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ABSTRACT

Sparse rewards and long decision horizons make agent navigation tasks difficult to
solve via reinforcement learning (RL) such as (deep) Q-learning. Previous work
has shown that some of these tasks are efficiently solvable by value-based plan-
ning in a state space abstraction, which defines sub-goals for a policy in the origi-
nal state space. However, value-based planning scales poorly with the number of
state space dimensions. Consequently, the planning might not be able to consider
all the state information, like other agents’ behaviors. Combining the benefits of
planning and learning values, we propose the Value Refinement Network (VRN),
an architecture that locally refines a plan in a (simpler) state space abstraction,
represented by a pre-computed value function, with respect to the full agent state.
Training the VRN via RL, it can learn how to correct this initial plan effectively
to solve tasks that otherwise would require a prohibitively large abstraction. Eval-
uating on several simulated agent navigation tasks, we demonstrate the benefits
of our VRN: We show that it can successfully refine shortest path plans to match
the performance of value iteration in a more complex state space. Furthermore,
in vehicle parking tasks where considering all relevant state space dimensions in
planning is infeasible, the VRN still enables high task completion rates.

1 INTRODUCTION

Reinforcement learning (RL) trained policies have been demonstrated to play games at super-human
levels (Mnih et al., 2015} |Silver et all 2018)) and to convincingly act in robotic manipulation
(Andrychowicz et al.,|2017) and locomotion (Schulman et al., [2016)) tasks. Nevertheless, sparse re-
ward signals and long decision horizons still pose an obstacle to achieving high performance levels
and data-efficiency. Concepts like curriculum learning (Florensa et al., 2017; Wohlke et al., |2020),
intrinsic motivation (Pathak et al., 2017 Haber et al., 2018)), or hierarchical RL (Bacon et al., 2017}
Levy et al., 2019; [Vezhnevets et al., [2017; [Nachum et al.,|2018)) (try) to address these problems.

Francis et al.| (2020); /Wohlke et al.|(2021)); (Christen et al.|(2021)) demonstrated that complex sparse
reward navigation tasks can be solved successfully by combining planning of sub-goals in some
state space abstraction with an RL trained policy operating in the original state space guided by
the sub-goals. Planning these sub-goals has the advantage of better generalization to unseen envi-
ronment layouts and better data-efficiency over learning to generate them, for example, via some
(deep) Q-learning. On the contrary, planning does not scale well in the number of state dimensions
considered. The cost of planning may be prohibitively large spaces, compute resources, or runtimes.
Furthermore, a plan generated once may not consider changes in the environment, like other moving
agents. Costly re-planning or decreased performance are the consequences.

However, global planning is often only required for a small subset of the state variables. In case
of a navigating agent, it is necessary to plan globally an overall route to the goal location, whereas
other state variables like the velocity or orientation of the agent or other moving agents do not have
a global relevance. Instead, they impose local motion constraints, to be accounted for locally.

Taking inspiration from [Chen et al.|(2019) on combining planning in a low-dimensional state space
abstraction with full state information, we aim at refining an initial, global plan in a simple state
space abstraction based on the current full state information. This approach shares similarity with
how, for example, a driver would intuitively drive to a shop: First, she would probably obtain an
initial route by querying the shortest route from a navigation system. While driving, she would
follow this initial route unless some local observation like, for example, a novel construction site
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blocking the road imposes a local constraint on the route. According to this latest information, the
driver adjusts her route by taking a turn to avoid the situation. In summary, she effectively locally
refined the initial route plan using the full amount of information available to her in the very moment.

This work proposes a novel neural network, the Value Refinement Network (VRN), which imple-
ments this promising strategy to solve navigation tasks by locally refining an initial, simple (shortest
path) plan. Similar to other works (Ichter et al., [2018; [Tamar et al. 2016} [Lee et al., |2018)), we
assume a discrete layout map given, which allows for easy computation of value maps reflecting
shortest paths. During navigation, our VRN locally refines this value “prior” by passing a local crop
of it and the layout alongside full (continuous) agent state information through a suitable network
architecture whose parameters are updated via RL. This way, we combine the benefits of planning
and learning value functions: The generalization to unseen environments and sample-efficiency of
planning and the handling of high-dimensional state spaces by learning the local refinement.

