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Uni-YOLO: Vision-Language Model-Guided YOLO for Robust and
Fast Universal Detection in the Open World

Anonymous Authors

Figure 1: Illustration of four object detectors. (a) Traditional detector: detects only the categories in its training dataset under
normal conditions. (b) Harsh-Weather Detector: detects only the categories in its training dataset under normal or harsh
conditions. (c) Open Vocabulary Detector: detects the categories that are not present in its training dataset under normal
conditions. (d) Our Uni-YOLO: detects the categories that are not present in its training dataset under normal or harsh conditions.
It utilizes multiple source datasets for better generalization and uses EHM for harsh weather robustness.

ABSTRACT
Universal object detectors aim to detect any object in any scene
without human annotation, exhibiting superior generalization. How-
ever, the current universal object detectors show degraded perfor-
mance in harsh weather, and their insufficient real-time capabilities
limit their application. In this paper, we present Uni-YOLO, a uni-
versal detector designed for complex scenes with real-time perfor-
mance. Uni-YOLO is a one-stage object detector that uses general
object confidence to distinguish between objects and backgrounds,
and employs a grid cell regression method for real-time detection.
To improve its robustness in harsh weather conditions, the input
of Uni-YOLO is adaptively enhanced with a physical model-based
enhancement module. During training and inference, Uni-YOLO is
guided by the extensive knowledge of the vision-language model
CLIP. An object augmentation method is proposed to improve gen-
eralization in training by utilizing multiple source datasets with het-
erogeneous annotations. Furthermore, an online self-enhancement
method is proposed to allow Uni-YOLO to further focus on specific
objects through self-supervised fine-tuning in a given scene. Exten-
sive experiments on public benchmarks and a UAV deployment are
conducted to validate its superiority and practical value.

Unpublished working draft. Not for distribution.Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ACM MM, 2024, Melbourne, Australia
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM
https://doi.org/10.1145/nnnnnnn.nnnnnnn

CCS CONCEPTS
• Computing methodologies→ Object detection.
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1 INTRODUCTION
The dependence on human annotations and the numerous cate-
gories present in the open world significantly limit the universality
of traditional object detectors. In complex and variable environ-
ments, it is unfeasible to collect and annotate all data for every scene
[6, 27, 28, 53, 56]. To address these data limitations, a universal vi-
sual object detector is necessary [44]. The universal detector aims
to detect any object (open vocabulary) in any scene (open world)
and can refine itself in a new scene without human annotations.

Recently, some large language models (LLMs), such as GPT [1],
and ERNIE [40], demonstrate superior generalization performance
in natural language processing. Researchers are now exploring
how to extend the generalization capabilities of LLMs to visual
models. Some large-scale vision-language pre-training models, such
as CLIP [31], have been proposed. In the field of object detection,
open vocabulary detectors (ov-detectors) [10, 17, 26, 44, 51, 57] use
CLIP [31] to recognize unknown categories. However, these current
ov-detectors face limitations in addressing two important aspects,
which restrict their universality. 1) The universal detector should have
better generalization and robustness to detect objects in the open world.
Although some novel categories can be detected by existing ov-
detectors, detecting a wide range of unknown categories in the open
world remains a challenge [44]. Moreover, current ov-detectors

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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exhibit poor robustness in harsh weather conditions, and real-world
scenes are inevitably affected by factors such as scattering and low
illuminance, which lead to unsatisfactory generalization of existing
detectors. 2) The universal detector should also have better real-time
performance to enable deployment on mobile platforms.Most existing
ov-detectors rely on the Faster RCNN architecture [35], which has a
two-stage architecture that prioritizes detection accuracy in a closed
set, albeit at the expense of real-time performance. A more efficient
architecture for universal detectors will facilitate deployment on
mobile platforms and enhance the practical application value. Thus,
unlike ov-detectors, a universal detector should have better open-
world generalization, robustness, and efficient architecture.

To achieve a universal detector, we focus on further improving
open-world generalization, and we need to address the following
three technical challenges. 1) How to generalize to the complex open
world without category supervision. Given the abundance and va-
riety of object categories, it is not feasible to provide complete
annotation for each object in training. Additionally, the open-world
environment is complex and variable, and the imaging process by
vision sensors is susceptible to various harsh weather conditions,
resulting in less robust detection. We propose general object con-
fidence to directly learn the general features of all objects, and
enhance object features based on physical imaging models in harsh
weather conditions. 2) How to train a universal detector using mul-
tiple source datasets with heterogeneous annotations. A universal
detector should be trained on large datasets for better generaliza-
tion. However, existing datasets such as COCO [21] and Object365
[36] are based on different human annotation criteria, resulting
in cases where some objects may be annotated as background in
another dataset. Such inconsistent annotation prevents the detector
from learning the general features of objects. We propose an object
augmentation method to generate consistent annotation. 3) How to
adapt and improve itself in a new scene without human annotation.
At the core of intelligence is adaptation and learning, as if even
a child can generalize rapidly in a new environment [44]. When
a well-trained universal detector is applied to a given scene, the
categories of objects to be detected are usually also given. In this
case, the universal detector should be able to adapt itself to improve
the detection of given categories while minimizing the focus on
irrelevant categories. We propose a self-enhancement method to
further improve the detection of specific objects in a given scene.

