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ABSTRACT

Auto-regressive Language Models (LMs) assign significant attention to the first
token, even if it is not semantically important, which is known as attention sink.
This phenomenon has been widely adopted in applications such as streaming/long
context generation, KV cache optimization, inference acceleration, model
quantization, and others. Despite its widespread use, a deep understanding of
attention sink in LMs is still lacking. In this work, we first demonstrate that
attention sinks exist universally in auto-regressive LMs with various inputs, even
in small models. Furthermore, attention sink is observed to emerge during the
LM pre-training, motivating us to investigate how , data distribution,

, and model architecture in LM pre-training influence its emergence.
We highlight that attention sink emerges after effective optimization on sufficient
training data. The sink position is highly correlated with the loss function and data
distribution. Most importantly, we find that attention sink acts more like key biases,
storing extra attention scores, which could be non-informative and not contribute
to the value computation. We also observe that this phenomenon (at least partially)
stems from tokens’ inner dependence on attention scores as a result of softmax
normalization. After relaxing such dependence by replacing softmax attention
with other attention operations, such as sigmoid attention without normalization,
attention sinks do not emerge in LMs up to 1B parameters.

1 INTRODUCTION

Xiao et al. (2023) showed that Large Language models (LLMs) allocate significant attention to the
initial tokens, irrespective of their semantic relevance. This interesting phenomenon is termed as
attention sink and has widespread applications, including streaming/long context generation (Xiao
et al., 2023; Han et al., 2024; Yang et al., 2024), KV cache optimization (Ge et al., 2023; Wan
et al., 2024; Wu & Tu, 2024), efficient inference (Zhang et al., 2024b; Chen et al., 2024), model
quantization (Liu et al., 2024b; Huang et al., 2024), and others.

A seminal of works attempted to understand attention sink. Among them, Cancedda (2024) clarified
that attention sink primarily appears only on the first token. They found that early FFNs in LLaMA2
blast off the large norm of hidden states of the first token, thus leading to the attention sink in later
layers. This is referred to as massive activations (very few activations exhibit extremely large values
compared to others) in Sun et al. (2024). Besides, Sun et al. (2024); Yu et al. (2024) observed that
attention sink may also appear in several word tokens carrying limited semantic information and
having no fixed position. Despite the above research efforts, a deep understanding of attention sink is
still absent. Therefore, we conduct a comprehensive study to investigate when attention sink emerges.

Based on open-sourced auto-regressive LMs, we show that the first token acts as biases: the angles
between the first key and queries of other tokens are typically small, leading to attention sink. Then
we find that attention sink universally exists in auto-regressive LMs across different inputs, even
in the small models or with random token sequences. Additionally, attention sink is observed to
emerge during the LM pre-training before continual instruction tuning (Ouyang et al., 2022). This
motivates us to focus on the LM pre-training, whose objective can be formulated as:
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Figure 1: (Left) Architecture of pre-norm transformer block (we highlight the location of post-norm
LN using dashed lines). We denote the output of MHSA as O and the output of FFN as F. (Right)
The packing strategy in the LM pre-training. All documents are concatenated with BOS (optional) and
EOS tokens as the boundaries. Then it is chunked into equal-sized sequences with context length C'

In the remaining part of this paper, we investigate how the (Section 4), data distribution
(Section 5), (Section 6), and model architecture (Section 7) influence the emergence
of attention sink. We have the following conclusions:

* Attention sink emerges after LMs are trained effectively on sufficient training data. It appears
less obvious in LMs trained with small learning rates. While weight decay encourages the
emergence of attention sink.

* The sink position is highly related to the loss function and data distribution and can be
shifted to other positions rather than the first token.

* Attention sink acts more like key biases, storing extra attention and meanwhile not con-
tributing to the value computation. This phenomenon (at least partially) stems from tokens’
inner dependence on attention scores due to the softmax normalization. After relaxing such
dependence by replacing softmax attention with other attention operations, e.g., sigmoid
attention without normalization, attention sinks do not emerge in LMs up to 1B parameters.

2 PRELIMINARIES ON LMS AND ATTENTION SINK

Let fy be an auto-regressive LM with L transformer decoder blocks and X € R7*IVl .=
{x1, T2, ..., xr} are the input tokens, where each token x; is a one-hot encoding and |V]| is the vo-
cabulary size of tokenizer V. The LM output is also a sequence Y € RT*IVI .= {y1,y2, ...,yr} =
fo(X), where y; represents the predicted logits of p(x¢11|T<t).

Transformer blocks. In the forward pass, X is first embedded as H® € RT*? .= XWpg + P,
where Wi € RIVIX4 is the learnable word embedding, P € R”T*¢ is the positional embedding,
and d is the hidden dimension. We denote H! € RT*¢ := {ht hl, ... AL}, 1 <1 < L to be the
output of the [-th block. Each block comprises a multi-head self-attention (MHSA) operation and a
feed-forward network (FFN). The block has either a pre-norm or post-norm structure according to
the location of layer normalization (LN) (Ba et al., 2016; Zhang & Sennrich, 2019). Most of LLMs
consider a pre-norm block, as also shown in Figure 1(Lef):

H' =FFN(LN(O' + H'™")) + O' + H'™!, O' = MHSA(LN(H'™1)), 2)
while the post-norm transformer block is
H'=LN (FFN(LN(O' + H'™1)) + LN(O' + H'"")), O' = MHSA(H'™). 3)

MHSA layers. In the MHSA layer, the input H'~! are first transformed into keys, queries, and
values: K" = H'='W}", Q' = H'-'W}', V' = H'='W{" for each head 1 < h < H (we
omit the notation of LN when considering pre-norm design for simplicity). Here W}gh, Wéh, W‘l;h €
R?¥dn d;, = d/H. Then the attention output is computed as

AN = Softmax (Q" K" /\/dy + M), O' = Concat!_, (A""V'") W, )
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Figure 2: In LLaMA3-8B Base, (Top) the first token has significantly larger /5-norm of hidden states,
but much smaller ¢5-norm of keys and values than the mean of other tokens; (Boffom) cosine similarity
instead of norm product contributes to attention sink. We delay more visualizations to Appendix B.3.

where M € RT*T is an attention mask. For vanilla causal attention, M;; = —oo for i < j and
M;; = 0 for ¢ > j. Finally, the output of final transformer block H L is fed into an unembedding
layer for prediction: Y = LN(H )W, where Wy, € R4 VI,

Positional embedding. NoPE (Kazemnejad et al., 2024) considered no explicit positional embedding
(PE) in LMs, where P = 0. When using absolute PE (Vaswani et al., 2017), P is a periodic function
of token positions. Devlin et al. (2019); Brown et al. (2020) adopted a learnable PE, which means
P is a learnable embedding of token positions. The dot product between each query and key meets
(gi.kj) = qi kJT when using the above three PEs. While for relative PE (Raffel et al., 2020), AL-
iBi (Press et al., 2021), Rotary (Su et al., 2024), they have P = 0. Instead, they modify the dot product
(qi» k;). For relative PE and ALiBi, (g, k;) = q:k] + g(i — j), where g(-) is pre-defined function
of the distance between two token positions. For Rotary, (g;, k;) = q; Re, j_ik:jT, where Rg_.) is
a pre-defined rotation matrix. We include detailed formulations of the above PEs in Appendix A.

Auto-regressive objective. The pre-training objective of LMs is to maximize the likelihood of input
data: 0* = argmaxg Ex p,,. [Zthl log pg(x¢|x<+) |, where pya, refers to the data distribution.

Packing documents in pre-training. Given a large corpus D = {d;,d, - -, d|D| }, where each
d; represents a document containing a sequence of tokens. A packing strategy is adopted in the
LM pre-training, as present in Figure 1(Right). All documents are concatenated and chunked into
sequences with a context length of C'. Each chunk could start with any token within one document or
the BOS/EOS token. Then the empirical loss function for each chunk is £ = Zf:2 log pg(x¢|x<t).
We note that pg (1) is ignored since y; = fg(x1) is the prediction for the next token 5.

LM inference. During the inference, a BOS token is fed into the model as the prefix for unconditional
generation: ; ~ pg(x}|x’,, x, BOS), where x; is the ¢-th generated token,  is the optional prompt.
If there are no BOS tokens in the pre-training, the EOS token is considered as the BOS.