In summary, the key contribution of this work is the Value Refinement Network (VRN) architecture.
Evaluating on difficult agent navigation tasks, we empirically prove the following hypotheses:

H.1: The local refinement of a simple initial value function learned by our VRN can match the
performance of computationally more costly planning in a significantly more detailed state space.

H.2: Our VRN can successfully incorporate current state information to maintain high performance
in the face of a dynamically changing environment, without the necessity of re-planning.

2 RELATED WORK

A group of well-known approaches to incorporate planning operations into policy learning are the
differentiable planning modules Tamar et al.|(2016)); Nardelli et al.| (2019); [Lee et al.|(2018)): These
recurrent neural network architectures are capable of learning to approximately perform value-based
planning via backpropagation. Requiring a discrete, grid map input of the environment, differen-
tiable planners are primarily demonstrated on low-dimensional (2D) discrete state and action space
maze navigation tasks. The (M)VProp architecture of Nardelli et al.| (2019) is specifically designed
for RL training but struggles to handle non-holonomic agent dynamics (Wohlke et al., 2021). While
(M)VProp has been shown to be able to handle dynamically changing environments inNardelli et al.
(2019), this setting requires repeated re-planning, which forced the authors to reduce the training
map size. On larger problem sizes, planning is more expensive and repeated re-planning in dynamic
environments becomes infeasible. We, instead, aim at developing a method that does not require
global re-planning, and therefore can handle larger state spaces, including dynamic elements.

Differentiable planning modules work well in discrete state and action spaces. Continuous state and
action spaces have been effectively addressed by hierarchically combining some form of high-level
sub-goal planning with a low-level policy operating in the original spaces. [Francis et al.| (2020) use
a sampling-based probabilistic roadmap (PRM) planner to set waypoints for an RL trained control
policy. [Christen et al.| (2021) (HiDe) and [Wohlke et al.| (2021) (VI-RL) apply value-based sub-goal
planning in a discrete (grid-like) high-level abstraction of selected components of the continuous
state space. While [Christen et al.| (2021)) use an (M)VProp, [Wohlke et al.| (2021) employ (exact)
value iteration with a learned high-level transition model. With increasing complexity of the original
continuous state space, more state components need to be considered in the high-level planning, in
order to generate good sub-goals. Unfortunately, especially value-based planning does not scale well
memory- and runtime-wise with the number of state dimensions considered. We aim at reducing the
necessary level of detail of the high-level planning by applying some local refinement later on.

The idea of integrating full state information into plans in a lower-dimensional space is also pursued
in the sampling-based NEXT planner of (Chen et al.|(2019). In order to choose the next continuous
state for tree expansion, this approach uses an attention-based architecture that maps the state into a
discrete latent space, which is then processed by a differential planning module. However, similar
to the differentiable planning modules, it can handle dynamically changing environments only by
repeated re-planning.
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3 PROBLEM STATEMENT

In this work, we consider a distribution of Markov Decision Processes (MDPs) M that share
the same state space S C R”™ and action space A C R". We can sample specific MDPs
m = (S, A, Pm, "m,So,m, 7, T') that for example represent different (maze) environment layouts.
Start states sg, are sampled from the MDP specific start distribution Sp,,, € S. The goal-
dependent (sparse) reward function is of the following form: 7 (s, gm) = lLi(s,g,.)<c With goal
states g, sampled from a goal distribution S ,,, € S and d (+,-) being some distance measure. P,
are the MDP specific transition dynamics that model the transition from a state s to the next state s’
given as a result of action a. y is the discount factor and 7" the time horizon.