In this paper, we propose Uni-YOLO, a robust universal object
detector for the complex open world with real-time performance.
Unlike most existing ov-detectors, Uni-YOLO is designed as a one-
stage detector. The input of Uni-YOLO is enhanced with a physical
model-based enhancement module (EHM) to provide adaptive en-
hancement for various complex weather conditions, rather than
directly using the original degraded images as in previous methods.
To detect more unknown objects, we propose a General Object
Confidence (GOC). Based on GOC, Uni-YOLO learns the general
features of objects to effectively discriminate between numerous
categories and backgrounds. For zero-shot classification, Uni-YOLO
is designed with a Matching Head to perform contrastive classifica-
tion with the text embeddings of candidate objects. During training
and inference, Uni-YOLO is guided by the extensive knowledge of
the vision-language model CLIP. An object augmentation method
is proposed to achieve consistent annotation for multiple source

datasets. Based on generalization training with multiple source
datasets, Uni-YOLO learns the general features of innumerable
objects to achieve better generalization. To further improve the
detection in a given scene, an online self-enhancement method
is proposed. Uni-YOLO assigns pseudo-labels exclusively to given
objects and performs fine-tuning based on these labels. Based on
Uni-YOLO, we develop a UAV platform for multimedia interaction
detection. It is demonstrated that Uni-YOLO can maintain real-time
detection based on a low computational platform in the open world.

The main contributions of this work are summarized as follows:
• A new one-stage universal detector named Uni-YOLO is
proposed. It includes three detection Heads operating in
parallel to perform contrastive classification with the text
embeddings of candidates, and uses a physical model-based
EHM to improve its robustness in harsh weather conditions.

• For training Uni-YOLO, an object augmentation training
method is proposed to achieve better zero-shot generaliza-
tion. The method addresses the heterogeneous problem of
multiple source datasets and achieves large-scale training.

• For online fine-tuningUni-YOLO, a self-enhancementmethod
is proposed. The method enables the detector to improve the
detection of given objects in any given scene.

Extensive experiments are conducted to validate the superiority
of Uni-YOLO on various public object detection benchmarks.

2 RELATEDWORK
2.1 Traditional Object Detection
Object detection tasks, involving object classification and localiza-
tion, are crucial in computer vision. Current learning-based detec-
tors can be broadly classified into three categories: two-stage meth-
ods, one-stagemethods, and transformer-basedmethods. Two-stage
detectors first extract a set of region proposals and then perform
classification and regression, such as Faster-RCNN [35]. One-stage
detectors perform classification and localization directly on the
input images. One-stage detectors, especially YOLO [34], exhibit
remarkable real-time detection performance. Transformer-based
detectors, such as DETR [2] and others [4, 22, 52], are rapidly evolv-
ing. However, these traditional detectors only work on a closed set
[9, 19, 48], which requires a lot of human annotations for training.

2.2 Open-Vocabulary Object Detection
Open-vocabulary detectors aim to detect categories that do not
appear in the training dataset. Various open-set object detection
methods [23, 27, 33, 39, 59, 60] are proposed to generalize to un-
known categories from the base categories. For example, Liang
𝑒𝑡 𝑎𝑙 . propose UnSniffer [20], which uses two detector heads for
both base and unknown categories and introduces general object
confidence to achieve unknown localization. However, these meth-
ods provide only the localization, but not the classification for
unknown categories. Subsequently, the advent of large-scale vision-
language pre-training models has led to advances in ov-detectors
[10, 17, 26, 37, 44, 51, 57]. The ov-detectors use vision-language
models to achieve classification for novel categories. Zhong 𝑒𝑡 𝑎𝑙 .
propose RegionCLIP [57], an extension of CLIP, to learn regional
visual information for finer-grained alignment of images and text.
Wang 𝑒𝑡 𝑎𝑙 . propose a universal object detector, named UniDetector
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Figure 2: Illustration for the pipeline of our Uni-YOLO. Uni-YOLO first performs adaptive enhancement for the input degraded
image and divides the enhanced image into an 𝑆 × 𝑆 grid cell. Each grid cell provides three sizes of a priori boxes and is
responsible for predicting the objects in its center. Uni-YOLO uses the Box Head and the GOC Head to perform bounding box
regression, and uses the Matching Head to perform contrastive classification for candidate objects.

[44], with the ability to detect a wide range of object categories in
the open world. It is designed by a unified structure to use multiple
sources of datasets for localization training and it employs text
embeddings for classification. However, these existing ov-detectors
are designed only for normal environments. Natural environments
in the open world are inevitably affected by harsh weather, leading
to unsatisfactory practical performance of existing ov-detectors.

2.3 Object Detection in Harsh Environments
Most methods first design an image enhancement network to en-
hance degraded images and then perform object detection based on
these enhanced images [3, 8, 30, 38, 41, 42, 49, 54]. However, these
enhancement modules are originally designed for human vision,
as measured by image quality metrics, and not for detection accu-
racy [16, 24]. For this reason, some studies introduce enhancement
methods that are specifically tailored to object detection tasks. IA-
YOLO [24] proposes a trainable image processor and uses detection
loss training to improve object detection performance. BAD-Net
[16] uses an attention fusion module to combine the features of
the original images with those of the enhanced images, assuming
that the original images contain valuable information for detec-
tion. 2PCNet [12] introduces a two-stage consistent unsupervised
domain-adaptive network and applies domain-adaptive methods
to enable detection in low illuminance conditions. However, these
enhancement and detection methods work only in a closed set and
cannot detect any unknown object in an open-world scene.

3 METHOD
3.1 The Pipeline of Uni-YOLO
The pipeline of Uni-YOLO is illustrated in Figure 2. Uni-YOLO
is designed as a new one-stage architecture with three detection
heads operating in parallel. The detection results are based on the
localization coordinates provided by the General Object Confidence

Head (GOC Head) and the Box Regression Head (Box Head), and
the classification results provided by the Matching Head.