Attention sink. Xiao et al. (2023) revealed that LLMs allocate significant attention scores to specific
token positions, e.g. the first token, resulting in “vertical” attention patterns. This holds even when
the first token is not a BOS token (Xiao et al., 2023; Sun et al., 2024). To represent this, we have the

attention scores A} | > mean(A} ? 21)-
3 PROPERTIES OF ATTENTION SINK
3.1 THE FIRST TOKEN ACTS AS BIASES

Uniqueness of the first token. It is noted that the calculation of hidden states for the
first token has no involvement of self-attention h} = FFN(LN(o} + h\™')) 4+ o} + n!™,
where oy = LN(h{™') [Wht wWi2 ... WALH] W], Therefore, hl, and corresponding
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Figure 3: The metric Sinkj (averaged on 100 sequences) tends to decrease with larger token lengths

T'. This tendency becomes more obvious with the more strict definition of attention sink (larger ¢).

queries/keys/values ki = LN(h,"H WL, ¢t = LN(RI"H YW, ot = LN(R™1) W could
be considered as the MLP output of input word embedding 1 Wg. Cancedda (2024); Sun et al.
(2024) showed that h! has large norm or massive activations, thus behaving as a bias to absorb
the attention. Using LLaMA3-8B Base model (Dubey et al., 2024), we show that from certain
transformer block, e.g., [ = 2, the £3-norm of hl1 is significantly larger than that of other tokens b,
in Figure 2(7Top). Despite the large /5-norm of hidden states, we observe that the ¢3-norm of keys
and values of the first token is significantly smaller than that of other tokens in the same figure. This
motivates us to further explore the functionality of massive activations in hidden states.

QK angles contribute to attention sink. In the [-th transformer block, we consider the keys
and queries after adding PE (Rotary in LLaMA3-8B Base): k" = LN(h." YWL"Re 4, ¢" =

LN(h;"")W¢" Ro, ¢, where LN is RMSNorm (Zhang & Sennrich, 2019): LN(h) = gbss O g

and RMS(h) = 4/ é Z?:l h?. Here g is a learnable gain parameter. Suppose that hlfl already has

massive activations. Since h} has a massive magnitude in specific dimensions, the LN operation
retains the magnitude in these dimensions and further reduces the magnitude in other dimensions,
leading to that g~ ", k", and v} " are distributed on different manifolds, especially for k..

T T
hkll’ h typically has much larger values than qi’hk:é';jl , as

For the ¢-th query, we know that q,l;

visualized in Figure 2(Bottom). We further show that due to the different manifold of k:ll " the angles
T

= || costai” 5.

we visualize the cosine similarity between keys and values, and the product of ¢>-norm between keys

between k:l1 " and q,l; h play an important role. Considering qi’

and values in Figure 2(Bottom). Although Hqi’h H . Hkllh H is comparatively small, cos(qi’h, k;’h ) is
significantly large, leading to attention sink. This explains why attention sink exists despite the small
£o-norm of keys of the first token. To conclude, the first token leverages its keys to act as biases, thus
minimizing the angles between k:l1 " and qi’ " and exhibiting attention sink.

3.2 MEASURING ATTENTION SINK

Threshold-based metrics. Xiao et al. (2023) showcased the appearance of attention sink by visual-
izing attention logits/scores in different heads/blocks. This leads to the intractability of measuring
attention sink quantitatively due to the large number of attention heads and blocks. Therefore, we
first explore the metrics to measure the attention sink. Within each head, we compute the importance

scores for the k-th token aﬁﬁ’h = T%Hl ZZT: & Aéi Z We mainly focus on the first token o}, Tt is
noted that % < all’h < 1 since Allh1 =1land 0 < Ai’;fo’l < 1. Then we adopt a threshold-based

metric, we consider a head has attention sink in the first token if all’h > €. Considering that the whole
model has L blocks and each block has H heads, we use the following metric to measure the attention

sink of the whole LM: Sinkj, = + SE % S Tk > e).

Selections of thresholds. Typically, the selections of thresholds represent the strictness of quantifying
attention sink. Generally, a larger e represents a strict definition for attention sink. There is no principal
way to find an optimal threshold and we only use this metric to quantify the emergence of attention
sink empirically. Based on Figure 3, we prefer to select a threshold that is both strict in quantifying
attention sink and less sensitive to the token length 7". This gives us the selection of € = 0.3. For fair
comparisons, we need to fix 7" when computing the metric, e.g., T' = 64.
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Table 1: (Left) Even with random sequence as input, there still exists an obvious attention sink. But
with repeated tokens, the attention sink disappears for Mistral/LLaMA models. (Right) Chat models
have comparable attention sink metrics with base models.

Sink§ (%) Sink§ (%)
LLM natural random repeat LLM Base  Chat
GPT2-XL 77.00 70.29 62.28 Mistral-7B 97.49 88.34
Mistral-7B 97.49 75.21 0.00 LLaMA2-7B 92.47 92.88
LLaMA2-7B Base | 92.47 90.13 0.00 LLaMA2-13B | 91.69 90.94
LLaMA3-8B Base | 99.02 91.23 0.00 LLaMA3-8B 99.02 98.85
Model scale Default setup 1 Learning rate
100 0 36
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Figure 4: (Left) Attention sink emerges in small LMs. (Middle) Dynamics of train/valid loss
and Sink{ during LM pre-training under the default setup. Attention sink emerges after certain
optimization steps. (Right) Training loss (solid lines)/attention sink (dashed lines) dynamics of LMs
using different learning rates. We observe that with smaller learning rates, attention sink tends to
emerge after more optimization steps and be less obvious.

3.3 ATTENTION SINK UNDER DIFFERENT INPUTS

Different data domains. We first explore the effects of input domains on attention sinks. The pile
dataset (Gao et al., 2020), a regular dataset for LM pretraining, has 17 available data domains. As
shown in Appendix B.2, input domains have negligible effects on our attention sink metric Sinkj.

Beyond natural languages. We also consider two ideal scenarios: (i) randomly sample 7" tokens
from the tokenizer vocabulary V to construct a sequence and (ii) randomly sample 1 token from the
tokenizer V and repeat it 7" times. We exclude the BOS token. As present in Table 1(Left), compared
to natural language, random tokens have insignificant effects on the existence of attention sink.
However, with repeated tokens, attention sink in Mistral (Jiang et al., 2023) and LLaMA models
disappears. In Appendix B.1, we prove that for LMs with NoPE/relative PE/ALiBI/Rotary, if the
first T" tokens are the same, their corresponding hidden states are the same. They all have massive
activations, thus dispersing the attention sink. We also provide the closed form/upper bound for
attention scores in these LMs through Propositions 1-4.

3.4 ATTENTION SINK UNDER DIFFERENT LMS

Base vs. chat model. Compared with base models, chat models are typically continually trained
through instruction tuning (Ouyang et al., 2022). From Table 1(Right), instruction tuning has an
insignificant impact on attention sink, which motivates us to focus on the LM pre-training.

Model scale. We evaluate the metric Sink§ of LLaMA?2 Base (Touvron et al., 2023), LLaMA3
Base (Dubey et al., 2024), Pythia (Biderman et al., 2023), GPT2 (Radford et al., 2019), OPT (Zhang
et al., 2022) families. As visualized in Figure 4(Left), attention sink emerges in small LMs, even
in Pythia-14M. Only in Pythia family, larger-sized LMs tend to have more obvious attention sink.

4 EFFECTS OF ON ATTENTION SINK.

We pre-train a series of LLaMA models to conduct our experiments. Due to the intractability of repli-
cating LLaMA pre-training, we design small-sized models. Following Liu et al. (2024a), we set hidden
dimension d = 768, block number L = 10, head number H = 8, intermediate size of FFN as 1536,
resulting in approximately 60M parameters except for word embeddings and unembeddings. We keep
the other design the same as LLaMA2 models, including Rotary (Su et al., 2024), pre-norm structure,
RMSNorm (Zhang & Sennrich, 2019) as LN, SwiGLU activation (Shazeer, 2020) in FFN, etc.

For data distribution, we sample 5B tokens from the Pile dataset (Gao et al., 2020). We set the
context length to 2048 tokens, the batch size to 1M tokens, and the training step to 20k (including
100 steps for warm-up). We adopt a learning rate of 4e-4 with cosine scheduling. The optimizer is
AdamW (Loshchilov & Hutter, 2017) with a weight decay ratio of 0.1. We use the Pile-CC validation
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Table 2: Larger weight decay ratios tend to induce more attention sink heads in LMs. But much
larger values hurt the model performance and attention sink disappears.

vy | 0.0 0.001 0.01 0.1 0.5 1.0 20 50

Sinki(%) | 1520 1539 1523 18.18 41.08 37.71 6.13 0.0l
validloss | 3.72 3.72 372 373 380 390 423 524

——l P _.l 25 Prefix LM Training data
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Figure 5: (Left) Attention pattern for prefix language modeling. (Middle) Attention sink does not
only appear on the first token but among the prefix tokens for LMs with p = 5. (Right) With less
training data, attention sink disappears. Meanwhile, trained LMs demonstrate overfitting behaviors.

loss (Gao et al., 2020; Liu et al., 2024a) to measure the model performance and sample 100 sequences
with 7' = 64 (no BOS token) out of training data to measure the metric Sinkj, with € = 0.3.