The overall objective is to find a policy w that maximizes the expected returns under the distribution
of MDPs, the goal and initial state distributions, and the dynamics:

T
t
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t=0

State Space Abstraction: Similar to [Wohlke et al.| (2021)), we assume that there exists a finite
state space Z that abstracts the original, not necessarily finite, state space S. We assume that Z is
much smaller than S, |Z| <« |S|, and that there exists a known mapping z = fz (s) that defines
the abstraction. Also, we assume that the neighbors A (z) of any abstract state z are known and
that NV (z) C Z contains at least all abstract states directly reachable from z. For this work, we
specifically assume Z to be a regular 2D grid, which fulfills the aforementioned assumptions. In
case of continuous state space agent navigation, the state space abstraction Z may results from
discretization of the continuous z- and y-coordinates according to a chosen resolution.

4 MOTIVATING EXAMPLE

As a motivating example of why the approach of locally refining
values can be effective, consider the following 25 x 25 grid-world
maze navigation task with discrete states and actions. In addition
to the x- and y-coordinate, we augment the agent state by an ori-
entation component that can attain eight different values: ‘North’,
‘North-East’, ‘East’, ‘South-East’, ‘South’, ‘South-West’, ‘West’,
and ‘North-West’. Similar to the standard grid-world, the agent’s
actions correspond to the neighboring tiles. However, an action is
only executed if the direction of the target tile deviates from the
agent’s orientation by maximum one unit. For example, in orien-
tation ‘North’, only the actions ‘North-West’, ‘North’, and ‘North-
East’ will be executed. As a result, the agent changes its orientation
to the navigation direction and subsequently moves to the target tile,
unless it is occupied. Maze layouts are randomly generated. An ex-
emplary generation is shown to the right, in Fig.[I] The generation
process ensures that corridors are at least five tiles wide, in order
to give the agent the opportunity to turn. Start and goal states are
chosen at random from 16 different options uniformly distributed
across the maze, which are shown in blue in Fig. [T} The time horizon for navigating the maze is set
to T" = 100.

Figure 1: Exemplary maze
layout generation; potential
starts and goals shown in
blue; reaching the goal tile re-
sults in a sparse reward of one

We now demonstrate that the local refinement strategies we want to explore can effectively solve this
navigation task. Utilizing our knowledge about the exact agent dynamics we can apply value itera-
tion (VI) to the navigation, which we denote “VI 3D”. Table[T|shows the success rate of navigating
the maze with a greedy policy using the respective value iteration variant. Without any surprise, “VI
3D” results in an optimal policy for the task. However, 3D VI is costly memory- and compute-wise.
We can also ignore the agent orientation and perform value iteration only with respect to the agent’s
position (“VI 2D”). As the underlying transition model neglects the motion constraints imposed by
the orientation, the success rate is as low as 25.7 %.
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In the following, we will show that these sub-optimal  Table 1: Local value refinement example
but simple and cheap to obtain 2D plans only need

slight local adjustments, accounting for the motion

constraints, to become effective. First, observe that Success rate
we can use the value function obtained from “VI 2D” Method (mean = std;

as initialization for 3D value iteration by repeating it 10 seeds)
along the orientation dimension. As a basic result from V12D 0.257 4 0.057
Bellman| (1957) we know that repeatedly applying VI VI2D + 1 iter 3D 0.751 £ 0.037
with the exact (3D) transition model to this initializa- VI 2D + 2 iters 3D 0.909 £0.013
tion will result in convergence to the exact 3D value VI 2D + 3 iters 3D 0.965 £ 0.018
function. Yet, let us observe the performance of plans VI2D +5 iters 3D 0.989 £0.012
resulting from the first k iterations of the 3D value iter- VI2D + 10 it.ers 3D 0.995+£0.005
ations in Tab[I} Applying few iterations of 3D VI cor- VI2D + 100 iters 3D 1.000 + 0.000
responds to a local refinement of the 2D value “prior”, ~ VI3D 1.000 £ 0.000
looking k steps ahead with the true transition dynam-

ics. The results show that already very few 3D VI iterations result in a close to optimal 3D value
function, achieving 96.5 % success rate with k& = 3. Increasing k towards 100, which is the set
maximum for “VI 3D”, the refinement converges to 100 % success rate, as expected.

Of course, performing exact value iteration steps will hardly be possible in practical applications be-
cause the transition model might be unknown or because the task features continuous state compo-
nents. However, this example demonstrates that local refinements of a value function of a simplified
state space representation can sufficiently solve a task. In the following section, we will utilize this
observation and introduce a novel neural network that can learn to perform this refinement.

