(%)↑

WER(%)↓ SPK-Sim↑ UTMOS↑
Emotion Gender Speed Pitch Fluctuation Volum

FleSpeech Text Audio 66.1 85.4 95.8 92.0 95.3 94.0 7.0 0.706 2.557
FleSpeech Text Face 64.9 86.3 95.2 93.7 94.9 96.4 7.2 0.610 2.598
FleSpeech Audio Audio 62.7 85.8 - - - - 5.9 0.702 3.008
FleSpeech Audio Face 63.3 86.1 - - - - 6.1 0.603 2.760
w/o Face cap Audio Face 63.1 81.3 - - - - 6.5 0.610 2.667

effectiveness of the Clip encoder in extracting im-526

plicit representations. By gradually adding static527

or dynamic face captions, the colors outside the528

diagonal gradually deepen, indicating a stronger529

binding between facial images and speaker timbre.530

FleSpeech demonstrates the highest speaker consis-531

tency, highlighting the effectiveness of combining532

Clip with dynamic and static captions.533

6.1.3 Overall Analysis534

In addition to individual tasks, we conducted an535

overall analysis of the different experimental re-536

sults. The comparative results in various sections537

of table 1 indicate that the audio modality achieves538

the highest accuracy in terms of emotion and gen-539

der, followed by text. This suggests that audio540

provides the most fine-grained information, and541

through the text prompt encoder, the model can542

effectively extract relevant speech attributes from543

textual descriptions. Image prompts, on the other544

hand, are generally less discernible, leading to a545

decrease in accuracy. Moreover, the WER and UT-546

MOS of speech generated from text prompts show547

a significant decline, which may be attributed to the548

one-to-many problem, especially in the text modal-549

ity, where a larger sample space results in poorer550

stability. Finally, despite being trained on a small-551

scale dataset, we observed that MM-TTS using552

face prompt outperforms the audio prompt in terms553

of SPK-Simi and UTMOS. This reflects the gener-554

alization advantage of the face prompt, considering 555

the complex acoustic environments present in the 556

audio prompt. 557

6.2 Multi-Prompt Controllable TTS 558

To evaluate the unique flexible control capability 559

of FleSpeech, we assessed its performance using 560

multiple prompts. Specifically, we provide differ- 561

ent prompts at various stages to control different 562

speech aspects. We examined four combinations 563

of prompts. To validate the effectiveness of each 564

stage, we included emotional or neutral prompts 565

in the first stage and only neutral prompts in the 566

second stage. As shown in Table 2, compared to 567

using a single prompt for control, FleSpeech effec- 568

tively controls style and emotional attributes while 569

reproducing the timbre of the target speaker despite 570

some performance loss. 571

Additionally, we removed the facial caption(w/o 572

Face cap) in the combination of audio and prompts. 573

We observed a significant decrease in gender accu- 574

racy, which indicates that fine-grained information 575

provided by the audio prompt affects speaker tim- 576

bre modeling in the second stage. The experimen- 577

tal results demonstrate that incorporating the face 578

caption can alleviate the impact of audio prompts, 579

leading to higher consistency with the face prompt. 580

Furthermore, by comparing the results of differ- 581

ent tasks, we found that the WER and UTMOS 582
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Figure 3: Cosine similarity matrix of speaker embed-
dings between face-prompt-based synthesized speech
and ground-truth speech. The horizontal axis represents
different synthesized speech, while the vertical axis rep-
resents ground-truth speech. The diagonal indicates that
the image prompt and ground-truth speech are from the
same speaker. Lighter colors indicate higher similarity.