Optimization steps. As visualized in Figure 4(Middle), under our default setup, attention sink
emerges after certain optimization steps, e.g., between 1k and 2k steps. With the progression of
pre-training, attention sink becomes more obvious.

Learning rate. With a smaller learning rate, it takes longer training steps to lower training loss,
as present in Figure 4(Right). Meanwhile, the emergence of attention sink is also delayed. Besides,
we also find that a smaller learning rate (1e-4) results in LMs with less obvious attention sink. But
further decreasing learning rate significantly affects the optimization and model performance, thus
affecting the emergence of attention sink.

Batch size. In Table 10(Left), we find that only modifying batch size has no effects on attention sink.

Takeaways: 1. Attention sink emerges after LMs are trained effectively. 2. Attention sink
appears less obvious in LMs trained with small learning rates.

5 EFFECTS OF DATA DISTRIBUTION Ppara ON ATTENTION SINK

Training data amount. In the default setup, we consider 5B tokens. We wonder whether the
attention sink emerges if we further constrain the data within a fixed compute budget. Therefore, we
constrain the training data to 5B, 2.5B, 500M, 200M, 100M, and 50M. Meanwhile, we fix the batch
size and optimization steps. As visualized in Figure 5(Right), with less training data, the trained
LMs tend to overfit. Meanwhile, attention sink also disappears.

Randomness in data distribution. After packing documents into chunks, we re-sample the first token
within the chunk x; ~ Uniform(V). The trained LM has the metric Sink{ = 27.03%, even larger
than the default setup. This further validates the low semantic information of the sink token. We also
consider x1, x2 ~ Uniform(V), and we find attention sink shifts to the second token with Sink§ =
14.08% while the attention sink on the first token is much less obvious Sink] = 1.98%. But when only
sample x5 ~ Uniform(V), the attention sink still always appears on the first token (Sink] = 20.99%).
Additionally, we find with more random tokens during pre-training, attention sink tends to disappear.

Fixing token in a specific position. Xiao et al. (2023) considered a learnable token in the first token
position within each chunk, which can be considered as 1 ~ I(x = x4x). We also consider fixing
the token x5 in the second/third token position during pre-training. Consequently, the attention sink
always appears in the fixed token instead of the first token, as shown in Table 10(Right).

Takeaways: 1. Attention sink emerges after LMs are trained on sufficient training data. 2. At-
tention sink could be shifted to other positions rather than the first token if modifying pgat,-
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Figure 6: (Left) Shifted window attention pattern. (Middle) In LMs with window attention, attention
sink appears on the first token, but not on the “first token” within each window. (Right) Attention
sink tends to emerge when the window size is large enough.

6 EFFECTS OF ON ATTENTION SINK

Weight decay. The loss function becomes £ = Ztc: o logpe(xe|xcy) + HGH; when introducing
weight decay ratio . As indicated in Table 2, even v = 0 in the loss function, attention sink
still emerges in LMs. Then a larger v encourages more heads to have attention sink. But further
increasing weight decay hurts the optimization, leading to less obvious or even no attention sink.

Prefix language modeling. Since the first token is not predicted in the auto-regressive loss function,
it could be considered as the prefix token. Then the original auto-regressive loss can be generalized
into the formula £ = ZtC:pH log pg(@¢|Tp+1:4—1, T1:p), With the prefix length p = 1. Motivated by
Wang et al. (2022), we consider p > 1 and the casual mask visualized in Figure 5(Left). Although this
design does not affect the emergence of attention sink, it shifts the sink position. In Figure 5(Middle),
the attention sink only appears on one token. But it appears among these prefix tokens instead of
on the first token only. Massive activations also appear on the corresponding sink token.

Shifted window attention. Motivated by the shifted window attention adopted in Mistral-7B, we
further explore the effects of window size on attention sink. With shifted window attention, the loss
function becomes £ = ZtCZQ log pg(@¢|@Tt—w:t—1), where w refers to the window size. As shown
in Figure 6(Left) and (Middle), with shifted window attention, we find that if ¢ < w, the ¢-th token
can still “look at” the first token, and LMs still have attention sink on the first token. When ¢t > w,
the t-th token can only attend up to the ¢t — w + 1-th token. Although this token is the “first token”
for the ¢-th token, typically it has no attention sink. We have similar observations in Mistral-7B.
Additionally, from Figure 6(Right), smaller window size prevents the emergence of attention sink.

Takeaways: 1. Weight decay encourages the emergence of attention sink. 2. With prefix
language modeling, attention sink appears among the prefix tokens rather than the first token
only. 3. With shifted window attention, attention sink appears on the “absolute”, not the
“relative” first token. Smaller window size prevents the emergence of attention sink.

7  EFFECTS OF MODEL ARCHITECTURE py ON ATTENTION SINK

In this section, we mainly explore the effects of positional embedding, pre-norm or post-norm
structure, and attention design on the emergence of attention sink. In Appendix C, we also show that
varying activation functions in the FFN, multi-head design (including concatenation operation and
number of heads) do not affect the emergence of attention sink.

7.1 POSITIONAL EMBEDDING

Attention sink always appears on the first token, which motivates us to explore where such a position
property is brought by positional embedding (PE). Therefore, we attempt to replace the original Rotary
with other PEs, as shown in Table 3. We differentiate these PEs through the calculations of the hidden
states H? before the first transformer block and the dot product between queries and keys (g;, k; ).
The detailed formulations are delayed to Appendix A. From the same Table, we observe that only the
model with relative PE is difficult to train while other models have comparable performance under our
setup. Then we note that all these LMs, even the one without explicit PE (NoPE), have attention sink.
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Table 3: Positional embedding does not affect the emergence of attention sink.

PE | H° (qi, kj) | Sink{(%) valid loss
NoPE XWg qikjfT 20.35 3.81
Absolute PE | XWpg + Py, qik:%" 32.73 3.74
Learnable PE | X Wg + Pamable qik%-" 33.13 3.79
Relative PE XWg qgiki + Gretative (1 — J) 35.53 5.45
ALIiBi XWg qikj + Gaivi (¢ — 7) 20.78 3.71
Rotary XWg qiR@,j_ik:jT 18.18 3.73
20 LN 30 Attention biases 20 Fixed V biases
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Figure 7: £5-norm ratio of h} and mean of hi o- (Left) Massive activations exist not in hidden states in
post-norm LMs, but in the features before LN. (Middle) LMs with KV biases or K biases have no mas-
sive activations, while LMs with a learnable sink token or V biases have massive activations. (Right)
Massive activations emerge when increasing the £5-norm of fixed v*" for the setup of K biases.

7.2 PRE-NORM AND POST-NORM STRUCTURE

Layer normalization (LN) (Ba et al., 2016; Zhang & Sennrich, 2019) regularizes the hidden states
in LMs by re-centering and re-scaling, which may affect the massive activations. This motivates
us to explore the effects of LN location on attention sink. In the pre-norm structure, as stated in
Equation 2, hidden states from the earlier blocks could be retained by the later blocks through residual
connections (He et al., 2016). Therefore, if massive activations appear in a specific block, they will
likely be retained in the subsequent blocks. Within a post-norm structure, the hidden states will be
normalized before being fed into the following blocks, as present in Figure 1(Left).

When replacing the pre-norm structure with the post-norm structure, Sinkj becomes 13.54%. This
indicates that the attention sink still exists in post-norm LMs. After further investigations, as visualized
in Figure 7(Left), massive activations exist in the hidden states before the post LN instead of h!.

7.3 ATTENTION BIASES

Implicit biases in attention. In Section 3.1, we have shown that the first token acts as a bias: its key

K" is distributed in a different manifold and its value %" has small £5 norm. Xiao et al. (2023) con-
sidered a learnable sink token in each chunk before the input tokens during LM pre-training. As this
token is fixed in the first token, this could be considered as implicitly introducing biases k*\", v*b,
q*l’h in attention, as shown in the second row in Table 4. These biases are the MLP output of *Wg.
As a result, attention sink appears on this learnable token x* instead of the actual first token x; .

Explicit biases in attention. Sun et al. (2024) directly introducing k*"* and v*"""* as learnable pa-
rameters in attention (KV biases). They found that this design could alleviate the massive activations.
Considering the important role of k*"* and small /5-norm of v*!"" , we propose introducing only
the key biases k*"" and fix value biases v*!""* = 0 (K biases). As a control, we also consider only
adding value biases (V biases). The formulations of all these attention designs are shown in Table 4.