5 VALUE REFINEMENT NETWORK (VRN)

We will now propose a neural network architecture, the Value Refinement Network (VRN), which
is a learned refinement operator taking the place of applying a few value iterations with the exact
transition model to the initial value function “prior”. First, we present the architecture of our VRN
in Sec. then explain how to employ it in a (hierarchical) policy architecture in Sec. and
finally shed light on the training procedure in Sec.[5.3]

As a prerequisite of our value refinement, we need access to an initial (2D) value function “prior”
Vp (s) = Vz (fz (s)) in the abstract state space Z. In practice, we obtain it via value iteration with
an optimistic transition model, similar as in the VI-RL OM approach in|Wohlke et al.|(2021). Using
our VRN, we refine this “prior” to state-action values @ (s,a). Please note that both, the value
“prior” as well as the refined values, depend on the MDP goal state g,,,: V,, (s, ) and Q (s, a, gm)-
For simplicity of notation, we omit this goal-dependency throughout the rest of this work.

5.1 ARCHITECTURE

The value refinement network (VRN) is implemented as a convolutional neural network architecture
consisting of convolutional and fully-connected layers with a distinct input representation Z. With
the network parameters denoting as 1, the VRN implements the function Q (s,-) = fy (Z) =

fu (‘7;, S, (<AIJ7>), outputting a vector of refined values for all actions a. The network input 7

consists of the following components:

° XA/;, a local (k. x k.) crop of the value “prior” V,,, centered on the current abstract state
z = fz(s).
e One additional input channel each for potentially any component (or only a subset thereof)

of the current state vector s. The respective numerical value of state component s; is
broadcasted across the entire corresponding input channel.

e Optionally, a local (k. x k.) crop @7 of a layout map for the abstract state space Z, e.g.
indicating obstacles, centered on the current abstract state z. This discrete layout map ®
of the environment is similar to the assumed prior knowledge in other works (Tamar et al.|
2016; Nardell1 et al., 2019; (Christen et al., 2021; Wohlke et al.l [2021)).
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Figure 2: VRN architecture and input representation example (agent navigation): The first input
channel is a k. x k. (with k., = 7) crop sz of the value “prior” V,,, centered on the current abstract
(high-level) state z of the agent. Given a discretized (x,y) map ® of the environment, indicating

(static) obstacles, a k. x k. crop ®7, centered on z, forms the second input channel. Additional input
channels are formed by selecting components s; of the full (continuous) agent state s and inserting
the value into every cell of the corresponding input channel (exemplarily implied for s3 and s4).
Such state components s; are, for example, the velocity of the agent in x and y and/or the sine and
cosine of the agent orientation. Together, the input channels form the network input Z provided to
the VRN. The Value Refinement Network is implemented as a convolutional neural network (CNN)
composed of some convolutional layers followed up by some fully-connected layers to compute the
network output @ (s, -), a vector of refined state-action values.

Figure |2| shows an exemplary realization of the VRN and its input representation Z as it could be
used, for example, in an agent navigation task.

5.2 (HIERARCHICAL) POLICY USING A VRN

Based on the refined values, we can select actions a using an (e-)greedy policy:
wy (als, V) = argmax Q (s, a) = argmax fy (YA/pZ, s, ($z>) 2)

For continuous (state and) action spaces, we can employ our VRN as part of the high-level sub-goal
planning of a hierarchical policy architecture similar to the VI-RL architecture proposed by \Wohlke
et al|(2021). In this case, we have wy (24]s, V,) with z, being high-level sub-goals: The abstract
(high-level) state z, € A (z) with the highest refined value serves as sub-goal for a low-level policy
7o (als, fr (24, 5)). We assume to have access to a function f; (24, s) that transforms the abstract
sub-goal z, into a (low-level) continuous target vector 7 with respect to the current state s.

