
Optimal Decision Tree Pruning Revisited: Algorithms and Complexity

Juha Harviainen * 1 Frank Sommer * 2 Manuel Sorge * 2 Stefan Szeider * 2

Abstract
We present a comprehensive classical and pa-
rameterized complexity analysis of decision tree
pruning operations, extending recent research on
the complexity of learning small decision trees.
Thereby, we offer new insights into the computa-
tional challenges of decision tree simplification, a
crucial aspect of developing interpretable and effi-
cient machine learning models. We focus on fun-
damental pruning operations of subtree replace-
ment and raising, which are used in heuristics.
Surprisingly, while optimal pruning can be per-
formed in polynomial time for subtree replace-
ment, the problem is NP-complete for subtree
raising. Therefore, we identify parameters and
combinations thereof that lead to fixed-parameter
tractability or hardness, establishing a precise bor-
derline between these complexity classes. For
example, while subtree raising is hard for small
domain size D or number d of features, it can be
solved in D2d · |I|O(1) time, where |I| is the input
size. We complement our theoretical findings with
preliminary experimental results, demonstrating
the practical implications of our analysis.

1. Introduction
Decision trees are fundamental data structures used to
describe, classify, and generalize data (Larose, 2014;
Murthy, 1998; Quinlan, 1986). They are widely used in
machine learning due to their interpretability and efficiency
(Breiman et al., 1984). Towards explainable AI, one
prefers small decision trees over large ones as they provide
more concise and understandable models (Rudin, 2019;

*Equal contribution 1Department of Computer Science,
University of Helsinki, Helsinki, Finland 2Institute of
Logic and Computation, TU Wien, Austria. Correspon-
dence to: Juha Harviainen <juha.harviainen@helsinki.fi>,
Frank Sommer <fsommer@ac.tuwien.ac.at>, Manuel
Sorge <manuel.sorge@ac.tuwien.ac.at>, Stefan Szeider
<sz@ac.tuwien.ac.at>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

Holzinger et al., 2020). Recent advancements in algorithms
have made it feasible to compute decision trees that are
optimal with respect to various optimization goals (e.g.,
Narodytska et al., 2018; Demirovic et al., 2022; McTavish
et al., 2022). With that, the algorithmics and parameterized
complexity of the underlying optimization problems
were studied intensively (Staus et al., 2025; Ordyniak &
Szeider, 2021; Kobourov et al., 2025; Eiben et al., 2023;
Komusiewicz et al., 2023a; Ordyniak et al., 2024; Gahlawat
& Zehavi, 2024; Komusiewicz et al., 2025), feeding back
into practical advances (Staus et al., 2025).

Large datasets still require heuristic optimization techniques,
however. Commonly used heuristics to compute decision
trees for given data recursively split the input data based
on certain criteria such as reduction in entropy (Quinlan,
1986; Breiman et al., 1984; Mingers, 1989). The resulting
large trees often overfit, and so the heuristics then prune
them, that is, they delete nodes to decrease the size while
maintaining good classification performance. In other
words, they heuristically solve optimization problems
in which they balance some form of the two goals of
maximizing the number of pruned nodes and minimizing
the number of introduced errors. This motivates studying
these optimization problems themselves.

While the algorithmics of computing optimal decision trees
from scratch is reasonably well understood, the algorithmics
of optimally pruning a given decision tree has received
scant attention. Our goal is to initiate a rigorous algorithmic
study of the latter, highlighting what properties make the
underlying problems hard or tractable, and pointing to
promising algorithmic approaches that may be developed
further into practical implementations.

There are two main operations that heuristics apply, sub-
tree replacement and subtree raising (see below for details),
and we study optimally pruning trees under each of these.
An overview of our results is as follows. It was already
known that optimally replacing subtrees is polynomial-time
solvable (Almuallim, 1996), so we study the running time
in more detail and give an improved algorithm that is lin-
ear instead of quadratic in the tree size if the number k of
pruned nodes or number t of misclassifications is small. As
a side result, we give a quicker algorithm for classifying
examples with a given tree based on heavy–light decom-

1

Optimal Decision Tree Pruning Revisited: Algorithms and Complexity

(a) (b) (c)

the new leaf gets
the most frequent

class assigned

Figure 1. Illustration of the two pruning operations. (a) shows
the input tree T . (b) shows the result of one subtree replacement
operation. (c) shows the result of one subtree raising operation.

positions (Sleator & Tarjan, 1983). In contrast, we show
that optimally pruning a decision tree with subtree raising
is NP-complete. In general we thus cannot expect efficient
algorithms and therefore investigate which aspects of the
problem make it hard or tractable. In this regard, we com-
pletely classify the influence of natural single parameters,
such as k, t, the number d of features, or the domain size D
on the complexity of raising subtrees optimally. Further, we
almost completely classify all pairs and triples of parame-
ters. For instance, we show that we cannot expect efficient
algorithms for optimally raising subtrees if D or d is small,
however, there is a prospect for an efficient algorithm if they
are both small at the same time. This latter algorithm might
be relevant for practice: We provide a proof-of-concept im-
plementation and use it on standard benchmark data to show
that heuristics achieve an almost optimal tradeoff between
the number of pruned nodes and introduced classification
errors.

Our results offer new insights into the computational chal-
lenges of decision tree simplification and provide a theo-
retical foundation for developing more efficient pruning
algorithms. Our results contribute to the growing body of
work on the theoretical foundations of interpretable ML,
which is crucial for developing trustworthy AI systems.1

Problem statement. We study two types of pruning oper-
ations that are used by implementations in well-established
machine-learning libraries (see Figure 1 for illustrations),
focusing on decision trees that are binary trees throughout
the paper. Let T be a decision tree for a set E ⊆ Rd of
examples labeled via λ : E → {blue, red} by two2 classes
blue and red and let w ∈ V (T) an inner (non-leaf) node of
T . Here, for a graph G, by V (G) we refer to its vertex set.

A subtree replacement operation applied to w removes w
and its entire subtree from T and replaces it by a new leaf u
which has the most frequent class label of all examples
in the subtree of w, that is, u receives color blue if the

1A continuously updated version of our paper is available on
arXiv (Harviainen et al., 2025a) and the related source code for
replicating the experiments on Zenodo (Harviainen et al., 2025b).

2In general our algorithms can also be used in the multiclass
setting; see Section 7 for a short discussion.

set E[T,w] of examples classified in the subtree rooted at
w contains at least as many blue examples as red examples,
and otherwise u receives color red. Replacement is a basic
pruning operation and used in CART (Breiman et al., 1984)
and C4.5 (Quinlan, 1993), for example.

A subtree raising operation applied to w removes w and
its entire left or right subtree from T . In other words, we
choose a child u of w and then we remove the subtree rooted
at w and replace it by the subtree rooted at u. Subtree raising
is implemented in the well-known decision tree heuristics
C4.5 (Quinlan, 1993), C5.0, and J48 (Witten et al., 2011).

We now formulate the optimization problems implicitly
solved by the tree-pruning heuristics as search problems: We
aim to prune k inner nodes while satisfying an upper bound t
on the number of resulting classification errors.3 Algorithms
solving these problems can also perform error minimization.

DECISION TREE REPLACEMENT (DTREP)
Instance: A training data set (E, λ), a decision tree T for

(E, λ), and k, t ∈ N.
Question: Can we perform replacement operations that

prune exactly k inner nodes such that the resulting
tree T ′ has at most t errors?

DECISION TREE RAISING (DTRAIS=)
Instance: A training data set (E, λ), a decision tree T for

(E, λ), and k, t ∈ N.
Question: Can we perform raising operations that prune

exactly k inner nodes such that the resulting tree T ′ has
at most t errors?

For technical reasons (see the preliminaries), replacing at
least k nodes has the same complexity as replacing exactly k.
This is not so for raising, and thus we also study the variant
DTRAIS≥ where we perform at least k raising operations.

Results for replacement. It is known that DTREP can
be solved in O

(
(n + ℓ)s

)
time (Almuallim, 1996), where

n is the number of input examples, s the size of the in-
put tree and ℓ = s − k the size of the tree after pruning.
This means that the running time is quadratic in the tree
size. We show that one can achieve time linear in the size,
that is, O

(
(n + min{k2, t2}) · s

)
time, if k or t is small

(Theorem 3.1). As a side result, we show that classify-
ing a given example can be done in time O(d log2 s) af-
ter O(ds)-time preprocessing, where d is the number of

3Throughout, we use the following intuitive equivalence be-
tween the number of operations and the number of pruned nodes:
A replacement operation that removes k inner nodes can be simu-
lated by k replacement operations applied to inner nodes that have
2 leaves as children. Similarly, a raising operation that removes
k inner nodes can be simulated by k raising operations applied to
inner nodes that have 2 children and at least one of them is a leaf.

2

Optimal Decision Tree Pruning Revisited: Algorithms and Complexity

BF n BF

BF s BF Thm. 5.1 t Thm. 5.1

Thm. 5.1 k Thm. 5.5 Thm. 5.6 d Prop. 5.7

Thm. 5.2 ℓ Thm. 5.2

Thm. 5.1 D Thm. 5.1

Thm. 5.1 δmax Thm. 5.1Thm. 4.2 dT Thm. 4.2

FPT
XP and W[1]-hard
paraNP-hard

result for
DTRAIS=

parameter result for
DTRAIS≥

Figure 2. A Hasse diagram of the single parameter relations and
results for DTRAIS=, DTRAIS≥: A parameter p has an edge to a
lower parameter q if there is a function f such that after straight-
forward preprocessing we have q ≤ f(p). The corresponding
theorems and propositions are given in the boxes; for hardness the
reference is in the highest box for which hardness holds, for (FPT
or XP) tractability the reference is in the lowest box for which
tractability holds. BF is for brute-force algorithm.

features (Lemma 3.2). This improves on the straightfor-
ward O(s)-time algorithm. Given these polynomial-time
results, it is interesting to extend them to replacing subtrees
in decision-tree ensembles, which have received a tremen-
dous amount of attention for their simplicity and improved
accuracy over plain decision trees (Breiman, 2001; Rokach,
2016). However, we show that efficiently pruning ensem-
bles is unlikely, since the problem is NP-complete even if
they contain only two trees (Theorem 3.4).

Results for raising. In contrast to the tractability of
DTREP, surprisingly DTRAIS= and DTRAIS≥ turned out
to be NP-complete. Hence, we studied the parameterized
complexity, determining the influence of the most natural pa-
rameters on the problems’ complexity (Gottlob et al., 2002;
Flum & Grohe, 2006; Niedermeier, 2006; Cygan et al., 2015;
Downey & Fellows, 2013). There are three main levels of
influence that a parameter p can have when a problem is
NP-hard: ideally (1) fixed-parameter tractability (FPT), that
is, there is an algorithm with f(p) · |I|O(1) running time, or
(2) W[1]-hardness and XP-tractability, that is, there is an
algorithm with running time f(p) · |I|f(p) and it is likely
not possible to remove the dependence of the exponent on
p, and (3) paraNP-hardness, that is, even for constant values
of p the problem is NP-hard.

Natural parameters for this analysis are the size s of the
initial unpruned tree T , the lower bound k on the removed
inner nodes, and the upper bound t of errors of the pruned
tree. A dual parameter to k is the upper bound ℓ on the
size of the tree after pruning (k + ℓ = s). Further natural
parameters are a priori related to the input dataset, but actu-
ally we may assume that these parameters refer only to the
input trees, not to the data itself, see Section 2: the number
d of features, the number n of examples, and the maximum
domain size D, that is, the maximum number of different
values that a feature can attain. Furthermore, we consider

Hardness:
Algorithm:

DTRAIS= | DTRAIS≥

FPT
XP and W[1]-hard
paraNP-hard

BF Thm. 4.2 ? Thm. 4.6

Prop. 5.7Thm. 4.3 Thm. 4.2
Thm. 5.8
Thm. 4.2

Thm. 5.1
BF Thm. 4.5

Thms. 5.2 and 5.3
BF

Thm. 5.6
BF

Thm. 5.1
BF Thm. 5.5

Thm. 5.1

largest parameter p

smallest parameter q

s, k + ℓ dT +D ℓ+ δmax +D + t

k + d+ δmax + dT

k + dT

k + d+ δmax + dT d+ δmax + dT + t

dT

k + δmax +D + t

k + t

ℓ+ δmax +D, ℓ+D + t

ℓ

ℓ+ d+ δmax + dT

ℓ

k + δmax +D

k

k + δmax +D

D + δmax + t

Figure 3. Overview of our results for DTRAIS=, DTRAIS≥. For
each box q is the smallest parameter required to achieve an FPT
or XP algorithm, and p is the largest parameter such that W[1]-
hardness or paraNP-hardness holds. Also, each parameter combi-
nation which is not smaller than p and not larger than q leads to the
same classification result. Consequently, for parameters q leading
to an FPT-algorithm, all parameters which are not smaller than q
also lead to an FPT-algorithm. BF is for brute-force algorithm.

the parameter δmax, the maximum number of features in
which two examples of different classes differ.4 Also, we
consider the largest number dT of different features that
occur on a root-to-leaf path in the input tree.

Figure 2 shows an overview over the relations between
all parameters together with our complexity results for
DTRAIS= and DTRAIS≥ for individual parameters; in fact,
we completely classify the two problems with respect to the
three levels of influence that the parameters can have. Apart
from two trivial tractability results for n and s, assuming
all other individual parameters to be small still yields in-
tractable problems. Notably, DTRAIS≥ remains NP-hard,
even for pruning at least k = 0 nodes. Given such broadly
negative results, we also consider combinations of two or
more parameters, see Figure 3 for an overview. Indeed, we
obtain an almost full classification for pairs and triples of
parameters. Among several tractability results, we obtain
an algorithm with D2dT · |I|O(1) running time.

This latter algorithm is particularly interesting in combina-
tion with measurements that show that the parameters D
and dT are small in benchmark data for computing optimal
decision trees. Thus we provide a proof-of-concept imple-
mentation and use it to compute the complete Pareto-front
of the optimal tradeoffs between the number k of pruned
nodes and number t of classification errors. This allows us
for the first time to measure the quality of the heuristic prun-
ing techniques, showing that they achieve almost optimal

4See Ordyniak & Szeider (2021, Table 1) and Staus et al. (2025,
Table 3) for indication that this parameter is small in practical data.

3

Optimal Decision Tree Pruning Revisited: Algorithms and Complexity

tradeoffs in our data.

2. Preliminaries
For m ∈ N we write [m] := {1, 2, . . . ,m} and [0,m] :=
[m] ∪ {0}. For e ∈ Rd we denote by e[i] the ith entry of e.
Sometimes, we may slightly abuse the notation by indexing
the entries by other objects than the integers i ∈ [d], such as
the set of vertices of a graph. We can assume that there is a
bijection between these objects and the set [d].

Let Σ be a set of class labels; unless stated otherwise, we
use Σ = {blue, red}. A decision tree in Rd with set of
classes Σ consists of an ordered binary tree T , that is, each
inner node has a well-defined left and right child. Let
feat : V (T) → [d] and thr : V (T) → R be labelings of
each inner node v ∈ V (T) by a feature feat(v) ∈ [d] and
a threshold thr(v) ∈ R. Additionally, let cla : V (T) → Σ
be a labeling of the leaves of T by class labels. The tu-
ple (T, feat, thr, cla) is a decision tree in Rd with set of
classes Σ. We often omit the labelings feat, thr, cla and just
refer to the tree T . The size of T is the number of its inner
nodes, also referred to as cuts.

A training data set is a tuple (E, λ) of a set of examples
E ⊆ Rd and their class labeling λ : E → Σ. Given a
training data set, we fix for each feature i a minimum-size
set Thr(i) of thresholds that distinguishes between all values
of the examples in the ith feature. In other words, for each
pair of examples e and e′ with e[i] < e′[i], there is at least
one value x ∈ Thr(i) such that e[i] < x < e′[i]. For a fea-
ture i ∈ [d] and a threshold x ∈ Thr(i), we use E≤[i, x] :=
{e ∈ E : e[i] ≤ x} and E>[i, x] := {e ∈ E : e[i] > x} to
denote the set of examples of E whose ith feature is less or
equal, and strictly greater than x, respectively.

Now, let T be a decision tree. Each node v ∈ V (T),
including the leaves, defines a subset E[T, v] ⊆ E as
follows. For the root v of T , we define E[T, v] := E.
For each non-root node v, let w denote the parent of v.
We then define E[T, v] := E[T,w] ∩ E≤[feat(w), thr(w)]
if v is the left child of w and E[T, v] := E[T,w] ∩
E>[feat(w), thr(w)] if v is the right child of w. If the tree
T is clear from the context, we simplify E[T, v] to E[v].
Thus for each example e ∈ E there is a unique leaf v such
that e ∈ E[v]. We also say that v is the leaf of e. Note that
the sets E[v] at the leaves v of T form a partition of E. If v
is the leaf of e, we say that cla(v) is the class assigned to e
by T . An example e ∈ E is correctly classified by T if the
class assigned to it is λ(e), and otherwise it is referred to as
being misclassified or an error.

