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Abstract. The asymptotic properties of Bayesian Neural Networks (BNNs) have been exten-
sively studied, particularly regarding their approximations by Gaussian processes in the infinite-
width limit. We extend these results by showing that posterior BNNs can be approximated
by Student-t processes, which offer greater flexibility in modeling uncertainty. Specifically, we
show that, if the parameters of a BNN follow a Gaussian prior distribution, and the variance
of both the last hidden layer and the Gaussian likelihood function follows an Inverse-Gamma
prior distribution, then the resulting posterior BNN converges to a Student-t process in the
infinite-width limit. Our proof leverages the Wasserstein metric to establish control over the
convergence rate of the Student-t process approximation.

1. Introduction

Bayesian neural networks (BNNs), composed of multiple layers of interconnected neurons, have
become a powerful tool in modern machine learning, enabling the modeling of complex data
structures while quantifying predictive uncertainty [Nea96]. Unlike neural networks (NNs),
BNNs offer a solid probabilistic framework where model parameters are treated as random
variables with associated probability distributions. In particular, such a framework allows for
the incorporation of both prior knowledge and observed data through the prior distribution and
likelihood function, respectively.

1.1. Background and motivation. The theoretical study of BNNs dates back to the founda-
tional work of Neal [Nea96], which, inspired by Bayesian principles, showed that wide shallow
BNNs converge to Gaussian processes if initialized with independent Gaussian parameters. This
result was later extended to deep BNNs [Mat+18; Lee+18; BT24; Fav+24] as well as to alter-
native architectures [Nov+20; Yan21], strengthening the connection between deep learning and
Gaussian processes in machine learning [RW06].
Building on this foundation, significant effort has been devoted to analyzing the posterior be-
havior of BNNs. Notably, several studies have examined their exact infinite-width limiting
posterior distribution, establishing its asymptotic convergence to a Gaussian process [Hro+20;
Tre23]. Parallel research has explored approximate posterior inference methods, including Vari-
ational Inference (VI) [Blu+15] and Monte Carlo Markov Chain (MCMC) sampling [Izm+21;
PFP24], providing an empirical validation of these theoretical results.
Despite the significant progresses in the study of posterior BNNs, existing work typically assumes
a fixed variance for the Gaussian prior on the network parameters, a simplification that limits
substantially the diversity of posterior behaviors that BNNs can capture. In this paper, we
address this critical limitation by introducing a more flexible model in which the variance itself
follows a prior distribution.
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1.2. Our contribution. Our main contribution is to show that relaxing the fixed-variance
assumption in BNNs by using an Inverse-Gamma prior leads to a novel limiting behavior, while
preserving the classic prior introduced by Neal [Nea96]. Specifically, we prove that while the prior
distribution of a BNN converges to a Gaussian process in the infinite-width limit, the marginal
posterior distribution converges to a Student-t process. The relevance of this result is twofold.
First, it provides a new representation of Student-t processes, which have been widely studied
and applied in machine learning and statistics [SWG14; TW18; SD23]. Second, it suggests that
modifying the prior distributions can yield a broader class of limiting elliptical processes [FKN90;
Ban+20], opening new research directions on the asymptotic behavior of posterior BNNs. This
insight shows that a careful selection of prior distributions can enhance model flexibility and
uncertainty quantification, offering practical benefits in Bayesian deep learning.
Our approach relies on optimal transport tools, specifically the Wasserstein metric, in order
to establish convergence rates and gain control over the distances of the distributions under
analysis. Building on prior works [BT24; Tre23], we extend the framework to a hierarchical
Gaussian-Inverse-Gamma model. In this model, while the prior and likelihood are still assumed
to follow multivariate Gaussian distributions with diagonal covariance, the variance of both the
last hidden layer and the likelihood function is modeled using an Inverse-Gamma distribution.

1.3. Outline. In Section 2, we introduce the notation and key tools used in the proof of our
main result. Section 3 presents the main result of the paper, while Section 4 reports experimental
results that serve as a sanity check for the developed theory.

2. Preliminaries

To clarify the discussion, we refer the reader to Appendices A.1 to A.3 for a review of tensors,
random variables, and optimal transport tools.

2.1. Wasserstein distance. For a finite set S, denote by µ and ν two probability measures
defined on (RS , ∥·∥) with finite moment of order p, for some p ≥ 1. The p-Wasserstein distance
between µ and ν is defined as

Wp (µ, ν) := inf
{
E [∥x− y∥p]1/p |x,y r.v.s with Px = µ,Py = ν

}
,

where the infimum is taken over all the random variables (x,y), jointly defined on a probability
space (Ω,A,P), with marginal laws µ and ν. The random variable (x,y) is referred to as a
coupling of (µ, ν) and its law, γ, is called transport plan. We introduce the following abuse of
notation: if x ∼ µ and y ∼ ν, Wp (x,y) := Wp (µ, ν).

Theorem 2.1 (Theorem 6.9 of Villani [Vil08]). Given (xn)
∞
n=1, x random variables, then

limn→∞Wp (xn,x) = 0 if and only if xn
law−−→ x, and limn→∞ E [∥xn∥p] = E [∥x∥p].

2.2. BNNs. Consider a supervised learning framework in a regression setting, with a given
training dataset D := {(xD,i,yD,i)}ki=1, i.e.,

xD :=

k∑
i=1

xD,i ⊗ ei ∈ Rdin×k and yD :=

k∑
i=1

yD,i ⊗ ei ∈ Rdout×k.

Definition 2.2 (Fully connected feed-forward NN). A fully connected feed-forward NN is de-
fined through an architecture α := (n,φ) with:

(1) n denoting the sizes of the L+ 1 layers1 (with L ≥ 2)

n :=
(
n0(=: din), n1, . . . , nL−1, nL(=: dout)

)
, nl ∈ N>0, ∀ l = 0, . . . , L;

(2) φ denoting the L activation functions (applied component-wise)

φ := (φ1, . . . , φL), φl : R → R, ∀ l ∈ [L], with φ1(x) = x,∀x ∈ R.

1An input layer, L− 1 hidden layers and an output layer.
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In particular, ∀x0 ∈ Rdin , the NN is defined as f(x0) := f (L)(x0) with

f (l) : Rdin → Rnl , ∀ l = 0, . . . , L,

f (0)(x0) = x0, f (l)(x0) = W (l)φl

(
f (l−1)(x0)

)
+ b(l) for l ∈ [L],

(1)

where, for any l ∈ [L], W (l) ∈ Rnl×nl−1 and b(l) ∈ Rnl denote weight matrices and bias vectors,
respectively.

BNNs exploit the power of the Bayes’ rule within this supervised learning framework. By
defining θ ∈ Rt (with t =

∑L
l=1 nl(nl−1+1)) the flattened concatenation of all parameters of the

NN (both weights and biases), it is possible to apply Bayes’ theorem to describe the posterior
distribution of a BNN:

pθ|D(θ) =
pD|θ(D) pθ(θ)

pD(D)
∝ pxD,yD|θ(xD,yD) pθ(θ) ∝ pyD|θ,xD(yD) pθ(θ),

where we assumed that xD is independent of θ and all the random variables admit a density with
respect to the Lebesgue measure. In particular, if L(θ;yD) := pyD|θ,xD(yD) is the likelihood
function then

pθ|D(θ) ∝ L(θ;yD) pθ(θ). (2)

Definition 2.3 (BNN). Let f be a NN (see eq. (1)) with architecture α. In order to define
a BNN we have to put a prior distribution over θ and a likelihood function L(θ;yD) for θ
associated to the training set D.

Remark 2.4. Bayes’ theorem, and a related notion of posterior measure, can be naturally built
without the necessity of density functions. Let θ : (Ω,A,P) → RS random variable, S finite set,
and an evidence D with density L(θ;yD), we define the posterior measure of θ as

Pθ|D :=
L(·;yD)∫

RS L(θ;yD)dPθ(θ)
Pθ, (3)

where, given ν measure on (RS ,B
(
RS
)
) (S finite set), and f : RS → R, we use the notation

fν to denote the measure on (RS ,B
(
RS
)
) absolutely continuous with respect to ν (fν ≪ ν),

with density f , i.e., ∀A ∈ B
(
RS
)
, fν(A) =

∫
A f(u)dν(u). For the sake of simplicity we always

work with densities (as in eq. (2)) if they are available, and we swap to the measure theoretic
definition in eq. (3) otherwise.

The prior distribution considered on the parameters is the Gaussian independent prior [Nea96].
Specifically, given the vector of variances σ :=

((
σ2
W (l) , σ

2
b(l)

))L
l=1

∈ (R+ × R+)
L, we assume

that

W (l) ∼ N
(
0nl×nl−1

, σ2
W (l)/nl−1 Inl×nl−1

)
, b(l) ∼ N

(
0nl

, σ2
b(l)

Inl

)
, for l ∈ [L]. (4)

The focus of this paper is to study the distribution that the posterior measure of θ induces on f ,
which requires to investigate the behavior of the induced prior. In particular, we need to retrace
the well-known results which state that the asymptotic distribution of fθ(x) :=

∑m
i=1 fθ(xi)⊗ei

converges to the neural network Gaussian process (NNGP), where x = {xi}mi=1, m ∈ N>0, is a
generic input set.

Remark 2.5. In order to have a simpler description of the subsequent theory it is convenient to
write the layers of the BNNs in a compact form: f

(0)
θ : Rdin×m → Rdin×m, f (0)

θ (x) = x and for
every l ∈ [L], f (l)

θ : Rnl−1×m → Rnl×m,

f
(l)
θ (x) =

m∑
i=1

f
(l)
θ (xi)⊗ ei =

m∑
i=1

W (l)φl

(
f
(l−1)
θ (xi)

)
⊗ ei + b(l) ⊗ 1m =

=
(
W (l) ⊗ Im

)
φl

(
f
(l−1)
θ (x)

)
+ b(l) ⊗ 1m,

where W (l)⊗ Im ∈ R(nl×nl−1)×(m×m) should be thought as an element of R(nl×m)×(nl−1×m). We
define fθ(x) := f

(L)
θ (x).
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2.3. NNGP.

Definition 2.6. Let H = (H(x0))x0∈Rdin be a stochastic process such that for any x0 ∈ Rdin ,
H(x0) is a random vector with values in

(
Rdout ,B

(
Rdout

))
. Then H is said to be a Gaussian

process with mean function M : Rdin → Rdout and covariance kernel H : Rdin×Rdin → Rdout×dout ,
if for any m > 0, given x = (xi)

m
i=1 ∈ Rdin×m,

H(x) := (H(x1), . . . ,H(xm)) ∼ N (M(x),H(x)) ,

where
M(x) = (M(x1), . . . ,M(xm)) ∈ Rdout×m,

and H(x) ∈ R(dout×m)×(dout×m) can be viewed as a block matrix with m×m blocks such that,
for any i, j ∈ [m]2, the block (i, j) of H(x) is (H(x))i,j = H(xi,xj) ∈ Rdout×dout . For such H

we set H ∼ GP (M ,H).