5.3 TRAINING

Overall, we want to optimize the objective shown in Eq. [1| with respect to the parameters ¢ of
the VRN (and optionally the parameters 6 of a potential low-level policy in a hierarchical policy

architecture):
T
> oAt (st,gm)l 3)
t=0

The VRN parameters 1 are optimized via double DQN (Van Hasselt et al., 2016)) using Hindsight
Experience Replay (HER) (Andrychowicz et all 2017) with, depending on the environment, the
“final’ or the ‘future’ strategy.

I’L;l(ao))( EmNM;SD, m NSO,m sdm NSg,m, ,Pm
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Algorithm [I] shows the algorithmic steps for training a VRN in a discrete action space scenario, like
the one described in Sec.[d] See Alg.[2]in Sec. in the appendix for training a VRN as part of a
hierarchical policy architecture for sub-goal selection.

Algorithm 1: VRN training

i=0,D 0,¢; =1¢; // initialize memory and VRN parameters
while ¢ < 4,,,, do
m o~ M, s0.m ~ So.m, 9m ~ Sg.m // sample MDP m, start, and goal
Vi (8, 9m) < Vioptimistic (®rm, gm) // obtain value prior

t=0,8 = Som.d, =False, D7,D,,D,,Dy,D, <0 // start episode in m
while ¢t < T and —d; do

It <~ ‘/p) St, q)m

Q (5t,°) = fy. (T) // VRN refines values
a; < epsilon-greedy (Q (s¢, *)) // select action
St1, Tty di < step (S¢, at, P, T'm) // take step in the environment

Dz <1y, Dy < a4, Dy <1, Dg < di, D, < fz (s¢)
| St:8t+17t<—t+l
DI <—It <— Vp,8t7®m, Dz <— fz (St)
for j < 0to|D,| — 1do

D+ (Zj,aj,Tj41,75,d;) // add transitions to memory

| D + HERguategy (Zj,a5,Zj41, D, Pry) // generate HER transitions
for j < 0to|D,| — 1do

Z°al, I, r°,d’ D // sample batch from memory

MSE (70 + (1= @) 1Q (T, arg may Q (Lo a% ) 167 ), Q (Z° 0% 51 )
;11 < update (£,1;) // take a gradient step on VRN parameters
1+ 1+1
if ¢ mod rarget network update frequency = 0 then

| Lvi=w

6 EXPERIMENTAL EVALUATION

In the previous sections, we motivated the local refinement of an initial value function (in a simpler
state space abstraction) and presented a neural network architecture, the VRN, which we claim is
capable of learning such a transformation. We will now empirically evaluate our VRN on challeng-
ing agent navigation tasks, investigating hypotheses H./ and H.2. Please note that for the continuous
state and action space navigation tasks, we employ our VRN within a hierarchical policy architec-
ture (VRN-RL) similar to the one presented in [Wohlke et al.| (2021) (further details in appendix
Sec.[A.2.1). The VRN is then part of the high-level sub-goal generation. By locally refining “prior”
2D shortest-path value functions with respect to the full (continuous) 3D or 6D agent state, it allows
to efficiently obtain good values for sub-goal selection, even in the face of a dynamically changing
environment. At the same time, costly planning operations are restricted to 2D, whereas without the
refinement more (at least three) state dimensions need to be considered for sub-goal planning.

6.1 DISCRETE MAZE NAVIGATION REVISITED

In our motivating example, in Sec. 4] we introduced a discrete state and action space maze naviga-
tion task featuring the agent orientation in the state space. We showed that an initial, sub-optimal 2D
value function (“prior”), ignoring the orientation, can be refined effectively to an approximately opti-
mal 3D value function by only applying few iterations of the computationally more costly 3D value
iteration. In order to empirically prove that our VRN is capable of learning this local refinement
procedure, we train it in the same environment having access to the same initial 2D value function
“prior”. Choosing a crop size of 7 x 7, corresponding to a three step look ahead, we would expect
a similar performance as “VI 2D + 3 iters 3D”. We furthermore conduct a small ablation to analyze
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Figure 3: Plots for maze navigation tasks: mean (solid line) =+ standard error (shaded area)

the success factors of our VRN: The importance of the “prior” value information is investigated by
training “VRN NO PRIOR” without this additional information. Furthermore, by training a “DQN
(PRIOR)” baseline that globally receives maze and optionally also value “prior” information, we
want to study the influence of the specific VRN architecture.