Object Localization:We utilize Efficient-Net [43] as the back-
bone network for feature extraction. Uni-YOLO divides the input
image into 𝑆 × 𝑆 grid cells, and each grid cell is responsible for
detecting objects that fall within its center. Each grid cell predicts
three sizes of bounding boxes (𝑥,𝑦,𝑤,ℎ) provided by the Box Head,
which represent the location of the bounding boxes (center coordi-
nates, width, and height). Each bounding box has a corresponding
general object confidence provided by the GOC Head. We deter-
mine whether there is any object in each candidate bounding box
by a GOC threshold and output the localization coordinates.

Object Classification: Uni-YOLO achieves zero-shot classifica-
tion through the Matching Head. Each bounding box has a corre-
sponding object embedding provided by the Matching Head, de-
noted as 𝑉 = [Ψ𝑉 (𝑏𝑜𝑥1),Ψ𝑉 (𝑏𝑜𝑥2), ...,Ψ𝑉 (𝑏𝑜𝑥 𝑗 )]. Uni-YOLO uses
CLIP’s text encoder to generate text embeddings for retrieving
candidate objects. Specifically, we construct a vocabulary list of
objects that are of interest to the user for the candidates, such
as 𝐿𝑖𝑠𝑡 = [𝑝𝑒𝑟𝑠𝑜𝑛, 𝑙𝑖𝑜𝑛, ..., 𝑒𝑙𝑒𝑝ℎ𝑎𝑛𝑡, |𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑, 𝑜𝑏 𝑗𝑒𝑐𝑡]1. We use
a prompt template, i.e., "A photo of a/an object," and feed the
prompts into the text encoder to obtain a set of text embeddings
𝐿 = [Ψ𝐿 (𝑝𝑒𝑟𝑠𝑜𝑛),Ψ𝐿 (𝑙𝑖𝑜𝑛), ...,Ψ𝐿 (𝑒𝑙𝑒𝑝ℎ𝑎𝑛𝑡)]. If a bounding box
contains any object (GOC above threshold), we perform similarity
matching in the image-text space to classify the object correspond-
ing to the maximum similarity between the text embeddings and
features, thus achieving zero-shot classification for any object:

𝑝𝑖 𝑗 = 𝑀𝑎𝑥𝑖𝑚𝑢𝑚(𝑆𝑜 𝑓 𝑡𝑀𝑎𝑥 (𝑆𝑖𝑚(𝑉 [ 𝑗], 𝐿[𝑖]))), (1)
where 𝑝𝑖 𝑗 denotes the probability that the 𝑗 th bounding box belongs
to the 𝑖 th candidate category. If the candidate corresponding to
1Different from the candidates of the traditional CLIP zero-shot classification method
[31], our list introduces two additional candidates, "background" and "object", to
mitigate the potential misclassification of the background region.
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the maximum probability is "background" or "object," the candidate
box is discarded for further classification corrections.

3.2 The Architecture of Uni-YOLO
3.2.1 General Object Confidence. Given the abundance and
diversity of object categories, providing specific and consistent de-
scriptions for the features of each object is challenging. Although
humans struggle to provide specific descriptions, we can still iden-
tify overarching distinguishing features of objects and backgrounds;
for example, there is usually an obvious boundary between them.
It is suggested that the detector can also learn the overarching
features from a large dataset spanning various categories.

We propose the General Object Confidence (GOC) to discrimi-
nate whether a bounding box contains objects. The GOC is defined
as the prediction results of the detection head based on the RepConv
structure [43], denoted as Φ(𝑏𝑖 ). The range of GOC is [0, 1], with a
higher value indicating a higher probability that the bounding box
contains an object. In inference, we filter all bounding boxes based
on a GOC threshold to identify those that may contain potential
objects. In training, we design three losses to train GOC. The design
of these losses takes into account three practical situations aimed
at detecting more objects with better generalization.

Case 1: Complete Confidence Objects. This case contains
complete confidence objects (manually annotated boxes in training
datasets), and their corresponding bounding box should have a
GOC value of 1. Thus, the first GOC loss is expressed as:

𝐿𝑐𝑐𝑜 =
1
𝑁

∑︁
𝑖∈[1,𝑁 ]

1
|𝐵𝑐𝑐𝑜 |

∑︁
𝑏𝑖 ∈𝐵𝑐𝑐𝑜

(Φ̂(𝑏𝑖 ) − 1)2, (2)

where Φ̂(𝑏𝑖 ) represents the predicted probability of GOC in the
proposal bounding boxes 𝑏𝑖 . 𝐵𝑐𝑐𝑜 is the set of complete confidence
annotations. 𝑁 is the number of proposal bounding boxes.

Case 2: Contrastive Confidence. This case involves the con-
trastive confidence between bounding boxes, i.e., the more precise
the predicted localization of the proposals, the higher the value of
their GOC. Thus, the second GOC loss is expressed as:

𝐿𝑐𝑜 =
1
𝑁

∑︁
𝑖∈[1,𝑁 ]

2
|𝐵𝑐𝑐𝑜 |

∑︁
𝑏 𝑗 ,𝑏𝑘 ∈𝐵𝑐𝑐𝑜

𝑚𝑎𝑥 (
Φ̂(𝑏 𝑗 ) − Φ̂(𝑏𝑘 )

𝛼
+ 𝜁 , 0), (3)

where 𝛼 = 1 if 𝐼𝑜𝑈 (Φ̂(𝑏𝑘 ), 𝑦𝑖 ) > 𝐼𝑜𝑈 (Φ̂(𝑏 𝑗 ), 𝑦𝑖 ); otherwise, 𝛼 = −1,
𝑦𝑖 is the annotation. 𝜁 is a tiny constant that set to 0.01.