LMs need key biases. After evaluating the LMs with setups in Table 4, we first observe that these LMs
have comparable model performance. Moreover, as long as there are key biases k* ", attention sink
disappears on the first token but on the biases. From the setup of K biases, we reaffirm that the sink
token acts as key biases, storing extra attention scores, which could be completely non-informative
and not contribute to the value computation. This is different from the registers (Darcet et al., 2023),
which aggregates global information, in Vision Transformers (ViTs) (Dosovitskiy, 2020). It is worth
mentioning that the introduced learnable sink token, KV biases, and V biases become part of model
parameters in LMs. Removing them will lead to no attention sink in the first position, but a significant
drop in model performance. In Figure 7(Middle), we also find that the LM with a learnable sink token
has massive activations in £*. While LMs with KV biases and K biases have no massive activations.
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Table 4: With comparable performance, LMs with sink token, KV biases, and K biases could shift
attention sink from the first token to key biases’ position. Value biases cannot affect attention sink.

Attention in each head | Sink{(%) Sink{(%) valid loss
Softmax( _QU KT 4 M) VI ; 18.18 3.73
. < [ - h:| [t gt M) [""/f;] 74.12 0.00 372
Softmax( QH [k*lhT thT} +M) 1{/;: 72.76 0.04 3.72
Softmax( QU [k*lhT thT} +M) V(}h 73.34 0.00 3.72
Softmax (ﬁlehK”lT + M) Vih 4 glh - 17.53 3.73

*1,h

Table 5: Larger /5-norm of fixed v*“" results in LMs allocating more attention on @, instead of k*\".

v*bh ‘ 0 v’ 5v’ 200’ v 50" 200"

Sink{ (%) | 73.34 70.03 4443 .51 69.74 2799  0.00
Sink{(%) | 000 006 371 2588 2.15 593 11.21
validloss | 3.72 3.72 372 3.71 372 372 373

Beyond all zeros in V biases. In the setup of K biases, we fix v*/'" = 0. We wonder whether the
fixed values of v*\'" could affect the attention sink. We consider, v**" = mv’ or v*" = mov”,
where m is the controllable ¢3 norm and v’ = [1, 0,0, ..,0] and v” = [1,1,1, .., 1]/\/d},. As shown
in Table 5, with larger £o-norm of v*-", attention sink shifts from k*"" to the first token. Intuitively,
it is difficult for LMs to remove the effects of v*!"* with larger £5-norm in model predictions. Then

they opt to optimize the keys and values of the first token to save extra attention.

Head-sharing biases.. In Appendix C, we explore whether different heads in each block can share the
same parameters for KV biases. Results in Table 12(Right) show that the LM with KV biases tends to
shift the attention sink from k*>" back to the first token. While the LM with K biases is less affected.

7.4 ATTENTION OPERATION

General formulation of attention. In the last section, we realize that LMs with softmax atten-
tion need key biases to save extra attention. This motivates us to explore whether such a prop-
erty is related to the dependence among attention scores due to the softmax operation. First,

the attention output for the i-th token can be generalized into the following formulation: vf =

-1
(S5 ousimela olk;))) 5oy simlplai) olk))v; = 2735 simlp(a:), o (k))vs,
where we omit the positional embedding, and block/head indexes for simplicity. Z; is a normalization
term and ¢(-) is a kernel function. Normally, Z; = 377, _, sim(¢(q;), ¢(k;)). For softmax attention,
the kernel () is an identity kernel and the similarity function is exp(ql k;/v/dp).

Normalization. In Appendix C, we first show that only scaling the normalization term Z; — Z;/«
with o < 1 results in less obvious attention sink but does not stop its emergence. So we consider
removing the normalization. Since the exponential function in softmax tends to explode without
normalization, we replace it with sigmoid or elu plus one. When evaluating the attention sink, we com-
pute the proxy attention scores by using the term Z; = Z;":1 sim(¢(q;), ¢(k;)) for attention sink
metric Sink{. As shown in Table 6, without normalization, LMs still have comparable validation loss
but no attention sink. With normalization, attention sink also emerges in LMs with sigmoid attention.

Kernel functions. Motivated by linear attention (Katharopoulos et al., 2020), we consider different
kernel functions ¢(-), including elu plus one, identity, and MLP. It is noted that sim(y(g;), p(k;))
could be minus for identity and MLP kernels. This brings intrinsic difficulty for normalization
during the training and calculation of Sinkj. For normalization in the training, we consider
Z; = max(| Y%, sim(e(q:), p(kjr)) ,1). When computing Sink{, we consider the proxy

attention scores [sim((q;), o(k;))| /Z _1 |sim(¢(q;), ¢(k;-))|. From Table 6 (a full version in
Table 15), we find that the LM with MLP kernel have no attention sink with or without normalization.
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Table 6: Normalization and selections of kernels in attention significantly affect the emergence of the
attention sink. We use “*” to mark that the metric Sink$ is computed by proxy attention scores.

sim(p(qi). p(k;)) | Zs | Sink§(%) valid loss
‘I;ij air;
exp(t) > 1 exp(- ) 18.18 3.73
1T
sigmoid (%L ) 1 044* 3.0
0 A L
sigmoid( %72 ) >y sigmoid(L) 30.24 3.74
sz? *
elu(£=2) +1 1 0.80 3.69
(elu(g;)+1)(elu(k;)+1)T i (du(q,;)—o—l)(elu(kj/)—o—l)T "
.V 2 =1 e 53.65 4.19
qﬁ 1 0.00* 3.99
mip(g;)mlp(k;)T i mip(g;)mlp(k,/)” N
TR max (|32, "HERED 1) | 0.9 3.85
mip(q;)mip(k;) "
S 1 0.74 391

LMs with attention sink

LMs without attention sink

Scale up to 1B LLMs

. 40 —e— softmax 1 8 I silgm;)ic‘l, w/o H(/)I‘ITL 24 e sorax
B —e— sigmoid, w/. no . elu plus one, w/o norm. ol
s 30 elu plus one kerngl. identity kernel, w/o norm. | 18 mg/gmol >
= w/. norm. ’ 1.4 —&— MLP kernel, w/o norm. Wi0 nOTM,
g 20 . MLP kernel, w/. norm. 12
Z
T 10 NRE= = =SS TSN .
0 ~
0 o—0—0—0—0—9 D 0 6 0 oo %
012345678910 Y 012345678910 0 4 8 12 16 20
Block Block Block

Figure 8: We visualize the /;-norm ratio of h} and mean of hi o- (Left) Massive activations exist
in LMs with attention scores that are non-negative and added up to one. (Middle) Massive activations
do not exist in LMs with independent attention scores. (Right) When scaling the model size to 1B,
LLMs with sigmoid attention (no normalization) still have no massive activations.

Inner dependence on attention scores. We note that the LMs with no attention sink typically relax
tokens’ inner dependence on attention scores. Their attention scores during pre-training could be
negative or not add up to one. This indicated that attention sink (at least partially) stems from such
inner dependence. Besides the attention metric computed by proxy attention scores, we also observe
that the above LMs also have no massive activations, as shown in Figure 8(Middle).

Scale up to 1B parameters. We compare model behaviors of 1B LMs with softmax attention and
sigmoid attention (without normalization). Specifically, the latter achieves a validation loss of 3.10,
slightly larger than the 3.07 achieved by the former. However, the attention sink metric significantly
drops from 45.11% to near zero: Sink] = 2.46% using the proxy attention scores. Meanwhile, as
visualized in Figure 8(Right), LLMs with sigmoid attention have no massive activations.

Takeaways: 1. Positional embedding, FFN design, LN location, and multi-head design do
not affect the emergence of attention sink. 2. Attention sink acts more like key biases, storing
extra attention and meanwhile not contributing to the value computation. 3. When relaxing
tokens’ inner dependence on attention scores, attention sink does not emerge in LMs.

8 FUTURE WORK

This work focuses on the sink token in the first position. Sun et al. (2024); Yu et al. (2024) showed
that attention sink can also appear on certain word tokens, e.g., period and newline tokens. However,
these sink words may vary in different LMs and typically have no fixed positions. In the future,
we will extend the research scope to explore how these sink tokens are related to the pre-training.
Additionally, we will also consider learnable KV biases in continual pre-training or instruction tuning.