Identical feature values. Note that we allow our examples
to have identical values in all features, and this occurs in our
reductions. However, they could also be adjusted to have no
two identical examples, at the cost of increasing D and δmax:

all our thresholds are integers in the reductions, so changing
a value x of some feature to x′ with ⌊x⌋ < x′ ≤ ⌈x⌉ will
not change the leaf the example ends up at.

Reasonable trees. We assume that the input tree T in
DTREP, DTRAIS=, DTRAIS≥ is reasonable, that is, (a)
no leaf is empty and (b) every leaf has the label of a most
frequent example set in this leaf. That is, the set of exam-
ples at each cut should be nonempty, and the threshold there
should partition that set into two nonempty sets. Note that
all trees computed by standard heuristics are reasonable. We
make this assumption purely for our hardness results to be
more relevant to practical situations. With the replacement
operation, since the input trees are reasonable, the number
of errors cannot decrease as more cuts are pruned. This is
not the case with raising operations (see Theorem 5.4) and
thus we study both DTRAIS= and DTRAIS≥.

Relations between parameters. Note that since we are only
interested in the classification properties of subtrees of the
input tree T , we can omit from all examples all features
that do not occur in cuts in T . Similarly, we can preprocess
the domains in each feature i ∈ [d]: We may look at all
the thresholds that occur in feature i in some cut in T , say
their number is D′

i. Then we can discretize the examples
to the values in-between such thresholds. Accounting for a
minimum and maximum value, we may thus assume that
the domain of i contains at most D′

i + 2 values. Hence, the
maximum domain size D is upper bounded by 2 plus the
maximum number of thresholds that occur in a feature in T .

Proofs marked with (⋆) are deferred to the appendix.

3. Results for Subtree Replacement
In this section, we present our results for the subtree replace-
ment operation. The problem is solvable in polynomial time
with dynamic programming (DP) by a reduction to TREE
KNAPSACK, and an improved version of the algorithm re-
quires O

(
(n + ℓ)s

)
time (Almuallim, 1996). However, if

only a small number of cuts are pruned, then the time com-
plexity is quadratic in the size. We propose a novel algo-
rithm whose complexity is only linear in the size if the num-
ber of pruned cuts or allowed misclassifications is small:
Theorem 3.1. DTREP can be solved in time O

(
(n +

min{k2, t2}) · s
)
.

Proof. First, we compute for each node v the number of
misclassified examples tv in the subtree rooted at v if we
were to replace the subtree by a red or a blue leaf, whichever
minimizes the number of errors. This requires O(ns) time
in the worst case and less if the tree is not deep. Similarly,
we compute the size sv of the subtree rooted at each v.

We use bottom-up dynamic programming, indexing the re-
currence by the current node and the number of pruned

4

Optimal Decision Tree Pruning Revisited: Algorithms and Complexity

nodes or errors, depending on which of k and t is smaller.
If k ≤ t, let opt(v, k′) for k′ ∈ [0, k] be the smallest possi-
ble number of errors in the subtree rooted at v after pruning
exactly k′ inner nodes from it. Further, let u and w be the
children of v. Then, let opt(v, sv − 1) = tv if sv − 1 ≤ k,
and, for k′ < sv − 1, let

opt(v, k′) = min
k∗∈[k′]

opt(u, k∗) + opt(w, k′ − k∗).

If v is the root of the tree and opt(v, k) ≤ t, then there
exists a feasible pruned tree for the instance of DTREP.
Otherwise, if t < k, we use a similar algorithm but instead
maximize the number of pruned nodes given that we get
t′ errors in the subtree. A solution exists if we can prune
at least k cuts while having at most t errors, since we can
prune fewer cuts without introducing more errors.

Currently, computing the number of misclassifications in
each subtree dominates the time complexity and requires
O(ns) time. We next speed up the classification of examples
with heavy–light decompositions (Sleator & Tarjan, 1983),
thus obtaining a faster algorithm for DTREP.

Lemma 3.2 (⋆). After O(ds)-time preprocessing, we can
classify any example in time O(d log2 s).

Corollary 3.3. DTREP can be solved in time
O
(
min{k2, t2} · s+ nd log2 s

)
.

Proof. First, classify all n examples by utilizing Lemma 3.2.
Second, use the algorithm of Theorem 3.1.

Interestingly, pruning with subtree replacement becomes
hard if we consider tree ensembles. A tree ensemble T is
a set of decision trees and T classifies (E, λ) if for each
example e ∈ E the majority vote of the trees in T agrees
with the label λ(e); ties are broken consistently.

We show this by reducing from the NP-hard κ-BICLIQUE
problem (Johnson, 1987). The constructed ensemble has
two trees, one for each partite set. Each tree consists of a
long root-to-leaf path that cannot be pruned without violat-
ing the error bound. To the unspecified children of this fixed
path we attach a cut corresponding to a vertex selection. We
then create edge examples e which are correctly classified
only if both cuts corresponding to the endpoints of e are
preserved. Parameter ℓ is chosen such that we can only pre-
serve 2 · κ cuts. The desired error bound forces us to select
exactly κ cuts per tree which correspond to a κ-biclique.

Theorem 3.4 (⋆). DTREP is NP-hard even for an ensemble
of 2 trees where both trees are reasonable and d = 3.

4. Algorithms for Subtree Raising
Before presenting our main algorithmic results, note that
DTRAIS= is trivially in XP with respect to k and ℓ, and

DTRAIS≥ with respect to ℓ: we iterate over all O(sk) possi-
ble combinations of subtrees that are pruned away or O(sℓ)
combinations of unpruned cuts. FPT for s follows from
there being at most 2s possible pruned trees. Thus, both
DTRAIS= and DTRAIS≥ are also FPT for k+ ℓ. Similarly,
since each input decision tree is reasonable, we have s ≤ n
and thus both are FPT for n. We start by presenting an
XP-algorithm for the number d of features that serves as a
starting point for the rest of the algorithms developed in this
subsection.

Theorem 4.1. DTRAIS= and DTRAIS≥ can be solved in
O(D2d · s3) time.

The algorithm uses bottom-up dynamic programming on the
input tree T . Intuitively, for each node v of T we compute
the minimum number of errors achievable by raising opera-
tions that prune at least (or exactly) k nodes in the subtree
of T rooted at v. In order to do that, we need to be able to
determine the set E′ of examples that are classified in v’s
subtree after pruning. Set E′ may be different from E[T, v]
because in an optimal solution we may have to prune some
nodes on the path P in T from the root to v. Think of the
nodes on P as successively cutting away examples from E′,
that is, if a node w’s successor on P is a left child, w cuts
away examples on the left in its feature and if it is a right
child, w cuts away examples on the right. To find E′ it
is thus sufficient, for each feature i, to determine the two
strongest cuts that remain after raising. That is, among all
cuts that cut away examples on the left the strongest cut
would be the rightmost one and among all cuts that cut away
examples on the right, the strongest cut would be the left-
most one. Therefore we index the table, in addition to v and
the remaining budget k′, in each feature with the thresholds
corresponding to the two strongest remaining cuts.

Proof of Theorem 4.1. We only show the result for
DTRAIS≥, the proof for DTRAIS= is analogous.

Definition of the DP table: For each node v ∈ V (T)
let Tv be the subtree of T rooted at v. Denote by
E[(ℓi, ri)i∈[d]] the set of examples in E within the box de-
fined by (ℓi, ri)i∈[d] with ℓi, ri ∈ Thr(i), that is,

E[(ℓi, ri)i∈[d]] :=
⋂
i∈[d]

E>[i, ℓi] ∩ E≤[i, ri].

We index the DP table Q by the root node v ∈ V (T)
of the subtree, remaining budget k′ ∈ [0, k], and the
thresholds (ℓi, ri)i∈[d] with ℓi, ri ∈ Thr(i). To an entry
Q[v, (ℓi, ri)i∈[d], k

′], we put the minimum number of mis-
classifications achievable on the example set E[(ℓi, ri)i∈[d]]
with a tree obtained from the subtree Tv by raising opera-
tions that prune at least k′ inner nodes from Tv .

Location of the solution: A solution to DTRAIS≥ can be

5

Optimal Decision Tree Pruning Revisited: Algorithms and Complexity

read off from Q by letting v be the root of T , k′ = k, and
ℓi = min(Thr(i)) and ri = max(Thr(i)) for each i.

Initialization of Q: The values at a leaf v are the numbers
of examples in E[(ℓi, ri)i∈[d]] with a different label from v,
since a leaf cannot be pruned without removing the parent.

Recurrence of Q: Let u,w be the left and right child of v,
respectively, and let su, sw be the number of inner nodes
in Tu and Tw, respectively. We claim that

Q[v, (ℓi, ri)i∈[d], k
′] =

min

Q[u, (ℓi, ri)i∈[d], k

′ − sw − 1],

Q[w, (ℓi, ri)i∈[d], k
′ − su − 1],

mink′′∈[k′]∪{0} Q[u, (ℓi, r
u
i)i∈[d], k

′′] +

Q[w, (ℓwi , ri)i∈[d], k
′ − k′′],

(1)

where ℓwi = ℓi and rui = ri if i ̸= feat(v), and
otherwise rufeat(v) = min{rfeat(v), thr(v)} and ℓwfeat(v) =

max{ℓfeat(v), thr(v)}.

Correctness of the DP: To see that Equation (1) is correct,
we first show that the left-hand side is smaller or equal to
the right-hand side. Let T ′

v be obtained from Tv by pruning
at least k′ nodes by raising. There are three cases:

First, v, the subtree Tw, and possibly some nodes in Tu are
pruned to obtain T ′

v. Note that, then, the number of errors
of T ′

v for E[(ℓi, ri)i∈[d]] is at least Q[u, (ℓi, ri)i∈[d], k
′ −

sw − 1]. Analogously, if v and the subtree Tu are pruned,
then the number of errors of T ′

v for E[(ℓi, ri)i∈[d]] is at least
Q[w, (ℓi, ri)i∈[d], k

′ − su − 1].

In the third case, v is not pruned and all raising opera-
tions in Tv are contained in Tu and Tw. Let T ′

u and T ′
w

be the resulting trees and let k′u and k′w be the number of
pruned nodes in Tu and Tw, respectively. Further, let tu
and tw be the numbers of misclassifications in T ′

v that
occur in T ′

u and T ′
w, respectively. Observe that the ex-

ample set classified by T ′
u is E[(ℓi, r

u
i)i∈[d]], where ru is

defined as in the recurrence. Analogously, the example
set classified by T ′

w is E[(ℓwi , ri)i∈[d]]. Thus, tu + tw ≥
Q[u, (ℓi, r

u
i)i∈[d], k

′
u] +Q[w, (ℓwi , ri)i∈[d], k

′
w]. Hence, the

left-hand side of the recurrence equals at most the right-hand
side. We defer the other direction to Appendix B.1.

Running time of the DP: Observe that there are s ·D2d · s
table entries, and each entry can be computed in O(s) time.
Proof for DTRAIS= is analogous but we prune exactly k
nodes instead of at least k nodes in the definition of Q.

By only considering thresholds that are actually used in the
input tree, we can improve the running time. For this, we
define the following parameter: Let DT be the maximum
number of different thresholds on cuts in feature i on path P
over all features i ∈ [d] and all root-to-leaf paths P .

Theorem 4.2 (⋆). DTRAIS= and DTRAIS≥ can be solved
in O((DT + 2)2dT · s3) time.

So far, all of our results applied to both the at least and the
exactly variant of subtree raising. However, for DTRAIS=,
we can achieve an FPT-algorithm for k+d. Later, in Proposi-
tion 5.7 we show that such a result for DTRAIS≥ is unlikely
to exist under standard complexity theory assumptions.

Theorem 4.3. DTRAIS= can be solved in O((k+1)2dT ·s3)
time.

Proof Sketch. We proceed analogously to Theorems 4.1
and 4.2 for filling a table Q via bottom-up dynamic
programming on the input tree T . The main difference
is that we restrict the possibilities for the values of the
thresholds ℓi, ri. Intuitively, if we focus on the strongest
k + 1 cuts on the left in a specific feature i, at least one
them cannot be pruned. Thus, the threshold ℓi that we
index our table with has to be among these k + 1 cuts. This
restricts the number of table entries to O((k + 1)2dT · s2).

Definition of the DP table: Table Q is defined similarly
to Theorem 4.1, but we only consider relevant (see
below) threshold sequences (ℓi, ri)i∈[d] for node v with
ℓi, ri ∈ Thr(i). Intuitively, the thresholds (ℓi, ri) must be
the thresholds of the strongest cuts in feature i that occur
above v in T after removing at most k − k′ cuts above v.
Let P be the path in T from v to the root. For each feature
i ∈ [d] let (ℓji)j∈Jℓ

be the list of thresholds of the cuts on the
left above v ordered from right to left (largest to smallest).
That is, to obtain (ℓji)j∈Jℓ

, take the set of thresholds of cuts
y on V (P) \ {v} such feat(y) = i and y’s predecessor on
P is a right child, and then order it descendingly. Similarly,
let (rji)j∈Jr be the list of thresholds of the cuts on the right
above v ordered from left to right (smallest to largest).

We now need notation to refer to the strength of a cut c,
which is intuitively one plus the number of cuts that
have to be pruned such that c becomes the strongest cut.
For this, let idℓ(i) be the index of ℓi in (ℓji)j∈Jℓ

, that
is, if ℓi = ℓji , then idℓ(i) = j. Note that the index is
well-defined. Analogously, let idr(i) be the index of ri in
(rji)j∈Jr

. Sequence (ℓi, ri)i∈[d] is relevant (for node v) if
the remaining budget k′ together with the number of cuts
that need to be pruned above v such that the thresholds ℓi, ri
correspond to the strongest cuts do not exceed k. Formally,
it must hold that k ≥ k′ +

∑
i∈[d](idℓ(i) + idr(i) − 2).

Observe that the sum indeed measures the number of nodes
we have to remove from P so that the strongest remaining
cuts have the thresholds specified in (ℓi, ri)i∈[d].

Recurrence and correctness of the DP: The same as
in Equation (1), except that we will not prune v if it
would lead to too many cuts being removed to obtain the
specified thresholds. Moreover, we will not prune the

6

Optimal Decision Tree Pruning Revisited: Algorithms and Complexity

cut if k < k′ +
∑

i∈[d](idℓ(i) + idr(i) − 2). Note that,
in this way, if the sequence (ℓi, ri)i∈[d] is relevant for v
then also in the table entries on the right-hand side it is the
case that the sequences of thresholds are relevant for the
corresponding nodes. We omit a correctness proof of the
recurrence because it is analogous to the proof of Thm. 4.1.

Running time: There are (k + 1)2dT s2 relevant threshold
sequences, and each entry is computed in O(s) time.

Next, we prove that DTRAIS≥ is in XP for k + t. We start
with the special case of k = t = 0:

Lemma 4.4 (⋆). DTRAIS≥ can be solved in O(ns) time
if k = t = 0.

Theorem 4.5 (⋆). DTRAIS≥ is solvable in O(nt+1sk+1)
time.

Theorem 4.6 (⋆). DTRAIS≥ can be solved in
O((6δmaxDℓ(t+ 1))ℓ · ℓ2ns) time.

Note that since for DTRAIS= we cannot assume that the
pruned tree is minimal, we cannot use the algorithm of
Theorem 4.6.

5. Hardness Results for Subtree Raising
In this subsection we show by complementing hardness
results that our algorithmic results from Section 4 cannot
be improved substantially without violating standard com-
plexity assumptions. Specifically, we use the Exponential
Time Hypothesis (ETH), which states that states that 3SAT
on n-variable formulas cannot be solved in 2o(n) time (Im-
pagliazzo & Paturi, 2001; Impagliazzo et al., 2001). In
this section, by I we denote the instance of DTRAIS= or
DTRAIS≥ we construct in the reductions.

First, we show that the trivial brute-force algorithm for
DTRAIS= cannot be improved significantly.