Figure [3a] shows the success rate over the course of the training ﬂ Indeed, our VRN ultimately
achieves a similar success rate as “VI 2D + 3 iters 3D” and is therefore capable of learning the
local refinement (H.7). The poor performance of “VRN NO PRIOR” emphasizes the reliance on a
“prior” for refinement. “DQN (PRIOR)”, which uses the same information as the VRN, but globally,
performs significantly worse on the taskEl Hence, we can conclude that the specific local refinement
architecture of VRN is key to utilizing the available value “prior”.

6.2 CONTINUOUS STICK ROBOT MAZE NAVIGATION

We increase the difficulty by evaluating our VRN on the

continuous state and action space “3D” stick robot maze Table 2: Full test set evaluation
navigation task introduced and made available by (Chen

et al.l |2019). The state space consists of the x- and y-

position as well as the orientation of the stick robot, which Method Success rate
features very simple dynamics: s’ = s + a if the move- (training iteration) (mean =+ std;
ment is collision free and s’ = s otherwise. Since this en- 10 seeds)
vironment was originally proposed to evaluate (sampling- ~ VI-RL OM 2D (100)  0.48 £ 0.17

based) planners, we had to make slight modifications to  VRN-RL (100) 0.57+0.15
use it for episodic RL. However, we keep the same time  VI-RL OM 2D (200) 0.56 = 0.20
horizon T' = 500. For the abstract high-level state space ~~ VRN-RL (200) 0.74 £0.09

Z used for initial (2D) planning, the continuous x,y-

coordinates are discretized into 30 x 30 tiles. Our VRN receives all three continuous state com-
ponents as individual input channels (additionally to layout and value “prior” crop). Successfully
reaching the goal configuration results in a reward of one. Otherwise, it is zero.

Figure 3] shows the success rate of VRN-RL over the course of the training. We also train a hier-
archical VI-RL OM 2D (Wohlke et al., [2021) baseline, which is basically VRN-RL without VRN
refinement of the initial 2D value function, which reflects shortest paths. During training, maze
layouts are repeatedly randomly sampled from the 2000 training layouts. For approximating the
success rate, 100 layouts are randomly sampled from the 1000 test layouts. Looking at the results,
VRN-RL is able to achieve higher success rates than VI-RL OM 2D, and hence successfully refines
the value “prior”. In addition to these training plots, we evaluated the VRN-RL and VI-RL OM 2D
models after half and the entire training across the full 1000 test layouts. The results are shown in
Tab.[2] VRN-RL performs consistently better than VI-RL OM 2D.

'Please note that for easy comparability with the other (hierarchical) approaches, later, one “training itera-
tion” corresponds to collecting data from multiple episodes with respect to a chosen “batch size” (3200 here).
Hence, within one “training iteration” the VRN parameters are updated multiple times.

>We tuned the hyper-parameters of DQN (as well as VRN) on a simpler layout of this maze navigation task
and achieved reasonable success rates (see appendix Sec.[A.T.T|and Fig.[6b)
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Figure 4: Exemplary visualization of the vehicle parking tasks

Compared to the results presented for the NEXT planner in [Chen et al.| (2019), of 84 % and 94 %
for their variants, respectively, VRN-RL performs a bit worse. Still, VRN-RL achieves up to 81 %
success rate for the best seed in the full test set evaluation El When looking at these numbers, it
should be taken into account that our VRN-RL can be used without access to the simulation (apart
from the static map), which NEXT needs to globally sample states or re-wire the tree (as part of
the underlying RRT). Furthermore, our VRN-RL is able to learn the navigation from environment
interaction without NEXT’s safety net of a fallback RRT planner that guarantees to eventually solve
the task and acquire successful training episodes.