Remark 2.7. In analogy with Definition 2.6 it is possible to define Student-t processes replacing
the condition on the distribution of H(x) with a multivariate Student-t with a degrees of freedom:
H(x) ∼ ta (M(x),H(x)), a > 0.

Following Matthews et al. [Mat+18] and Lee et al. [Lee+18], we report below the laws of the
random matrices (G(l)(x))Ll=1 associated with the infinite-width limits of the L hidden layers
of a BNN, evaluated on the input set x, deriving general expressions for their corresponding
Gaussian processes, (G(l))Ll=1:

G(0)(x) := x ∈ Rdin×m constant r.v.,

G(l)(x) ∼ N
(
0nl×m, Inl

⊗K(l)(x)
)
, with K(l)(x) :=

(
K(l)(xi,xj)

)
i,j∈[m]×[m]

,
(5)

and, ∀x0,x
′
0 ∈ Rdin , ∀ l = 2, . . . , L,

K(1)(x0,x
′
0) := σ2

W (1)(x
T
0 x

′
0)/din + σ2

b(1)
,

K(l)(x0,x
′
0) := σ2

W (l)E
[
φl

(
G(l−1)(x0)1

)
φl

(
G(l−1)(x′

0)1

)]
+ σ2

b(l)
.

Note that, ∀ l ∈ [L], Inl
⊗K(l)(x) ∈ R(nl×nl)×(m×m) should be thought reshaped, as elements of

R(nl×m)×(nl×m). From eq. (5) it is possible to define the asymptotic Gaussian processes of each
hidden layer, l ∈ [L], as

G(l) = (G(l)(x0))x0∈Rdin and G(l) ∼ GP
(
0, Inl

⊗K(l)
)
. (6)

In analogy with the notation introduced for fθ we define G(x) := G(L)(x) and K(x) := K(L)(x).
We refer to G = (G(x0))x0∈Rdin as the NNGP associated to a BNN with architecture α and
vector of variances σ.

2.4. Quantitative CLT for prior BNNs.

Theorem 2.8 (Basteri and Trevisan; Trevisan [BT24; Tre23]). Let fθ BNN, with architecture
α = (n,φ), φ collection of Lipschitz activation functions, a prior on θ as in eq. (4),

(
G(l)

)L
l=1

Gaussian processes as in eq. (6) and an input set x ∈ Rdin×m . Then, ∀ l ∈ [L] exists a constant
c > 0 independent of (nj)

l
j=1, such that,

Wp

(
f
(l)
θ (x), G(l)(x)

)
≤ c

√
nl

l−1∑
j=1

1
√
nj

. (7)

The constant c in eq. (7) in general depends on the input set x, that must be finite. We remark
that quantitative functional bounds, i.e., for infinitely many inputs, have been also established
by Favaro et al. [Fav+24].
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Remark 2.9. An immediate consequence of Theorem 2.8 (achievable applying Theorem 2.1)
is that, by letting nl grow to ∞, the process f

(l)
θ associated with the l-th hidden layer of

a BNN evaluated on x converges in distribution to the NNGP’s component G(l)(x): given
nmin := minj=1,...,l−1 nj ,

f
(l)
θ (x)

law−−−−−−→
nmin→∞

N
(
0nl×m, Inl

⊗K(l)(x)
)
.

Therefore, Theorem 2.8 yields a quantitative version of what has already been proved by
Matthews et al.; Lee et al. [Mat+18; Lee+18].

3. Student-t approximation of posterior BNNs

Our goal is to extend the closeness result between the induced prior distribution on the BNN,
fθ, and the corresponding NNGP, G, established in Theorem 2.8, to their respective induced
posterior distributions. In particular, the main result of this section, Theorem 3.4, provides a
posterior counterpart of Theorem 2.8.

3.1. Law of posterior NNGP. It is useful to start by introducing the hierarchical model
applied to the NNGP. In particular, by assuming

σ2
W (l) , σ

2
b(l)

constants, ∀ l = 1, . . . , L− 1,

σ2 := σ2
W (L) = σ2

b(L) = σ2
yD

and σ2 ∼ IG (a, b) , with a, b > 0,
(8)

we have
G(xD) |σ2 ∼ N

(
0nL×k, σ

2InL ⊗K ′(xD)
)
,

σ2 ∼ IG (a, b) , Inverse-Gamma with a, b > 0,

yD |G(xD), σ
2 ∼ N

(
G(xD), σ

2InL×k

)
,

(9)

with

K ′(xD) = E
[
φL

(
G(L−1)(xD)

)T
φL

(
G(L−1)(xD)

)]
/nL + 1k×k, (10)

rescaled NNGP kernel independent of σ2. Therefore, observing that

pG(xD),σ2|D(z, σ
2) ∝ pyD|G(xD),σ2(yD) pG(xD)|σ2(z) pσ2(σ2),

assuming K ′(xD) to be invertible, nL = 1, and applying standard tricks (see Appendix B), we
obtain that

G(xD) |σ2,D ∼ N
(
yDM

−1, σ2M−1
)
,

σ2 | D ∼ IG
(
a+

k

2
, b+

1

2

(
yD
(
Ik −M−1

)
(yD)

T
))

.

Hence,
G(xD) | D ∼ t2a+k (µpost,Σpost) ,

with
M := Ik +K ′(xD)

−1,

µpost := yDM
−1,

Σpost :=

(
b+

1

2

(
yD
(
Ik −M−1

)
(yD)

T
)) 2

2a+ k
M−1.

(11)

Remark 3.1. In a completely analogous way, it is possible to show that, given an input test set
xT ∈ Rn0×k′ ,

G(xT ) | D ∼ t2a+k

(
µ′
post,

(
b+

1

2

(
yD
(
Ik −M−1

)
(yD)

T
)) 2

2a+ k
Σ′

post

)
, with

µ′
post := K ′(xT ,xD)

(
K ′(xD) + σ2Ik

)−1
yD,

Σ′
post := K ′(xT )−K ′(xT ,xD)

(
K ′(xD) + σ2Ik

)−1
K ′(xT ,xD).

(12)



6 F. CAPORALI, S. FAVARO, AND D. TREVISAN

Indeed, following the strategy adopted by Rasmussen and Williams [RW06, eqs. (2.22) to (2.24)],
we can observe that

G(xT ) |σ2,D ∼ N
(
µ′
post,Σ

′
post

)
,

σ2 | D ∼ IG
(
a+

k

2
, b+

1

2

(
yD
(
Ik −M−1

)
(yD)

T
))

,

which in turn implies eq. (12) by means of Lemma B.1.

3.2. Posterior BNNs. We define µ̃ ∼ fθ(x), µ ∼ G(x), with x = (xD,xT ) ∈ Rn0×(k+k′),
fixed input set which extends the input training set with a possible input test set, and omit the
dependence on yD in the Gaussian likelihood L2, where

L : RnL×k × R+ → R, L(z, s) = 1

(2πs)nLk/2
exp

(
− 1

2s
∥yD − z∥2F

)
. (13)

The objective is to bound the 1-Wasserstein distance between the marginal posterior of the
BNN, fθ(x), and the marginal posterior of the NNGP evaluated on the input set, G(x). The
latter can be found integrating with respect to s the prior measures µ and µ̃, both multiplied
by the prior density of the variance pσ2(s) and the likelihood L(·, s). In formulas, we aim to
find an upper bound for W1 (µ̃post, µpost), with µpost ∼ G(x) | D, µ̃post ∼ fθ(x) | D, probability
measures defined as in the following Definition 3.3.

Remark 3.2. The likelihood function can can be extended to the space RnL×(k+k′), by artificially
making it depend on the test input set while disregarding its contribution. Consequently, the
entire reasoning developed below extends naturally to this more general case through a straight-
forward change of variables. However, to maintain a simpler notation and ensure a coherent
presentation, we state and prove our main result under the framework introduced in Section 3.1,
i.e., assuming x = xD.

Definition 3.3. Given a BNN as in Definition 2.3, we assume to have a hierarchical model as
the one described in eq. (9) for the NNGP, and an analogous model for the BNN (i.e., Gaussian
prior on θ as in eq. (4), prior on the variance σ2 as in eq. (8) and a likelihood as in eq. (13)).
Then, for any A ∈ B

(
RnL×k

)
, we define the posterior measures as follows: given µ ∼ G(x) and

µ̃ ∼ fθ(x),

µpost(A) :=

∫
A

∫
R+

1

I
L(z, s)pσ2(s)dsµ(dz), I :=

∫
RnL×k

∫
R+

L(z, s)pσ2(s)dsµ(dz),

µ̃post(A) :=

∫
A

∫
R+

1

Ĩ
L(z, s)pσ2(s)dsµ̃(dz), Ĩ :=

∫
RnL×k

∫
R+

L(z, s)pσ2(s)dsµ̃(dz).

3.3. Main result. Building on Definition 3.3, the main result of this work can be summarized
in the following Theorem 3.4.

Theorem 3.4. Let fθ, G, x and yD as above, L density of a N
(
z, σ2

yD
InL×k

)
. Assume a

common variance for the last hidden layer of the BNN and the likelihood, distributed as an
Inverse-Gamma

σ2 := σ2
W (L) = σ2

b(L) = σ2
yD
, σ2 ∼ IG (a, b) ,

with
a >

1

2
, b >

(
1 +

ε+ 2

2ε+ 2

)
∥yD∥2F , for any ε < 1/

∥∥K ′(x)
∥∥
op

. (14)

Then, there exists a constant c > 0, independent of (nl)
L−1
l=1 , such that

W1 (fθ(x) | D, G(x) | D) ≤ c√
nmin

.

Sketch of the proof. The idea is to show the convergence of fθ(x) | D to G(x) | D through the
following steps:

2Now L depends also on s := σ2, which is no more a parameter.
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(1) partially retracing the strategy introduced by Trevisan [Tre23], we first prove that there
exist some constants c > 0 independent of (nl)

L−1
l=1 and σ2, and a function h : R+ → R+

independent on (nl)
L−1
l=1 as well, such that

W1

(
fθ(x) | (D, σ2), G(x) | (D, σ2)

)
≤ h(σ2)

c0√
nmin

; (15)

(2) we try to apply the convexity property of 1-Wasserstein distance in the following Propo-
sition 3.5 (proof in Appendix A.3) to the families of probabilities

(
Pfθ(x) | (D,σ2)

)
σ2∈R+

and
(
PG(x) | (D,σ2)

)
σ2∈R+ , which would lead to the thesis.