Theorem 5.1. Even if δmax = 2, D = 2, and t = 0 both
DTRAIS= and DTRAIS≥ are W[1]-hard for k and, unless
the ETH is false, they cannot be solved in f(k)·|I|o(k) time.5

Proof. We prove the statement by a reduction from the
W[1]-hard (Downey & Fellows, 1995) problem of κ-
INDEPENDENT SET which cannot be solved in f(κ) ·
no(κ) time unless the ETH fails (Cygan et al., 2015). The
input is a graph G and an integer κ, and the task is to find a
set S ⊆ V (G) of size at least κ such that no edge of G has
both endpoints in S. With slight abuse of notation, we let
the vertices of G be the (binary) features of the examples.
We first show the statement for non-reasonable trees. We

5The Exponential Time Hypothesis (ETH) states that 3-SAT
on n-variable formulas cannot be solved in 2o(n) time, see Im-
pagliazzo & Paturi (2001); Impagliazzo et al. (2001) for details.

v1 ≤ 0

v2 ≤ 0

v3 ≤ 0

v4 ≤ 0

vn ≤ 0

blue

blue

blue

blue

bluered

Figure 4. The initial decision tree used for Theorem 5.1.

construct a decision tree T whose inner nodes relate to the
vertices of G in the sense that pruning a subset of inner
nodes leads to no misclassifications if and only if the corre-
sponding set of vertices of G is an independent set. Further,
we let k = κ, and t = 0 in our reduction.

We create one blue example e for each edge (v, w) of G
such that e[v] = e[w] = 1 and otherwise e[u] = 0 for u ∈
V (G). Additionally, we create one red example e with
e[v] = 0 for all v ∈ V (G). The inner nodes of our initial de-
cision tree T form a path such that there is a single cut with
respect to each feature v ∈ V (G) in an arbitrary but fixed
order. If e[v] = 1, then the example is directed to a blue
leaf, and otherwise passed forward on the path. At the end
of the path, there is a red leaf. This is illustrated in Figure 4.

Initially, all examples are classified correctly. Any subtree
including the unique red leaf cannot be pruned, because
then the unique red example would be misclassified. Con-
sequently, each raising operation removes an inner node and
the blue leaf attached to it. On the other hand, the example
corresponding to an edge (v, w) gets misclassified if the
cuts related to vertices v and w are both pruned. Hence, the
pruned features correspond an independent set in G, and, if
exactly/at least k cuts can be pruned, then there exists an in-
dependent set of size exactly/at least k. Since k = κ we ob-
tain the f(k)·|I|o(k) time lower bound if the ETH is true. We
defer adaption for reasonable trees to the Appendix.

Now, we show, by adapting the proof of Theorem 5.1,
that also the simple O(sℓ) time brute-force algorithms for
DTRAIS= and DTRAIS≥ cannot be improved significantly.

Theorem 5.2 (⋆). Even if δmax = 2 and D = 2, both
DTRAIS= and DTRAIS≥ are W[1]-hard for ℓ and, un-
less the ETH is false, they cannot be solved in O(f(ℓ) ·
|I|o(ℓ)) time, even if δmax = 2, and D = 2.

Theorem 5.3 (⋆). Even if t = 0 and D = 2, both
DTRAIS= and DTRAIS≥ are W[2]-hard for ℓ and, un-
less the ETH is false, they cannot be solved in O(f(ℓ) ·
|I|o(ℓ)) time, even if t = 0 and D = 2.

Next, we show that DTRAIS≥ is substantially harder than

7

Optimal Decision Tree Pruning Revisited: Algorithms and Complexity

DTRAIS= with respect to k: A similar O(nk) time brute-
force algorithm for DTRAIS≥ implies P=NP. This result is
based on the observation that the number of errors does not
increase monotone if more raising operations are performed.

Theorem 5.4 (⋆). For every positive integer k there is a
training data set (E, λ) and an initial decision tree T with
zero errors such that only performing k raising operations
leads to a tree without errors and performing j raising
operation for any 1 ≤ j < k leads to at least one error.

Theorem 5.5 (⋆). DTRAIS≥ is NP-hard even if k = 0,
δmax = 2, and D = 2.

We now show that our XP-algorithm for d (Theorem 4.1)
cannot be improved to an FPT-algorithm and that the ex-
ponential dependence on d cannot be reduced substantially.

Intuitively, we create two features d<i and d>i per color
class i such that in the pruned tree we need to preserve
exactly one cut in each feature to fulfill the desired error
bound. We achieve this property by adding a huge number
of blue examples and red examples which can only be dis-
tinguished in d∗. The two cuts in features d<i and d>i force
us to select exactly one vertex vi of this color class. For each
edge we create an edge example. If vertex vi is selected,
then all edge examples corresponding to edges having an
endpoint in color class i which is not vi are then misclassi-
fied. Thus, we can only correctly classify an edge example
if we select both endpoints of that edge. Furthermore, we en-
sure that only edge examples may be misclassified without
violating the error bound. Hence, by setting t := m−

(
κ
2

)
,

we ensure that we need to select a multicolored clique.

Theorem 5.6 (⋆). Even if δmax = 6, both DTRAIS= and
DTRAIS≥ are W[1]-hard for d+ ℓ and, unless the ETH is
false, they cannot be solved in f(d+ ℓ) · |I|o(d+ℓ) time.

Recall that in Theorem 4.3 we showed that DTRAIS= is FPT
with respect to k+ d. By adapting the proof of Theorem 5.6
slightly, we show that this is unlikely for DTRAIS≥.

Proposition 5.7 (⋆). DTRAIS≥ is W[1]-hard for d even
if k = 0 and δmax = 6.

Finally, we show that the combination of d and t is unlikely
to yield an FPT-algorithm.

Theorem 5.8 (⋆). Even if t = 0 and δmax = 6, both
DTRAIS= and DTRAIS≥ are W[1]-hard for d and, unless
the ETH is false, they cannot be solved in f(d) · |I|o(d) time.

6. Experiments
The main goal of our small-scale empirical study was to
study whether common heuristics for decision-tree pruning
find optimal tradeoffs between the number of pruned nodes
and errors on the resulting trees. In other words, we assess
if the heuristics achieve near-maximum number of pruned

Table 1. Datasets with improvable heuristic results: s is the initial
unpruned tree size, krais the number of pruned nodes by the raising
heuristic, krepl the number of pruned nodes by the replacement
heuristic, k∗ the maximum number of nodes that can be pruned by
raising operations while maintaining at most trais errors. Column
trais contains the number of errors obtained by the raising heuristic,
trepl the number of errors obtained by the replacement heuristic,
and t∗ the minimum number of errors obtainable by pruning at
least krais nodes with raising operations.

Dataset s krais krepl k∗ trais trepl t∗

soybean 28 15 15 17 8 8 7
cleveland-nominal 46 38 38 39 23 23 22
haberman 92 74 71 75 39 38 38
postoperative-patient 23 3 2 3 1 1 1
heart-statlog 54 31 27 31 17 15 17

cuts for the chosen number of errors, and near-minimum
number of errors for the chosen number of pruned cuts.

We used 40 datasets from the Penn Machine Learning
Benchmarks library (Romano et al., 2022), including 32 pre-
viously used for minimum-size tree computation (Bessiere
et al., 2009; Narodytska et al., 2018; Staus et al., 2025)6 and
additional larger datasets. The datasets range from 72 to
5404 examples (mean 674.88, median 302). We computed
unpruned and pruned trees using WEKA 3.8.5’s (Frank et al.,
2010) C4.5 implementation (Quinlan, 1993): The unpruned
trees apply neither replacement nor raising, whereas pruned
trees used only the replacement or raising heuristics; more
details in the appendix (in particular, Table 2).

Analysis of the unpruned trees showed that several param-
eters are suitably small with medians s : 26, d : 9, D : 6.
We thus used a dynamic-programming algorithm based on
Theorem 4.2; the source code and data are publicly avail-
able (Harviainen et al., 2025b). The implementation is a
proof of concept and has lots of room for optimizations. We
computed the Pareto front that contains for each number k
of pruned nodes via subtree raising, the minimum-possible
classification error of the resulting pruned tree. With mem-
ory limit of 64GB and time limit of 24h this was achieved
for 26 instances.

Key questions we can now answer (see also Table 1):

• Do heuristics achieve close to minimum-possible errors
for their chosen number of pruned nodes? Mostly yes:
In only four of the 26 solved instances, the heuristics
did not achieve the minimum-possible errors.

• Do heuristics prune close to maximum number of
nodes for their chosen number of errors? Mostly yes:
In only four instances the heuristics are suboptimal.

6Staus et al. (2025) used 35 data sets. We had to exclude 3 of
them (auto, cloud, spect) since for these dataset the heuristics only
outputted a tree with a single cut.

8

Optimal Decision Tree Pruning Revisited: Algorithms and Complexity

0 5 10 15 20 25
number of raised nodes

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

pe
rc

en
ta

ge
 o

f e
rro

rs

lupus
lymphography
soybean

Figure 5. The trade-off between number of raising operations and
classification error for three instances. The thin points are the
optimal values computed by our algorithm and the thick circles are
the values achieved by the raising heuristic of WEKA.

For a visualization of the Pareto front for three instances,
see Figure 5. Soybean is one of the few instances where the
number of errors of the heuristic is larger than the optimum
for that number of raising operations. One can see that in
these instances more nodes can be pruned than the heuristics
do without significantly worsening the accuracy.

The study indicates that commonly used heuristics perform
well in most cases, with only a few instances showing room
for improvement in either error minimization or node prun-
ing maximization. However, inspection of the Pareto front
leads us to hypothesize that often more nodes can be pruned
than the heuristics do without worsening the accuracy sig-
nificantly.

7. Outlook
We provided a comprehensive analysis of the parameter-
ized complexity of optimal pruning with subtree replace-
ment and subtree raising, presenting algorithmic results and
complexity-theoretic lower bounds for each operation. Fur-
ther, we performed a small-scale experiment, showing the
surprising result that pruning heuristics are almost optimal
despite the hardness of the problem, that is, in almost ev-
ery of our data sets no smaller classification error can be
achieved by pruning the same number of nodes. Our algo-
rithms were crucial for discovering this, since without them
we could not compare the heuristics against the optimum.

In our paper we solely focused on the biclass setting for
clarity of the theory. All our hardness results directly apply
to the multiclass setting. All our algorithms except the one

in Theorem 4.6 also directly apply to the multiclass setting
without changes. To adapt the algorithm from Theorem 4.6
we additionally only need to set the leaf to the class of the
dirty example, when we introduce a new leaf.

While we managed to determine the parameterized complex-
ity of most parameter combinations, some combinations
of at least three parameters remain open, such as whether
DTRAIS= or DTRAIS≥ is FPT with respect to d + t + ℓ.
Regarding optimally pruning ensembles, we showed it to be
NP-hard already for two trees. However, the reduction does
not show parameterized hardness and it would thus be inter-
esting to see non-trivial fixed-parameter tractability results
for important parameters here. This could be a potentially
valuable research direction, since ensembles are typically
more accurate than a single decision tree of the same size.

More generally, a natural follow-up question is whether we
can perform other local operations on the input decision
trees where we can beat heuristics more clearly. A promis-
ing candidate in this direction could be an operation that
can arbitrarily reconstruct parts of the decision tree (Schi-
dler & Szeider, 2024), thus enabling local changes without
removing entire subtrees. Another direction is to investigate
related methods such as local search (Carreira-Perpiñán &
Tavallali, 2018; Saremi & Yaghmaee, 2018). What is the
complexity of computing the associated operations opti-
mally and exhaustively?

Acknowledgements
Juha Harviainen was supported by the Research Council of
Finland, Grant 351156. Frank Sommer was supported by
the Alexander von Humboldt Foundation. Stefan Szeider
was supported by the Austrian Science Fund (FWF) within
the projects 10.55776/COE12 and 10.55776/P36420.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

9

Optimal Decision Tree Pruning Revisited: Algorithms and Complexity

References
Almuallim, H. An efficient algorithm for optimal

pruning of decision trees. Artif. Intell., 83(2):347–
362, 1996. URL https://doi.org/10.1016/
0004-3702(95)00060-7.

Bessiere, C., Hebrard, E., and O’Sullivan, B. Minimis-
ing decision tree size as combinatorial optimisation. In
Proceedings of the 15th International Conference on Prin-
ciples and Practice of Constraint Programming (CP ’09),
volume 5732 of Lecture Notes in Computer Science, pp.
173–187. Springer, 2009. URL https://doi.org/
10.1007/978-3-642-04244-7_16.

Breiman, L. Random forests. Mach. Learn., 45(1):5–
32, 2001. URL https://doi.org/10.1023/A:
1010933404324.

Breiman, L., Friedman, J. H., Olshen, R. A., and Stone, C. J.
Classification and Regression Trees. Wadsworth, 1984.

Carreira-Perpiñán, M. Á. and Tavallali, P. Alternating
optimization of decision trees, with application to
learning sparse oblique trees. In Proceedings of
the Thirty-Second Annual Conference on Neural
Information Processing Systems (NeurIPS ’18), pp. 1219–
1229, 2018. URL https://proceedings.
neurips.cc/paper/2018/hash/
185c29dc24325934ee377cfda20e414c-Abstract.
html.

Cygan, M., Fomin, F. V., Kowalik, L., Lokshtanov, D.,
Marx, D., Pilipczuk, M., Pilipczuk, M., and Saurabh, S.
Parameterized Algorithms. Springer, 2015. URL https:
//doi.org/10.1007/978-3-319-21275-3.

Demirovic, E., Lukina, A., Hebrard, E., Chan, J., Bailey,
J., Leckie, C., Ramamohanarao, K., and Stuckey, P. J.
MurTree: Optimal decision trees via dynamic program-
ming and search. Journal of Machine Learning Research,
23:26:1–26:47, 2022.

Downey, R. G. and Fellows, M. R. Fixed-parameter
tractability and completeness II: on completeness
for W[1]. Theor. Comput. Sci., 141(1&2):109–
131, 1995. URL https://doi.org/10.1016/
0304-3975(94)00097-3.

Downey, R. G. and Fellows, M. R. Fundamentals of
Parameterized Complexity. Texts in Computer Sci-
ence. Springer, 2013. URL https://doi.org/10.
1007/978-1-4471-5559-1.

Eiben, E., Ordyniak, S., Paesani, G., and Szeider, S. Learn-
ing small decision trees with large domain. In Proceed-
ings of the 32nd International Joint Conference on Arti-
ficial Intelligence (IJCAI ’23), pp. 3184–3192. Interna-

tional Joint Conferences on Artificial Intelligence Organi-
zation, 2023. URL https://doi.org/10.24963/
ijcai.2023/355.

Flum, J. and Grohe, M. Parameterized Complexity The-
ory. Texts in Theoretical Computer Science. An EATCS
Series. Springer, 2006. URL https://doi.org/10.
1007/3-540-29953-X.

Frank, E., Hall, M. A., Holmes, G., Kirkby, R., and
Pfahringer, B. WEKA - A machine learning work-
bench for data mining. In The Data Mining and
Knowledge Discovery Handbook, 2nd ed, pp. 1269–
1277. Springer, 2010. URL https://doi.org/10.
1007/978-0-387-09823-4_66.

Gahlawat, H. and Zehavi, M. Learning small decision trees
with few outliers: A parameterized perspective. In Pro-
ceedings of the 38th AAAI Conference on Artificial In-
telligence (AAAI ’24), pp. 12100–12108. AAAI Press,
2024. URL https://doi.org/10.1609/aaai.
v38i11.29098.

Gottlob, G., Scarcello, F., and Sideri, M. Fixed-parameter
complexity in AI and nonmonotonic reasoning. Artif.
Intell., 138(1-2):55–86, 2002. URL https://doi.
org/10.1016/S0004-3702(02)00182-0.

Guo, J., Niedermeier, R., and Wernicke, S. Parameter-
ized complexity of vertex cover variants. Theory Com-
put. Syst., 41(3):501–520, 2007. URL https://doi.
org/10.1007/s00224-007-1309-3.

Harviainen, J., Sommer, F., Sorge, M., and Szeider, S. Opti-
mal decision tree pruning revisited: Algorithms and com-
plexity. CoRR, abs/2503.03576, 2025a. URL https:
//doi.org/10.48550/arXiv.2503.03576.

Harviainen, J., Sommer, F., Sorge, M., and Szeider, S. Op-
timal decision tree pruning revisited: Algorithms and
complexity (associated software), 2025b. URL https:
//doi.org/10.5281/zenodo.15534096.

Holzinger, A., Saranti, A., Molnar, C., Biecek, P., and
Samek, W. Explainable AI methods - A brief overview. In
Proceedings of the Workshop xxAI - Beyond Explainable
AI Held in Conjunction with the International Confer-
ence on Machine Learning (xxAI@ICML 20), volume
13200 of Lecture Notes in Computer Science, pp. 13–
38. Springer, 2020. URL https://doi.org/10.
1007/978-3-031-04083-2_2.

Impagliazzo, R. and Paturi, R. On the complexity of k-SAT.
J. Comput. Syst. Sci., 62(2):367–375, 2001. URL https:
//doi.org/10.1006/jcss.2000.1727.