Case 3: Complete Confidence Background. This case in-
volves a complete confidence background (discriminated as back-
ground by the CLIP), and its corresponding bounding box should
have a GOC value of 0. Thus, the third GOC loss is expressed as:

𝐿𝑐𝑐𝑏 =
1
𝑁

∑︁
𝑖∈[1,𝑁 ]

1
|𝐵𝑐𝑐𝑏 |

∑︁
𝑏𝑖 ∈𝐵𝑐𝑐𝑏

(Φ̂(𝑏𝑖 ) − 0)2, (4)

where 𝐵𝑐𝑐𝑏 represents the set of complete confidence backgrounds,
determined based on the proposed object augmentation training
method (subsection 3.3). Thus, the total GOC loss is:

𝐿𝑜𝑠𝑠𝑔𝑜𝑐 = 𝐿𝑐𝑐𝑜 + 𝐿𝑐𝑜 + 𝐿𝑐𝑐𝑏 . (5)
Additionally, we use a regression loss, denoted as 𝐿𝑜𝑠𝑠𝑟 , to per-

form bounding box regression training. The regression loss re-
gresses all bounding boxes containing potential objects to achieve

more accurate localization, and it can be roughly expressed as:

𝐿𝑜𝑠𝑠𝑟 = 1 −𝐶𝐼𝑜𝑈 (𝑏𝑖 , 𝑙𝑎𝑏𝑒𝑙𝑖 ), (6)

where 𝐶𝐼𝑜𝑈 (·) represents the Complete-IOU, as proposed by [55].

3.2.2 Contrastive Classification. We design a contrastive clas-
sification loss to train the Matching Head. It is designed to compute
the similarity between the proposal bounding boxes containing po-
tential objects and the object embeddings of the annotated regions
extracted by the vision encoder of CLIP. It is expressed as:

𝐿𝑜𝑠𝑠𝑐𝑜𝑛 =
1
𝑁

∑︁
𝑖∈[1,𝑁 ]

1
|𝐴𝑛 |

∑︁
𝑛 𝑗 ∈𝐴𝑛

(1 − 𝑆𝑖𝑚(Ψ𝑉 (𝑏𝑜𝑥𝑖 ),𝑉𝑐𝑙𝑖𝑝 (𝑛 𝑗 ))), (7)

where 𝐴𝑛 is the set of annotated object regions. 𝑆𝑖𝑚(·) is the co-
sine similarity. The contrastive classification loss represents the
knowledge transfer from the CLIP model to the Matching Head.

3.2.3 Enhancement Module. We design a physical model-based
enhancement module (EHM) to perform image enhancement in
harsh weather conditions for more robust detection. We mainly
consider two common degradations: scattering and low illuminance.

Scattering Degradation. The atmospheric scattering model
[29] is used to describe the degradation in scattering environments:

𝐽 (𝑥) = 1
𝑡 (𝑥) 𝐼 (𝑥) −𝐴(𝑥) 1

𝑡 (𝑥) +𝐴(𝑥), (8)

where 𝐼 (𝑥) is the degraded scattering image, and 𝐽 (𝑥) is the en-
hanced image. 𝑡 (𝑥) = 𝑒−𝛽𝑑 (𝑥 ) is the medium transmission map,
where 𝑑 (𝑥) is the scene depth and 𝛽 is the scattering density scat-
tering coefficient. 𝐴(𝑥) is the global atmospheric light. Traditional
methods use two networks, represented 𝜙 [𝐼 (𝑥)] and𝜓 [𝐼 (𝑥)], to es-
timate 𝑡 (𝑥) and 𝐴(𝑥). The enhanced image is computed as follows:

𝐽 (𝑥) = 1
𝜙 [𝐼 (𝑥)] 𝐼 (𝑥) −𝜓 [𝐼 (𝑥)] 1

𝜙 [𝐼 (𝑥)] +𝜓 [𝐼 (𝑥)] . (9)

To reduce the computational complexity of two parameter esti-
mation, we combine the parameters, 𝑡 (𝑥) and𝐴(𝑥), into a dehazing
map 𝐷𝑚 (𝑥), by referring [14]. The reformulated model is:

𝐽 (𝑥) = 𝐷𝑚 (𝑥) (𝐼 (𝑥) − 1) + 1, (10)

𝐷𝑚 (𝑥) =
1

𝑡 (𝑥 ) (𝐼 (𝑥) −𝐴(𝑥)) + (𝐴(𝑥) − 1)
𝐼 (𝑥) − 1

. (11)

Thus, we can use one network to estimate the dehazing map
𝐷𝑚 (𝑥) to perform enhancement in scattering environments.

Illuminance Degradation. We design a learnable𝐺𝑎𝑚𝑚𝑎 cor-
rector to achieve enhance for low illuminance conditions. The
𝐺𝑎𝑚𝑚𝑎 corrector improves the contrast of degraded images through
a nonlinear transformation, defined as follows:

𝐽𝑜 (𝑥) = 𝐽 (𝑥)𝛾 (𝑥 ) = (𝑟𝑖 (𝑥)𝛾𝑟 (𝑥 ) , 𝑔𝑖 (𝑥)𝛾𝑔 (𝑥 ) , 𝑏𝑖 (𝑥)𝛾𝑏 (𝑥 ) ), (12)

where 𝛾𝑟,𝑔,𝑏 (𝑥) is the correction map and different values corre-
spond to different mappings for illuminance degraded images. We
also use one network to estimate the correction map 𝛾𝑟,𝑔,𝑏 (𝑥) to
perform enhancement in low illuminance environments.