Proposition 3.5. Let us consider two Markov kernels (µ(s))s∈R+, (µ̃(s))s∈R+ with
source R+ and target RT and a measure ν on R+ (T finite set). Defining the proba-
bility measures on RT such that, ∀B ∈ B

(
RT
)
,

µ(B) :=

∫
R+

µ(s)(B)dν(s), µ̃(B) :=

∫
R+

µ̃(s)(B)dν(s),

the following convexity property for the distance W1 holds:

W1 (µ, µ̃) ≤
∫
R+

W1 (µ(s), µ̃(s)) dν(s). (16)

Unfortunately the second step is not easy as it could seem since Proposition 3.5 requires two
families of probability measures (in particular Markov kernels) integrated with respect to the
same measure ν, which is not exactly our setting. Let us describe the issue before approaching
the solution. For this purpose it is useful to introduce

Iσ2(s) :=

∫
RnL×k

L(z, s)µ(dz), Ĩσ2(s) :=

∫
RnL×k

L(z, s)µ̃(dz),

which allow us to write, ∀A ∈ B
(
RnL×k

)
,

µpost(A) =

∫
R+

µσ2(s)(A)
Iσ2(s)

I
pσ2(s)ds, with µσ2(s)(A) :=

∫
A

L(z, s)µ(dz)
Iσ2(s)

,

µ̃post(A) =

∫
R+

µ̃σ2(s)(A)
Ĩσ2(s)

Ĩ
pσ2(s)ds, with µ̃σ2(s)(A) :=

∫
A

L(z, s)µ̃(dz)
Ĩσ2(s)

.

(17)

Eventually, we can note that the two families (µσ2(s))s∈R+ and (µ̃σ2(s))s∈RS , which coincide
respectively with

(
PG(x) | (D,σ2)

)
σ2∈R+ and

(
Pfθ(x) | (D,σ2)

)
σ2∈R+ , are integrated with respect to

different measures. Hence, it is clear that to apply eq. (16) it is necessary to use the triangle
inequality,

W1 (µpost, µ̃post) ≤ W1 (µpost, µ̄) +W1 (µ̄, µ̃post) , (18)
where we inserted a third measure,

µ̄(A) :=

∫
R+

µ̃σ2(s)(A)
Iσ2(s)

I
pσ2(s)ds, ∀A ∈ B

(
RnL×k

)
, (19)

specifically constructed to satisfy the hypothesis of the convexity property.
Now, to conclude, we just need to control both the terms on the right-hand side of eq. (18).

1st term. We just apply the aforementioned convexity property getting

W1 (µpost, µ̄) ≤
∫
R+

W1 (µσ2(s), µ̃σ2(s))
Iσ2(s)

I
pσ2(s)ds.

Therefore by eq. (15) we get

W1 (µpost, µ̄) ≤
c0√
nmin

∫
R+

h(s)
Iσ2(s)

I
pσ2(s)ds ≤ c1√

nmin
,

where, in order to bound the last integral it is necessary to introduce a constraint
on a and b, as in eq. (14).
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2nd term. We exploit the following technical Lemma 3.6, in combination with several bounds
on the first moments of the considered probability measures.

Lemma 3.6. Let µ, ν be measures on RS, then, denoting with |µ − ν| the total
variation measure, it holds

W1 (µ, ν) ≤
∫
RS

∥u∥ d|µ− ν|(u).
□

Remark 3.7. All the details of the sketched part of the previous proof can be found in Appen-
dix C: a formal statement and a proof of eq. (15) can be found in Appendix C.1; additionally,
the bounds for the two terms found using the triangle inequality (eq. (18)) can be found re-
spectively in Appendix C.2 and Appendix C.3. In Figure 1, we include a chart illustrating the
dependencies among the results that lead to the proof of Theorem 3.4.

Main result (Theorem 3.4)

2nd term bound (App. C.3)1st term bound (App. C.2) Corollary C.5

Lemma C.3Lemma C.4Lemma 3.6 Corollary C.2

Theorem 2.8 Proposition C.1Proposition A.3Required technical results:
Lemma A.6
Proposition 3.5

Figure 1. Dependency of results for the proof of Theorem 3.4.

By exploiting the connection between W1 and weak convergence, together with what was ob-
served in Section 3.1, Theorem 3.4 leads us to a characterization of the asymptotic behavior of
the exact posterior law of a BNN trained following the Gaussian-Inverse-Gamma model, showing
convergence to a Student-t process in the infinite-width limit.

Corollary 3.8. Under the same assumptions of Theorem 3.4 and nL = 1, the posterior of the
BNN fθ with Gaussian-Inverse-Gamma prior and Gaussian likelihood, evaluated in the input set
x, converges in law to a multivariate Student-t variable with 2a+ k degrees of freedom:

fθ(x) | D law−−−−−−→
nmin→∞

t2a+k (µpost,Σpost) ,

with M , µpost and Σpost as in eq. (11).

4. Simulations

We present a procedure to sample from the posterior distribution of a BNN, ensuring con-
sistency between the theoretical results and practical implementations. We consider a hi-
erarchical Bayesian model, where we place a prior on both the network parameters, θ =
= (W (1), b(1), . . . ,W (L), b(L)), and the variance σ2:

W (l) ∼ N
(
0nl×nl−1

, σ2
W (l)/nl−1 Inl×nl−1

)
, b(l) ∼ N

(
0nl

, σ2
b(l)

Inl

)
, for l ∈ [L− 1],

W (L) |σ2 ∼ N
(
0nL×nL−1 , σ

2/nL−1 InL×nL−1

)
, b(L) |σ2 ∼ N

(
0nL , σ

2InL

)
, (20)

σ2 ∼ IG (a, b) , yD |θ,xD, σ
2 ∼ N

(
fθ(xD), σ

2InL×k

)
.

The Monte Carlo sampling strategy is summarized in Algorithm 1. In particular, the idea is to
sample from θ, σ2 | D using a Gibbs sampling scheme. To implement line 5 we rely on MCMC
methods, which have been widely studied in the literature of Bayesian optimization for BNNs.
Several versions of such strategies are implemented in the Python library Pyro [Bin+19; Pas+19],
and among these, we applied the No-U-turn sampler [HG11]. Whereas, in order to sample from
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Algorithm 1: Training of a BNN under Gaussian-Inverse-Gamma prior
Input: α [architecture], σ [BNN’s variances], (a, b) [Inverse-Gamma parameters],

f [function]
1. build training set D starting from a reference function f

2. build test set T based on a fine partitioning of the domain of f
3. initialize σ2

(0)

4. for i = 0, . . .m do
5. sample θ(i+1) |σ2,D using NUTS
6. sample σ2

(i+1) |θ(i),D from pσ2|θ(i+1),D(σ
2)

7. return fθ(m)
(T ) | D

0.0 0.5 1.0
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2

n = 20

0.0 0.5 1.0

−1
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1

2
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0.0 0.5 1.0

−1

0

1

2

n = 22

0.0 0.5 1.0

−1

0

1
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n = 23

0.0 0.5 1.0

−1

0

1
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n = 24

0.0 0.5 1.0

−1

0
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0.0 0.5 1.0

−1

0

1

2

n = 26

0.0 0.5 1.0

−1

0

1

2

n = 27

Figure 2. Sequence of posterior BNNs, (fθn
| D)n (in gray), converging to the corresponding pos-

terior Student-t process, G | D (in green), in the infinite-width limit. Given D (in red), training
set, we sampled 100 values from both G | D and fθn | D for each width n ∈ {20, . . . , 27}, following
Remark 3.1 and Algorithm 1, respectively. The networks used have 2 hidden layers, erf activations
and parameter variances set to 5. Additionally, the hyperparameters (a, b) are set to (3, 2).

the marginal posterior of the variance (line 6) we exploit the strategy adopted by Ding et al.
[DEM22, Appendix D], since it is possible to show that it follows a positive Generalized Inverse
Gaussian distribution (referred as GIN+ by the authors). Such a derivation, as well as additional
implementation details, can be found in Appendix D.
We report in Figure 2 the comparison between a sequence of BNNs trained using the strategy
discussed above and the limiting Student-t process discussed in Appendix B (see Remark 3.1).
As the (all equal) widths of the hidden layers increase, the models’ output distributions become
closer. We also consider the case in which we replace the Gaussian-Inverse-Gamma prior with
the classical Gaussian prior with fixed variance (see Figure 3). In this case the limiting process to
which the sequence of BNNs converges is simply the posterior NNGP (see Hron et al.; Trevisan
[Hro+20; Tre23]).

Remark 4.1. We can observe that in Figure 3, i.e., under Gaussian prior, the convergence is
much faster and more precise compared to the Gaussian-Inverse-Gamma prior case (Figure 2).
This behavior, while likely influenced by our specific sampling procedure for the posterior BNNs,
is also consistent with theoretical expectations. Indeed, although the theoretical convergence
rates of the limiting processes are identical for both the Gaussian prior and the Gaussian-
Inverse-Gamma prior cases (see Corollary C.2 and Theorem 3.4), the associated multiplicative
constants differ significantly in magnitude. Therefore, given a common fixed width, different
distances between the posterior BNNs and their limiting processes are to be expected.

We conclude by comparing the asymptotic processes under both frameworks. The posterior
Student-t process models the variance of the data more accurately compared to the poste-
rior Gaussian process. This is an expected behavior, as the Gaussian-Inverse-Gamma model
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Figure 3. Sequence of posterior BNNs, (fθn
| D)n (in gray), converging to the corresponding pos-

terior Gaussian process, G | D (in green), in the infinite-width limit. Given D (in red), training set,
we sampled 100 values from both G | D and fθn | D for each width n ∈ {20, . . . , 27}. The sampling
was performed following Rasmussen and Williams [RW06, eqs. (2.22)-(2.24)] for G | D and the built-
in NUTS algorithm in Pyro for fθn

| D. The networks used have 2 hidden layers, erf activations,
parameter variances set to 2, and likelihood variance set to 0.1.

0.0 0.2 0.4 0.6 0.8 1.0

−1

0

1

2

0.0 0.2 0.4 0.6 0.8 1.0

−1

0

1

2

Figure 4. Posterior Student-t process (on the right) and posterior Gaussian process (on the
left). We followed the same strategy and used the same parameters introduced to generate
Figures 2 and 3.

explicitly estimates the data variance during the Bayesian learning, whereas no such estima-
tion is performed when we use a Gaussian prior. This final result also highlights that using a
Gaussian-Inverse-Gamma prior provides a more accurate representation of the data, particularly
in scenarios in which the dataset is relatively small.
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Appendix A. Notation

We summarize below the preliminary tools and notations used throughout the article. Proofs
of standard results are omitted, with references provided. For clarity, the content is organized
into thematic sections.

A.1. Tensors. Given S finite set (e.g., [n] or [n1] × · · · × [nk], for some k ≥ 2, where [n] =
= {1, . . . , n}) we denote with RS the vector space of real valued functions v : S → R (column
vectors which generalizes to multidimensional tensors). We adopt the notation vs := v(s),
∀ s ∈ S, and we introduce the following conventions: es is the sth vector of the canonical base
(es(s) = 1 and es(r) = 0, ∀ r ∈ S \ {s}), 1S :=

∑
s∈S es and 0S is the constant null vector.

When S is used as a subscript/superscript we also simplify the notation: [n1]×· · ·×[nk] becomes
just n1 × · · · × nk.
Given S, T two finite sets, we can see the vector space RS×T as the space of linear transformations
A : RT → RS , defining

∀v ∈ RT , Av := A(v) =
∑
s∈S

(∑
t∈T

As,tvt

)
es.