are highest for the model using two audio prompts,583

while models using text as the first-stage prompt584

have the lowest values. This further indicates a neg-585

ative correlation between the diversity and stability586

of the speech attribute space. Moreover, models us-587

ing text as the first-stage prompt generally achieve588

higher SPK-Sim compared to those using audio589

modality. This suggests that more fine-grained in-590

formation in the first stage can influence the speaker591

timbre modeling in the second stage.592

6.3 Extensibility593

In addition to speech synthesis, we conducted ad-594

ditional experiments on other tasks to evaluate the595

scalability of FleSpeech.596

6.3.1 Speaking Style Editing597

Speaking style editing refers to modifying speech598

attributes without altering the content or speaker599

timbre. To edit the attribute of a given utterance600

based on the text description, the transcription of601

this utterance obtained via Whisper and the text de-602

scription can be used as the input for the language603

model. Then this utterance can work as the audio604

prompt for the second stage. We compared our605

method with Audiobox (Vyas et al., 2023), a uni-606

fied audio generation model based on flow match-607

ing that can redesign the provided audio examples608

using natural language instructions. As shown in609

Table 3, FleSpeech achieves satisfactory results.610

Regarding emotional expression, FleSpeech scores 611

lower, primarily because Audiobox incorporates 612

non-verbal sounds, such as laughter, which enhance 613

emotional perception. 614

Table 3: Experimental results in speaking style editing.

Model
Accuracy(%)↑

WER(%)↓ SPK-Sim↑
Emotion Speed Pitch Fluctuation Volum

Audiobox 66.3 83.3 98.3 83.3 83.3 8.4 0.712
FleSpeech 63.6 91.6 98.3 91.6 91.6 7.2 0.745

6.3.2 Voice Conversion 615

FleSpeech allows for the speaker timbre editing by 616

facial caption when given a facial image and its cor- 617

responding caption. For instance, it can explicitly 618

specify attributes such as the speaker’s age, race, 619

and fatness, which have been previously proved 620

to be associated with speaker timbre (Stathopou- 621

los et al., 2011; Souza and Santos, 2018; Yang 622

et al., 2022). We evaluate the effectiveness of these 623

edits through accuracy testing and subjective pref- 624

erence assessments. The MOS indicates the de- 625

gree of match, with higher scores reflecting better 626

alignment. Preference indicates perceived accuracy, 627

where participants choose which audio, before or 628

after editing, better matches the edited facial cap- 629

tion. The test results are shown in Table 4, where 630

FleSpeech achieves an editing accuracy exceeding 631

70%, demonstrating its capability to effectively edit 632

speaker-timbre-related attributes to match facial 633

features. The subjective scores further corroborate 634

this conclusion. Additionally, the accuracy for age 635

is higher than for BMI, suggesting that age is more 636

perceptible in facial images. 637

Table 4: Experimental results in voice conversion.

Characteristic Acc(%)↑ MOS↑ Preference(%)↑
BMI 72.6 3.75 ± 0.04 62.4
Age 81.0 3.87 ± 0.08 74.1
Race 75.3 3.83 ± 0.06 66.5

7 Conclusion 638

In this work, we propose a flexible and controllable 639

speech generation framework called FleSpeech. 640

Specifically, we implement a two-stage speech gen- 641

eration framework composed of a language model 642

and a flow matching module, allowing for flexible 643

control by providing different prompts at various 644

stages. Additionally, we introduce a multimodal 645

prompt encoder that can accept prompts from differ- 646

ent modalities and embed them into a unified style 647

space, enabling more adaptable prompting. Com- 648

prehensive subjective and objective experiments 649

demonstrate the effectiveness of FleSpeech. 650
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Limitation651

Although our approach successfully achieves flex-652

ible control over speech attributes, it is important653

to acknowledge its limitations. First, the informa-654

tion extracted from face images is limited. Many655

unexplored aspects, such as accent, are related to656

speaking style and restrict the matching accuracy657

between face and speech. Second, the relatively658

small scale of our collected dataset limits the con-659

trol over additional attributes, such as background660

sound. Despite these limitations, our FleSpeech661

has taken an important step toward a more flexible662

and controllable speech generation system.663
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A Model Configurations1032