10

https://doi.org/10.1016/0004-3702(95)00060-7
https://doi.org/10.1016/0004-3702(95)00060-7
https://doi.org/10.1007/978-3-642-04244-7_16
https://doi.org/10.1007/978-3-642-04244-7_16
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://proceedings.neurips.cc/paper/2018/hash/185c29dc24325934ee377cfda20e414c-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/185c29dc24325934ee377cfda20e414c-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/185c29dc24325934ee377cfda20e414c-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/185c29dc24325934ee377cfda20e414c-Abstract.html
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1016/0304-3975(94)00097-3
https://doi.org/10.1016/0304-3975(94)00097-3
https://doi.org/10.1007/978-1-4471-5559-1
https://doi.org/10.1007/978-1-4471-5559-1
https://doi.org/10.24963/ijcai.2023/355
https://doi.org/10.24963/ijcai.2023/355
https://doi.org/10.1007/3-540-29953-X
https://doi.org/10.1007/3-540-29953-X
https://doi.org/10.1007/978-0-387-09823-4_66
https://doi.org/10.1007/978-0-387-09823-4_66
https://doi.org/10.1609/aaai.v38i11.29098
https://doi.org/10.1609/aaai.v38i11.29098
https://doi.org/10.1016/S0004-3702(02)00182-0
https://doi.org/10.1016/S0004-3702(02)00182-0
https://doi.org/10.1007/s00224-007-1309-3
https://doi.org/10.1007/s00224-007-1309-3
https://doi.org/10.48550/arXiv.2503.03576
https://doi.org/10.48550/arXiv.2503.03576
https://doi.org/10.5281/zenodo.15534096
https://doi.org/10.5281/zenodo.15534096
https://doi.org/10.1007/978-3-031-04083-2_2
https://doi.org/10.1007/978-3-031-04083-2_2
https://doi.org/10.1006/jcss.2000.1727
https://doi.org/10.1006/jcss.2000.1727

Optimal Decision Tree Pruning Revisited: Algorithms and Complexity

Impagliazzo, R., Paturi, R., and Zane, F. Which problems
have strongly exponential complexity? J. Comput. Syst.
Sci., 63(4):512–530, 2001. URL https://doi.org/
10.1006/jcss.2001.1774.

Janota, M. and Morgado, A. SAT-based encodings for
optimal decision trees with explicit paths. In Proceed-
ings of the 23rd International Conference on Theory and
Applications of Satisfiability Testing (SAT ’20), volume
12178 of Lecture Notes in Computer Science, pp. 501–
518. Springer, 2020. URL https://doi.org/10.
1007/978-3-030-51825-7_35.

Johnson, D. S. The NP-completeness column: An ongoing
guide. J. Algorithms, 8(3):438–448, 1987. URL
https://doi.org/10.1016/0196-6774(87)
90021-6.

Kobourov, S. G., Löffler, M., Montecchiani, F., Pilipczuk,
M., Rutter, I., Seidel, R., Sorge, M., and Wulms,
J. The influence of dimensions on the complex-
ity of computing decision trees. Artif. Intell., 343:
104322, 2025. URL https://doi.org/10.1016/
j.artint.2025.104322.

Komusiewicz, C., Kunz, P., Sommer, F., and Sorge,
M. On computing optimal tree ensembles. In
Proceedings of the International Conference on Ma-
chine Learning (ICML ’23), volume 202 of Proceed-
ings of Machine Learning Research, pp. 17364–17374.
PMLR, 2023a. URL https://proceedings.mlr.
press/v202/komusiewicz23a.html.

Komusiewicz, C., Kunz, P., Sommer, F., and Sorge,
M. On computing optimal tree ensembles. CoRR,
abs/2306.04423, 2023b. URL https://doi.org/
10.48550/arXiv.2306.04423.

Komusiewicz, C., Schidler, A., Sommer, F., Sorge, M., and
Staus, L. P. Learning minimum-size BDDs: Towards
efficient exact algorithms. In Proceedings of the 42th In-
ternational Conference on Machine Learning (ICML ’25),
2025. To appear.

Larose, D. T. Discovering knowledge in data: an intro-
duction to data mining, volume 4. John Wiley & Sons,
2014. URL https://onlinelibrary.wiley.
com/doi/book/10.1002/9781118874059.

McTavish, H., Zhong, C., Achermann, R., Karimalis, I.,
Chen, J., Rudin, C., and Seltzer, M. I. Fast sparse decision
tree optimization via reference ensembles. In Proceedings
of the 36th AAAI Conference on Artificial Intelligence
(AAAI ’22), pp. 9604–9613, 2022. URL https://doi.
org/10.1609/aaai.v36i9.21194.

Mingers, J. An empirical comparison of pruning meth-
ods for decision tree induction. Mach. Learn., 4:227–
243, 1989. URL https://doi.org/10.1023/A:
1022604100933.

Murthy, S. K. Automatic construction of decision trees
from data: A multi-disciplinary survey. Data Min.
Knowl. Discov., 2(4):345–389, 1998. URL https:
//doi.org/10.1023/A:1009744630224.

Narodytska, N., Ignatiev, A., Pereira, F., and Marques-
Silva, J. Learning optimal decision trees with SAT.
In Proceedings of the 27th International Joint Confer-
ence on Artificial Intelligence (IJCAI ’18), pp. 1362–
1368. ijcai.org, 2018. URL https://doi.org/10.
24963/ijcai.2018/189.

Niedermeier, R. Invitation to Fixed-Parameter
Algorithms. Oxford University Press, 2006.
URL https://doi.org/10.1093/ACPROF:
OSO/9780198566076.001.0001.

Ordyniak, S. and Szeider, S. Parameterized complexity of
small decision tree learning. In Proceedings of the 35th
AAAI Conference on Artificial Intelligence (AAAI ’21),
pp. 6454–6462. AAAI Press, 2021. URL https://
doi.org/10.1609/aaai.v35i7.16800.

Ordyniak, S., Paesani, G., Rychlicki, M., and Szeider,
S. A general theoretical framework for learning small-
est interpretable models. In Proceedings of the 38th
AAAI Conference on Artificial Intelligence (AAAI ’24),
pp. 10662–10669. AAAI Press, 2024. URL https:
//doi.org/10.1609/aaai.v38i9.28937.

Quinlan, J. R. Induction of decision trees. Machine Learn-
ing, 1(1):81–106, 1986. URL https://doi.org/
10.1023/A:1022643204877.

Quinlan, J. R. C4.5: Programs for Machine Learning.
Morgan Kaufmann, 1993.

Rokach, L. Decision forest: Twenty years of research. Inf.
Fusion, 27:111–125, 2016. URL https://doi.org/
10.1016/j.inffus.2015.06.005.

Romano, J. D., Le, T. T., Cava, W. G. L., Gregg, J. T.,
Goldberg, D. J., Chakraborty, P., Ray, N. L., Himmel-
stein, D. S., Fu, W., and Moore, J. H. PMLB v1.0:
an open-source dataset collection for benchmarking ma-
chine learning methods. Bioinformatics, 38(3):878–
880, 2022. URL https://doi.org/10.1093/
bioinformatics/btab727.

Rudin, C. Stop explaining black box machine learn-
ing models for high stakes decisions and use inter-
pretable models instead. Nat. Mach. Intell., 1(5):206–
215, 2019. URL https://doi.org/10.1038/
s42256-019-0048-x.

11

https://doi.org/10.1006/jcss.2001.1774
https://doi.org/10.1006/jcss.2001.1774
https://doi.org/10.1007/978-3-030-51825-7_35
https://doi.org/10.1007/978-3-030-51825-7_35
https://doi.org/10.1016/0196-6774(87)90021-6
https://doi.org/10.1016/0196-6774(87)90021-6
https://doi.org/10.1016/j.artint.2025.104322
https://doi.org/10.1016/j.artint.2025.104322
https://proceedings.mlr.press/v202/komusiewicz23a.html
https://proceedings.mlr.press/v202/komusiewicz23a.html
https://doi.org/10.48550/arXiv.2306.04423
https://doi.org/10.48550/arXiv.2306.04423
https://onlinelibrary.wiley.com/doi/book/10.1002/9781118874059
https://onlinelibrary.wiley.com/doi/book/10.1002/9781118874059
https://doi.org/10.1609/aaai.v36i9.21194
https://doi.org/10.1609/aaai.v36i9.21194
https://doi.org/10.1023/A:1022604100933
https://doi.org/10.1023/A:1022604100933
https://doi.org/10.1023/A:1009744630224
https://doi.org/10.1023/A:1009744630224
https://doi.org/10.24963/ijcai.2018/189
https://doi.org/10.24963/ijcai.2018/189
https://doi.org/10.1093/ACPROF:OSO/9780198566076.001.0001
https://doi.org/10.1093/ACPROF:OSO/9780198566076.001.0001
https://doi.org/10.1609/aaai.v35i7.16800
https://doi.org/10.1609/aaai.v35i7.16800
https://doi.org/10.1609/aaai.v38i9.28937
https://doi.org/10.1609/aaai.v38i9.28937
https://doi.org/10.1023/A:1022643204877
https://doi.org/10.1023/A:1022643204877
https://doi.org/10.1016/j.inffus.2015.06.005
https://doi.org/10.1016/j.inffus.2015.06.005
https://doi.org/10.1093/bioinformatics/btab727
https://doi.org/10.1093/bioinformatics/btab727
https://doi.org/10.1038/s42256-019-0048-x
https://doi.org/10.1038/s42256-019-0048-x

Optimal Decision Tree Pruning Revisited: Algorithms and Complexity

Saremi, M. and Yaghmaee, F. Improving evolutionary de-
cision tree induction with multi-interval discretization.
Comput. Intell., 34(2):495–514, 2018. doi: 10.1111/
COIN.12153.

Schidler, A. and Szeider, S. SAT-based decision tree learn-
ing for large data sets. J. Artif. Intell. Res., 80:875–918,
2024. URL https://doi.org/10.1613/jair.
1.15956.

Sleator, D. D. and Tarjan, R. E. A data structure
for dynamic trees. J. Comput. Syst. Sci., 26(3):362–
391, 1983. URL https://doi.org/10.1016/
0022-0000(83)90006-5.

Staus, L. P., Komusiewicz, C., Sommer, F., and Sorge, M.
Witty: An efficient solver for computing minimum-size
decision trees. In Proceedings of the 39th Conference
on Artificial Intelligence (AAAI ’25), pp. 20584–20591.
AAAI Press, 2025. URL https://doi.org/10.
1609/aaai.v39i19.34268.

Witten, I. H., Frank, E., and Hall, M. A. Data mining: practi-
cal machine learning tools and techniques. Morgan Kauf-
mann, Elsevier, 3rd edition edition, 2011. URL https:
//www.worldcat.org/oclc/262433473.

12

https://doi.org/10.1613/jair.1.15956
https://doi.org/10.1613/jair.1.15956
https://doi.org/10.1016/0022-0000(83)90006-5
https://doi.org/10.1016/0022-0000(83)90006-5
https://doi.org/10.1609/aaai.v39i19.34268
https://doi.org/10.1609/aaai.v39i19.34268
https://www.worldcat.org/oclc/262433473
https://www.worldcat.org/oclc/262433473

Optimal Decision Tree Pruning Revisited: Algorithms and Complexity

Appendix

A. Additional Material for Section 3
A.1. Proof of Lemma 3.2

Proof. We say that an edge (v, u) from v to u in a decision
tree T is heavy if the number of nodes in the subtree rooted
at v is less than twice the number of nodes that the subtree
rooted at u has. Otherwise, edge (v, u) is light. Now, any
root-to-leaf path has at most O(log s) light edges, and the
graph edge-induced by the heavy edges is a disjoint union
of paths (Sleator & Tarjan, 1983). Constructing this heavy–
light decomposition takes O(s) time.

Now, we compute for each cut v and feature the tightest
lower and upper bounds with respect to that feature on the
path from the root to v. In other words, we precompute a
table for characterizing the interval of values on a feature
which an example can potentially have if it ends up at that
cut. This takes O(ds) time.

Suppose now that we want to classify example e. Since
the edge-induced subgraph of the heavy edges is a disjoint
union of paths, every cut belongs to a unique heavy path,
possibly of length 0. Now, let r be the root ot T and let Pr

be the unique heavy path containing r. Next, we compute
how far e goes on the heavy path Pr by binary search: e
can only end up at a cut of Pr if the value of each feature
falls in the interval of possible values we precomputed for
all cuts. Testing this for a single cut takes O(d) time and the
binary search thus takes O(d log s) time. Then, the example
goes trough a light edge to another heavy path Pss, and
we continue with a binary search on that heavy path Ps,
repeating the process until we end up at a leaf. Since T
contains at most O(log s) light edges, we conclude that on
every root-to-leaf-path of T there are at mostO(log s) heavy
paths on any root-to-leaf path of T . Thus, this process takes
O(d log2 s) time in total.

A.2. Proof of Theorem 3.4

Proof. We reduce from the NP-hard κ-BICLIQUE prob-
lem (Johnson, 1987). The input is a bipartite graph G
with partite sets P = {p1, . . . , pN} and Q = {q1, . . . , qN},
M edges, and an integer κ such that G has no isolated ver-
tices. The task is to decide whether G contains a complete
bipartite subgraph with κ vertices on each side.

Outline: The idea is to create an ensemble consisting of
two trees, one tree for each partite set. Each of these trees
consists of a long root-to-leaf path which cannot be pruned
without violating the error bound, denoted as a required
path. To the unspecified children of the required path we
attach a further cut which corresponds to a vertex selection.
Furthermore, we create edge examples e which can only
be correctly classified if both cuts corresponding to the

endpoints of e are preserved. Parameter ℓ is chosen such
that we can only preserve 2 ·κ cuts, Furthermore, the desired
error bound forces us to select exactly κ cuts per tree which
correspond to a κ-biclique.

Construction: Description of the data set: We set blue to
the dominant label, that is, if some example e is classified
as blue by one tree in the ensemble and as red by the other
tree in the ensemble, then e is classified as blue. A visual-
ization is shown in Figure 6. Let S ∈ {P,Q} be any partite
set.

• For each edge {pi, qj} ∈ E(G) we add an edge ex-
ample e(pi, qj). To all these examples we assign la-
bel red.

• For each i ∈ [N] and each partite set S, we add a
set Bi

S of separation examples. Each of these sets
consists of M examples having the same value in each
feature. To all these examples we assign label blue.

• For each partite set S, we add a set BS of blue forcing
examples. Both of these sets contain exactly M ex-
amples and all examples in one of these sets have the
same value in each feature.

• For each partite set S, we add a set RS of red enforcing
examples. Both of these sets contain exactly 4 · N ·
M examples and all examples in one of these sets have
the same value in each feature.

We add three features dP , dQ, and dE . It remains to describe
the coordinates of all examples in these features.

• For each edge example e = e(pi, qj) we set e[dP] = i,
e[dQ] = j, and e[dE] = 1.

• For each separation example e ∈ Bi
P we set e[dP] = i,

and e[dQ] = 0 = e[dE]. Similarly, for each separation
example e ∈ Bi

Q we set e[dQ] = i, and e[dP] = 0 =
e[dE].

• For each forcing example e ∈ BP we set e[dP] =
N + 1, e[dQ] = 0, and e[dE] = 1. Similarly, for each
forcing example e ∈ BQ we set e[dP] = 0, e[dQ] =
N + 1, and e[dE] = 1.

• For each enforcing example e ∈ RP we set e[dP] =
N + 1 and e[dQ] = 0 = e[dE]. Similarly, for each
enforcing example e ∈ RQ we set e[dQ] = N + 1 and
e[dP] = 0 = e[dE].

Description of the input ensemble T : The ensemble T
consists of two trees TP and TQ. We only describe TP . To
obtain TQ, each cut in dP is replaced by the identical cut
in dQ, that is, dP ≤ x is replaced by dQ ≤ x.

13

Optimal Decision Tree Pruning Revisited: Algorithms and Complexity

a)

p1

p2

p3

P

q1

q2

q3

Q

b)

t
example dP dQ dE

e(pi, qj) i j 1
RP N + 1 0 0
RQ 0 N + 1 0

BP N + 1 0 1
BQ 0 N + 1 1
Bi

P i 0 0
Bi

Q 0 i 0

c)

TP

dP ≤ 0

dP ≤ 1

dP ≤ 2

dP ≤ 3

dE ≤ 0

red

dE ≤ 0

dE ≤ 0

dE ≤ 0

red blueredblue

redblue

redblue

TQ

dQ ≤ 0

dQ ≤ 1

dQ ≤ 2

dQ ≤ 3

dE ≤ 0

red

dE ≤ 0

dE ≤ 0

dE ≤ 0

red blueredblue

redblue

redblue

Figure 6. A visualization of the reduction from the proof of Theorem 3.4. a) shows a κ-BICLIQUE instance; a κ-biclique is depicted in
brown. b) shows the corresponding classification instance. c) shows both trees TP and TQ of the input ensemble T . The brown cuts
correspond to cuts which are preserved in the solution ensemble T ′.