If S = [n] and T = [m] then A can be represented as a standard matrix A ∈ Rm×n, where
Ai,j := (A(ej))(i), ∀ i ∈ [n], j ∈ [m]. Analogously if S = [n1] × [n2] and T = [m1] × [m2]
it is possible to represent A as a 4-dimensional tensor such that Ai,j,k,l := A(e(k,l))((i, j)),
∀ (i, j) ∈ [n1]× [n2], (k, l) ∈ [m1]× [m2].
If S = T , we introduce the notation SymS for the set of symmetric linear transformations in
RS×S , i.e., A ∈ SymS if and only if A ∈ RS×S , A = AT . Moreover, we denote with SymS

+ the
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subset of SymS composed by symmetric, positive definite matrices, where a matrix A is said to
be positive definite if ∀v ∈ RS \ {0}, vTAv > 0.

We define the outer product (or tensor product) between v ∈ RS and w ∈ RT as v⊗w ∈ RS×T

with (v ⊗w)s,t := vswt, ∀ s ∈ S, t ∈ T , denoting v ⊗ v as v⊗2. We also define the identity map
IS : RS → RS as IS :=

∑
s∈S e⊗2

s , observing that, ∀v ∈ RS , ISv =
∑

s∈S(
∑

t∈S(IS)s,tvt)es =

=
∑

s∈S vses = v. If S = [n], T = [m] then v ⊗w = vwT .
Given a generic pair of elements in a real vector space, v,w ∈ RS , we define the standard scalar
product between them as

⟨v,w⟩ := tr (v ⊗w) =
∑
s∈S

vsws.

Analogously we can define the Euclidean norm (or 2-norm) induced by the scalar product as

∥v∥ = ⟨v,v⟩1/2 =
(∑

s∈S
v2
s

)1/2

. (21)

If S = [n], n ∈ N>0, we also define the p-norm of v, p ≥ 1, as ∥v∥p := (
∑n

i=1 v
p
i )

1/p. If nothing is
specified we always consider Rn as a normed spaced with the Euclidean norm defined in eq. (21).
In the matrix case, S = [n]× [m], this norm is usually referred as Frobenius norm, therefore for
an improved readability we denote it as ∥·∥F .
Given an operator A ∈ SymS , with S = [n], we define the operator norm as

∥A∥op := sup
∥x∥2=1

∥Ax∥2 = max {λ |λ ∈ Sp(A)} .

Lemma A.1. For every x,y ∈
(
RS , ∥·∥

)
real vector space with the Euclidean norm, the following

inequalities hold:

∥x− y∥2 ≤ 2(∥x∥2 + ∥y∥2), (22)

∥x− y∥2 ≥ ε

ε+ 1
∥x∥2 − ε ∥y∥2 ,∀ ε ∈ R+. (23)

Proof. We prove both the statements using the triangle inequality and its inverse: ∀u,v ∈ RS ,
∥u+ v∥ ≤ ∥u∥+ ∥v∥ and ∥u− v∥ ≥ ∥u∥ − ∥v∥.
Let us start observing that ∀ a, b, ε > 0, we have

(a+ b)2 = a2 + b2 + ε2a
b

ε
≤ a2 + b2 + ε

(
a2 +

b2

ε2

)
= a2 (1 + ε) + b2

(
1 +

1

ε

)
.

With ε = 1 we get (a + b)2 ≤ 2(a2 + b2), and therefore by triangle inequality follows the first
result,

∥x− y∥2 ≤ (∥x∥+ ∥y∥)2 ≤ 2
(
∥x∥2 + ∥y∥2

)
.

For the second inequality we use the reverse triangle inequality,

∥x∥2 ≤ (∥x− y∥+ ∥y∥)2 ≤ ∥x− y∥2 (1 + ε) + ∥y∥
(
1 +

1

ε

)
,

which implies

∥x− y∥2 ≥ ∥x∥2 1

1 + ε
− ∥y∥2 1

ε
.

Now by simply substituting ε′ = ε−1 in place of ε we get (1 + (ε′)−1)−1 = ε′/(ε′ +1) and so the
thesis. □
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A.2. Random variables. Given S finite set, a random variable x with values in RS is a
measurable map

x : (Ω,A,P) → (RS ,B
(
RS
)
).

It is adopted the same notation for deterministic tensors introduced in Appendix A.1 and random
tensors, i.e., random variable with values in tensor spaces. We denote with Px the distribution
(or law) of x,

Px := P
(
x−1(A)

)
, ∀A ∈ B

(
RS
)
.

We write x ∼ y if two random variables share the same distribution.
Given x random variable with values on RS we define its mean value, or first moment, and its
variance3, or second moment of x− E [x], respectively as

E [x] := (E [xs])s∈S =

(∫
Ω
xs(ω)dP(ω)

)
s∈S

∈ RS ,

and
Var (x) := E

[
(x− E [x])⊗2

]
∈ SymS

+ .

Given p ≥ 1, we define the Lebesgue norm of order p of x as

∥x∥Lp := E [∥x∥p]1/p ∈ R.

Recalling that ∥x∥2 = tr
(
x⊗2

)
, thanks to the linearity of the integral, it is possible to exchange

trace and expectation so that we can write

∥x∥2L2 = E
[
tr
(
x⊗2

)]
= tr

(
E
[
x⊗2

])
.

A.2.1. Gaussian random variables. Given µ ∈ RS , Σ ∈ SymS
+, we denote with N (µ,Σ) the

distribution of a Gaussian random variable x : (Ω,A,P) → (RS ,B
(
RS
)
), such that

E [x] = µ and Var (x) = E
[
(x− µ)⊗2

]
= Σ.

Remark A.2. Let
(
RS , ∥·∥

)
be a normed space with a Euclidean norm and µ = 0S . Then,

E [∥x∥]2 ≤ E
[
∥x∥2

]
= E

[∑
s∈S

x2
s

]
=
∑
s∈S

E
[
x2
s

]
= tr (Σ) .

A.2.2. Inverse-Gamma random variables. A random variable s, with values in (R+,B (R+)), is
said to be Inverse-Gamma distributed with parameters a and b in R+ (denoted as s ∼ IG (a, b)),
if Ps admits a density with respect to the Lebesgue measure λ+ on R+, and in particular

ps(s) :=
dPs

dλ+
(s) =

ba

Γ(a)

(
1

s

)a+1

exp

(
− b

s

)
.

As the name suggests, and a simple change of variables shows, one can equivalently say that the
variable 1/s is Gamma distributed with shape and rate parameters (a, b).

A.2.3. Multivariate Student-t random variables. Given k ∈ N>0, a random variable z, with
values in

(
Rk,B

(
Rk
))

, is said to be k-dimensional Student-t distributed with ν degrees of
freedom, location µ ∈ Rk and scale Σ ∈ Symk

+ (denoted as z ∼ tν (µ,Σ)), if Pz admits a
density with respect to the Lebesgue measure λk on Rk, and in particular

pz(z) :=
dPz

dλk
(z) =

Γ((ν + k)/2)

Γ(ν/2)(νπ)k/2 det (Σ)1/2

(
1 +

1

ν
(z − µ)TΣ−1(z − µ)

)− ν+k
2

.

3Often referred as covariance if |S| > 1.
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A.3. Wasserstein distance. We first recall two well-known properties (see e.g., Villani [Vil08])
of the Wasserstein metric, together with the main two technical tools exploited in the demon-
stration of our core result: Proposition 3.5 and Lemma A.6.

Proposition A.3. Given two random variables x, y with values in RS and a positive constant
a, ∀ p ≥ 1, it holds

Wp (ax, ay) = aWp (x,y) . (24)

Theorem A.4 (Kantorovich duality for W1). Given T finite set, µ and µ̃ probability measures
on RT , then we have

W1 (µ, µ̃) = sup
f :RT→R,
Lip(f)≤1

(∫
RT

f(x)dµ(x)−
∫
RT

f(x)dµ̃(x)

)
. (25)

The supremum above is computed over all the functions f : RT → R that are Lipschitz contin-
uous, with Lipschitz constant Lip (f) ≤ 1. Notice that one can further restrict to functions f
such that f(0) = 0 since adding constants to f does not change the difference of the integrals.
Before we state and prove Proposition 3.5, let us recall the notion of Markov kernel.

Definition A.5 (Markov kernel). Let us consider (E, E), (F,F) measurable spaces, a Markov
kernel with source (E, E) and target (F,F) is a map Kµ : E ×F → [0, 1], such that

- ∀B ∈ F , the map s → Kµ(s,B) for s ∈ E is measurable from (E, E) to ([0, 1],B ([0, 1]));
- ∀ s ∈ E, the map B → Kµ(s,B) for B ∈ F is a probability measure on (F,F).

For any fixed s ∈ E, we denote µ(s) := Kµ(s, ·) and the Markov kernel as Kµ = (µ(s))s∈E .

Proof of Proposition 3.5. Consider f : RT → R with Lip (f) ≤ 1. Then by eq. (25) with the
measures µ(s) and µ̃(s) it follows∫

RT

f(x)dµ(s)(x)−
∫
RT

f(x)dµ̃(s)(x) ≤ W1 (µ(s), µ̃(s)) . (26)

Integrating both sides in eq. (26) with respect to ν yields∫
RT

f(x)dµ(x)−
∫
RT

f(x)dµ̃(x) ≤
∫
R+

W1 (µ(s), µ̃(s)) dν(s).

We conclude by taking the supremum over the possible f ’s and again by Kantorovich duality
eq. (25)). □

The following Lemma A.6 shows that if two prior distributions are close with respect to the
Wasserstein metric and the (common) Likelihood is sufficiently regular, then also the posterior
distributions will be close, in a quantitative way.
We use the notation

mp(µ) :=

∫
RS

∥z∥p dµ(z).

for the moment of order p ≥ 1 of a measure µ.

Lemma A.6 (Lemma 5.1 of Trevisan [Tre23]). Let µ, µ̃ be probability measures on (RS , ∥·∥) for
some finite set S and finite moments of order p ≥ 1. Fix g : RS → R+ be a uniformly bounded
(by ∥g∥∞) Lipschitz continuous map (with constant Lip (g)), such that

µ(g) :=

∫
RS

g(z)dµ(z) > 0 and µ̃(g) > 0.