The language model for semantic prediction adopts1033

the LLaMA architecture with 16 layers and 161034

attention heads. The hidden size and intermedi- 1035

ate size are 1024 and 4096, respectively. The 1036

flow matching for the acoustic feature prediction is 1037

based on the DiT architecture with 12 layers, 128 1038

attention heads, and a hidden dimension of 768. 1039

For MPE, the number of queries in QueryMLP is 1040

set to 16, with 6 layers, 6 attention heads, and an 1041

intermediate size of 256. The reference audio en- 1042

coder consists of 6 attention blocks with a hidden 1043

size of 512. During both the training and inference 1044

stages, the length of the audio prompt is fixed at 6 1045

seconds. 1046

Both language model and flowing matching mod- 1047

ule are trained on 8 NVIDIA TESLA V100 GPUs 1048

(32GB each) with a batch size of 2 per GPU and a 1049

gradient accumulation step of 50. The two models 1050

are first trained 600k steps on the LibriHeavy (Kang 1051

et al., 2024) dataset which is a 50,000 hours ASR 1052

corpus, followed by an additional 300k steps on 1053

a collected multimodal dataset. We optimize the 1054

models using the AdamW optimizer, warming up 1055

the initial learning rate from 1× 10−7 over the first 1056

5k updates to a peak of 3×10−4, and subsequently 1057

applying cosine decay. 1058

B Details of Collected Data 1059

As shown in Table 5, previous work has attempted 1060

to construct public datasets for controllable speech 1061

generation, but these datasets either have limited 1062

size or lack multimodal prompts. In view of this, 1063

we constructed a multimodal dataset collection 1064

pipeline. Through this pipeline, we collected a 1065

multimodal TTS dataset consisting of a 285.9-hour 1066

talking head video dataset and a 330-hour speech 1067

dataset, totaling approximately 615.9 hours. 1068

C Evalution Metrics 1069

C.1 Objective Metrics 1070

WER is a commonly used metric to assess the in- 1071

telligibility of generated speech. It is typically cal- 1072

culated by comparing the transcribed text obtained 1073

from an Automatic Speech Recognition (ASR) sys- 1074

tem with the reference text. A lower WER indicates 1075

higher intelligibility of the speech. Here, the WER 1076

is calculated based on the Whisper (Radford et al., 1077

2023) 8 model. 1078

SPK-Sim is used to evaluate the similarity be- 1079

tween the generated audio and the reference au- 1080

dio in terms of speaker characteristics. A higher 1081

8https://huggingface.co/openai/whisper-large-v3

12

https://doi.org/10.48550/ARXIV.2308.06721
https://doi.org/10.48550/ARXIV.2308.06721
https://doi.org/10.48550/ARXIV.2308.06721
https://doi.org/10.1109/CVPR46437.2021.00366
https://doi.org/10.1109/CVPR46437.2021.00366
https://doi.org/10.1109/CVPR46437.2021.00366
https://doi.org/10.1007/978-3-031-20071-7_38
https://doi.org/10.1007/978-3-031-20071-7_38
https://doi.org/10.1007/978-3-031-20071-7_38
https://doi.org/10.48550/ARXIV.2310.07246
https://doi.org/10.48550/ARXIV.2310.07246
https://doi.org/10.48550/ARXIV.2310.07246
https://doi.org/10.48550/ARXIV.2310.07246
https://doi.org/10.48550/ARXIV.2310.07246


Table 5: Comparison between public datasets for controllable speech generation. Rec means recording, You means
youtube, Pod means podcast

Dataseet Duration Clips Modality Audio Source Description Form

FSNR0 26h 19k Speech Internal dataset Style tag

TextrolSpeech 330h 236k Speech Recording, Emotional dataset LLM template

MEAD-TTS 36h 31k Speech, Facial image Recording LLM template, Face image

Collected data 616h 449k Speech, Facial image Rec, You, Pod, Emotional dataset LLM template, Face image, Face caption