10
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REPRODUCIBILITY STATEMENT

Code submission. Our submission encompasses PyTorch code to reproduce our experiments. We
refer interested readers to README . md to check how to install the code environments and run our
experiments. Specifically, we provide scripts to reproduce our results. We develop our code based on
open-sourced repos of Tinyllama and Regmix (Zhang et al., 2024a; Liu et al., 2024a).
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A DETAILED FORMULATIONS OF POSITIONAL EMBEDDING

In this section, we provide detailed formulations of positional embedding (PE) in LMs. PEs could
be classified into two categories. NoPE, absolute positional embedding, and learnable positional
embedding belong to the same category since they are added to the initial hidden states: H? =
XWpg + P.Here P = {py,p2, - -,pr} € RT*d Meanwhile, the dot product between each query
and key is computed as (g;, k;) = q] k;.

NoPE. NoPE (Kazemnejad et al., 2024) refers to no positional embedding. Therefore, P = 0.

Absolute PE. Each position vector p; in absolute positional embedding is a periodic function of
token position ¢ following Vaswani et al. (2017):

pe = [sin(wit) cos(wit) sin(wat) cos(wat) -+ sin(wgjat) cos(wayat)], )
where w; = 1/1000020~ /4,
Learnable PE. Each position vector p; in learnable positional embeddings is a learnable parameter.

Relative positional embedding, ALibi, and rotary belong to another category since they consider the
relative distance among tokens. Therefore, the initial hidden states are H 0 — X Wy but how to
compute the dot product between each query and key is modified.

Relative PE. The relative positional embeddings are adopted in T5 models (Raffel et al., 2020). A
bias term is adopted for the dot product: (g;,k;) = q; k:JT + g(i — j), where the definition for distance
function g(-) is

i—j if i—j<B/2

. . lo 7) i . .
gli—j) = LIOE(L)J xB if B/2<i—j<D ©)

B—l if i—j>D

Here B and D refer to the number of buckets and maximum distance, respectively. In TS models,
B =32and D = 128.

ALiBi. Similarly, ALiBi (Press et al., 2021) also adds a bias term to the dot product: (g;, kj> =
ql'k; + g(i — j), where g(i — j) = —(i — j) - m. m is a head-specific slope fixed:

m = g2 I )
where 1 < h < H is the head index and H is the number of heads in the multi-head self-attention
(MHSA) ThlS slope m is a geometric sequence For instance, when H = 8, the sequence is

1 11 1
21,22, ---,28 When H = 16, the sequence is 205,21,210, 5

Rotary. Rotary (Su et al., 2024) is the most adopted position encoding approach in the LLM
community. It projects queries and keys into another space through rotations:

(i, kj> = (qiRe, i) (ij@, q)T = q;Re, 7iR®,jij = QiR@,jfikJT’ 3
where Rg (. is a pre-defined rotation matrix:
cosmwy — sinmwy 0 0 0 0
sinmw;  €os mwi 0 0 0 0
0 0 COSMwsy  — sinmws 0 0
Ro.,, = 0 0 sinmws  COSMw2 0 0
0 0 0 0 CosSmwg, ;2 — SinMmwg, /2
0 0 0 0 sinmwg, ;2 COS MWy, /2

C))

Here w; = 1/100002¢~Y/4n and d), = d/H is the hidden dimension in each head. From
the above definition, it is noted that the rotation matrix Ré’jm satisfies RS ,, = Re, _m and
ReoiRo,j = Re,i+j-
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B ATTENTION SINK IN OPEN-SOURCED LMS

B.1 HOW POSITIONAL EMBEDDING RELATES TO ATTENTION SINK

In Section 3.3, we have shown that Mistral-7B, LLaMA2-7B Base, and LLaMA3-8B Base, which
adopt rotary as PE, have no attention sink for repeated token sequences. While GPT2, which adopts
learnable PE, has the attention sink in such a scenario. To further understand this, we explore how
positional embedding plays a role through a theoretical perspective.

Activations. Suppose the repeated sequence is X = {x1, s, ..., @7} and each x; = x. For LMs
with NoPE/relative PE/ALiBi/Rotary, we have the initial hidden states h? = xWpg, which are the
same among all the token positions since P = 0. Then for the first transformer block | = 1, we
h Jh Jh Jh Jh Jh

know that k;" = LN(h))Wg" = LN(aWg)Wg", ¢/ = LN(h))W}" = LN(zWg)W/}",
= LN(h))W" = LN(zWg)W,". Then all tokens have the same k;", g;"", and v}". Then

the attention output is
t

Jflh ZAlhﬂlh—’Uflh (10)

=1

Then o} = Concat!’_, (v}"")W}, we have the hidden states after the first block:

h} = FFN(LN(o} +h°))+o§ + h{ (11)

= FFN(LN(Concat/_, (v} "YW3 + hY)) + Concat!”_ (v} "YW} + h? (12)

= FEN(LN(Concat{_ (LN(h))W "YW} + h)) (13)

+ Concat!” | (LN(h))W} "YW + h). (14)

Since hY = h§ = --- = hY., we have h{ = h} = --- = hl. based on the above equation. Using this
1nduct10n we could prove that

h! = FEN(LN(Concat/_ | (LN(RI"Y YWY WE + i) (15)

+ Concatf_ (LN(R"YWEMWY, + b7t v 1 <1< L. (16)

hi=hb=-..=h}, YVO<I<L (17)

Typically, the hidden states of the first token k! in specific blocks have massive activations. Due to
the above equality, all the repeated tokens have massive activations. Furthermore, we could derive
the closed form or upper bounds for attention scores under the repeated token sequence.

Proposition 1. For LMs with NoPE, the attention scores for t repeated tokens are t~" uniformly, i.e.,
there is no attention sink.

Proof. We have that

Lh g lLh lh LR T LhplLhT
q. " k; k; q""k"
Ai’zh = e< : Lh >lh, = e : Lh LB T = ‘ Lhl,hT = }' (18)
S eld Rty tea"" k" t
J= Jj=

Therefore, the attention scores follow a uniform distribution over all previous tokens. O

Proposition 2. For LMs with relative PE, there is no attention sink for t repeated tokens.

Proof. For LMs with relative PE, the dot product between each query and key is

T . T .
(@™ k") = @k + gra(t — i) = "KM+ ga(t — ), (19)
then we have the attention scores
Al . e(ql.h k{.}L> eqz,h,kz,h,TJrgw](tii) egrel(t*i)
ti — Th lhy 7 AnT —~ = 7 - (20
¢ Z; ) elar" k") Zj:l e kM g (t—7) Zj:l egrel (t—7)
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Considering gri(t — i) is a monotonic non-increasing function of ¢t — i and gy (¢t — i) = B — 1 when
t —1i > D, then Ai’,}f = Ai’f{ =...= A" are the largest values. Therefore, there is no attention
sink on the first token. O]

Proposition 3. For LMs with ALiBi, there is no attention sink for t repeated tokens.

Proof. For LMs with ALiBi, similar to relative PE, the dot product between each query and key is

(a;" k") = qi’hkﬁyhT + Gaiwi(t — 1) = ql’hkl’hT + G (£ — 1), (1)

then we have the attention scores
Alh elat™ k") B eql~hkl.hT+g:ﬁb;(t—i) B 9 (t—i) b
ti 2221 e<qi’h¥k’z’h> = 2521 o kT gl (t—5) = Z;:1 M (22)

Here g/, (t — ) is monotonic decreasing function of ¢ — 4, so there is no attention sink on the first
token. O

Proposition 4. For LMs with Rotary, there is no attention sink for t repeated tokens when t is large if
g™ - [ kM| < € for a constant €.

Proof. For LMs with Rotary, the dot product between each query and key is

(@b kY = g R s k" (23)
= ¢""Re;_k"" (24)
LhRe . kl,hT
— ||g""|| || Re. ;s q 0,i—t 25
a1 W”“QWMW%HO 2
= [lg""[| [|%"" || cos(Be—0), (26)

where 3;_; is the angle between the rotated query and the rotated key. Then the attention scores are

L 6<qi.h!ki,h> eql'hR(—)_jfik?l’hT 6||ql'h||Hkl'hHCOS(ﬁt—i)
A U= = = . 27
PO el S eattRe ikt T S ellat R leos(8.—5) &7
= - -
Suppose the norm of multiplication for query and key ||ql’h|| Hk:”‘” = . Considering —1 <
cos(f—;) < 1, then we have
Abh — etcos(Be—i) _ 1 < et 28)
2 t Ecos(Be—j) o S efeos(Be—j) = 028 +(t—1
e J i
2= 1+ =g ( )
Then the attention scores for each token are upper-bounded and decrease to 0 as ¢ grows. O

For LMs with absolute PE/learnable PE, the initial hidden states h? = xWg + p;. Although the word
embeddings are the same for repeated tokens, p; for different token positions # is different. Therefore,
GPT?2 models have no the above equality. From Table 1(Left), GPT2-XL still allocates significant
attention to the first token even with repeated tokens, which motivates us to explore whether attention
sink is related to these learned positional embedding vectors p;.7 after LM pre-training.