Defining the probability measures µg ≪ µ and µ̃g ≪ µ̃, with respective densities dµg

dµ
:= g

µ(g) and
dµ̃g

dµ̃
:= g

µ̃(g) , it holds

W1 (µ̃g, µg) ≤
1

µ(g)

(
Lip (g)mp/(p−1)(µ) +

(
1 +

m1(µ) Lip (g)

µ̃(g)

)
∥g∥∞

)
Wp (µ̃, µ) . (27)
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Appendix B. Posterior NNGP

Given the Bayesian framework presented in eqs. (8) to (10), in order to get the posterior distri-
bution of G(xD) | D we write explicitly all the densities and apply the Bayes rule. In particular,
assuming K ′(xD) ∈ Symk

+ invertible (we already know that is symmetric positive semi-definite),
flattening all the random matrices by columns and defining

yf := flat (yD) , zf := flat (z) ,

with z := G(xD) ∈ RnL×k, we get

pG(xD)|σ2(z) =
1

((2πσ2)nLk det (K ′(xD)⊗K InL))
1/2

·

· exp
(
− 1

2σ2
zT
f

(
K ′(xD)⊗K InL

)−1
zf

)
,

pσ2(σ2) =
ba

Γ(a)

1

(σ2)a+1 exp

(
− b

σ2

)
,

pyD|G(xD),σ2(yD) =
1

(2πσ2)nLk/2
exp

(
− 1

2σ2
(yf − zf)

T (yf − zf)

)
.

with ⊗K representing the Kronecker product.
By performing explicit computation we retrieve the posterior distribution of G(xD), σ

2 | D as

pG(xD),σ2|D(z, σ
2) ∝ pyD|G(xD),σ2(yD) pG(xD)|σ2(z) pσ2(σ2) ∝

∝ 1

(σ2)nLk/2
exp

(
− 1

2σ2
(yf − zf)

T (yf − zf)

)
·

· 1

(σ2)nLk/2
√
det (K ′(xD))

exp

(
− 1

2σ2
zT
f

(
K ′(xD)⊗K InL

)−1
zf

)
·

· 1

(σ2)a+1 exp

(
− b

σ2

)
.

Defining N := K ′(xD) ⊗K In1 ∈ Symn1k
+ , M := In1k + N−1 ∈ Symn1k

+ , through simple
manipulations of the exponent we get

(yf − zf)
T (yf − zf) + zT

f N
−1zf = ∥yf∥22 + ∥zf∥22 − 2yT

f zf + zT
f N

−1zf =

= zT
f

(
InLk +N−1

)
zf − 2yT

f zf + yT
f yf ± yT

f

(
InLk +N−1

)−1
yf =

= zT
f Mzf − 2yT

f zf + yT
f yf ± yT

f M
−1yf =

=
(
zf −M−1yf

)T
M
(
zf −M−1yf

)
+ yT

f

(
InLk −M−1

)
yf .

Substituting and multiplying for the constant term
√

det (M−1) we obtain

pG(xD),σ2|D(z, σ
2) ∝ 1

(σ2)nLk/2
√
det (M−1)

exp

(
− 1

2σ2
(zf −M−1yf)

TM(zf −M−1yf)

)
·

· 1

(σ2)(a+nLk/2)+1
exp

(
− 1

σ2

(
b+

1

2

(
yT
f

(
InLk −M−1

)
yf

)))
.

(28)
From eq. (28) it is possible to identify two kernels: one associable with a Gaussian density and
the other with an Inverse-Gamma density,

flat (G(xD)) |σ2,D ∼ N
(
M−1 flat (yD) , σ

2M−1
)
,

σ2 | D ∼ IG
(
a+

nLk

2
, b+

1

2

(
flat (yD)

T (In1k −M−1
)
flat (yD)

))
.
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This result allows us to apply the following Lemma B.1 (see Bernardo and Smith [BS09]) and
state that the induced posterior distribution, G(xD) | D is a (nL × k)-dimensional Student-t:

flat (G(xD)) | D ∼ t2a+nLk (µpost,Σpost) ,

with
M := InLk +

(
K ′(x)⊗K InL

)−1
,

µpost := M−1 flat (yD) ,

Σpost :=

(
b+

1

2

(
flat (yD)

T (InLk −M−1
)
flat (yD)

)) 2

2a+ nLk
M−1.

Lemma B.1. Let k ∈ N>0, and (z, σ2) Gaussian-Inverse-Gamma (Gaussian-IG) distributed,
i.e.,

z |σ2 ∼ N
(
µ, σ2Λ

)
with µ ∈ Rk, Λ ∈ Symk

+ and

σ2 ∼ IG (α, β) with α, β > 0,

then z is distributed as a k-dimensional Student-t with 2α degrees of freedom, z ∼ t2α

(
µ, βαΛ

)
.

Proof. We know, by hypothesis that (z, σ2) is such that

p(z,σ2)(z, σ
2) =

1

(2π)
k
2 (σ2)

k
2
√
det (Λ)

exp

(
− 1

2σ2
(z − µ)TΛ−1(z − µ)

)
·

· βα

Γ(α)

(
1

σ2

)α+1

exp

(
− β

σ2

)
.

Marginalizing over the variance σ2 we get

pz(z) =

∫ ∞

0
p(z,σ2)(z, σ

2)dσ2 =

∝
∫ ∞

0
exp

(
− 1

2σ2

(
2β + (z − µ)TΛ−1(z − µ)

))( 1

σ2

)α+ k
2
+1

dσ2.

(29)

Setting a = α+ k
2 , b = 2β+(z−µ)TΛ−1(z−µ)

2 , s = σ2 one can rewrite the last line of eq. (29) as

pz(z) ∝
∫ ∞

0
s−(a+1) exp

(
− b

s

)
ds =

∫ 0

∞

(
t

b

)a+1

e−t

(
− b

t2

)
dt =

=

∫ ∞

0
b−ata−1e−tdt = Γ(a)b−a ∝

(
2β + (z − µ)TΛ−1(z − µ)

2

)−(α+ k
2 )

∝

∝
(
1 +

1

2α
(z − µ)T

(
β

α
Λ

)−1

(z − µ)

)− 2α+k
2

,

(30)

where in the first equality of eq. (30) we performed the change of variable t = b
s . In the final form

of pz(z) it is possible to recognize the kernel of a k-dimensional Student-t, z ∼ t2α

(
µ, βαΛ

)
. □

Appendix C. Proof of the main result

C.1. Distance between marginal posterior of BNNs and NNGP.

Proposition C.1. Let L be a Gaussian likelihood, L ∼ N
(
z, σ2

yD
InL×k

)
, it holds

∥L∥∞ =
1(

2πσ2
yD

)nLk/2
and Lip (L) = e−1/2√

σ2
yD

1(
2πσ2

yD

)nLk/2
.
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Proof. We first rewrite the map in a more compact form in terms of the Frobenius norm of
(yD − z): ∀ z ∈ RnL×k,

L(z;yD) =
1(

2πσ2
yD

)nLk/2
exp

(
− 1

2σ2
yD

∥yD − z∥2F
)
.

Then for the uniform norm it is sufficient to recall that L is a bell-shaped map with maximum
in the mean point. Therefore, it is immediate that

∥L∥∞ = L(yD;yD) =
1(

2πσ2
yD

)nLk/2
.

For the identification of the Lipschitz constant it is necessary to recall that, as a consequence of
the Mean Value Theorem, given a map g : Ω → R with Ω open convex subset of RS , S finite
set, if supz∈Ω ∥∂/∂z g(z)∥ ≤ L, then L is L-Lipschitz. Hence, our objective is to identify the
value of supz∈RnL×k ∥∂/∂z L(z;yD)∥F .
Let us define c = 1

(2πσ2
yD)

nLk/2 , then

∂

∂z
L(z;yD) = c

∂

∂z
exp

(
− 1

2σ2
yD

∥yD − z∥2F
)

=

= c
∂

∂ ∥yD − z∥2F
exp

(
− 1

2σ2
yD

∥yD − z∥2F
)

∂

∂(yD − z)
∥yD − z∥2F

∂

∂z
(yD − z) =

= c

(
− 1

2σ2
yD

exp

(
− 1

2σ2
yD

∥yD − z∥2F
))

2(yD − z) (−InL×k) =
yD − z

σ2
yD

L(z;yD).

To find the supremum of h : RnL×k → R,

h(z) :=

∥∥∥∥ ∂

∂z
L(z;yD)

∥∥∥∥
F

=
∥yD − z∥F

σ2
yD

L(z;yD), ∀ z ∈ RnL×k,

we first have to notice that h is a positive real valued map, and that its first derivative has zeros
in every z0 such that ∥yD − z0∥2F = σ2

yD
, which, as a consequence, are critical points. Indeed,

for every z ̸= yD,

∂

∂z
h(z) =

1

σ2
yD

(
∂

∂z
L(z;yD) ∥yD − z∥F + L(z;yD)

∂

∂z
∥yD − z∥F

)
=

=
1

σ2
yD

(
yD − z

σ2
yD

L(z;yD) ∥yD − z∥F − L(z;yD)
yD − z

∥yD − z∥F

)
=

=
1

σ2
yD

L(z;yD)
yD − z

∥yD − z∥F

(
∥yD − z∥2F

σ2
yD

− 1

)
,

which is null if and only if ∥yD − z∥2F /σ2
yD

= 1.
For any such z0 we would have that

h(z0) = L (z0;yD) =
1√
σ2
yD

e−1/2(
2πσ2

yD

)nLk/2
.

It is also possible to define

l : R+ → R, l(x) :=
x

σ2
yD

1(
2πσ2

yD

)nLk/2
exp

(
− 1

2σ2
yD

x2
)
, ∀x ∈ R+,

which, by construction, has the following property:

∀ z ∈ RnL×k, l(∥yD − z∥F ) = h(z).
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From the definition it is easy to see that supx∈R+ l(x) = h(z0), just computing its first two
derivatives l′ and l′′. Defining d = σ−2

yD

(
2πσ2

yD

)−nLk/2 positive constant we have

l′(x) = d exp

(
− 1

2σ2
yD

x2
)(

1− x2
1

σ2
yD

)
,

l′′(x) = −d exp

(
− 1

2σ2
yD

x2
)

1

σ2
yD

x

((
1− x2

1

σ2
yD

)
+ 2

)
=

= −d exp

(
− 1

2σ2
yD

x2
)

1

σ2
yD

x

(
3− x2

σ2
yD

)
,

and so

l′(x) = 0 ⇐⇒ x2 = σ2
yD
, l′′(x) ≤ 0 ⇐⇒ x2 ≤ 3σ2

yD
.

This implies that in x =
√

σ2
yD

there is a local maximum and observing the asymptotic behavior,

limx→+∞ l(x) = 0, we know that it is the unique global maximum. Finally, evaluating l in
√
σ2
yD

we get

l
(√

σ2
yD

)
=

1√
σ2
yD

e−1/2(
2πσ2

yD

)nLk/2
.

Therefore, it follows that the critical points z0 are global maxima for h and so

sup
z∈RnL×k

∥∥∥∥ ∂

∂z
L(z;yD)

∥∥∥∥
F

= h(z0).

□

For the sake of completeness we report below a more detailed version of the Corollary 5.3 of
Trevisan [Tre23], which we use as a starting point for the subsequent results.

Corollary C.2. Given fθ BNN, with architecture α = (n,φ), φ collection of Lipschitz activa-
tion functions, prior distribution on θ as in eq. (4), G Gaussian process as in eq. (6), x, yD as
in Section 3.2, and a Gaussian likelihood function L ∼ N

(
z, σ2

yD
InL×k

)
, exists a constant

c
(
D,φ,σ, σ2

yD
, nL

)
> 0, independent of (nl)

L−1
l=1 ,

such that,

W1 (fθ(x) | D, G(x) | D) ≤ c
1√
nmin

,

for all nmin := min
l=1,...,L−1

nl sufficiently large.

Proof. Let µ̃ the law of the induced prior distribution of a BNN, µ̃ ∼ fθ(x), and µ be the law
of the associated NNGP, µ ∼ G(x), probability measures on

(
RnL×k, ∥·∥

)
.