One root-to-leaf path of TP consists of the cuts dP ≤
0, dP ≤ 1, . . . , dP ≤ N, dE ≤ 0. We call this the re-
quired path of TP . The left child of the last cut is a red leaf
and its right child is a blue leaf. Furthermore, the left child
of the first cut is a red leaf. The left child of each remaining
cut dP ≤ i for each i ∈ [N] is the cut dE ≤ 0 and its left
child is a blue leaf and its right child is a red leaf. This cut is
referred to as the pi-cut. In TQ these cuts are denoted as the
qi-cuts. Since blue is the dominant label, in T each example
is correctly classified. Finally, we set ℓ := 2 · (N +2)+2 ·κ
and t := M − κ2.

Clearly, this corresponding instance of DTREP can be con-
structed in polynomial time. Furthermore, observe that both
trees TP and TQ of the ensemble are reasonable since G
contains no isolated vertices.

Correctness: We show that G has a κ-biclique if and only
if T can be pruned by replacement operations such that the
resulting ensemble T ′ has exactly ℓ inner nodes and makes
at most t errors.

(⇒) Let P ′ ⊆ P and Q′ ⊆ Q be a κ-biclique (for example
see part a) of Figure 6). To obtain T ′, we preserve the
required paths of TP and TQ. Furthermore, for each pi ∈
P ′ we also preserve the pi-cut, that is, the cut dE ≤ 0
which is the left child of the cut dP ≤ i. Analogously, for
each qi ∈ Q′ we also preserve the qi-cut. In other words,
we prune exactly N − κ many pi-cuts (where pi /∈ P ′)
and exactly N − κ many qj cuts (where qj /∈ Q′). For an
example, see part c) of Figure 6. Furthermore, observe that
in both the most-frequent tree replacement and the most-
frequent ensemble replacement, the label of each new leaf
is blue. By T ′

P and T ′
Q we denote the pruned trees.

Observe that T ′ contains exactly 2·(N+2)+2·κ = ℓ cuts. It
remains to verify that T ′ makes at most t = M − κ2 errors.

Since the classification path of each forcing and enforcing
example in T ′

P and T ′
Q stays the same as in TP and TQ,

respectively, all these examples are still correctly classified.

Furthermore, each separation example e ∈ Bi
P is classified

as blue in T ′
P : either its classification path is not changed

or the last cut dE < 0 which is a pi-cut for some pi /∈ P ′ is
pruned and it is replaced by a blue leaf. Since blue is the
dominant label, e is correctly classified by T ′. An analog
argument applies for each separation example e ∈ Bi

Q.

To verify the desired error bound it remains to show that at
least κ2 edge examples are correctly classified by T ′. More
precisely, we show that each edge example corresponding
to an edge {pi, qj} in the κ-biclique is correctly classified
by T ′. Observe that for each pi ∈ P ′ the classification path
of all edge examples e(pi, qz), where qz is a neighbor of ai,
in T ′ is identical to the one in T . Thus, e(pi, qz) is classified
as red in T ′

P . An analog argument applies for qi ∈ Q′.
Thus, each edge example corresponding to an edge of the κ-
biclique is correctly classified by T ′. Since any κ-biclique
contains exactly κ2 edges the statement follows.

(⇐) Let T ′ with trees T ′
P and T ′

Q be a solution for the
raising problem, that is, T ′ has ℓ = 2 · (N +2)+2 ·κ inner
nodes and makes at most M = κ2 errors.

Outline: First, we show that in both trees the required paths
need to be preserved to fulfill the error bound. Second, we
show that any edge example can only be correctly classified
by T ′ if its classification path in T ′

P and T ′
Q is identical

to the one in TP and TQ, respectively. Finally, we verify
that all correctly classified edge examples correspond to a
κ-biclique.

Step 1: If the last cut dE ≤ 0 of the required path of TP is
pruned, then the classification paths of all forcing examples
in BP and all enforcing examples in RP (independent of
all other pruning operations) is identical in T ′. Since both
sets have size at least M , T ′ would have at least M errors, a
contradiction. Since pruning any ancestor of this cut implies
also pruning this cut, the entire required path of TP is not
pruned in T ′

P . Analogously, we can show that the required
path of TQ cannot be pruned.

14

Optimal Decision Tree Pruning Revisited: Algorithms and Complexity

Step 2: Step 1 implies that only pi-cuts of TP and qi-cuts
of TQ can be pruned. Furthermore, observe that independent
of whether the most-frequent tree replacement or the most-
frequent ensemble replacement is used, each new leaf which
replaces one of these cuts has label blue. Thus, any edge
example e = e(pi, qj) where pi /∈ P ′ ends up in a blue leaf
in T ′

P . Since blue is the dominant label, e is misclassified
as blue by T ′, independent of the classification result of e
in T ′

Q. An analogous argument holds for qj /∈ Q′ and T ′
Q.

Thus, e = e(pi, qj) is correctly classified if and only if pi ∈
P ′ and qj ∈ Q′.

Step 3: By the definition of t, T ′ has to classify at least
κ2 edge examples correctly. Assume that x many pi-cuts
of TP are not pruned and that z many qi cuts of TQ are not
pruned. By P ′ and Q′ we denote the vertices of P and Q
which correspond to the not pruned pi-cuts and qi-cuts,
respectively. Note that x+ z = 2 · κ. Since there is at most
one edge example for each pair of vertices from P and Q,
T ′ can classify at most x ·z edge examples correctly. Hence,
we obtain that x = κ = z. Furthermore, for each pi ∈ P ′

and each qj ∈ Q′ graph G has to contain the edge {pi, qj}
to fulfill the error bound t. Thus, (P ′, Q′) is a κ-biclique
in G.

B. Additional Material for Section 4
B.1. Missing material from Theorem 4.1

Now we show that the right-hand side is smaller than or
equal to the left-hand side. Consider a tree T ′

u obtained
from Tu corresponding to Q[u, (ℓi, ri)i∈[d], k

′ − sw − 1].
Note that pruning v and the subtree Tw from Tv, and then
performing the raising operations in T ′

u yields a tree T ′
v that

misclassifies exactly Q[u, (ℓi, ri)i∈[d], k
′ − sw − 1] exam-

ples of E[(ℓi, ri)i∈[d]]. Furthermore, at least k′ nodes have
been pruned from Tv to obtain T ′

v. Hence the right-hand
side is smaller or equal to Q[u, (ℓi, ri)i∈[d], k

′ − sw − 1].
By an analogous argument for Tu the right-hand side is
also smaller or equal to Q[w, (ℓi, ri)i∈[d], k

′ − su − 1]. Let
t′′ = Q[u, (ℓi, r

u
i)i∈[d], k

′′] + Q[w, (ℓwi , ri)i∈[d], k
′ − k′′]

wherein k′′ minimizes the sum. Consider the trees T ′
u and

T ′
w corresponding to t′′, obtained by raising operations from

Tu and Tw. Perform the same operations as in T ′
u and T ′

w in
Tv to obtain T ′

v . Note that v is not pruned. Therefore, the ex-
amples of E[(ℓi, ri)i∈[d]] classified in the T ′

u-subtree of T ′
v

are exactly E[(ℓi, r
u
i)i∈[d]] and analogously for T ′

w. Thus,
the number of misclassifications in T ′

v on E[(ℓi, ri)i∈[d]] is
exactly t′′. Hence, the right-hand side of the recurrence is
smaller or equal to the left-hand side.

B.2. Proof of Theorem 4.2

Proof Sketch. We use the almost the same definition of the
table Q as in the proof of Theorem 4.1: Instead of defining

the table Q[v, (ℓi, ri)i∈[d], k
′] for all sequences (ℓi, ri)i∈[d]

of thresholds with ℓi, ri ∈ Thr(i), instead we restrict these
sequences as follows: First, we vary only the thresholds
for the features that occur on the path P from the root to v
and for all remaining features i we set the thresholds to the
fixed maximum and minimum value, respectively. Second,
in each feature i ∈ [d] in which we vary thresholds, we
consider not all threshold values ℓi, ri ∈ Thr(i), but only
those at most DT values that occur on cuts in feature i on
P and the minimum and maximum value in feature i. To
see that the recurrence works in the same way, note that, if
the left-hand side is so restricted, then all table entries that
we refer to on the right-hand side are also restricted in this
way for their corresponding tree nodes. Thus we refer only
to table entries that have previously been computed.

B.3. Proof of Lemma 4.4

Proof. Observe that if an example is misclassified, it will
remain misclassified unless the leaf to which it ends up
gets pruned away. Consequently, to achieve zero errors, we
have to repeatedly prune any leaf containing a misclassified
example while such leaves remain. If the whole tree gets
pruned, there is thus no solution. During the execution of the
algorithm, each example can pass each edge of the decision
tree twice, resulting in O(ns) total work.

B.4. Proof of Theorem 4.5

Proof. Assume a solution exists. If we prune k cuts from
the set of pruned cuts and remove the misclassified exam-
ples of the solution, then the algorithm from Lemma 4.4
finds a solution to this reduced instance with k = t = 0.
Conversely, if no solution exists, then no reduced instance
does has a solution either. Iterating over all subsets of cuts
of size k and subsets of examples of size t results in the
desired time complexity.

B.5. Proof of Theorem 4.6

Proof. We prove the theorem by exploiting the witness tree
algorithm of Komusiewicz et al. (2023b, Section 6.3). They
present a method for enumerating decision trees with at
most ℓ cuts with at most t errors in O((6δmaxDℓ(t+ 1))ℓ ·
ℓn) time. Roughly speaking, they utilize the concept of
a witness tree where a decision tree is associated with a
function that associates one example ending up at each leaf
as the witness of that leaf. The algorithm starts with a
decision tree with only a single leaf node. If there are more
than t misclassifications, they arbitrarily pick a subset of
t+ 1 errors. Since at least one of them has to be correctly
classified, with branching, they obtain an element e which
needs to be correctly classified. Let v be the current leaf
of e. Now, a new cut is added to the tree that separates e
from the witness of v. By exploiting the fact that e and the

15

Optimal Decision Tree Pruning Revisited: Algorithms and Complexity

witness of v differ in at most δmax features and each feature
has at most D thresholds, there are only δ ·D possibilities
for the cut. This process is then repeated at most ℓ times.
For more details, we refer the reader to the original work
(Komusiewicz et al., 2023b).

For each tree P enumerated by the algorithm, we need to test
whether P can be obtained from the input decision tree T
by pruning operations. If the roots of T and P are identical,
then we keep the root of T and recursively continue to
find Pleft, the left subtree of P in Tleft, the left subtree of
T , and perform this analogously with the right subtree. If
the roots are not identical, then we return the logical OR
of finding P in the left subtree or the right subtree of T .
This adds an additional factor of O(ℓs) to the running time,
making it O((6δmaxDℓ(t+ 1))ℓ · ℓ2ns) in total.

Correctness: If a solution exists, then there is a decision
tree P with (at most) ℓ cuts that makes at most t errors.
One of the decision trees enumerated by the witness tree
algorithm of Komusiewicz et al. (2023b) is thus P . If no
solution exists, the enumeration algorithm may still list
some decision trees on (at most) ℓ cuts that make at most
t errors, but none of them can be obtained from the input
decision tree T by pruning operations.

Therefore, we need to show that our algorithm for testing
whether P can be obtained from T works correctly. We
prove this by induction. The base case of s = 1 is trivial.
Suppose now the correctness for all s < s′; we next show
the correctness for s = s′.

If P can be obtained from T by pruning operations, then T
has a cut that is equal to the root of P . If T does not have
a cut equal to the root of P , then the algorithm correctly
outputs that P cannot be obtained from T . Assume now that
T has such a cut. If it is the root of T , then no other cut of T
can equal the root of P because of reasonability. Therefore,
we cannot prune the root, and the problem reduces to testing
whether left (right) subtree of P can be obtained from the
left (right) subtree of T by pruning operations. By the
induction assumption, the algorithm performs this correctly.

Now assume instead that T has such a cut but it is not
the root of T . Then, we need to prune the root of T and
consequently also one of its subtrees. If P can be obtained
from the left subtree, we can prune the right subtree, and
vice versa. For both subtrees, the algorithm works correctly
by the induction assumption, and thus the logical OR also
outputs the correct answer.

C. Additional Material for Section 5
C.1. Adaption to Reasonable Trees for Theorem 5.1

It remains to show the statement for reasonable trees: First,
we extend the classification instance. We add a new binary

v1 ≤ 0

v2 ≤ 0

v3 ≤ 0

v4 ≤ 0

vn ≤ 0

blue

blue

blue

blue

bluered

v1 ≤ 0

v2 ≤ 0

v3 ≤ 0

v4 ≤ 0

vn ≤ 0

d∗ ≤ 0

blue

blue

blue

blue

blue

bluered

Figure 7. Left: The initial decision tree used for Theorems 5.1
to 5.3 and 5.5. Right: The initial reasonable tree used for Theo-
rems 5.1 to 5.3 and 5.5.

feature d∗ and we add one new blue example ev per vertex v.
Example ev has value 1 in the feature corresponding to
vertex v and in the new feature d∗; in all other features
(corresponding to any other vertex) ev has value 0. Also,
we add a new blue example e∗ for which e∗[v] = 0 for
all v ∈ V (G) and e∗[d∗] = 1 Furthermore, all existing
examples have value 0 in d∗.

Second, we extend the tree T , that is, we add a new cut d∗ ≤
0 on the edge leading to the unique red leaf. More precisely,
the left child of this node is the unique red leaf and the
right child is a blue leaf, see Figure 7. Note that we still
have δmax = 2, D = 2, and t = 0.

For the correctness, observe that the new cut d∗ ≤ 0 can-
not be pruned because of the new blue example e∗. The
remaining correctness proof is completely analog.

C.2. Proof of Theorem 5.2

Proof. We use the same initial reasonable decision tree as in
Theorem 5.1, but instead reduce from κ-PARTIAL VERTEX
COVER (Guo et al., 2007), where we look for a subset of
κ vertices that covers at least t′ edges of G. Unless the
ETH fails, κ-PARTIAL VERTEX COVER cannot be solved
in f(κ) · no(κ) time (Cygan et al., 2015). We let ℓ = κ,
t = |E(G)|− t′ and create the examples for edges as before.
However, we copy the red example t+ 1 times to prevent
pruning the red leaf. Now, if the remaining cuts after prun-
ing correctly classify at least t′ blue examples, then at most
t blue examples are misclassified. Additionally, we copy
the example e∗ also t+ 1 times, to avoid pruning the newly
introduced cut d∗ ≤ 0 to make the tree reasonable. Now,
the ETH bound follows since ℓ = κ.

C.3. Proof of Theorem 5.3

Proof. We use the same initial reasonable decision tree as in
Theorem 5.1, but instead reduce from the W[2]-hard prob-

16

Optimal Decision Tree Pruning Revisited: Algorithms and Complexity

lem κ-HITTING SET (Cygan et al., 2015), where we look
for a subset of κ elements from the universe U that intersects
with all subsets given in the input. Unless the ETH fails, κ-
HITTING SET cannot be solved in f(κ) · no(κ) time (Cygan
et al., 2015). We let ℓ = κ and t = 0. For the examples,
we create one blue example e for each subset S ⊆ U in the
input such that e[u] = 1 if u ∈ S and otherwise e[u] = 0
for all u ∈ U . Additionally, we create one red example e
with e[u] = 0 for all u ∈ U . Now, the ETH bound follows
since ℓ = κ.

C.4. Proof of Theorem 5.4

Proof. The training data set (E, λ) is shown in part a) of
Figure 8. More precisely, (E, λ) consists of exactly k fea-
tures and has exactly two red examples and 2 · (k − 1)
blue examples. The first red example has value 0 is each
feature and the second red example has value 0 in each fea-
tures, except feature d1 where it has value 1. Furthermore,
for each j ∈ [2, k] we have a blue example with value 0 in
each feature except feature dj where the example has value 1
and another blue example with value 0 in each feature ex-
cept features d1 and dj where the example has value 1. The
initial decision tree is shown in part b) of Figure 8. Note
that this tree is reasonable.

On the one hand, if we perform exactly k raising operations,
we can prune the root of T and wither its entire left or right
subtree. The resulting decision tree has no errors. On the
other hand, if we perform j raising operations for some 1 ≤
j < k, then we cannot prune the root of T . Without loss
of generality, we assume that at least one raising operation
is done in the left subtree of the root of T . Observe that
the last cut dk ≤ 0 cannot be pruned since then a red
example ends up in a blue leaf. Similarly, no cut di ≤ 0
for some 2 ≤ i ≤ k − 1 cannot be pruned since then a
blue example ends up in the red leaf. Consequently, exactly
k raising operations are required.