Enhancement Network. For real-time detection performance,
we design a lightweight two-branch network, denoted as𝜙𝐷𝑚,𝛾 [𝐼 (𝑥)],
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Figure 3: Illustration for the EHM. The degraded image is firstly extracted features through a dense backbone and then passes
through a two-branch structure to obtain the dehazing map and correction map. Finally, the enhancement is performed based
on physical models. The EHM is pre-trained based on the perceptual loss [11], and then is jointly trained with our detector.

Figure 4: Illustration for the object augmentation and self-enhancement methods. (a) Object Augmentation. Under the guidance
of the vision-language model (CLIP), the sparse annotation dataset is transformed into a dense consistent annotation dataset,
to achieve large-scale training using multiple source datasets with heterogeneous annotation. (b) Online Self-Enhancement.
Under the guidance of CLIP, Uni-YOLO performs self-enhancement for specific objects in any given scene.

to parallelly obtain the dehazing map 𝐷𝑚 (𝑥) and the correction
map 𝛾𝑟,𝑔,𝑏 (𝑥) for degraded image adaptive enhancement:

𝐽𝑠 (𝑥) = 𝜙𝐷𝑚
[𝐼 (𝑥)] (𝐼 (𝑥) − 1) + 1,

𝐽𝑔 (𝑥) = 𝐽𝑠 (𝑥)𝜙𝛾 [𝐼 (𝑥 ) ] .
(13)

The two-branch network allows the two sets of parameters to be
estimated using one single backbone. The specifics of the designed
two-branch network are shown in Figure 3, and more parameter
and training details are provided in our supplementary material.

3.3 Object Augmentation Training Method
The generalization performance of large models improves with the
increased availability of training data [44]. Ensuring that Uni-YOLO
is trained to its full potential using existing datasets is crucial for
its generalization. However, the challenge arises from the heteroge-
neous annotations present in multiple source datasets. For example,
in the COCO dataset [21], the object "book" is annotated as an
object, while in the Pascal VOC dataset [5], it is ignored as back-
ground. This inconsistency hampers the detector’s ability to learn
the overarching features of general objects when simply merging
multiple source datasets for large-scale training.

To address this inconsistency, we propose an object augmen-
tation method to achieve consistent annotations across multiple
source datasets for Uni-YOLO training. As shown in the left part of
Figure 4, we first train our Uni-YOLO using the most densely anno-
tated dataset. The pre-trained Uni-YOLO is then used to perform
inference on a sparser dataset for obtaining more annotations, with
the correctness of the pseudo-labels determined under the guidance

Algorithm 1 Object Augmentation Training Method

Input: We only use the location annotations: 𝑙𝑎𝑏𝑒𝑙 = {𝑥,𝑦,𝑤,ℎ} in
the training datasets: {𝐷1, 𝐷2, .., 𝐷𝑛}. And the output proposal
bounding box of Uni-YOLO is denoted as Θ(𝑖𝑚𝑎𝑔𝑒).

1: Train Θ(𝑖𝑚𝑎𝑔𝑒) with relatively densest annotation dataset 𝐷𝑚 .
2: Construct the training database 𝐷𝑆 = {𝐷𝑚}.
3: Construct the candidates 𝐿𝑖𝑠𝑡 = [𝑜𝑏 𝑗𝑒𝑐𝑡, 𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑].
4: for 𝑖 in {𝐷1, 𝐷2, .., 𝐷𝑛} do
5: for 𝑗 in 𝐷𝑖 do
6: [𝑖𝑚𝑎𝑔𝑒 (𝑖 𝑗), 𝑙𝑎𝑏𝑒𝑙 (𝑖 𝑗)] = 𝐷𝑖 𝑗 .
7: 𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔(𝑖 𝑗) = Θ(𝑖𝑚𝑎𝑔𝑒 (𝑖 𝑗)).
8: 𝑝𝑘 = 𝑆𝑜 𝑓 𝑡𝑀𝑎𝑥 (𝑠𝑖𝑚(𝐿(𝐿𝑖𝑠𝑡 [𝑘]),𝑉 (𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔(𝑖 𝑗)))).
9: 𝑝𝑠𝑒𝑢𝑑𝑜_𝑙𝑎𝑏𝑒𝑙 (𝑖 𝑗) = 𝐿𝑖𝑠𝑡 [𝑀𝑎𝑥 (𝑝𝑘 )].
10: 𝑙𝑎𝑏𝑒𝑙 (𝑖 𝑗) = 𝑙𝑎𝑏𝑒𝑙 (𝑖 𝑗) ∪ 𝑝𝑠𝑒𝑢𝑑𝑜_𝑙𝑎𝑏𝑒𝑙 (𝑖 𝑗).
11: end for
12: Update 𝐷𝑆 = {𝐷𝑆, 𝐷𝑖 }.
13: Update Θ(𝑖𝑚𝑎𝑔𝑒) with 𝐿𝑜𝑠𝑠𝑔𝑜𝑐 , 𝐿𝑜𝑠𝑠𝑟 and 𝐿𝑜𝑠𝑠𝑐𝑜𝑛 on 𝐷𝑆 .
14: end for
Output: The trained Θ(𝑖𝑚𝑎𝑔𝑒). And given any image, it has the

ability to provide detection for all objects.

of the large vision-language model CLIP. The pseudo-labels, along
with the original annotations, form more dense and consistent an-
notations, and Uni-YOLO is retrained on the augmented datasets.
The process is applied iteratively to multiple datasets for training.
The specific steps are summarized in Algorithm 1.
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Algorithm 2 Online Self-Enhancement Method
Input: A specific scene set 𝑆 with a list of objects of interest to

users: 𝐿𝑖𝑠𝑡𝑖𝑛 = [𝑂1,𝑂2, ...,𝑂𝑛, |𝑜𝑏 𝑗𝑒𝑐𝑡, 𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑]. And the
proposal bounding box of Uni-YOLO is denoted as Θ(𝑖𝑚𝑎𝑔𝑒).