SPK-Sim value indicates greater similarity between1082

the synthesized speech and the reference audio1083

in terms of the speaker’s identity. Here, we use1084

WavLM-large (Chen et al., 2022b)fine-tuned on the1085

speaker verification task, to obtain speaker embed-1086

dings. These embeddings are then used to calculate1087

the cosine similarity between the speech samples1088

of each test utterance and the reference clips.1089

Emotion Accuracy is used to measure the1090

model’s ability to control emotions. A higher1091

emotion accuracy indicates a stronger ability of1092

the model to control emotions. Here, emo-1093

tion2vec+seed (Ma et al., 2023) 9 is adopted to1094

predict the emotion of the synthesized audio and1095

compare it with the given emotion type.1096

Gender Accuracy is used to measure the1097

model’s ability to control gender. A higher gen-1098

der accuracy means a better gender control abil-1099

ity. Here, an internal ECAPA-TDNN (Desplanques1100

et al., 2020) model fine-tuned on the gender classi-1101

fication task is adopted.1102

For the accuracy of other speech attributes, we1103

utilise the previously mentioned pipeline for style1104

label annotation to extract attribute values and com-1105

pare their relative magnitudes across different la-1106

bels. For example, the speech rate associated with1107

the "fast speaking rate" label exceeds that of the1108

"slow speaking rate" label. For face attribute evalu-1109

ation, we extract speaker embeddings from MPE1110

and use a face classifier 10 to predict Body Mass1111

Index (BMI). Additionally, we apply the Deep-1112

Face (Serengil and Ozpinar, 2021) model to de-1113

termine gender, race, and age. We then train an1114

MLP-based predictor to infer facial attributes from1115

the speaker embeddings, comparing the predicted1116

attributes against the provided facial descriptions1117

to compute the accuracy.1118

9https://huggingface.co/emotion2vec/emotion2vec_plus_seed
10https://github.com/lsimmons2/bmi-project

C.2 Subjective Metrics 1119

In the subjective evaluation, each sample was rated 1120

on a scale from 1 to 5, with increments of 0.5, 1121

based on its similarity to the reference utterance. 1122

The score of MOS test ranges from 1 to 5 with an 1123

interval of 0.5, in which 1 means very bad and 5 1124

means excellent. Both N-MOS and Sim-MOS are 1125

reported with a 95% confidence interval. We select 1126

50 speech samples for each test, which are listened 1127

by 20 listeners for subjective evaluations. 1128

To clarify, Sim-MOS here varied across different 1129

tasks, focusing on aspects such as speech style 1130

matching with a text prompt, speaker similarity 1131

with an audio prompt, and voice-face matching 1132

with a facial prompt. 1133

D Comparison models 1134

To evaluate the performance of FleSpeech, we im- 1135

plemented the following system. 1136

• MM-TTS (Guan et al., 2024): A FastSpeech2- 1137

based multimodal controllable speech synthe- 1138

sis framework that integrates multimodal in- 1139

puts into a unified representation space. It sup- 1140

ports text descriptions, face images, or speech 1141

as prompts. Note that text descriptions in this 1142

model are limited to describing the speaker’s 1143

emotions. 1144

• Salle (Ji et al., 2024a): A VALL-E-based text- 1145

prompt-driven controllable speech synthesis 1146

framework, where text descriptions are con- 1147

catenated with synthesized phonemes as style 1148

prompts. 1149

• NaturalSpeech2 (Shen et al., 2024): A TTS 1150

system with latent diffusion models to enable 1151

zero-shot speech synthesis. 1152

• PromptTTS2 (Leng et al., 2024): A 1153

NaturalSpeech2-based speech synthesis 1154

framework capable of generating speech that 1155

aligns with text style descriptions. We extend 1156

13



its function to support the face prompt just1157

as described in the PromptTTS2 appendix.1158

The CLIP model extracts embedding from the1159

face image, which is then fed into the TTS1160

model.1161

• FleSpeech (proposed): Our proposed frame-1162

work, which adopts a multi-stage training1163

framework and follows a multi-stage training1164

strategy.1165
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