Let g := L : RnL×k → R, bounded Lipschitz map. The posterior distributions Pfθ(x)|D and
PG(x)|D are, by construction, respectively equal to µ̃g and µg as they are defined in Lemma A.6,
therefore, by a direct application with p = 2, we get the following rewriting of eq. (27):

W1 (fθ(x) | D, G(x) | D) ≤ 1

p(1)

(
Lip (L) p(3) +

(
1 +

p(4) Lip (L)
p(2)

)
∥L∥∞

)
W2 (fθ(x), G(x)) ,

(31)
where Lip (L) , ∥L∥∞ are positive constants depending on k, σ2

yD
, nL, as showed in Proposi-

tion C.1, and
p(1) = Ez∼G(x) [L(z;yD)] , p(2) = Ez∼fθ(x) [L(z;yD)] ,

p(3) = Ez∼G(x)

[
∥z∥2F

]
, p(4) = Ez∼G(x) [∥z∥F ] .
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It is immediate that p(3) and p(4) are finite indeed they are the second and the first moment of
a multivariate centered Gaussian, G(x) ∼ N (0nL×k, InL ⊗K(x)), respectively. Therefore, as
we observed in Remark A.2, it holds

(p(4))2 ≤ p(3) = tr (InL ⊗K(x)) = nL tr (K(x)) ≤ nLkmax
i∈[k]

K(xi,xi) ≤

≤ nLk

(
σ2
W (L) max

i∈[k]
E
[∥∥∥φL

(
G(L−1)(xi)

)∥∥∥2
2

]
/nL + σ2

b(L)

)
. (32)

So both the terms can be bounded by expressions only dependent on x,φ,σ and nL.
For the remaining terms we still exploit the normality of G(x) (see eq. (5)). Due to the bound-
edness and positivity of L : Rdout×k → (0, ∥L∥∞), it is clear that p(1) ∈ (0,∞), indeed we are
integrating L with respect to a strictly positive probability measure: 0 < p(1)(D,φ,σ, σ2

yD
, nL) =

= E [L(G(x);yD)] ≤ ∥L∥∞.
Moreover, it is possible to notice that considering v ∼ G(x), w ∼ fθ(x),

|p(1) − p(2)| = |E [L(v;yD)− L(w;yD)]| ≤ ∥L(v;yD)− L(w;yD)∥L1 ≤ Lip (L) ∥v −w∥L1 ,

and taking the infimum over the couplings (v,w) we get

|p(1) − p(2)| ≤ Lip (L)W1 (G(x), fθ(x)) ≤ Lip (L) c1
1√
nmin

, (33)

where for the last inequality we used a compact version of the result in Theorem 2.8. Recalling
that c1 and Lip (L) depend only on x,φ,σ, σ2

yD
and nL, eq. (33) implies that, for nmin sufficiently

large, p(2) is also strictly positive.
To conclude it is sufficient to note that eq. (31), together with Theorem 2.8 and the observations
made about (p(i))4i=1 lead to

W1 (fθ(x) | D, G(x) | D) ≤ c2W2 (fθ(x), G(x)) ≤ c2c3
√
nL

L∑
l=1

1√
nk

≤ c
1√
nmin

,

where c2 and c3 depends on D,φ,σ, σ2
yD
, nL. □

Lemma C.3. Given fθ, G and x as in Theorem 2.8, p ≥ 1, and assuming σ2 := σ2
W (L) =

= σ2
b(L) = σ2

yD
, there exists a constant

c
(
p,x,φ, (σl)

L−1
l=1

)
> 0, independent of (nl)

L
l=1 , σ

2,

such that

Wp

(
fθ(x) |σ2, G(x) |σ2

)
≤ σc

√
nL

L−1∑
l=1

1√
nl
,

Proof. The proof is straightforward if we observe that, by construction (see eqs. (1) and (5))
fθ = σfθ′ and G = σG′, with

θ′ such that σ′ =
(((

σ2
W (l) , σ

2
b(l)

))L−1

l=1
, (1, 1)

)
, (34)

and G′ built with weights and bias variances as in σ′.
Indeed, applying eq. (24) and Theorem 2.8 we get

Wp

(
fθ(x) |σ2, G(x) |σ2

)
= σWp

(
f ′
θ(x), G

′(x)
)
≤ σc

√
nL

L−1∑
l=1

1√
nL

,

with c independent of σ2. □

Lemma C.4. Given fθ, G, x, yD and L as in Corollary C.2, assuming σ2 := σ2
W (L) = σ2

b(L) =

= σ2
yD

, K ′(x) ∈ Symk
+ (rescaled NNGP kernel), and

v ∼ G(x) |σ2, w ∼ fθ(x) |σ2,
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∀ ε < 1/ ∥K ′(x)∥op it holds

c1 ·
(
σ2
)−nLk/2 exp

(
−∥yD∥2F

σ2

)
≤ E [L(v;yD)] ≤ c2 ·

(
σ2
)−nLk/2 exp

(
− 1

2σ2

ε

ε+ 1
∥yD∥2F

)
,

c3 exp

(
−∥yD∥2F

σ2

)
≤ E [L(w;yD)] ≤ c4 ·

(
σ2
)−nLk/2 ,

where nmin = minl=1,...,L−1 nl is sufficiently large and the constants depend on x,φ, (σl)
L−1
l=1 , nL.

Proof. We separately discuss the four bounds.
Bounds related to G(x). It is possible to rewrite E [L(v;yD)] as follows:

E [L(v;yD)] ∝ E
[(
σ2
)−nLk/2 exp

(
− 1

2σ2
∥yD − v∥2F

)]
=

=
(
σ2
)−nLk/2

∫
RnL×k

exp

(
− 1

2σ2
∥yD − v∥2F

)
dPG(x)|σ2(v). (35)

Starting with the density of the Gaussian variable G(x),

pG(x)(z) =
1

((2π)nLk det (K(x)⊗K InL))
1/2

·

· exp
(
−1

2
flat (z)T (K(x)⊗K InL)

−1 flat (z)

)
,

and recalling that, ∀A ∈ Rn×n,B ∈ Rk×k, then (A⊗K B)−1 = A−1 ⊗K B−1, det (A⊗K B) =

= det (A)k det (B)n, and K(x) = σ2K ′(x), with K ′(x) as in eq. (10), it is easy to see that

pG(x)|σ2(v) =
1

(2πσ2)nLk/2

1

det (K ′(x))nL/2
exp

− 1

2σ2

∑
i,j∈[k]×[k]

(
K ′(x)−1

)
i,j

vT
i vj

 . (36)

Lower bound. Substituting eq. (36) in eq. (35) we get

E [L(v;yD)] ∝
(
σ2
)−nLk

∫
RnL×k

exp

(
− 1

2σ2
∥yD − v∥2F

)
·

· exp

− 1

2σ2

∑
i,j∈[k]×[k]

(
K ′(x)−1

)
i,j

vT
i vj

 dv ≥
(37)

≥
(
σ2
)−nLk exp

(
− 1

σ2
∥yD∥2F

)(
σ2
)nLk/2 ·

·
∫
RnL×k

exp

−1

2

 ∑
i,j∈[k]×[k]

(
K ′(x)−1 + 2 · Ik

)
i,j

uT
i uj

 du,

(38)

where the inequality follows applying ∥yD − v∥2F ≤ 2(∥yD∥2F + ∥v∥2F ) (see eq. (22)) and per-
forming the change of variable u := v/(σ2)1/2. The conclusion for the lower bound follows easily
observing that K ′(x) is positive definite, so it holds

(K ′(x)−1 + 2 · Ik)⊗K InL ∈ SymnLk
+ ,

and therefore given uf = flat (u) the integral in eq. (38) is equal to a constant depending on
x,φ, (σl)

L−1
l=1 , nL:∫

RnL×k
exp

(
−1

2
(uT

f

(
(K ′(x)−1 + 2 · Ik)⊗K InL

)
uf)

)
duf =

=
(
(2π)k det

(
K ′(x)−1 + 2 · Ik

))nL/2
.

(39)
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Upper bound. For the upper bound the procedure is similar. Starting from the result in
eq. (37), applying the inequality ∥yD − v∥2F ≥ ε

1+ε ∥yD∥2F − ε ∥v∥2F , for a fixed ε > 0 (see
eq. (23)) and performing again the change of variable u := v/(σ2)1/2 we get

E [L(v;yD)] ≤ c ·
(
σ2
)−nLk exp

(
− 1

2σ2

ε

ε+ 1
∥yD∥2F

)(
σ2
)nLk/2 ·

·
∫
RnL×k

exp

−1

2

∑
i,j∈[k]×[k]

(
K ′(x)−1 − εIk

)
i,j

vT
i vj

 dv.

Now, in order to have a convergent integral it is sufficient to impose the matrix K ′(x)−1−εIk to
be positive definite. Indeed, in that case, we could conclude as before. However, this condition
is obviously verified

∀ ε < min
{
λ |λ ∈ Sp

(
K ′(x)−1

)}
= max

{
λ |λ ∈ Sp

(
K ′(x)

)}−1
= 1/

∥∥K ′(x)
∥∥
op

,

indeed for such ε one has that

Sp
(
K ′(x)−1 − εIk

)
= Sp

(
K ′(x)−1

)
− ε ⊂ R+.

Bounds related to fθ(x). As for the Gaussian process we can write

E [L(w;yD)] ∝
(
σ2
)−nLk/2

∫
RnL×k

exp

(
− 1

2σ2
∥yD −w∥2F

)
dPfθ(x)|σ2(w). (40)

We also recall the definitions of fθ′ = (σ2)−1/2fθ and G′ = (σ2)−1/2G, respectively the rescaled
BNN and NNGP, random processes independent on σ2, as in eq. (34).
Lower bound. Applying the same inequality and the same change of variable used in the lower
bound related to G(x) we get

E [L(w;yD)] ≥ c exp

(
− 1

σ2
∥yD∥2F

)∫
RnL×k

exp
(
−∥u∥2F

)
dPf ′

θ(x)
(u) =

= c exp

(
− 1

σ2
∥yD∥2F

)
Eu∼f ′

θ(x)

[
e−∥u∥2F

]
. (41)

Now, we can exploit the fact that we know how to integrate e−∥·∥2F with respect to the measure
PG′(x) (we already computed this integral up to a constant depending on the usual parameters,
in eq. (39)) to obtain analogous results for the mean value in eq. (41). As in eq. (33), exploiting
Theorem 2.8, and observing that

Lip
(
e−∥·∥2F

)
= max

u∈RnL×k

∥∥∥∥ ∂

∂u
e−∥u∥2F

∥∥∥∥
F

= max
u∈RnL×k

∥∥∥−2ue−∥u∥2F
∥∥∥
F
=

√
2

e
,

it is possible to write the following upper bound to the difference of the mean values of e−∥·∥2F

with respect to the laws of G′(x) and fθ′(x):∣∣∣Eu∼G′(x)

[
e−∥u∥2F

]
− Eu∼f ′

θ(x)

[
e−∥u∥2F

]∣∣∣ ≤ Lip
(
e−∥·∥2F

)
W1

(
G′(x), fθ′(x)

)
≤ c√

nmin
.