Therefore, we conduct two experiments on GPT2-XL. Firstly, we replace the first positional embed-
ding vector p; with other vectors p;;. In Table 7, we find that the amplitude of attention sink on the
first token is significantly reduced. Then we also consider swapping the first positional embedding
vector p; with another position p;;. Consequently, the ¢-th token becomes the new sink token.
Therefore, attention sink in GPT2-XL is strongly attached to the first positional embedding vector p;.
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Table 7: In GPT2-XL, replacing or swapping the first positional embedding vector p; with another
position p; significantly impact the amplitude and position of attention sink.

Replaced positiont | no 5 10 15 20 25 25
Sink§ (%) 6228 020 236 7.73 10.63 1097 10.21
Sink; (%) - 0.00 000 000 000 0.00 0.00
Swapped position ¢ \ no 5 10 15 20 25 25
Sink$ (%) 6228 144 373 678 895 942 973
Sink; (%) - 57.63 5448 5281 51.70 51.13 50.22

B.2 ATTENTION SINK UNDER DIFFERENT DATA DOMAINS

There are 17 available data domains in the Pile dataset (Gao et al., 2020), including Pile-CC, PubMed
Central, ArXiv, Github, FreeLaw, Stack Exchange, USPTO Backgrounds, Pubmed Abstracts, Guten-
berg (PG-19), Wikipedia (en), DM Mathematics, Ubuntu IRC, EuroParl, HackerNews, PhilPapers,
NIH ExPorter, and Enron Emails. We sample 100 data from each domain and then evaluate the
attention sink metric for GPT2-XL/Mistral-7B/LLaMA2-7B Base/LLaMA3-8B base. As shown in
Figure 9, the evaluated attention sink metrics Sink§ are similar across different domains when e = 0.2
and € = 0.3. Small fluctuations appear when € = 0.4.

e=0.2 e=0.3 e=04
® GPT2-XL * LLaMAZ2-7B Base Mistral-7B m LLaMA3-8B Base

100 seswpessssspsssss | 100gsupunpnngeennnsnnyp | 100 g¥an _mal Sagugug®

* K kok ok ok ok ok ok ok ok ko ok ok kK * * * * * * K * .
* * X * x * * *

< 9% 90; "7 ’ 90/ 7" T Tl e enelt Yy
~— ° * * ok
U 80l ®®e®e eece0 00000 80 80 * *
,Aé 00,0, ...oo.oo.oo . ,r. . )
= ° °
»n 70 70 701 ¢ e ces ° *%,°

60

59 1 17 O35 9 13 17 07T 5 9 13 17
Domain ID Domain ID Domain ID

Figure 9: Input domains have negligible effects on attention sink metric Sinkj for (left) € = 0.2 and
(middle) e = 0.3. There are small fluctuations for (right) ¢ = 0.4.

B.3 ATTENTION SINK UNDER DIFFERENT PRE-TRAINED LMS

Relation to LM performance. We leverage the platform (Gao et al., 2024) to evaluate the perfor-
mance of open-sourced LMs, including LLaMA2/LLaMA3/OPT/Pythia/GPT2 families, on down-
stream LM task, e.g., HellaSwag (Zellers et al., 2019). The results are visualized parallel with our
attention sink metric in Figure 10, including both accuracy (Acc) and accuracy under normalization
(Acc_Norm). We find that within the same LM family, with the increase of model scale, both attention
sink amplitude and downstream LM performance are increasing. However, across different LM
families, stronger attention sink does not always correlate with better performance. For instance, the
OPT family has stronger attention sink than Pythia under the comparable model scale. However, the
downstream LM performance is comparable.

{5-norm. We first show that large ¢>-norm of hidden states hl1 and small ¢5-norm of keys kzl1 h and

values vll’ h (especially for values) universally exist in open-sourced LMs, including LLaMA2-7B
Base (Figure 11), GPT2-Large (Figure 12), Mistral-7B (Figure 13), and Pythia-1B (Figure 14). It
is noted that for the final transformer block [ = L, we take the hidden states before LN. We note
that different LMs may have different starting blocks where massive activations appear.
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Figure 10: Attention sink and downstream performance for various pre-trained LMs.
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Figure 11: £5-norm of hidden states/keys/values of the first token/other tokens in LLaMA2-7B Base.
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Figure 12: 5-norm of hidden states/keys/values of the first token/other tokens in GPT2-Large.
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Figure 13: /5-norm of hidden states/keys/values of the first token/other tokens in Mistral-7B.
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Figure 14: ¢5-norm of hidden states/keys/values of the first token/other tokens in Pythia-1B.
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Figure 16: Cosine similarity and #5-norm product between keys and queries in LLaMA2-7B Base.

QK angles. Then we further demonstrate that QK angles contribute to attention sink through more
visualizations, including LLaMA3-8B Base (Figure 15), LLaMA2-7B Base (Figure 16), Mistral-7B
(Figure 17), and GPT2-Large (Figure 18).

Block-wise and head-wise property. In the main paper, we mainly discuss the ratio of heads
that have attention sink in the definition of attention sink metric Sinkj. Here we visualize the
locations of these attention sink heads in open-sourced LMs, including LLaMA?2 family (Figure 19),
LLaMA3/LLaMA3.1 family (Figure 20), Mistral family (Figure 21), GPT2 family (Figure 22), Pythia
family (Figure 23), and OPT family (Figure 24). We visualize the distributions of importance scores
for the first token all’h across different transformer blocks 1 < [ < L and different heads 1 < h < H
before computing the attention sink metric. We find that (1) different pre-trained LMs have various
attention sink distributions but they tend to have less obvious attention sink in earlier transformer
blocks; (2) instruction tuning does not significantly modify such attention sink distributions when
comparing base versions and chat/instruct versions.
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Figure 18: Cosine similarity and ¢>-norm product between keys and queries in GPT2-Large.
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Figure 19: Distribution of importance scores for the first token across different blocks and heads
in the LLaMA?2 family.
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Figure 20: Distribution of importance scores for the first token across blocks and heads in the
LLaMA3/LLaMA3.1 family.
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Figure 21: Distribution of importance scores for the first token across blocks and heads in the Mistral
family.
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Figure 22: Distribution of importance scores for the first token across blocks and heads in the GPT2

family.
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Figure 23: Distribution of importance scores for the first token across blocks and heads in the Pythia
family.
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Figure 24: Distribution of importance scores for the first token across blocks and heads in the OPT
family.

Jamba. Besides the auto-regressive Transformers, we also consider Jamba (Lieber et al., 2024; Team
et al., 2024), a new foundation language model. Both Jamba-v0.1 (Lieber et al., 2024) and Jamba-1.5
Mini (Team et al., 2024) have 4 Jamba blocks, each of which includes 3 Mamba layers (Gu & Dao,
2023), 4 Mamba MoE layers (Shazeer et al., 2017; Fedus et al., 2022), and 1 Transformer layer. This
adds to 32 layers (including 4 Transformer attention layers), 52B available parameters, and 12B
active parameters in total. Firstly, we evaluate the attention sink metric and find that Sink] = 88.48%
for Jamba-v0.1 and Sink{ = 87.88% for Jamba-1.5 Mini, which indicates a strong attention sink
on the first token. Then we visualize attention scores in several heads, as shown in Figure 25 and
Figure 26. We also visualize the distribution of importance scores for the first token across blocks
and heads in Jamba models in Figure 27. We observe that most heads have obvious attention sink,
except for several heads in the 3rd Transformer layer.
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Figure 25: Attention sink in Jamba-v0.1.
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Figure 27: Distribution of importance scores for the first token across blocks and heads in the Jamba

models.

B.4 HUGGINGFACE LINKS FOR OPEN-SOURCED LMS

Table 8: Huggingface links for open-sourced LMs we used in this paper.