6.3 NON-HOLONOMIC VEHICLE PARKING

Finally, we evaluate our VRN on two difficult vehicle parking tasks with complex non-holonomic
dynamics using highway-env 2018). We start with the parking task used in
[2021)), but only allow the vehicle to drive forward (to resolve orientation ambiguity in planning of
the VI-RL 3D baseline). As shown in Fig.[fa] a yellow vehicle (6D state) starting in the middle of
the parking lot needs to park in the slot marked in green, which is selected at random. The vehicle
receives a sparse reward of one for successfully parking and zero otherwise. For the abstract high-
level state space Z used for 2D value “prior” planning, we similar to [Wohike et al.| (2021) tile the
T, y-position into 24 x 12 tiles, but do not include the orientation. Using VI with an optimistic
transition model, we obtain initial 2D value functions, which reflect shortest paths, ignoring the
non-holonomic motion constraints.

We compare our VRN(-RL) to a number of sensible baselines (more details in appendix Sec.[A.2):

e BSL: A vanilla TRPO policy. Used as low-level policy for the hierarchical approaches.

e DQN-RL (PRIOR): A DQN policy operating in the high-level state space abstraction Z to
set sub-goals for low-level TRPO. Optionally, receives the initial 2D value function “prior”.

e HIRO (Nachum et al.,[2018)): State-of-the-art hierarchical RL approach. We use the same
implementation as in Wohlke et al.| (202T).

e VI-RL 3D: The hierarchical VI-RL approach as presented in [Wohlke et al.| (2021)). Per-
forms value iteration with a learned transition model in a 3D high-level state space abstrac-
tion explicitly including the vehicle orientation to set sub-goals for low-level RL (TRPO).

e VI-RL OM 2D: VRN-RL without using the VRN to refine the initial value function. Di-
rectly selects high-level sub-goals based on the 2D value “prior”, ignoring the orientation.

In this parking task, our VRN refines the initial 2D value function based on the continuous z- and
y-velocity of the vehicle as well as the sine and cosine of the vehicle orientation. The results are
depicted in Fig.[5a] Only our VRN-RL and VI-RL 3D are able to efficiently learn to convincingly
solve the parking task achieving roughly 90 % success rate. However, VI-RL 3D needs to apply
costly planning operations in a 3D state space abstraction whereas the local VRN refinement en-
ables VRN-RL to match the performance while only requiring “prior” value planning in a lower
dimensional 2D space (H.1). VI-RL OM 2D without the VRN refinement only achieves up to 30 %
success rate. DQN-RL, even with the 2D value “prior”, is not able to match the performance level
of VRN-RL although showing some learning progress.

3Note that (2019) report a single run.
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Figure 5: Plots for vehicle parking tasks: mean (solid line) + standard error (shaded area)

Parking with Moving Vehicle: In order to showcase the ability of our VRN to consider latest
state information (sensor measurements) during refinement to handle dynamically changing envi-
ronments, we modify the parking task. As shown in Fig.[4b] we add a second vehicle, which consid-
erably increases the difficulty of successful parking. The other vehicle drives horizontally in front
of the parking slot row from which the goal is selected. The constant velocity is randomly sampled
from the interval [1.5,3.5] m/s. Upon a collision of the two vehicles, the velocity of the controlled
“ego” vehicle is set to zero until the collision is resolved.

Our VRN(-RL) receives “sensory information” about the moving vehicle by marking all tiles oc-
cupied by it in the input channel containing the local map crop, in case the other vehicle is close
enough. Similarly, DQN-RL (PRIOR) receives entries in the map input. We furthermore adjust the
vanilla TRPO BASELINE TRACK by providing additional inputs containing a positional differ-
ence vector to the other vehicle as well as its velocity and orientation. VI-RL 3D could in principle
account for the other vehicle by repeated high-level re-planning with updated map information.
However, this is computationally prohibitive, increasing the training time by roughly a factor ten.
On the contrary, our VRN(-RL) only requires a single network forward pass at each time step to
account for the new situation.