(42)
Therefore, assuming

√
nmin ≥ 2c/Eu∼G′(x)

[
e−∥u∥2F

]
,

we get

Eu∼f ′
θ(x)

[
e−∥u∥2F

]
≥ Eu∼G′(x)

[
e−∥u∥2F

]
/2,

and therefore

E [L(w;yD)] ≥ c exp

(
− 1

σ2
∥yD∥2F

)
.
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Upper bound. The upper bound can easily be obtained observing that the negative exponential
in eq. (40) is smaller than 1 and therefore its integral is smaller than 1 as well4. □

It is now possible to state and prove the following Corollary C.5, which is a version of Corol-
lary C.2 in which the dependence on σ2 is explicit, under the assumptions of BNN built using
the hierarchical model defined in eq. (9).

Corollary C.5. Given fθ, G, x, yD and L as in Corollary C.2, and assuming σ2 := σ2
W (L) =

= σ2
b(L) = σ2

yD
exist some constants

ci

(
D,φ, (σl)

L−1
l=1 , nL

)
> 0, i = 0, . . . , 4, independent of (nl)

L−1
l=1 , σ2,

such that,
W1

(
fθ(x) | (D, σ2), G(x) | (D, σ2)

)
≤ h(σ2)

c0√
nmin

,

with

h(σ2) = c1
(
σ2
)1/2

exp

(
∥yD∥2F
σ2

)(
c2 + c3

(
σ2
)1/2

+ c4
(
σ2
)−nLk/2 exp

(
∥yD∥2F
σ2

))
.

Proof. In analogy with the proof of Corollary C.2, the idea is to apply Lemma A.6 with

µ̃ ∼ fθ(x) |σ2, µ ∼ G(x) |σ2, g := L(z;yD, σ
2),

so that
µ̃g =

g

µ̃(g)
µ̃ = Pfθ(x) | (σ2,D) and µg =

g

µ(g)
µ = PG(x) | (σ2,D).

By a direct application of eq. (27) we get

W1

(
fθ(x) | (σ2,D), G(x) | (σ2,D)

)
≤

≤ 1

p(1)

(
Lip (L) p(3) +

(
1 +

p(4) Lip (L)
p(2)

)
∥L∥∞

)
W2

(
fθ(x) |σ2, G(x) |σ2

)
,

(43)

where ∥L∥∞, Lip (L) are reported explicitly in Proposition C.1, whereas 1/p(1), 1/p(2) and p(3),
p(4) are upper bounded respectively in Lemma C.4 and eq. (32): all the constants depends on
x,φ, (σl)

L−1
l=1 and nL

∥L∥∞ = c
(
σ2
)−nLk/2 , Lip (L) = c

(
σ2
)−nLk/2−1/2

,

p(1) ≥ c
(
σ2
)−nLk/2 exp

(
−∥yD∥2F

σ2

)
, p(2) ≥ c exp

(
−∥yD∥2F

σ2

)
,

p(3) ≤ c σ2, p(4) ≤ c
(
σ2
)1/2

.

(44)

Hence, substituting the results in eq. (44) inside eq. (43) and applying Lemma C.3 we obtain

W1

(
fθ(x) | (σ2,D), G(x) | (σ2,D)

)
≤ h(σ2)

c√
nmin

, with

h(σ2) =
(
σ2
)1/2 (

σ2
)nLk/2 exp

(
∥yD∥2F
σ2

)[
c1
(
σ2
)−nLk/2+1/2

+

+

(
1 + c2

(
σ2
)−nLk/2 exp

(
∥yD∥2F
σ2

))
c3
(
σ2
)−nLk/2

]
≤

≤ c1
(
σ2
)1/2

exp

(
∥yD∥2F
σ2

)(
c2 + c3

(
σ2
)1/2

+ c4
(
σ2
)−nLk/2 exp

(
∥yD∥2F
σ2

))
.

□

4To find a sharper upper bound reproducing the result just showed for the lower bound is not trivial. We cannot
apply an analogue of eq. (42) because the map e

ε
2
∥·∥2F is not Lipschitz.
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C.2. 1st term bound. As we already mentioned, in order to control the first term we need
first to apply the convexity property presented in eq. (16) to µpost and µ̄ defined respectively in
eqs. (17) and (19). Doing that we would have

W1 (µpost, µ̄) ≤
∫
R+

W1 (µσ2(s), µ̃σ2(s))
Iσ2(s)

I
pσ2(s)ds (45)

where the probability measure ν in eq. (16) here is simply

ν ≪ λ+, with
dν

dλ+
(s) =

Iσ2(s)

I
pσ2(s), λ+ Lebesgue measure on R+.

Hence, in order to get eq. (45) we just need to prove that both (µσ2(s))s∈R+ and (µ̃σ2(s))s∈RS

are Markov kernels with source R+ and target RnL×k.
We first observe that ∀ s ∈ R+, both µσ2(s) and µ̃σ2(s) are probability measures, which follows
from µσ2(s)(RnL×k) = µ̃σ2(s)(RnL×k) = 1 and applying dominated convergence.
It remains only to check that for any B ∈ B

(
RnL×k

)
, µσ2(·)(B) and µ̃σ2(·)(B), are measurable

from (R+,B (R+)) to ([0, 1],B ([0, 1])), which is again easy to observe: the maps

s →
∫
B
L(z, s)µ(dz), s →

∫
B
L(z, s)µ̃(dz), s → Iσ2(s), s → Ĩσ2(s)

are continuous because Lebesgue integrals of the map s → L(z, s) with respect to z, integration
variable of a probability measure, and therefore we have the thesis.

So, the final bound on the first term can be found explicitly observing that the two probability
measures µσ2(s) and µ̃σ2(s) parametrized by s, coincide with the laws of G(x) | (D, σ2 = s) and
fθ(x) | (D, σ2 = s). By Corollary C.5,

W1 (µσ2(s), µ̃σ2(s)) ≤ h(s)
c√
nmin

,

with c and h as in the statement of the result used, which implies

W1 (µpost, µ̄) ≤
c√
nmin

∫
R+

h(s)
Iσ2(s)

I
pσ2(s)ds. (46)

In Lemma C.4 we already computed the bounds for Iσ2(s), therefore we can also bound Iσ2(s)/I :
observing

Iσ2(s) = Ez∼G(x)|σ2=s [L(z, s)] and I =

∫
R+

Iσ2(s)pσ2(s)ds,

it is easy to check that, fixed ε < (λ+)
−1, with λ+ := max{λ |λ ∈ Sp (K ′(x))}, we have

Iσ2(s) ≤ c s−nLk/2 exp

(
−1

s

ε

2(ε+ 1)
∥yD∥2F

)
, and

I ≥ c

∫
R+

s−nLk/2 exp

(
−∥yD∥2F

s

)
s−a−1 exp

(
− b

s

)
ds =

= c

∫
R+

snLk/2 exp
(
−s ∥yD∥2F

)
sa+1 exp (−sb) s−2ds =

= c

∫
R+

snLk/2+a−1 exp
(
−s(∥yD∥2F + b)

)
ds = cΓ (nLk/2 + a) .

(47)
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Hence, the bound in eq. (46) can be further simplified bounding the following integral:∫
R+

h(s)
Iσ2(s)

I
pσ2(s)ds ≤

≤ c

∫
R+

(
c1s

1/2 exp

(
∥yD∥2F

s

)(
c2 + c3s

1/2 + c4s
−nLk/2 exp

(
∥yD∥2F

s

)))
·

· s−nLk/2 exp

(
−1

s

ε

2(ε+ 1)
∥yD∥2F

)
· s−a−1 exp

(
− b

s

)
ds =

= c1

∫
R+

sa+nLk/2−1/2−1 exp

(
−s

(
b+

(
ε

2ε+ 2
− 1

)
∥yD∥2F

))
ds+

+ c2

∫
R+

sa+nLk/2−1−1 exp

(
−s

(
b+

(
ε

2ε+ 2
− 1

)
∥yD∥2F

))
ds+

+ c3

∫
R+

sa+nLk−1/2−1 exp

(
−s

(
b+

(
ε

2ε+ 2
− 2

)
∥yD∥2F

))
ds =

= c1Γ (a+ nLk/2− 1/2) + c2Γ (a+ nLk/2− 1) + c3Γ (a+ nLk − 1/2) ,

under the assumptions

a >
1

2
and b >

(
1 +

ε+ 2

2ε+ 2

)
∥yD∥2F .

Therefore, it holds
W1 (µpost, µ̄) ≤

c√
nmin

.

C.3. 2nd term bound. Finally, to control the second term the idea is to apply the Theorem
6.15 of Villani [Vil08], which in our case is simplified to Lemma 3.6. We use the following
characterization of the total variation measure (see Section 6.1 of Rudin [Rud87]): ∀A ∈ B

(
RS
)
,

|µ− ν|(A) = sup
(Ai)

∞
i=1,

⊔∞
i=1 Ai=A

∞∑
i=1

|(µ− ν)(Ai)|.

Now the problem is that we do not know how to measure maps with the finite measure |µ̄−µ̃post|,
but we know how to bound it.
Indeed, introducing the following notation to improve the readability,

k(s) :=
Iσ2(s)

I
− Ĩσ2(s)

Ĩ
,

we have
µ̄− µ̃post =

∫
R+

k(s)µ̃σ2(s)pσ2(s)ds,

and therefore ∀A ∈ B
(
RnL×k

)
,

|µ̄− µ̃post|(A) = sup
(Ai)

∞
i=1,

⊔∞
i=1 Ai=A

∞∑
i=1

∣∣∣∣∫
R+

k(s)µ̃σ2(s)(Ai)pσ2(s)ds

∣∣∣∣ ≤
≤ sup

(Ai)
∞
i=1,

⊔∞
i=1 Ai=A

∞∑
i=1

∫
R+

|k(s)|µ̃σ2(s)(Ai)pσ2(s)ds =

= sup
(Ai)

∞
i=1,

⊔∞
i=1 Ai=A

lim
j→∞

∫
R+

|k(s)|µ̃σ2(s)

(
j⊔

i=1

Ai

)
pσ2(s)ds.

It is easy to observe that it is possible to apply Dominated Convergence Theorem: ∀ j ∈ N>0,∣∣∣∣∣|k(s)|µ̃σ2(s)

(
j⊔

i=1

Ai

)
pσ2(s)

∣∣∣∣∣ ≤ |k(s)|pσ2(s) and
∫
R+

|k(s)|pσ2(s) ≤ 2.
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Therefore,

|µ̄− µ̃post|(A) ≤ sup
(Ai)

∞
i=1,

⊔∞
i=1 Ai=A

∫
R+

|k(s)|µ̃σ2(s)

( ∞⊔
i=1

Ai

)
pσ2(s)ds =

=

∫
R+

|k(s)|µ̃σ2(s)(A)pσ2(s)ds =: ν(A).