C.5. Proof of Theorem 5.5

Proof. We use the same initial reasonable decision tree as in
Theorem 5.1 and reduce from κ-INDEPENDENT SET with
an instance graph G. The blue examples for the edges are
constructed similarly to the previous proofs but are dupli-
cated |V (G)| times. We create |V (G)|2 copies of the red
example, and finally, construct one red example e for each
feature v such that e[v] is 1 and other entries are zeros. By
the construction, the initial decision tree has |V (G)| mis-
classifications.

For the instance of DTRAIS≥, set t = |V (G)| − κ. As a
consequence, we have to prune at least κ cuts to decrease
the number of errors to t. On the other hand, if cuts cor-
responding to both endpoints of an edge are pruned, we
would create |V (G)| new misclassifications, so the pruned

subset of inner nodes has to be an independent set. Addi-
tionally, we copy the example e∗ also t+ 1 times, to avoid
pruning the newly introduced cut d∗ ≤ 0 to make the tree
reasonable.

C.6. Proof of Theorem 5.6

Proof. We only show he statement for DTRAIS=. The
statement for DTRAIS≥ then follows by setting the lower
bound k of the number of pruned inner nodes to the number
of inner nodes of the input tree minus ℓ (these values are
specified later).

We reduce from MULTICOLORED CLIQUE where each color
class has the same number p of vertices. Formally, the input
is a graph G, and κ ∈ N, where the vertex set V (G) of
N vertices is partitioned into V1, . . . , Vκ and |Vi| = p for
each i ∈ [κ]. More precisely, Vi := {v1i , v2i , . . . , v

p
i }. The

question is whether G has contains a clique consisting of
exactly one vertex per class Vi. MULTICOLORED CLIQUE
is W[1]-hard parameterized by κ and cannot be solved in
f(κ) · no(κ) time unless the ETH fails (Cygan et al., 2015).

The property that all color classes have the same number of
vertices is only used to simplify the proof.

Outline: The idea is to create two features d<i and d>i
per color class i such that in the pruned tree we need to
preserve exactly one cut in each feature to fulfill the desired
error bound. We achieve the property of exactly one cut
per feature d′ by adding a huge number of blue forcing
examples and red enforcing examples which can only be
distinguished in d′. The two cuts in features d<i and d>i
force us to select exactly one vertex vai

i of this color class.
For each edge we create an edge example. If vertex vai

i

is selected, then all edge examples corresponding to edges
having an endpoint in color class i which is not vi will
then be misclassified. Thus, we can only correctly classify
an edge example if we select both endpoints of that edge.
Furthermore, we ensure that only edge examples may be
misclassified without violating the error bound. Hence, by
setting t := m −

(
κ
2

)
, we ensure that we need to select a

multicolored clique.

Construction: We first show the statement for non-
reasonable decision trees and afterwards we argue how the
construction has to be adapted such that the input decision
tree is reasonable.

Description of the data set: A visualization is shown in
part b) of Figure 9.

• For each edge {vai , vbj} ∈ E(G) we add an edge ex-
ample e(vai , v

b
j). To all these examples we assign la-

bel red.

• For each i ∈ [κ] and each a ∈ [p − 1] we add a

17

Optimal Decision Tree Pruning Revisited: Algorithms and Complexity

a)

t
label d1 d2 d3 . . . dk

blue 0 1 0 . . . 0
blue 0 0 1 . . . 0

...
blue 0 0 0 . . . 1
red 0 0 0 . . . 0

...
blue 1 1 0 . . . 0
blue 1 0 1 . . . 0

...
blue 1 0 0 . . . 1
red 1 0 0 . . . 0

b)

t
d1 ≥ 1

d2 ≥ 1

d3 ≥ 1

d4 ≥ 1

dk ≥ 1

blue

blue

blue

blue red

d2 ≥ 1

d3 ≥ 1

d4 ≥ 1

dk ≥ 1

blue

blue

blue

blue red

Figure 8. An instance for which pruning fewer than k cuts leads to misclassifications, with examples described by a) and the initial
decision tree by b).

a)

v11

v21

V1

v12

v22

V2

v13 v23 V3

b)

d<1 : B<
1 E(v11) B(1, 1) E(v21) R Rest<1

d>1 : Rest>1 R E(v11) B(1, 1) E(v21) B>
1

d<2 : B<
2 E(v12) B(2, 1) E(v22) R Rest<2

d>2 : Rest>2 R E(v12) B(2, 1) E(v22) B>
2

d<3 : B<
3 E(v13) B(3, 1) E(v23) R Rest<3

d>3 : Rest>3 R E(v13) B(3, 1) E(v23) B>
3

0 1 1.5 2 3

|
|
|

|
|
|

|
|
|

|
|
|

c) d<1 < 1

d<1 < 2

d>1 > 2

d>1 > 1

d>3 > 1

blue

blue

blue

blue

blue red

d) d<1 < 1

d>1 > 1

d<2 < 1

d>2 > 1

d<3 < 2

d>3 > 2

blue

blue

blue

blue

blue

blue red

Figure 9. A visualization of the reduction from the proof of Theorem 5.6. a) shows a MULTICOLORED CLIQUE instance. A multicolored
clique is depicted in brown. b) shows the corresponding classification instance. Here, E(vji) is the set of all edges incident with vertex vji .
Rest<i and Rest>i refers to all other examples not shown in that feature (the precise set differs in each feature and is always a subset of
all examples having the default threshold of that feature). Cuts of the input tree T are shown by “|” and cuts that remain in the optimal
raised tree T ′ are depicted in brown. c) shows parts of the input tree T . d) shows the optimal raised tree T ′.

set B(i, a) of separation examples. Each of these sets
consists of m examples having the same value in each
feature. To all these examples we assign label blue.

• For each i ∈ [κ] we create sets B<
i , B>

i of blue forcing
examples. Each of these sets consists of m examples
and all examples in one of these sets have the same
value in each feature.

• We create a set R of red enforcing examples. This set
consists of m examples and all examples in this set
have the same value in each feature.

Note that we add M := |E(G)| edge examples, κ · (p− 1) ·
M ≤ N ·M separation examples, 2·κ·M ≤ 2·N ·M forcing
examples, and M enforcing examples. Thus, the number of
examples is polynomial in the input size.

For each i ∈ [κ], we add two features d<i and d>i and thus

we have 2 · κ features.

It remains to describe the coordinates of the examples in the
features. Initially, we declare a default threshold default(d′)
for each feature d′. Then, each example e has the default
threshold in each feature, unless we assign e a different
threshold in that feature.

For each feature d<i , we set default(d<i) = p, and for each
feature d>i , we set default(d>i) = 0.

• For each edge example e = e(vai , v
b
j) we set e[d<i] =

e[d>i] = a, and e[d<j] = e[d>j] = b, e[d<z] = p+ 1. In
each other features e is set to the default threshold.

• For each separation example e ∈ B(i, a) we
set e[d<i] = e[d>i] = a+ 1/2. In each other features e
is set to the default threshold.

• For each forcing example e ∈ B<
i we set e[d<i] = 0.

18

Optimal Decision Tree Pruning Revisited: Algorithms and Complexity

In each other features e is set to the default threshold.

For each forcing example e ∈ B>
i we set e[d>i] = p+1.

In each other features e is set to the default threshold.

• For each enforcing example e ∈ R we use the default
threshold in each feature.

Description of the input tree T : Intuitively, the input tree T
is a path, where all leafs are blue except one leaf and we first
have some cuts in d<1 in ascending order, then some cuts
in d>1 in descending order, some cuts in d<2 in ascending
order, and so on. A visualization of T is shown in part c)
of Figure 9. Since T is a path it is sufficient to present the
order of the cuts from the root to the unique red leaf: (d<1 <
1, d<1 < 2, . . . , d<1 < p, d>1 > p, d>1 > p − 1, . . . , d>1 >
1, d<2 < 1, . . . , d>κ > 1). The left child of each cut is always
a blue leaf and the unique red leaf is the right child of the
last cut d>κ > 1. Observe that T consists of p · κ = N inner
nodes.

Error bound and ℓ: Finally, we set t := M −
(
κ
2

)
, and ℓ :=

2 · κ. This completes our construction.

Calculation of δmax: Observe that each enforcing example
always has the default threshold, that each forcing exam-
ple differs in exactly one features from the default thresh-
olds, that each separation example differs exactly twice
from the default thresholds, and that each edge example
differs exactly four times from the default thresholds. Thus,
δmax = 6.

Correctness: We show that G has a multicolored clique
if and only if T can be raised to a tree T ′ having exactly
ℓ inner nodes making at most t = M −

(
κ
2

)
errors.

(⇒) Let S = {vai
i : i ∈ [κ], ai ∈ [p]} be a multicolored

clique in G (for example: see part a) of Figure 9). To
obtain tree T ′ we preserve the cuts {d<i < ai : i ∈ [κ]}
and {d>i > ai : i ∈ [κ]}. A visualization of T ′ is shown
in part d) of Figure 9. In other words, T ′ is doing the
cuts (d<1 < a1, d

>
1 > a1, d

<
2 < a2, . . . , d

>
κ > aκ). Clearly,

T ′ consists of ℓ = 2 · κ inner nodes. Thus, it remains to
verify that T ′ makes at most t errors.

Outline: First, we make an observation for examples using
the default threshold in a feature and second we use this
observation to show that T ′ has at most t misclassifications.

Step 1: Observe that if any example e lands at some in-
ner node of T corresponding to a cut in feature d′ and e
has the default threshold in that feature d′, that is, e[d′] =
default(d′), then e will always go to the right subtree of that
node. Since the pruned tree T ′ is a path, an example e which
has the default threshold in each feature will be contained
in the unique red leaf of T ′ which is the right leaf of the
cut d>κ > aκ. Also, in order for an example e to land in a
different leaf (which has label blue), we only need to con-

sider cuts of T ′ in features where e has a different threshold
than the default threshold.

Step 2: We distinguish the different example types.

Step 2.1: Recall that each enforcing example e ∈ R always
has the default threshold. By Step 1, each forcing example
ends up in the unique red leaf and is thus correctly classified
in T ′.

Now, consider a blue forcing example e ∈ B<
i .

Similar to the enforcing examples, we have e ∈ E[d<i < ai].
By construction, e uses the default thresholds in each feature
other than d<i and in feature d<i , we have e[d<i] = 0. By
Step 1 and since ai > 0, e ends up in the left child of the
cut d<i < ai which is a blue leaf and thus e is correctly clas-
sified in T ′. Analogously, we can show that all blue forcing
examples in B>

i are correctly classified by T ′.

Thus, all enforcing and all forcing examples are correctly
classified in T ′.

Step 2.2: Let e ∈ B(i, b) be a blue separation example. By
construction, e uses the default thresholds in all features
except d<i and d>i . Next, we distinguish the values of ai
and b. Recall that b = q+1/2 where q ∈ N and that ai ∈ [p].
Thus, either b < ai or b > ai.

First, consider the case b < ai. Then, e ends up in the left
child of the cut d<i < ai which is a blue leaf and thus e is
correctly classified.

Second, consider the case b > ai. Then, e ends up in the
right child of the cut d<i < ai which is the cut d>i > ai.
Now, e ends up in the left child of the cut d>i > ai which is
a blue leaf and thus e is correctly classified.

Hence, in T ′ all separation examples are correctly classified.

Step 2.3: Let e = e(vai
i , v

aj

j) be the edge example corre-
sponding to an edge where both endpoints are contained
in the multicolored clique S. Without loss of generality,
we assume i < j. Recall that e uses the default thresholds
in all features except d<i , d

>
i , d

<
j , and d>j . Analogously, to

all other example sets, we obtain that e ∈ E[d<i < ai].
Since e[d<i] = ai, e ends up in the right child of this node
which is the cut d>i > ai. Again, since e[d>i] = ai, e ends
up in the right child of this node. Analogously, we can argue
that e always end up in the right child of any cut in T ′ and
thus e ends up in the unique red leaf.

Hence, all edge examples corresponding to edges having
both endpoint in the multicolored clique S are correctly clas-
sified. Consequently, T ′ makes at most t = M −

(
κ
2

)
errors.

(⇐) Let T ′ be a solution for the raising problem, that is,
T ′ has ℓ = 2 · κ inner nodes and makes at most t = M −(
κ
2

)
errors.

19

Optimal Decision Tree Pruning Revisited: Algorithms and Complexity

Outline: First, we show that we need to preserve exactly
one cut per feature. Second, we show that the two cuts in
the two features d<i and d>i need to have the form d<i <
ai and d>i > ai for some ai ∈ [p]. This value ai then
corresponds to vertex vai

i of color class i. The union of
these vertices is S. Finally, we verify that S has to be a
multicolored clique.

Step 1: Assume towards a contradiction that T ′ does not
preserve a cut in each feature, and without loss of generality,
assume that no cut in feature d<i is preserved in T ′. Con-
sider the red enforcing examples in R and the blue forcing
examples in B<

i . The examples in R always use the default
thresholds and the examples in B<

i use the default thresh-
olds in all features except d<i . Thus, examples in R and
examples in B<

i can only be distinguished in feature d<i .
Since T ′ does not preserve a cut in feature d<i all examples
in R∪B<

i end up in the same leaf. Since |R| = M = |B<
i |,

we conclude that T ′ has at least M > M −
(
κ
2

)
= t er-

rors, a contradiction. Thus, T ′ preserves at least one cut per
feature.

Since d = 2 ·κ = ℓ, we obtain that T ′ preserves exactly one
cut per feature.

Step 2: Assume towards a contradiction that the two cuts in
features d<i and d>i do not have the form d<i < ai and d>i >
ai for some ai ∈ [p], that is, we assume the cuts have
the form d<i < ai and d>i > bi with ai, bi ∈ [p] where
either bi > ai or bi < ai.

First, we consider the case bi > ai. We show that all
M many blue separation examples in B(i, ai) end up in the
unique red leaf, implying that the number of errors in T ′

is at least M > M −
(
κ
2

)
= t, a contradiction. Recall

that each example e ∈ B(i, ai) uses the default thresholds
in all features except d<i and d>i . Thus, in each cut in a
feature d<j or d>j where j ̸= i, e goes always to the right
subtree of that cut. Hence, it remains to consider the cuts
in features d<i and d>i . By definition, e[d<i] = ai + 1/2 =
e[d>i]. Since ai < ai + 1/2 < ai + 1 ≤ bi, we conclude
that e ends up in the right child of both cuts d<i < ai
and d>i > bi. Consequently, e ends up in the right leaf of
the last cut in T ′ which is red, a contradiction.

Second, we consider the case bi < ai. Observe that for
all examples e ∈ E[d>i > bi] we have e[d>i] ≥ ai. More
precisely, only for the red edge examples having one end-
point in vai

i we have e[d>i] = ai and for all other exam-
ples e′ ∈ E[d>i > bi] we have e′[d>i] > ai. Since the
left child of the cut d>i > bi is a blue leaf, we can replace
threshold bi by threshold ai without increasing the num-
ber of errors. Note that d>i > ai is a cut in the input tree
between all cuts in feature d<i and d<i+1.

Hence, in the following we can safely assume that for
each i ∈ [κ], the cuts in features d<i and d>i have the

form d<i < ai and d>i > ai for some ai ∈ [p].

By vai
i we denote the vertex which is selected in color class i

and by S we denote the set of these vertices.

Step 3: We now show that each red edge example corre-
sponding to an edge where at least one vertex is not con-
tained in S ends up in a blue leaf and is thus misclassified.
As a consequence, S has to be a multicolored clique to fulfill
the error bound of t = M −

(
κ
2

)
.

Let e = e(vai
i , v

aj

j) be an edge example and assume without
loss of generality that vai

i /∈ S. Recall that e uses the default
thresholds in all features except d<i , d

>
i , d

<
j , and d>j . Let vbii

be the vertex chosen in color class i and assume without
loss of generality that ai < bi. Now, consider the cut in
feature d<i < bi: since ai < bi, example e ends up in the
left child of the cut d<i < bi which is a blue leaf and is thus
misclassified.

Lower bound: Recall that d = 2 · κ = ℓ and δmax = 6.
Since MULTICOLORED CLIQUE is W[1]-hard with respect
to κ (Cygan et al., 2015), we obtain that DTRAIS= is W[1]-
hard with respect to d + ℓ even if δmax = 6. Further-
more, since MULTICOLORED CLIQUE cannot be solved
in f(κ) · no(κ) time unless the ETH fails (Cygan et al.,
2015), we observe that DTRAIS= cannot be solved in
f(d + ℓ) · |I|o(d+ℓ) time if the ETH is true, where |I| is
the overall instance size, even if δmax = 6.