1: for 𝑖 in 𝑆 do
2: [𝑖𝑚𝑎𝑔𝑒 (𝑖), 𝑙𝑎𝑏𝑒𝑙 (𝑖)] = 𝑆 (𝑖).
3: 𝑑𝑒𝑛𝑠𝑒_𝑙𝑎𝑏𝑒𝑙 (𝑖) = Θ(𝑖𝑚𝑎𝑔𝑒 (𝑖)).
4: 𝑝𝑘 = 𝑆𝑜 𝑓 𝑡𝑀𝑎𝑥 (𝑆𝑖𝑚(𝐿(𝐿𝑖𝑠𝑡 [𝑘]),𝑉 (𝑑𝑒𝑛𝑠𝑒_𝑙𝑎𝑏𝑒𝑙 (𝑖)))).
5: 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 (𝑖) = 𝐿𝑖𝑠𝑡 [𝑀𝑎𝑥 (𝑝𝑘 )].
6: if 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 (𝑖) in [𝑂1,𝑂2, ...,𝑂𝑛] then
7: 𝑙𝑎𝑏𝑒𝑙 (𝑖) = 𝑑𝑒𝑛𝑠𝑒_𝑙𝑎𝑏𝑒𝑙 (𝑖).
8: end if
9: 𝑆 (𝑖) = [𝑖𝑚𝑎𝑔𝑒 (𝑖), 𝑙𝑎𝑏𝑒𝑙 (𝑖)].
10: Update Θ(𝑖𝑚𝑎𝑔𝑒) with 𝐿𝑜𝑠𝑠𝑔𝑜𝑐 , 𝐿𝑜𝑠𝑠𝑟 and 𝐿𝑜𝑠𝑠𝑐𝑜𝑛 on 𝑆 (𝑖).
11: end for
Output: The self-enhanced Θ(𝑖𝑚𝑎𝑔𝑒). It will focus on specific ob-

jects of interest even more, in specific scenes.

3.4 Online Self-Enhancement Method
The trained Uni-YOLO can detect a vast array of categories, but
when applied to a given scene, it is not necessary to focus on all cat-
egories. Our goal is to enhance the detection of given objects while
minimizing the detection of irrelevant ones, resulting in a more
adaptable and universal detection system for specific scenes. We
propose an online self-enhancement method to improve detection
performance for given objects in any given scene. As shown in the
right part of Figure 4, the process begins with performing inference
in a specific scene, generating dense detection results for various ob-
jects. Concurrently, a list of candidate objects of interest, denoted as
[𝑂1,𝑂2, ...,𝑂𝑛, |𝑜𝑏 𝑗𝑒𝑐𝑡, 𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑], is constructed. Then, guided
by the vision-language model CLIP, the dense results are filtered
to select only the objects of interest contained in [𝑂1,𝑂2, ...,𝑂𝑛].
The selected objects serve as pseudo-labels for further online fine-
tuning of our Uni-YOLO to achieve better detection. The specific
steps of this proposed method are summarized in Algorithm 2.

3.5 Multimedia UAV Detection Platform
We develop a multimedia interaction UAV platform for object de-
tection as shown in Figure 5. The system’s inputs include the user’s
voice and real-time images captured by the visual sensors. Users can
specify objects of interest to the system via voice commands. The
voice is then converted into a list of candidate objects using Whis-
per JAX, a real-time Acoustic-to-Text model [32]. Subsequently,
the text embeddings of the candidate objects are obtained from
the text encoder of CLIP, and the input images are processed by
our Uni-YOLO to obtain detection results in the open world. The
detection platform includes the DJI MATRICE M300 RTK as the
base UAV, complemented by the MATRICE 350 RTK serving as the
human-machine interactive remote controller. The primary imag-
ing sensor used in our UAV system is the ZENMUSE H20 T camera.
To process the information collected by the UAV and perform real-
time detection, we use the DJI MANIFOLD 2 as the main processor.
This computation platform is equipped with both a CPU and GPU,
providing the necessary computing power for our object detector
Uni-YOLO. The specified computation platform has a theoretical

Figure 5: Illustration for the developed multimedia interac-
tion UAV platform for open-world object detection.

Table 1: Large-scale detection datasets used for training.

Datasets Images Boxes Categories Annotation
Object365 [36] 638k 10,101k 365 Dense
Pascal VOC [5] 11.5k 27k 20 Usual
COCO [21] 123k 896k 80 Usual

OpenImages [13] 1,515k 14,815k 600 Sparse

capacity of 1.3 TFLOPS, which fulfills the 7.6 GFLOPs required by
Uni-YOLO. More details about the computation platform and the
UAV system can be found on the DJI website2.

4 EXPERIMENTS
4.1 Implementation Details
Uni-YOLO is trained on various large-scale object detection datasets,
as summarized in Table 1. We conduct training and inference using
PyTorch 1.8.1 on an i9-13900K CPU and an NVIDIA 4090 GPU.
Details of the UAV system configuration are provided in subsection
3.5. We employ an SGD optimizer with a learning rate of 0.01.
The Enhancement Module (EHM) is pre-trained on the scattering
dataset RESIDE [15] and the low illuminance dataset LOL [45].

We first evaluate Uni-YOLO in the open world using the low
illuminance dataset ExDark [25] and the scattering dataset RTTS
[15] to test its generalization and robustness under harsh weather
conditions. Additionally, we use the 13 ODinW datasets [17] to
further evaluate generalization performance across various complex
scenes. Comparisons with existing ov-detectors are also conducted
on the OV-COCO dataset [50] in normal environments. Detection
performance is measured using mean Average Precision (mAP).