Model

Huggingface link

LLaMA2-7B Base
LLaMA2-7B Chat
LLaMA2-13B Base
LLaMA2-13B Chat
LLaMA3-8B Base
LLaMA3-8B Instruct
LLaMA3.1-8B Base
LLaMAS3.1-8B Instruct

meta-llama/Llama-2-7b-hf
meta-llama/LLlama-2-7b-chat-hf
meta-llama/Llama-2-13b-hf
meta-llama/LLlama-2-13b-chat-hf
meta-llama/Meta-Llama-3-8B
meta-llama/Meta-Llama-3-8B-Instruct
meta-llama/Meta-Llama-3.1-8B
meta-llama/Meta-Llama-3.1-8B-Instruct

GPT2 openai-community/gpt2
GPT2-Medium openai-community/gpt2-medium
GPT2-Large openai-community/gpt2-large
GPT2-XL openai-community/gpt2-xl1
Mistral-7B mistralai/Mistral-7B-v0.1
Mistral-7B Instruct mistralai/Mistral-7B-Instruct-v0.1
Pythia-14M EleutherAl/pythia-14m
Pythia-31M EleutherAl/pythia-31m
Pythia-70M EleutherAl/pythia-70m

Pythia-160M
Pythia-410M

EleutherAl/pythia-160m
EleutherAl/pythia-410m

Pythia-1B EleutherAl/pythia-1b
Pythia-1.4B EleutherAl/pythia-1.4b
Pythia-2.8B EleutherAl/pythia-2.8b
Pythia-6.9B EleutherAl/pythia-6.9b
Pythia-12B EleutherAl/pythia-12b
OPT-125M facebook/opt-125m
OPT-350M facebook/opt-350m
OPT-1.3B facebook/opt-1.3b
OPT-2.7B facebook/opt-2.7b
OPT-6.7B facebook/opt-6.7b
OPT-13B facebook/opt-13b
Jamba-v0.1 ai21labs/Jamba-v0.1

Jamba-1.5 Mini

ai21labs/AlI21-Jamba-1.5-Mini
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C MORE EXPERIMENTS IN LM PRE-TRAINING

C.1 OPTIMIZATION

Learning rate. In Section 4, we find that attention sink appears less obvious in LMs trained with
small learning rates. This conclusion holds even if we compensate for more training steps. In our
basic setup, we adopt a learning rate of 4e-4 for 20k training steps. When we scale the learning rate
to half, i.e., 2e-4, we scale the training steps to 2 times, i.e., 40k. As shown in Table 9, when we
keep the multiply between learning rate and training steps constant (highlighted using cyan color),
LMs trained with smaller learning rates tend to exhibit less obvious attention sink. Therefore, we
conclude that small learning rates not only slow down the increase of attention sink but also mitigate
attention sink even with longer training durations.

Table 9: Attention sink appears less obvious in LMs trained with small learning rates even compen-
sating for more training steps.

learning rate \ training steps (k)  Sink$(%) valid loss

8e-4 10 23.44 3.79
8e-4 20 32.23 3.70
4e-4 20 18.18 3.73
2e-4 20 11.21 3.78
2e-4 40 16.81 3.68
le-4 20 2.90 3.92
le-4 80 6.29 3.67

Batch size. During the pre-training, we consider different batch sizes with other hyper-parameters
fixed. As shown in Table 10(Left), batch size does not affect the emergence of attention sink.

C.2 DATA DISTRIBUTION

Training data amount. In Section 5, we find that with less training data, attention sink also
disappears. Meanwhile, LMs are also prone for overfitting. To disentangle the effects of training
data amount and overfitting on attention sink, we monitor the dynamics of train/valid loss and
attention sink metric during the LM pre-training in a more granular level, as present in Figure 28.
With only 50M and 100M training data, LMs overfit at very early stages, between 1k and 2k steps.
Meanwhile, Sink] maintains a very small value (less than 1%). While for the setup of 5B training
data, Sink] keeps increasing after a certain step. This indicates that the amount of training data plays
an important role in the emergence of attention sink.

Training data: SOM Training data: 100M Training data: 5B

10 10 10

8 train loss ~ —&— sink g 8 \ train loss ~ —&— sink g 8 \ train loss ~ —&— sink ’g
\ valid loss 7 \ valid loss 7 \ valid loss v 7 <
%6 6 6 6 6 6=
K ] 3 iz
4 % 4 % 4 % n
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Steps (k) Steps (k) Steps (k)

Figure 28: Dynamics of train/valid loss and Sink] during LM pre-training under different amounts
of training data: (Left) S0M; (Middle) 100M; (Right) 5B.

Fixing token in a specific position. During the pre-training, we consider fixing the token
in the first/second/third position. Consequently, when evaluating the attention sink metric, in
Table 10(Right), we find that attention sink appears in the appears in the fixed token instead of the
first token.
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Table 10: (Left) Batch size has no effect on the emergence of attention sink. (Right) Attention sink
appears in the appears in the fixed token instead of the first token.

Batchsize | 0.25M 0.5M  IM 2M Fixed position | 1 2 3

Sink§ (%) 1645 17.19 18.18 16.19 Sink] (%) 74.11 0.00 0.00

valid loss 3.92 378  3.73 3.68 Sink$ (%) 0.00 69.03 0.00
Sinks (%) 0.00 0.00 69.64
Sink§ (%) 0.01 0.01 0.00

C.3 FFN DESIGN

Activation functions. Since FFN in the earlier transformer block blasts off the £5-norm of the first
token, we are wondering whether the choices of activation functions in FFN will affect the attention
sink. Besides the SwiGLU activations used in our default setup, we also consider other activation
functions, as present in Table 11. We observe that different FFN designs do not affect the emergence
of attention sink.

Table 11: Modifying the activation functions in FFN does not affect the emergence of attention sink.

Activation functions \ F Sinkj (%) wvalid loss
ReLU ReLU(AW/)W, 16.90 3.82
GeLU (Hendrycks & Gimpel, 2016) | GeLU(hW1)W, 14.76 3.79
Swish (Ramachandran et al., 2017) Swish(hW7) W, 17.89 3.80
ReGLU (Shazeer, 2020) (ReLU(AW7) © hWy) W3 13.88 3.75
GeGLU (Shazeer, 2020) (GeLU(hW7) © hW,) W3 17.86 3.73
SwiGLU (Shazeer, 2020) (Swish(hW7) © hW3) W3 18.18 3.73

C.4 ATTENTION DESIGN

Multi-head design in attention. We consider two perspectives in multi-head design in attention.
Firstly, we explore whether the number of heads has an impact on attention sink, especially for H = 1,
which refers to single-head self-attention. Second, attention output from each head is concatenated:
O' = Concat;", (A""V") W, We replace such concatenation operation with addition operation:

O' = 7 (AMVEM) W) As shown in Table 12(Left), multi-head design does not affect the
emergence of attention sink.

Table 12: (Left) Modifying multi-head design does not affect the emergence of attention sink. (Right)
Sharing KV biases across heads in each block results in attention sink shifting back to the first token
from K biases.

Multi-head | Sink{ (%) valid loss Head-sharing ‘ v v X X
H—3 18.18 373 Biases type KV KV K K
H=4 10.68 3.74 Sink¢ (%) 7276 56.61 7334 68.31
H=2 12.95 3.76 Sink§ (%) 0.04 1244 0.00 0.23
H=1 19.50 3.78 valid loss 3.72 3.72 3.72 3.72
addition 21.76 3.74

Learnable dimensions of K biases. In the setup of K biases, we set all dimensions of k*h ag
learnable weights. In Section 3.1, we have shown that K biases are distributed in a different manifold,
with low rank. Therefore, we consider only d, dimensions of k*Lh are adjustable/learnable while
the other d;, — d, dimensions are zeros. As present in Table 13, with very few learnable dimensions,
even for d, = 1, k*!-" are still allocated significant attention. With more learnable dimensions, the
attention sink appears more obvious.
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Table 13: Even with very few learnable dimensions for k*"", large attention appears in k*\".

dg, |1 2 4 8 16 32 64

Sink{ (%) | 32.18 30.88 30.94 31.39 2330 51.23 69.19
Sink{(%) | 474 496 439 454 219 194 0.04
validloss | 3.73 372 372 373 373 373 372

Head-sharing K/KV biases in attention. In the main paper, we consider both KV biases and V
biases in attention. These biases are not shared by different heads in each block. We further explore
whether head-sharing patterns will affect their functionality. As present in Table 12(Right), LMs
with KV biases are more likely affected by the head-sharing pattern: attention sink shifts from the K
biases to the first token. While LMs with K biases are less affected.