Adaptation for reasonable trees: We do an analog adap-
tion as in Theorem 5.1: First, we extend the classification
instance. Basically, we add one example for each leaf in T
which ends up in that specific leaf. For cut d<i < ai we add
an example e such that e[d<i] = ai − 1, e[d<z] = p+ 1 for
each z ∈ [κ] \ {i}, and e[d<z] = 0 for each z ∈ [κ]. For
cut d>i > ai we add an example e such that e[d<z] = p+ 1
for each z ∈ [κ], e[d>i] = ai + 1, and e[d>z] = 0 for
each z ∈ [κ] \ {e}. Note that all enforcing examples end up
in the unique red leaf.

Next, we add a new binary feature d∗ and we add (t+1) new
blue examples e∗ which have the same thresholds in all
features. More precisely, e∗ has threshold 1 in d∗ and uses
the default threshold in each remaining feature. All other
existing examples have threshold 0 in the new feature d∗.
Example ev has value 1 in the feature corresponding to
vertex v and in the new feature d∗; in all other features
(corresponding to any other vertex) ev has value 0. Also,
we add a new blue example e∗ for which e∗[v] = 0 for
all v ∈ V (G) and e∗[d∗] = 1 Furthermore, all existing
examples have value 0 in d∗.

Now, observe that the newly added cut d∗ ≤ 0 cannot be
pruned since otherwise the (t+ 1) newly added examples
would be misclassified. Afterwards, the correctness can
be shown analogously. Note that this adaption increased d

20

Optimal Decision Tree Pruning Revisited: Algorithms and Complexity

and ℓ by one and does not change δmax.

C.7. Proof of Proposition 5.7

Proof. The proof is almost identical to the proof of Theo-
rem 5.6 for both non-reasonable and reasonable trees. More
precisely, we use the same construction. Moreover, the
(⇒) direction of the correctness works analogously. The
(⇐) direction of the correctness is shown with the same
three steps. Now, however, Step 1, that is, exactly one cut
per feature is preserved, is more involved since we cannot
exploit anymore that exactly 2 · κ cuts are preserved. After
we have verified Step 1, the remaining proof works analo-
gously. Thus, it remains to show that exactly one cut per
feature is preserved.

Assume that in the resulting tree T ′ at least two cuts in one
feature are preserved. Without loss of generality assume
that this is the case in feature d<i , that is, T ′ contains two
cuts d<i < a and d<i < b for some a < b. Furthermore,
assume without loss of generality that no other cut in d<i
between a and b is preserved. Observe that all examples e
with e[d<i] < a end up in a blue leaf and also all examples e′

with a ≤ d<i [e
′] < b end up in a blue leaf. Since d<i < a

is the parent of d<i < b in T ′, raising d<i < a leads to a
smaller tree T ′′ which misclassifies the exact same set of
examples. By applying this argument iteratively, we obtain
a tree T ∗ with exactly one cut in each feature and thus Step 1
is verified.

C.8. Proof of Theorem 5.8

Proof. We only show the statement for DTRAIS=. The
statement for DTRAIS≥ then follows since no more than
k inner nodes can be pruned without having at least 1 error.

We reduce from MULTICOLORED INDEPENDENT SET
where each color class has the same number p of ver-
tices. Formally, the input is a graph G, and κ ∈ N,
where the vertex set V (G) of N vertices is partitioned
into V1, . . . , Vκ and |Vi| = p for each i ∈ [κ]. More pre-
cisely, Vi := {v1i , v2i , . . . , v

p
i } and p · κ = N . The ques-

tion is whether G contains an independent set consisting
of exactly one vertex per class Vi. MULTICOLORED INDE-
PENDENT SET is W[1]-hard parameterized by κ and cannot
be solved in f(κ) · no(κ) time unless the ETH fails (Cygan
et al., 2015).

As in the proof of Theorem 5.6, the property that all color
classes have the same number of vertices is only used to
simplify the proof.

Outline: The idea is to create two features d<i and d>i
per color class i such that the preserved cuts in the pruned
tree T ′ correspond to a vertex selection in Vi. We achieve
this as follows: For each pair d<i and d>i of features we
create examples which can only be separated in these two

features and which have labels blue (separating examples)
and red (choice examples) alternatingly. Hence, for each
possible threshold x in features d<i and d>i , we either need
to preserve cut (d<i , x) or cut (d>i , x). Furthermore, for
each edge we create a red edge example. If vertex vji ∈ Vi

is selected, then all edge examples corresponding to edges
having an endpoint in color class i which is not vi will then
be correctly classified by the pruned tree T ′. Thus, we can
only correctly classify an edge example if we do not select
at least one endpoint of the corresponding edge. Finally, we
have another feature d∗ with only 2 thresholds to ensure that
all red choice examples corresponding to selected vertices
are correctly classified by the pruned tree T ′ and that an
edge example gets misclassified as blue if we select both
endpoints of the corresponding edge.

Construction: We first show the statement for non-
reasonable decision trees and afterwards we argue how the
construction has to be adapted such that the input decision
tree is reasonable.

Description of the data set: A visualization is shown in
part b) of Figure 10.

• For each edge {vxi , vzj } ∈ E(G) we add an edge ex-
ample e(vxi , v

z
j). To all these examples we assign la-

bel red.

• For each i ∈ [κ] and each x ∈ [p − 1] we add a
blue separating example b(i, x).

• For vertex vxi ∈ Vi we create a red choice example cxi .

• we create a blue forcing example b∗ and a red enforc-
ing example r∗.

Note that we add M := |E(G)| edge examples, N choice
examples, N − κ = (p − 1) · κ separating examples, and
2 further examples. Thus, the number of examples is poly-
nomial in the input size.

For each i ∈ [κ], we add two features d<i and d>i . We also
add another feature d∗. Thus, we have 2 · κ+ 1 features.

It remains to describe the coordinates of the examples in the
features. Initially, we declare a default threshold default(d′)
for each feature d′. Then, each example e has the default
threshold in each feature, unless we assign e a different
threshold in that feature.

For each feature d<i , we set default(d<i) = p, for each
feature d>i , we set default(d>i) = 1, and for feature d∗, we
set default(d∗) = 2.

• For each edge example e = e(vxi , v
z
j) we set e[d<i] =

e[d>i] = x, e[d<j] = e[d>j] = z, and e[d∗] = 1. In
each other features e is set to the default threshold.

21

Optimal Decision Tree Pruning Revisited: Algorithms and Complexity

a) v11

v21

v31

V1

v12

v22

V2

v13 v23 V3

b)

d<1 : E(v11)c11 b(1, 1) E(v21) c21 b(1, 2) E(v31) c31 Rest<1
d>1 : Rest>1 c11 E(v11) b(1, 1) E(v21) c21 b(1, 2) E(v31) c31
d<2 : c12 E(v12) b(2, 1) E(v22) c22 Rest<2
d>2 : Rest>2 c12 E(v12) b(2, 1) E(v22) c22
d<3 : c13 E(v13) b(3, 1) E(v23) c23 Rest<3
d>3 : Rest>3 c13 E(v13) b(3, 1) E(v23) c23
d∗: b∗ edge examples Rest∗

1 1.5 2 2.5 3

|

|
|
|
|
|
|

|
|
|
|
|
|

|
|

|
|

c) d<1 < 1.5

d<1 < 2

d<1 < 2.5

d<1 < 3

d>1 > 2.5

d>1 > 2

d>3 > 1

d∗ > 1

red

blue

red

blue

red

blue

blue

blue red

d) d<1 < 1.5

d<1 < 2

d>1 > 2.5

d>1 > 2

d<2 < 1.5

d<2 < 2

d>3 > 1.5

d>3 > 1

d∗ > 1

red

blue

red

blue

red

blue

red

blue

blue red

Figure 10. A visualization of the reduction from the proof of Theorem 5.8. a) shows a MULTICOLORED INDEPENDENT SET instance.
For the sake of the illustration, the property that all partite sets have the same size is dropped. A multicolored independent set is depicted
in orange. b) shows the corresponding classification instance. Here, E(vji) is the set of all edges incident with vertex vji . Rest<i , Rest>i ,
and Rest∗ refers to all other examples not shown in that feature (the precise set differs in each feature and is always a subset of all
examples having the default threshold of that feature). Cuts of the input tree T are shown by “|” and cuts that remain in the optimal raised
tree T ′ are depicted in brown. c) shows parts of the input tree T . d) shows the optimal raised tree T ′.

• For the separating example e = b(i, x) we set e[d<i] =
e[d>i] = x+ 1/2. In each other features e is set to the
default threshold.

• For the choice example e = cxi we set e[d<i] =
e[d>i] = x. In each other features e is set to the default
threshold.

• The red enforcing example r∗ has the default threshold
in every feature. For the blue forcing example b∗, we
set b∗[d∗] = 1, and in each other feature we use the
default threshold.

Note that each feature has at most 2p−1 different thresholds.

Description of the input tree T : Intuitively, the input tree T
is a path and we first have the cuts in d<1 in ascending
order, then the cuts in d>1 in descending order, the cuts
in d<2 in ascending order, and so on, until the cut d∗ >
1. A visualization of T is shown in part c) of Figure 10.
Since T is a path it is sufficient to present the order of
the cuts starting at the root: (d<1 < 1.5, d<1 < 2, d<1 <
2.5, . . . , d<1 < p, d>1 > p − 1/2, d>1 > p − 1, . . . , d>1 >
1, d<2 < 1.5, . . . , d>κ > 1, d∗ > 1). Let x ∈ [p − 1]. For
each i ∈ [κ], the left child of the cut d<i < x+ 1/2 and the
left child of the cut d>i > x + 1/2 is a red leaf. Also, the
right child of the cut d∗ > 1 is a red leaf. All remaining
leaves are blue.

Observe that T consists of (p− 1) · 4κ+ 1 inner nodes.

Error bound and ℓ: Finally, we set t := 0, and ℓ := (p −

1) · 2κ + 1. Thus, k = (p − 1) · 2κ. This completes our
construction.

Calculation of δmax: Note that each edge example differs
at most 4 times from the default thresholds, that each sep-
arating and each choice example differs exactly 2 times
from the default thresholds, that b∗ differs exactly one from
the default thresholds, and that r∗ always has the default
thresholds. Thus, δmax = 6.

Correctness: We show that G has a multicolored indepen-
dent set if and only if T can be raised to a tree T ′ having
exactly ℓ inner nodes making at most t = 0 errors.

(⇒) Let S = {vai
i : i ∈ [κ], ai ∈ [p]} be a multicolored

independent set in G (for example: see part a) of Figure 10).
In the pruned tree T ′, for each feature d<i , we preserve all
cuts at thresholds x ∈ {1.5, 2, 2.5, 3, . . . , p} for which x ≤
ai. Similarly, for each feature d>i , we preserve all cuts at
thresholds x ∈ {1, 1.5, 2, 2.5, . . . , p− 1/2} for which ai ≤
x. Further, we preserve the unique cut in feature d∗. In
other words, in T ′ the cuts {d<1 < 1.5, d<1 < 2, . . . , d<1 <
a1, d

>
1 > p − 1/2, . . . , d>1 > a1, . . . , d

>
κ > aκ, d

∗ > 1}
are preserved in that specific order. A visualization of T ′

is shown in part d) of Figure 10. Clearly, T ′ consists of
ℓ = (p− 1) · 2κ+ 1 inner nodes. Thus, it remains to verify
that T ′ makes no errors.

Outline: First, we make an observation for examples using
the default threshold in a feature and second we use this
observation to show that all examples are correctly classified
by the pruned tree T ′.

22

Optimal Decision Tree Pruning Revisited: Algorithms and Complexity

Step 1: Observe that if any example e lands at some in-
ner node of T corresponding to a cut in feature d′ and e
has the default threshold in that feature d′, that is, e[d′] =
default(d′), then e will always go to the right subtree of that
node. Since the pruned tree T ′ is a path, an example e which
has the default threshold in each feature will be contained
in the red leaf of the cut d∗ > 1. Also, in order for an ex-
ample e to land in a different leaf, we only need to consider
cuts of T ′ in features where e has a different threshold than
the default threshold.

Step 2: We distinguish the different example types.

Step 2.1: By construction, the red enforcing example r∗

always has the default threshold. Thus r∗ ends up in the right
child of the last cut of T ′ which is a red leaf. Furthermore,
the unique feature in which the blue forcing example b∗

does not have the default threshold is d∗. Thus, b∗ ends up
in the left child of the last cut of T ′ which is a blue leaf.

Thus, examples r∗ and b∗ are correctly classified by T ′.

Step 2.2: Consider a blue separating example e = b(i, z).
Recall that z = x+1/2 and x ∈ [p−1] and recall that ai ∈
N is the index of the selected vertex of color class i. Without
loss of generality, assume that z < ai. By Step 1, e will
end up in the cut d<i < 1.5 of T ′. Also, recall that the next
cuts in T ′ are d<i < 2, . . . , d<i < ai in that specific order.
Consequently, e goes to the left subtree of the cut d<i <
z + 1/2, which by construction is a blue leaf. Thus, e is
correctly classified as blue by T ′.

Step 2.3: Consider a red choice example e = cxi where x ∈
[p].

First, consider the case that x ̸= ai. Then the argumentation
is almost identical to the blue separating examples: Without
loss of generality, assume that x < ai. By Step 1, e will
end up in the cut d<i < 1.5 of T ′. Also, recall that the next
cuts in T ′ are d<i < 2, . . . , d<i < ai in that specific order.
Consequently, e goes to the left subtree of the cut d<i <
x+ 1/2, which by construction is a red leaf.

Second, consider the case that x = ai. Observe that in all
cuts of T ′ in features d<i and d>i , example e will always go
to the right subtree. Since e has the default threshold in each
features different from d<i and d>i , example e ends up in the
right leaf of the last cut d∗ > 1 of T ′ which is a red leaf.

Thus, in both cases e is correctly classified as red by T ′.

Step 2.4: Consider a red edge example e = (vxi , v
z
j). By

assumption, S is a multicolored independent set. Hence, at
least one of the two endpoints vxi and vzj is not contained
in S. Without loss of generality, assume that vxi /∈ S and
that i < j. The argumentation is analog to the red choice
examples cxi where x ̸= ai: Without loss of generality,
assume that x < ai. By Step 1, e will end up in the cut d<i <

1.5 of T ′. Also, recall that the next cuts in T ′ are d<i <
2, . . . , d<i < ai in that specific order. Consequently, e goes
to the left subtree of the cut d<i < x + 1/2, which by
construction is a red leaf. Thus, e is correctly classified
as red by T ′.

Consequently, the raised tree T ′ has no classification errors.

(⇐) Let T ′ be a solution for the raising problem, that is, T ′

has ℓ = (p−1) ·2κ+1 inner nodes and has no classification
errors.

Outline: We first show that the unique cut in feature d∗ has
to be preserved. Second, we show that at least on of the two
cuts d<i < x and d>i > x− 1/2 for each i and each x has
to be preserved in T ′. Third, because of our choice of ℓ we
then conclude that for each i and each x exactly one of the
cuts d<i < x and d>i > x− 1/2 has to be preserved. Fourth,
we show that cuts preserved in a feature d<i (or d>i) do not
have gaps, that is, if x is the largest (smallest) threshold,
such that the cut d<i < x (d>i > x) is preserved in T ′,
then also all cuts d<i < z for each z < x (d>i > z for
each x < z) have to be preserved in T ′. Fifth, we use this
solution structure to identify a selected vertex of each color
class. Let S be the corresponding vertex set. Finally, we
show that S has to be a multicolored independent set.

Step 1: Note that the blue forcing example b∗ and that the
red enforcing example r∗ only differ in feature d∗. Since T
has only one cut in feature d∗, in the solution T ′ the cut d∗ >
1 has to be preserved.

Step 2: Our aim is to show that at least one of the
cuts d<i < x and d>i > x − 1/2 for any i ∈ [κ]
and x ∈ {1.5, 2, 2.5, . . . , p} has to be preserved in T ′. With-
out loss of generality assume that x is an integer. Note
that x ≥ 2. By construction, for the blue separating exam-
ple e = b(i, x−1) we have e[d<i] = e[d>i] = x−1/2 and for
the red choice example e = cxi we have e[d<i] = e[d>i] = x.
Furthermore, note that b(i, x − 1) and cxi have the default
threshold in each other feature. Consequently, only the
cuts d<i < x and d>i > x−1/2 of T can separate b(i, x−1)
and cxi . Since T ′ has no classification errors, we thus con-
clude that at least one of the cuts d<i < x and d>i > x−1/2
has to be preserved in T ′.