4.2 Detection Performance in the Open World
4.2.1 Based on Scattering and Low IlluminanceDateset. This
experiment demonstrates the zero-shot generalization and robust-
ness of Uni-YOLO in harsh conditions. We compare Uni-YOLO with
other ov-detectors, all methods utilizing the CLIP model with an
2The DJI MANIFOLD 2 website: https://www.dji.com/cn/manifold-2.
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Figure 6: Illustration for the zero-shot object detection performance of Uni-YOLO in various scenes. Figure (a)∼Figure (e) are
various low illuminance or scattering scenes. Figure (f) and Figure (g) are the detection performance of our UAV detection
system in a real-world low illuminance scene. Figure (h)∼Figure (n) are various scenes with normal illuminance.

Table 2: The evaluation results (mAP50 %) for Uni-YOLO com-
pared to other SOTA open-vocabulary detectors, on the low
illuminance ExDark [25] and scattering RTTS [15] datasets.

Methods ExDark [25] ↑ RTTS [15] ↑
RegionCLIP (2022 CVPR) [57] 43.3 41.2
OV-DETR (2022 ECCV) [50] 41.5 43.5
PromptDet (2022 ECCV) [7] 42.4 41.9
Detic (2022 ECCV) [58] 43.5 42.4
BARON (2023 CVPR) [46] 44.1 45.4
CORA (2023 CVPR) [47] 43.2 40.5

UniDetector (2023 CVPR) [44] 44.4 44.1
Uni-YOLO (w/o EHM) 45.1 46.4
Uni-YOLO (with EHM) 53.4 52.5

Table 3: The evaluation results (mAP50 %) for the proposed
Uni-YOLO (with EHM) compared to other universal object
detectors, on the open world 13 ODinW datasets [17].

Methods Training Datasets mAP ↑
GCLIP-T (A) [18] Object365 28.8
GCLIP-T (B) [18] Object365 33.2
UniDetector [44] Object365 30.1

Uni-YOLO Object365 30.6
Uni-YOLO (with S.E.) Object365 37.6
UniDetector [44] Object 365, COCO, Open Image 47.3

Uni-YOLO Object 365, COCO, Open Image 39.4
Uni-YOLO (with S.E.) Object 365, COCO, Open Image 48.2

1. The detection results of comparisons are reported by Uni-Detector [44].

RN50 backbone and without additional caption supervision. We
perform comparison experiments with other ov-detectors on the
low illuminance dataset ExDark [25] and the scattering dataset
RTTS [15]. A summary of the test results can be found in Table 2.
Uni-YOLO achieves 53.4% mAP on ExDark, surpassing the previous
best by 9.0%, and 52.5% mAP on RTTS, outperforming the previous

Table 4: The evaluation results (mAP50 %) and Real-Time
performance for Uni-YOLO (with EHM) compared to other
open-vocabulary detectors, on the OV-COCO dataset [50].

Methods Novel ↑ Base ↑ All ↑ Time(ms) ↓
RegionCLIP (2022 CVPR) [57] 31.4 57.1 50.4 218
OV-DETR (2022 ECCV) [50] 29.4 61.0 52.7 148
PromptDet (2022 ECCV) [7] 26.6 59.1 50.6 256
Detic (2022 ECCV) [58] 27.8 47.1 42.1 217
BARON (2023 CVPR) [46] 34.0 60.4 53.5 212
CORA (2023 CVPR) [47] 35.1 35.5 35.4 156

UniDetector (2023 CVPR) [44] 35.2 56.8 51.2 202
Uni-YOLO 36.6 54.8 50.1 33

1. To ensure fairness, all comparison methods are based on CLIP with the RN50
backbone only, without additional caption supervision.

best by 7.1%. Some examples of zero-shot detection performance
in harsh conditions are shown in Figure 6 (a)∼(d), with detection
performance in scattering underwater shown in Figure 6 (e).

4.2.2 Based on the 13ODinWDatasets. This experiment demon-
strates the generalization of Uni-YOLO in the complex open world.
We perform comparison experiments with other universal detectors
on the 13 ODinW datasets [17]. The datasets contain thirteen sub-
sets and have various scenes to simulate the complex open world.
The Table 3 provides a summary of the test results. The results show
that Uni-YOLO has superior universal detection performance in
the open world, achieving 37.6% mAP based on training with only
Object365 dataset, which beats the best previous method (33.2%) by
4.4%. When we use more datasets to perform training, Uni-YOLO
achieves a further improvement, achieving 48.2% mAP, which beats
the best previous method (47.3%) by 0.9%. Some examples of detec-
tion performance in various scenes are shown in Figure 6 (h)∼(n).

4.2.3 Based on the UAV Detection System. This experiment
demonstrates the practical value of Uni-YOLO in the real world.
We employ the developed multimedia interaction UAV platform
for real-world testing in a nighttime street setting. The candidate
objects of interest to the user are "people" and "cars". Detection is
performed at up to 20 FPS on the Jetson TX2 GPU. More real-world
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Table 5: The test results for the ablation studies of the proposed object augmentation method (Algorithm 1) based on the 13
ODinW datasets [17]. We use two methods to train our Uni-YOLO based on the multiple source datasets. The Compound method
simply mixes these datasets sequentially. The Augment denotes the use of the object augmentation.

Multiple Source Datasets All mAP S.fish VOC Drone Aq.ium Rabbit EGO M.room Package Raccoon Vehicle Pistol Therm. Poth.