Scaling the normalization in softmax attention. Before our experiments about replacing softmax
attention, we first explore the effects of normalization scales in softmax attention. In the main paper,
the attention output for the i-th output is

N sim(ela) e(ky) - simp(a) olky) .
7’ ;Z}:lsim(w(qi),w(kj/)) ’ ; Z; 29

We consider a scale factor a, the normalization term is Z; = - Z;,:l sim((q;), ¢(k;)), and then
the attention score are sum up to «.. For default setup, « = 1. As shown in Table 14(Left), with a

smaller normalization scale, attention sink tends to appear in fewer heads. From another perspective,

s osim(ela) ek~ sim(ela) o) oo
et o) 2 Sy mteta. st

o}, = Concati’_, (v;h)WO. 31)

Therefore, this normalization scale can be regarded as the scale for Wy, or W. We show that this

normalization scaling could be implemented by scaling learning rates and initialization. We use

the s to represent the optimization step, and s = 0 refers to the initialization. When scaling the
normalization, we have the following SGD update rule (take W, for example):

W5 = W§ — 1V L(aWs) (32)

=W5 —anVwL(W)|lw=awg, (33)

where 7 is the original learning rate. Suppose we only modify the learning rate and initialization, to
ensure each optimization step W5 = aW§, we need first to ensure W3 = aWJ. Suppose that we
have W35 = W§, then the update rule is:

Wt = W — "' Vs L(WE) (34)
=aW§ —'VwL(W)|lw=aws, (35)
To ensure VAV(S;rl = anfl, we need the new learning rate i’ meets ¥ = o?n. For advanced

optimization algorithms, e.g., Adam (Kingma & Ba, 2014) and AdamW (Loshchilov & Hutter, 2017).
We have the following update rule (take AdamW for example, y refers to the weight decay ratio):

gs+1 = ngﬁ(OzWS) = (IVWE(W”W:(XWé (36)
Mer1 = Bims + (1 — B1)gst1 37
Vey1 = Bovs + (1 — B2)g2, 4 (38)

M /(1 = B7)

Vst /(1= P3) +e

W5 =1 —ny)W§ -1 (39)
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We denote gsy1, ™Ms11, Usyq represents the intermediate counterparts for update of scenario where
we only modify learning rate and initialization. First, we also need to ensure the initialization W =
aWJ. Then we assume that we have already matched W, = aW¢. The gradient for each step is

o1 = Vi LIWE) = Viw LIW) | w-aw, = gsr1/ (40)

Then the first and second moment will be 4,1 = m, 1 /a and 9,41 = v,y /a?. The updated
weights will be

/(1= B7)
b1 /(1= f5) +¢
M1 /a(l - Bi)

Vs /(1= ) + ¢

W5 = (1 -9y )YW§ -0/ (41)

=1 =n"y)aWs -1 (42)

Therefore, to ensure W5 = aWg, one solution is 7/ = an and ¢’ = ¢/a and 7' = v/a.

Table 14: (Left) Scaling the normalization in Softmax attention to less than one can mitigate attention
sink but not prevent its emergence. (Right) LMs with sigmoid attention (without sigmoid attention)
trained by different learning rates and weight decay ratios have no attention sink.

Scale a \ Sink{ (%) valid loss Learning rate  Weight decay \ Sinkj(%) valid loss

2.0 29.10 3.72 4e-4 0.0 0.64 3.77
1.0 18.18 3.73 4e-4 0.1 0.44 3.70
0.2 9.41 3.72 4e-4 0.5 0.18 3.76
0.1 3.59 3.76 4e-4 1.0 0.30 4.06
0.05 4.53 3.78 le-3 0.1 0.81 3.68
le-4 0.1 0.36 4.08

Normalizer. Besides the normalizer Z; = Z;/:1 sim(¢(g;), ¢(k;)) considered in the main paper,

we consider alternative normalizer: Z; = Z:,_ sim(p(q;), (ki ))P ;, which gives us followin
j'=1 P PR g g
attention operation:
o — 2= Sm(e(@i). o(ky))v; 35—y sim(p(g:). o(k;)); @)
L Z; B i . .
(S5 sim(p(as). k)7

=

Th
For softmax attention, we have sim(p(q;), ¢(k;)) = exp(%), then we can derive that

Siep(SE, i exp()
vl = 2 = hiP v;. (44)

1 . T
i Tk \? 4 i a; kyr
(Zj’:l eXP(q\l/ﬁ )p> =t Ej/zl eXp(\/dh;P)

This is equivalent to adding a temperature 1/p into the softmax attention logits, and then taking the
p-root of attention scores after softmax. We call this p-normalized softmax attention. p = 1 in regular
softmax attention. Similarly, we construct the LMs with p-normalized sigmoid attention.

We find that when p = 2 or p = 3 or p = 4, pre-training of p-normalized softmax attention diverges
and the loss goes infinity. When p = 1/2 orp = 1/3 or p = 1/4, LM pre-training converges.
As the attention scores are not added up to one, we investigate the massive activations instead, as
visualized in Figure 29(Left). With smaller p, massive activations are mitigated to some extent, but
not as effective as sigmoid attention without normalization. Intuitively, smaller p induces a larger
temperature in softmax operation, which leads to flattened attention logits.
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Afterward, we conduct experiments on p-normalized sigmoid attention. There is no training problem
with p larger than 1. As visualized in Figure 29(Right), LMs with p-normalized sigmoid attention still
demonstrate strong massive activations. To conclude, different normalizers may affect the amplitude

of attention sink, but not stop its emergence.

Sigmoid
Lz 40
20 =-p=1 —--p=1
- p=1/2 32l —e—p =2
o 16 = p=1/3 p=3
S, Fp=1/4 24t +-p=4
z 12 sigmoid, no no norm.
é norm 16
S
Z 8
S e L]
012345678910 0 0123456780910

Block Block

Figure 29: (5-norm ratio of h} and mean of hi;éo. (Left) p-normalized softmax attention and also
sigmoid attention without normalization (as reference). (Right) p-normalized sigmoid attention and
also sigmoid attention without normalization (as reference).

Attention operations. Firstly, we present all attempted attention operations in Table 15. It is noted
that several setups lead to training failure. For LMs with sigmoid attention without normalization,
we vary the learning rates or weight decay ratios . Consequently, as shown in Table 14(Right), the
trained LMs still have no attention sink, which further confirms our conclusion in the main paper.

Table 15: Normalization and selections of kernels in attention significantly affect the emergence of
the attention sink. We use “*”” to mark that the metric Sink§ is computed by proxy attention scores.

We use “-” to represent the training failure under the setup.
sim(p(qi), o(k;)) | Z; | Sink{(%) valid loss
Tk, i q7kJT/
exp(q\/df}j)kT > exp(— ) 18.18 3.73
sigmoid(‘“—ﬁi) 1 0.44* 3.70
. aik] i . . oaik]
31gm52dT( \/@) > jr—y sigmoid( NCT ) 30.24 3.74
elu( \/,dj%) +1 1 . 0.80 3.69
gik; 7 qik,
elu( \/ﬁ) +1 > = €lu( e )+1 - -
(elu(gi)+1) (elu(k;)+1)" i (elu(gi)+1)(elu(k;)+1)T x
NG Zj’:l NG 53.65 4.19
(elu(gi)+1) (elu(ky)+ 1™ | 4 B )
T \/ﬂ T
qik; i aik,
\/i max (’E;,_l ﬁ ,1) - i
2k, 1 0.00° 3.9
@)()T Ip(gi)mlp(k;/)” . .
mlp(q;)mlp(k; i mip(q; )mip(k;/ *
el max (|32, e 1) | 019 385
mlp(q;)mlp(k;) *
T 1 0.74 391
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D MORE EXPERIMENTS IN LM AFTER PRE-TRAINING

Training stability in supervised fine-tuning. To investigate the long-term impacts of attention sink
on model behaviors after pre-training, we conduct supervised fine-tuning (SFT) on our pre-trained 1B
LMs with softmax attention and sigmoid attention without normalization. Specifically, we utilize the
platform' to conduct our experiments. The experimental configurations include: the UltraChat dataset
(about 200k training samples)” (Ding et al., 2023), full-model fine-tuning, a learning rate of 2e-5
with cosine scheduling, batch size of 64, each of which contains 2048 tokens, one training epoch. As
shown in Figure 30, we monitor the training loss and gradient norm of our two LMs during SFT. These
two models behave similarly in terms of the above two metrics. Additionally, despite no attention sink,
LMs with sigmoid attention without normalization have no issues of training stability during SFT.

2.8 1.4

2.6 — sigmoid 1.2 —— sigmoid
2 ’ softmax 21.0 softmax
g 0
0N .S 0.6/
S 2O 204

1.8 '/"w’“""”\"w'ﬁ-\»/~‘v~ﬂﬂ;-ww’.'/-/,,m,/«.‘»’ O 02

Log—05 10 15 20 %% 035 10 135 20
Steps (k) Steps (k)

Figure 30: The training loss and gradient norm in our 1B LMs with softmax attention and sigmoid
attention without normalization in supervised fine-tuning.

'nttps://github.com/huggingface/alignment-handbook
https://huggingface.co/datasets/HuggingFaceH4/ultrachat_ 200k
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