Step 3: Recall that ℓ = (p − 1) · 2κ+ 1. By Step 1, in T ′

the cut d∗ > 1 has to be preserved. By Step 2, at least
one of the cuts d<i < x and d>i > x − 1/2 for any i ∈
[κ] and x ∈ {1.5, 2, 2.5, . . . , p} has to be preserved in T ′.
Note that these are exactly (p − 1) · 2κ pairs of distinct
cuts. Consequently, in T ′ exactly one of the cuts d<i < x
and d>i > x− 1/2 has to be preserved.

Step 4: Consider all preserved cuts in feature d<i . Let d<i <
x be the rightmost preserved cut in feature d<i , that is, for
each z > x, the cut d<i < z is pruned. We claim that in T ′

23

Optimal Decision Tree Pruning Revisited: Algorithms and Complexity

all cuts d<i < z for any z ≤ x have to be preserved. Without
loss of generality, we assume that x is an integer. Since all
blue separating examples and red choice examples with
threshold w ≤ x in feature d<i have the default feature in all
features except d<i and d>i and since all cuts in feature d<i
appear before the cuts in feature d>i in T and thus also in T ′,
we conclude that all these examples end up in a left leaf of
one of the cuts d<i < z for some z ≤ x. Now, observe that
in feature d<i the examples c1i , b(i, 1), c

2
i , . . . , c

x−1
i , b(i, x−

1) have strictly monotone increasing thresholds and have
alternating labels red and blue. Consequently, all cuts of
the form d<i < z for each z ≤ x need to be preserved in T ′.

By the above argumentation and Step 3, we conclude that in
feature d>i all cuts of the from d>i > z for each z > x are
preserved in T ′.

Step 5: Consider one fixed i ∈ [κ]. Let xi be the largest
threshold such that the cut d<i < xi is preserved in T ′. Re-
call that according to Step 4 all cuts d<i < z for any z ≤ xi

are preserved in T ′. Assume towards a contradiction
that x is no integer, that is, xi = q + 1/2 for some in-
teger q ∈ [p − 1]. Now, observe that the blue separating
example b(i, q) is put in the right subtree of each cut d<i < z
for each z ≤ xi and for each cut d>i > z for each xi ≤ z.
Also, since b(i, q) has the default threshold in each other
feature, we conclude that in T ′ this example b(i, q) ends
up in the right leaf of the last cut d∗ > 1 of T ′ which is
a red leaf. Thus, b(i, q) is misclassified, a contradiction.
Hence, xi is an integer.

We let vxi
i be the selected vertex of color class i. Further-

more, let S := {vxi
i : i ∈ [κ]}.

Step 6: It remains to verify that S is a multicolored inde-
pendent set. By definition, S contains exactly one vertex
of each color class. Hence, it remains to show that S is an
independent set.

Observe that since T ′ has no classification errors, it is suffi-
cient to show that an edge example e = (vxi , v

z
j) gets mis-

classified by T ′ if both endpoints vxi and vzj are contained
in S.

Let e = e(vxi , v
z
j) be an edge example where vxi , v

z
j ∈ S.

Note that analog to Step 5, the red edge example e ends up
in the right subtree of each preserved cut in features d<i , d>i ,
d<j , and d>j . The same is true for each feature d<q and d>q
for each q ∈ [κ] \ {i, j} since in these features e has the
default threshold. But in feature d∗ example e has not the
default threshold, and thus e ends up in the left leaf of the
cut d∗ < 1 which is a blue leaf, a contradiction.

Lower bound: Recall that d = 2 ·κ+1, δmax = 6, and t =
0. Since MULTICOLORED INDEPENDENT SET is W[1]-
hard with respect to κ (Cygan et al., 2015), we obtain that
DTRAIS= is W[1]-hard with respect to d even if δmax = 6

and t = 0. Furthermore, since MULTICOLORED INDEPEN-
DENT SET cannot be solved in f(κ) · no(κ) time unless the
ETH fails (Cygan et al., 2015), we observe that DTRAIS=
cannot be solved in f(d) · |I|o(d) time if the ETH is true,
where |I| is the overall instance size, even if δmax = 6
and t = 0.

Adaption for reasonable trees. Note that some leafs cor-
responding to cuts in feature d>i are not reached by any
example. To make the tree T reasonable we do a similar
adaption as in Theorem 5.1: For each leaf L of a cut in
feature d<i (or d>i) we add a new example which e which
uses the default threshold in all features except (a) in d<i
(or d>i) and (b) in d∗, where e[d∗] = 0, if leaf L is blue
and otherwise if L is red, then e[d∗] = 1. Observe that the
correctness can be shown analogously to the non-reasonable
case.

D. Additional Material for Section 6
Our empirical study aimed to assess whether common
decision-tree pruning heuristics achieve optimal tradeoffs
between pruned nodes and classification errors. This is made
feasible using the algorithmic and complexity analysis in
the preceding sections. To this end, we selected benchmark
instances used for computing minimum-size trees, as they
would likely be suitable for exact algorithms for pruning
trees as well. We computed unpruned and pruned trees us-
ing the WEKA library. We then took the unpruned trees and
computed the whole Pareto front that contains for each num-
ber k of pruned nodes, the minimum-possible classification
error of the resulting pruned tree. Then we compared the
Pareto front to the trade-offs chosen by the heuristics.

We used 40 datasets from the Penn Machine Learning
Benchmarks library (Romano et al., 2022). 35 of the
datasets were used before for computing minimum-size
trees (Bessiere et al., 2009; Narodytska et al., 2018) and
since the number of examples was usually small we added
further larger datasets. Overall, the datasets range from 72
to 5404 examples (mean 674.88, median 302); for the full
details, see Table 2. To meet the requirements of DTRAIS=
inputs, we transformed the data sets as follows (similarly
to Janota & Morgado (2020)): First, we replaced each cat-
egorical feature by a set of new binary features indicating
whether an example is in the category. Second, we con-
verted each instance into a binary classification problem by
making two classes, one of which contains all examples of
the largest original class and one which contains all remain-
ing examples. Finally, if two examples of different classes
had the same value in all features, we removed one of them
arbitrarily.

We computed unpruned and pruned trees using the C4.5
heuristic for decision-tree computation (Quinlan, 1993)

24

Optimal Decision Tree Pruning Revisited: Algorithms and Complexity

implemented WEKA 3.8.5 (Frank et al., 2010). The un-
pruned trees were obtained by running WEKA’s J48 clas-
sifier with the flags -no-cv -B -M 0 -J -U. We ob-
tained two types of pruned trees: Those obtained by the
replacement heuristic implemented in J48 when run with
the flags -no-cv -B -M 0 -J -S and those obtained
by the raising heuristic, corresponding to the flags -no-cv
-B -M 0 -J. Overall, the tree size s ranges from 3 to 607
(mean 60.57, median 26); the number of features d ranges
from 2 to 88 (mean 12.00, median 9); the domain size D
ranges from 1 to 321 (mean 15.55, median 6); the maximum
number of features dR on a root-to-leaf path ranges from
2 to 34 (mean 7.88, median 8); the number of classifica-
tion errors ranges from 0 to 302 (mean 25.17, median 4).
These ranges show that, indeed, parameters d,D, dT are
suitable for designing fixed-parameter algorithms. For the
full details, see Table 3.

We implemented a dynamic-programming algorithm for
solving DTRAIS= based on Theorem 4.2 in Python, tested
with versions 3.6.9 and 3.10.12. We ran the implementation
under Ubuntu Linux 18.04 on a compute cluster with Intel
Xeon E5-2640 processors, setting a maximum RAM limit of
64GB. We ran the algorithm for each dataset together with
its unpruned tree to obtain, for each number k of pruned
nodes, the least number of classification errors. After at
most 24h of running time, 26 of the 40 datasets (65 %)
could be solved.

25

Optimal Decision Tree Pruning Revisited: Algorithms and Complexity

Table 2. Dataset statistics.

Dataset # Examples n # Features d Class 0 Class 1 Class Ratio

appendicitis 106 7 85 21 0.25
australian 690 18 383 307 0.8
backache 180 55 155 25 0.16
banana 5300 2 2924 2376 0.81
biomed 209 14 75 134 1.79
breast-cancer 266 31 188 78 0.41
bupa 341 5 168 173 1.03
cars 392 12 147 245 1.67
cleve 302 27 164 138 0.84
cleveland 303 27 139 164 1.18
cleveland-nominal 130 17 61 69 1.13
colic 357 75 134 223 1.66
contraceptive 1358 21 764 594 0.78
dermatology 366 129 254 112 0.44
diabetes 768 8 268 500 1.87
ecoli 327 7 184 143 0.78
flare 1066 10 884 182 0.21
glass 204 9 128 76 0.59
glass2 162 9 86 76 0.88
haberman 283 3 73 210 2.88
hayes-roth 84 15 59 25 0.42
heart-c 302 27 138 164 1.19
heart-h 293 29 106 187 1.76
heart-statlog 270 25 150 120 0.8
hepatitis 155 39 123 32 0.26
Hill Valley without noise 1212 100 600 612 1.02
hungarian 293 29 187 106 0.57
ionosphere 351 34 126 225 1.79
lupus 86 3 52 34 0.65
lymphography 148 50 67 81 1.21
molecular biology promoters 106 228 53 53 1.0
new-thyroid 215 5 65 150 2.31
phoneme 5404 5 3818 1586 0.42
pima 768 8 500 268 0.54
postoperative-patient-data 72 22 50 22 0.44
schizo 340 14 140 200 1.43
soybean 622 133 545 77 0.14
tae 106 5 71 35 0.49
titanic 2099 8 1418 681 0.48
tokyo1 959 44 346 613 1.77

26

Optimal Decision Tree Pruning Revisited: Algorithms and Complexity

Dataset Size s Dimensions d Dim. dR on Path Domain D Errors Error Ratio (%)

appendicitis 15 / 10 / 10 6 / 6 / 6 5 / 5 / 5 5 / 3 / 3 0 / 2 / 2 0.00 / 1.89 / 1.89
australian 90 / 46 / 44 13 / 11 / 11 10 / 10 / 9 29 / 11 / 11 0 / 22 / 23 0.00 / 3.19 / 3.33
backache 26 / 13 / 13 13 / 9 / 9 9 / 6 / 6 7 / 2 / 2 0 / 7 / 7 0.00 / 3.89 / 3.89
banana 607 / 186 / 188 2 / 2 / 2 2 / 2 / 2 321 / 107 / 108 1 / 249 / 246 0.02 / 4.70 / 4.64
biomed 21 / 3 / 13 6 / 3 / 6 6 / 3 / 6 6 / 1 / 4 0 / 15 / 3 0.00 / 7.18 / 1.44
breast-cancer 95 / 31 / 24 25 / 21 / 17 14 / 10 / 9 8 / 6 / 5 2 / 31 / 33 0.75 / 11.65 / 12.41
bupa 111 / 72 / 65 5 / 5 / 5 5 / 5 / 5 21 / 18 / 14 0 / 25 / 28 0.00 / 7.33 / 8.21
cars 22 / 15 / 15 7 / 7 / 7 5 / 5 / 5 7 / 5 / 5 0 / 3 / 3 0.00 / 0.77 / 0.77
cleve 57 / 29 / 29 15 / 13 / 13 9 / 8 / 8 12 / 5 / 5 0 / 15 / 15 0.00 / 4.97 / 4.97
cleveland 55 / 31 / 31 16 / 13 / 13 8 / 8 / 8 10 / 6 / 6 0 / 13 / 13 0.00 / 4.29 / 4.29
cleveland-no... 46 / 8 / 8 15 / 8 / 8 10 / 5 / 5 1 / 1 / 1 6 / 23 / 23 4.62 / 17.69 / 17.69
colic 51 / 28 / 28 27 / 18 / 18 9 / 8 / 8 6 / 4 / 4 0 / 15 / 15 0.00 / 4.20 / 4.20
contraceptive 486 / 120 / 106 21 / 21 / 21 13 / 11 / 11 33 / 21 / 21 10 / 217 / 224 0.74 / 15.98 / 16.49
dermatology 5 / 3 / 3 4 / 3 / 3 3 / 3 / 3 1 / 1 / 1 0 / 2 / 2 0.00 / 0.55 / 0.55
diabetes 137 / 96 / 87 8 / 8 / 8 8 / 8 / 8 24 / 16 / 14 0 / 24 / 30 0.00 / 3.12 / 3.91
ecoli 25 / 5 / 5 5 / 3 / 3 4 / 3 / 3 11 / 2 / 2 0 / 10 / 10 0.00 / 3.06 / 3.06
flare 93 / 15 / 12 8 / 7 / 6 8 / 7 / 6 5 / 4 / 2 125 / 159 / 160 11.73 / 14.92 / 15.01
glass 28 / 26 / 24 7 / 7 / 7 7 / 7 / 7 7 / 7 / 6 0 / 1 / 2 0.00 / 0.49 / 0.98
glass2 22 / 16 / 14 6 / 5 / 5 5 / 4 / 4 6 / 5 / 4 0 / 4 / 5 0.00 / 2.47 / 3.09
haberman 92 / 21 / 18 3 / 3 / 3 3 / 3 / 3 30 / 9 / 8 2 / 38 / 39 0.71 / 13.43 / 13.78
hayes-roth 14 / 12 / 12 11 / 10 / 10 10 / 10 / 10 1 / 1 / 1 0 / 1 / 1 0.00 / 1.19 / 1.19
heart-c 57 / 29 / 29 15 / 13 / 13 9 / 8 / 8 12 / 5 / 5 0 / 15 / 15 0.00 / 4.97 / 4.97
heart-h 57 / 32 / 30 20 / 18 / 18 13 / 11 / 10 13 / 6 / 6 0 / 14 / 14 0.00 / 4.78 / 4.78
heart-statlog 54 / 27 / 23 17 / 13 / 12 10 / 10 / 9 13 / 7 / 6 0 / 15 / 17 0.00 / 5.56 / 6.30
hepatitis 18 / 12 / 11 10 / 9 / 8 7 / 7 / 6 3 / 2 / 2 0 / 3 / 4 0.00 / 1.94 / 2.58
Hill Valley... 250 / 228 / 224 88 / 85 / 84 34 / 34 / 33 63 / 47 / 47 0 / 11 / 13 0.00 / 0.91 / 1.07
hungarian 57 / 32 / 30 19 / 19 / 18 13 / 11 / 10 13 / 6 / 6 0 / 14 / 14 0.00 / 4.78 / 4.78
ionosphere 21 / 19 / 19 12 / 11 / 11 9 / 9 / 9 4 / 4 / 4 0 / 1 / 1 0.00 / 0.28 / 0.28
lupus 25 / 4 / 4 2 / 2 / 2 2 / 2 / 2 20 / 2 / 2 0 / 13 / 13 0.00 / 15.12 / 15.12
lymphography 23 / 14 / 14 18 / 11 / 11 10 / 6 / 6 1 / 1 / 1 0 / 5 / 5 0.00 / 3.38 / 3.38
molecular b... 12 / 10 / 10 11 / 9 / 9 6 / 5 / 5 1 / 1 / 1 0 / 1 / 1 0.00 / 0.94 / 0.94
new-thyroid 13 / 9 / 9 5 / 5 / 5 5 / 4 / 4 4 / 4 / 4 0 / 2 / 2 0.00 / 0.93 / 0.93
phoneme 504 / 341 / 343 5 / 5 / 5 5 / 5 / 5 159 / 99 / 100 0 / 98 / 95 0.00 / 1.81 / 1.76
pima 137 / 96 / 87 8 / 8 / 8 8 / 8 / 8 24 / 16 / 14 0 / 24 / 30 0.00 / 3.12 / 3.91
postoperativ... 23 / 21 / 20 13 / 13 / 12 10 / 10 / 9 1 / 1 / 1 0 / 1 / 1 0.00 / 1.39 / 1.39
schizo 83 / 69 / 66 12 / 12 / 12 10 / 10 / 10 15 / 10 / 10 0 / 8 / 9 0.00 / 2.35 / 2.65
soybean 28 / 13 / 13 22 / 12 / 12 10 / 7 / 7 1 / 1 / 1 0 / 8 / 8 0.00 / 1.29 / 1.29
tae 41 / 21 / 21 5 / 5 / 5 5 / 5 / 5 13 / 7 / 7 0 / 11 / 11 0.00 / 10.38 / 10.38
titanic 336 / 61 / 63 8 / 8 / 8 8 / 7 / 7 61 / 20 / 19 157 / 302 / 296 7.48 / 14.39 / 14.10
tokyo1 46 / 34 / 33 24 / 22 / 21 16 / 16 / 15 10 / 5 / 5 0 / 6 / 7 0.00 / 0.63 / 0.73

Table 3. Decision trees used in our experiments: The first entry is for the unpruned tree, the second for the tree computed by the
replacement heuristic and the third for the raising heuristic.

27