It is easy to observe that ν : B
(
RnL×k

)
→ R+ is a finite measure, indeed:

- ν(∅) = 0, ν(RnL×k) =
∫
R+ |k(s)|pσ2(s)ds ≤ 2;

- given A =
⊔∞

i=1Ai, again using dominated convergence we have
∞∑
i=1

ν(Ai) =
∞∑
i=1

∫
R+

|k(s)|µ̃σ2(Ai)pσ2(s)ds =

∫
R+

|k(s)|µ̃σ2

( ∞⊔
i=1

Ai

)
pσ2(s)ds =

=

∫
R+

|k(s)|µ̃σ2(A)pσ2(s)ds = ν(A).

Applying Lemma 3.6 and observing that if ∀A ∈ B
(
RnL×k

)
, |µ̄ − µ̃post|(A) ≤ ν(A) then ∀ f

measurable from RnL×k to R+, |µ̄− µ̃post|(f) ≤ ν(f), we get

W1 (µ̄, µ̃post) ≤
∫
RnL×k

∥z∥F d|µ̄− µ̃post|(z) ≤
∫
RnL×k

∥z∥F dν(z) =

=

∫
R+

|k(s)|pσ2(s)

∫
RnL×k

∥z∥F µ̃σ2(s)(dz)ds =

=

∫
R+

|k(s)|pσ2(s)
1

Ĩσ2(s)

∫
RnL×k

∥z∥F L(z, s)µ̃(dz)ds, (48)

where the identity from the 1st to the 2nd line follows by Fubini’s Theorem.
The inner integral is easy to compute bounding the likelihood L in terms of the variable z,
already computed in Proposition C.1: ∥L∥∞ = c s−nLk/2. Using this result we obtain∫

RnL×k
∥z∥F L(z, s)µ̃(dz) = Ez∼fθ(x) |σ2=s [∥z∥F L(z, s)] ≤ c s−nLk/2Ez∼fθ(x) |σ2=s [∥z∥F ] .

Now the procedure to compute the first moment of the distribution of fθ(x) |σ2 = s is analogous
to the one used in the proof of Lemma C.4 for the lower bound related to fθ(x). First we recall
that fθ′ = s−1/2fθ |σ2=s and also G′ = s−1/2(G |σ2 = s). Then we apply the change of variable
u = z/s1/2, and we get

Ez∼fθ(x) |σ2=s [∥z∥F ] =
∫
RnL×k

∥z∥F dPfθ(x) |σ2=s(z) =

=

∫
RnL×k

∥∥∥us1/2∥∥∥
F
snLk/2dPfθ′ (x)

(u) =

= snLk/2+1/2Eu∼fθ′ (x)
[∥u∥F ] .

Now that we removed the dependence in terms of s it is possible to bound the moment of the
rescaled BNN using the moment of the rescaled NNGP, which can be upper bounded as in
eq. (32):

Eu∼G′(x) [∥u∥F ] ≤ (nLk)
1
2 ·
(
max
i∈[k]

E
[∥∥∥φL

(
G(L−1)(xi)

)∥∥∥2
2

]
/nL + 1

) 1
2

,

with a right-hand side that is just a constant term depending on x,φ, (σl)
L−1
l=1 , nL.

In order to do so we replicate an analogue of eq. (42): thanks to the triangle inequality we know
Lip (∥·∥F ) = 1, and applying Theorem 2.8 we get∣∣∣Eu∼G′(x) [∥u∥F ]− Eu∼f ′

θ(x)
[∥u∥F ]

∣∣∣ ≤ Lip (∥·∥F )W1

(
G′(x), fθ′(x)

)
≤ c√

nmin
.
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Finally, assuming
√
nmin ≥ 2c/Eu∼G′(x) [∥u∥F ], we derive

Eu∼f ′
θ(x)

[∥u∥F ] ≤
3

2
Eu∼G′(x) [∥u∥F ] ,

which implies ∫
RnL×k

∥z∥F L(z, s)µ̃(dz) ≤ cs1/2.

Restarting from the result in eq. (48) and using the lower bound related to fθ(x) in Lemma C.4
we get

W1 (µ̄, µ̃post) ≤ c

∫
R+

|k(s)| s1/2

Ĩσ2(s)
pσ2(s)ds ≤

≤ c

∫
R+

|k(s)| exp
(
∥yD∥2F

s

)
s1/2s−a−1 exp

(
− b

s

)
ds.

Now it is sufficient to show

|k(s)| =
∣∣∣∣∣Iσ2(s)

I
− Ĩσ2(s)

Ĩ

∣∣∣∣∣ ≤ s−nLk/2
c√
nmin

(49)

to have the thesis. Indeed, we would have

W1 (µ̄, µ̃post) ≤
c√
nmin

∫
R+

s−nLk/2−a+1/2−1 exp

(
−1

s

(
b− ∥yD∥2F

))
ds =

=
c√
nmin

Γ (nLk/2− 1/2 + a) =
c√
nmin

,

under the assumption b > ∥yD∥2F .
Let us thus prove eq. (49). We begin by observing that we already know how to bound the
absolute difference

∣∣Iσ2(s)−Ĩσ2(s)
∣∣, using the same arguments applied in the proof of Lemma C.4:∣∣∣Iσ2(s)− Ĩσ2(s)

∣∣∣ ≤ Lip (L(·, s))W1 (G(x), fθ(x)) ≤ cs−nLk/2−1/2 · s1/2 c√
nmin

≤

≤ s−nLk/2
c√
nmin

.
(50)

Therefore, it remains to show that I−1 ≤ c and Ĩ−1 ≥ c for some c depending only on the usual
parameters. Indeed, it would yield∣∣∣∣∣Iσ2(s)

I
− Ĩσ2(s)

Ĩ

∣∣∣∣∣ ≤ c
∣∣∣Iσ2(s)− Ĩσ2(s)

∣∣∣ ≤ s−nLk/2
c√
nmin

.

We already saw I ≥ c in eq. (47), but in order to find an upper bound for Ĩ we also need an
upper bound for I . The procedure to get it is analogous to the one used in eq. (47): starting
from Lemma C.4 we bound the negative exponential with 1, and we are done,

I ≤ c

∫
R+

s−nLk/2 exp

(
−1

s

ε

2(ε+ 1)
∥yD∥2F

)
pσ2(s)ds ≤ c

∫
R+

s−nLk/2−a−1 exp

(
− b

s

)
ds =

= cΓ (nLk/2 + a) .

To prove Ĩ ≤ c it is sufficient to observe that∣∣∣I − Ĩ
∣∣∣ = ∣∣∣∣∫

R+

(
Iσ2(s)− Ĩσ2(s)

)
pσ2(s)ds

∣∣∣∣ ≤ ∫
R+

∣∣∣Iσ2(s)− Ĩσ2(s)
∣∣∣ pσ2(s)ds ≤

≤ c√
nmin

∫
R+

s−nLk/2−a−1 exp

(
− b

s

)
ds =

c√
nmin

,

where from the 1st to the 2nd line we used the inequality in eq. (50). Hence, considering nmin

sufficiently large to have
√
nmin > 2c/I , it follows |I − Ĩ | ≤ I /2 which implies Ĩ ≤ 3/2 I ≤ c.
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Appendix D. Simulations details

Starting from the hierarchical model in eq. (20), to sample from the posterior BNN using Algo-
rithm 1, we only need to explicitly define a method for sampling from σ2 |θ,D. To achieve this,
it is sufficient to retrieve the kernel of its density, which can be written explicitly. Recalling that
xD is assumed independent of θ and is also obviously independent of σ2, it holds

pσ2|θ,xD,yD(σ
2) =

pσ2,θ,xD,yD(σ
2,θ,yD,xD)

pθ,xD,yD(θ,xD,yD)
∝ pσ2(σ2) pθ |σ2(θ) pxD(xD) pyD|θ,xD,σ2(yD) ∝

∝ pσ2(σ2) pW (L) |σ2

(
W (L)

)
pb(L) |σ2

(
b(L)

)
pyD|θ,xD,σ2(yD).

(51)
Exploiting

fθ(xD) =
(
σ2
)1/2( W (L)

(σ2)1/2
φ
(
f
(L−1)
θ (xD)

)
+

b(L)

(σ2)1/2

)
=:
(
σ2
)1/2

fθ′(xD),

with fθ′(xD) independent of σ2 (as in eq. (34)), we have also

pσ2(σ2) ∝
(
σ2
)−(a+1)

exp

(
− b

σ2

)
,

pW (L) |σ2(W (L)) ∝
(
σ2
)−nLnL−1/2 exp

(
−nL−1

2σ2

∥∥∥W (L)
∥∥∥2
F

)
,

pb(L) |σ2(b(L)) ∝
(
σ2
)−nL/2 exp

(
− 1

2σ2

∥∥∥b(L)∥∥∥2
F

)
,

pyD|θ,σ2(yD) ∝
(
σ2
)−nLk/2 exp

(
− 1

2σ2
∥yD − fθ(xD)∥2F

)
=

=
(
σ2
)−nLk/2 exp

(
− 1

2σ2
∥yD∥2F

)
· exp

(
−1

2
∥fθ′(xD)∥2F

)
·

· exp
(
+

1

(σ2)1/2
flat (yD)

T flat (fθ′(xD))

)
.

(52)

Hence, substituting the identities reported in eq. (52) inside eq. (51) we get

pσ2|θ,D(σ
2) ∝

(
σ2
)−(a′+1)

exp

(
− b′

σ2

)
exp

(
+

c′

(σ2)1/2

)
, (53)

with a′, b′ ∈ R+, c′ ∈ R such that

a′ := a+ (nL−1 + k + 1)nL/2,

b′ := b+
1

2

(
nL−1

∥∥∥W (L)
∥∥∥2
F
+
∥∥∥b(L)∥∥∥2

F
+ ∥yD∥2F

)
,

c′ := flat (yD)
T flat (fθ′(xD)) .

As mentioned in Section 4, we have used the companion library of Ding et al. [DEM22] to
sample from the density in eq. (53) in the Python implementation of Algorithm 1. This has
been possible because, given x random variable with density

px(x) ∝ x−(a+1) exp

(
− b

x

)
exp

( c

x1/2

)
1{x≥0},
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the normalization constant is∫ +∞

0
px(x) =

∫ +∞

0
x−(a+1) exp

(
− b

x

)
exp

( c

x1/2

)
dx =

= 2

∫ +∞

0
y2a+1 exp

(
−by2

)
exp (cy) dy =

= 2(2b)−aΓ(2a) exp

(
c2

8b

)
D−2a

( −c

(2b)1/2

)
,

with D being the parabolic cylinder function. Therefore, given z ∼ GIN+(2a+1, c/2b,
√
1/2b)

(as defined by Ding et al. [DEM22, Appendix D]), applying the transformation y := x2, we get
a random variable with the same distribution as our target x: x ∼ y.

Remark D.1. The simulations closely follow the theoretical framework developed in this work.
However, during the sampling of the posterior Student-t process and BNNs, it is performed a
rescaling of σ2. This adjustment is applied where σ2 is used as the variance of yD |θ,xD, σ

2, in
order to address numerical stability issues encountered during the sampling process described
in Algorithm 1.
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