A: [𝑂𝑏 𝑗 .365] – 30.6 - 15.6 36.9 18.7 27.1 86.0 3.7 21.0 54.6 79.0 43.3 10.3 1.9 0.3

B: [𝐴,𝑉𝑂𝐶] Compound 33.1 - 16.7 44.5 21.6 26.3 85.0 3.6 19.4 62.9 84.4 51.0 12.8 2.0 0.7
Augment 32.4 ↓ 16.1 43.6 21.6 26.7 87.0 1.9 21.0 62.9 85.4 37.2 14.2 2.9 0.9

C: [𝐵,𝐶𝑂] Compound 32.4 - 17.9 40.5 20.0 28.6 88.5 2.4 14.6 65.3 80.0 47.4 12.2 2.4 0.8
Augment 34.9 ↑ 16.5 45.6 22.6 29.7 88.9 4.4 22.2 75.2 88.7 39.7 16.2 3.5 1.4

[𝐶,𝑂.𝐼𝑚𝑎𝑔𝑒] Compound 33.7 - 14.6 39.1 18.9 30.9 87.3 2.4 18.9 69.1 81.4 53.6 18.9 2.4 1.1
Augment 39.2 ↑ 20.0 47.3 22.6 36.9 91.0 13.3 27.3 79.2 86.6 51.8 24.1 6.7 2.6

Table 6: The test results for the ablation study of the
self-enhancement in scattering scenes. We perform self-
enhancement for five objects based on the RTTS dataset [15].

Methods Person Bicycle Car Bus Motorbike
Initial Uni-YOLO 68.9 - 45.2 - 66.0 - 43.9 - 38.5 -

S.E. Person 73.2 ↑ 1.8 0.1 0.1 6.1
S.E. Bicycle 9.7 49.6 ↑ 0.5 0.9 10.1
S.E. Car 0.3 0.5 69.7 ↑ 6.1 1.6
S.E. Bus 2.7 4.3 15.3 52.1 ↑ 5.0

S.E. Motorbike 5.7 11.5 1.3 0.3 43.4 ↑

detection results and visual representations of the developed UAV
detection system are provided in the supplementary material.

4.3 Comparison with Open-Vocabulary Methods
This experiment demonstrates the zero-shot performance of Uni-
YOLO in normal environments, and its real-time performance. The
common public benchmark OV-COCO [50] is used for evaluation,
containing 17 novel and 48 base categories. Consistent with the
previous methods, the base categories are used for training and
the novel categories are used for zero-shot testing. A summary of
the test results can be found in Table 4. The results demonstrate
that Uni-YOLO also has superior zero-shot performance in normal
environments, achieving 36.6% mAP for novel categories, which
exceeds the best previous method (35.2%) by 1.4%. The results also
show that Uni-YOLO provides superior real-time performance (33
ms per image, about 30 FPS). Since it is designed as a single-stage,
it has an obvious real-time superiority to other two-stage methods.

4.4 Ablation Studies
4.4.1 Object Augmentation Training Method. This experi-
ment evaluates the proposed object augmentation training method,
based on 13 ODinW datasets [17]. First, Uni-YOLO is trained on the
relatively densely annotated dataset, Object365 [36]. Two methods
are used to introduce additional datasets for training. The Com-
pound method involves the simple sequential blending of these
datasets, the Augment method uses the proposed object augmenta-
tion (Algorithm 1). We gradually include the Pascal VOC [5], COCO
[21], and OpenImages [13] datasets for further training. The results
of the experiments are summarized in Table 5. In most cases, Aug-
ment-based training produces better results than the simple Com-
pound method. On average, the Augment-based multi-sources data

training achieves a 39.2% mAP, representing an 8.6% increase over
using the single Object365 dataset, while the Compound method
only achieves a 33.7% mAP. The results demonstrate the impor-
tance of using multi-source data and the effectiveness of using the
consistent annotations provided by the proposed augmentation.

4.4.2 Online Self-Enhancement Method. The above test re-
sults in Table 3 demonstrate the effectiveness of self-enhancement
(S.E.), achieving 8.8% (from 39.4% to 48.2%) and 7.0% (from 30.6%
to 37.6%) improvement. Additionally, we sequentially perform five
categories self-enhanced (S.E.) based on the RTTS dataset [15]
to evaluate the effectiveness of the method in scattering scenes.
The results are summarized in Table 6. The results show that self-
enhancement method enables Uni-YOLO to improve the detection
performance of given objects. We observe a sequential improve-
ment in the detection accuracy for the five categories. Thus, based
on this method, Uni-YOLO can improve the detection of specific
objects in specific scenes by itself, without human annotation.

4.4.3 Enhancement Module. This experiment evaluates the pro-
posed enhancement module (EHM). Table 2 provides the experimen-
tal results of the two types of Uni-YOLO, with EHM and without
EHM. The detection performance is improved with the EHM under
harsh conditions, achieving 53.4% mAP on the low illuminance
dataset, which outperforms the without EHM method (45.1%) by
8.3%, and achieving 52.5% mAP on the scattering dataset, which
outperforms the without EHM method (46.4%) by 6.1%. Based on
the proposed EHM, the robustness of Uni-YOLO’s detection perfor-
mance under different weather conditions is effectively improved.

5 CONCLUSIONS
In this paper, we propose Uni-YOLO, a robust and fast universal
object detector. It is a new one-stage detector for object detection
in the open world. Uni-YOLO utilizes general object confidence to
effectively distinguish between objects and backgrounds, incorpo-
rating a grid cell method for precise bounding box regression. We
design a physical model-based EHM to provide adaptive enhance-
ment for Uni-YOLO in harsh weather conditions. We also propose
the object augmentation method to train Uni-YOLO and design the
self-enhancement method to online fine-tune Uni-YOLO. Compre-
hensive experiments on public benchmarks and the deployment of
a UAV demonstrate its real-time robust detection performance.
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