Figure [5b] shows the success rates for parking with the moving vehicle. Our VRN(-RL), by locally
incorporating the sensing information about the other vehicle into its refinement, is the only approach
to convincingly increase the success rate to about 60 %. This result provides empirical evidence
for our hypothesis that the VRN can perform well in dynamically changing environments, without
re-planning, by incorporating latest state information (H.2). VRN-RL NO without the obstacle
information performs clearly worse only achieving a bit over 20 % success rate, similar to VI-RL
3D. The DQN and TRPO baselines do not perform well at all in this dynamic setting.

7 CONCLUSION

In this work, we propose the Value Refinement Network (VRN), a network architecture to locally
modify an initial plan in a simple state space abstraction, represented by a value function, based on
the full (continuous) agent state. Training the VRN via reinforcement learning, it learns to effectively
refine this initial plan to solve tasks that otherwise would require a prohibitively large state space
abstraction for planning or computationally costly repeated re-planning.

Evaluating our VRN on different agent navigation tasks, we arrive at the following conclusion re-
garding our research hypotheses: Our VRN can successfully refine initial (shortest path) plans,
represented by a value function, matching the performance of directly planning in a more complex
space. Furthermore, in vehicle parking tasks with a dynamically changing environment, where con-
sidering all relevant state space dimensions in planning is infeasible, our VRN successfully incor-
porates latest state information to maintain high-performance without the necessity for re-planning.
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Reproducibility Statement We provide details on the algorithms and benchmark environments
used for the empirical evaluation, in the appendix (see Sec. [A). After potential acceptance of this
work, we plan to open source the code.
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Figure 6: Empty Room Discrete Maze Navigation

A APPENDIX

A.1 ADDITIONAL ENVIRONMENT DETAILS

A.1.1 DISCRETE MAZE NAVIGATION

Wide Corridor Maze Generation: We first generate 9 x 9 random mazes. Then, we expand every
other row and column (the corridors) so that one tile is replaced by five tiles of the same value,
resulting in the wide corridors.

State Space S: s = (z, y,ﬁ)T with z € {0,...,24}, y € {0,..,24}, and 9 €
{“North’, ‘North-East’, ‘East’, ‘South-East’, ‘South’, ‘South-West’, ‘West’, and ‘North-West" }
State Space Abstraction Z: z = (z, y)T

Hindsight Experience Replay (HER) (Andrychowicz et al.,|2017): For the discrete maze naviga-
tion, we generate four HER transitions per transition using the ‘future’ HER strategy, when training
VRN or DQN. ‘Future’ means that we randomly sample four abstract states without replacement
from the sequence of abstract states traversed during the episode that appear in the episode after
the current abstract state z underlying the transition at hand. Each of the sampled states serves as
the HER goal z, yrr for one corresponding HER transition that is added to the memory alongside
the normal transition. If the abstract state z equals the HER goal 2z, ggr, the reward of the HER
transition is set to one and the done flag d to “True’. The network inputs Z and Z’ of the HER transi-
tions are modified according to the HER goal z, ygr: For DQN, the ‘goal state channel’ is adjusted.
Furthermore, the value function ‘prior’ for VRN (and DQN) in Z is re-computed with the new goal
Zg,HER-

Parameter Tuning on Simple Layout: We tuned the parameters of the double DQN (Van Hasselt
et al.,[2016) trainer of our VRN and the DQN baseline on a smaller, single-layout version, shown in
Fig.[6al of the discrete maze navigation task. With a size of only 13 x 13 position tiles, the horizon
is set to 7' = 20. The agent always starts in the green tile in the middle with a randomly sampled
orientation. The goal tile is uniformly sampled from the tiles shown in red when starting an episode.
The dynamics are the same as for the bigger, random-layout version. The performance of our VRN
and the DQN baseline for this simpler discrete maze navigation task is shown in Fig.[6b] Both are
able to achieve a high success rate, which means that we found suitable hyper-parameters.

A.1.2 CONTINUOUS STICK ROBOT MAZE NAVIGATION
Mazes: We use the same sets of 2000 dedicated training and 1000 dedicated test maze navigation

problems, respectively. Each problem consists of a 15 x 15 maze layout (example shown in Fig.
with a specific start and a specific goal configuration for the stick robot.

12
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State Space S: s = (z,5,9)" withz € [~1,1], y € [-1,1], and ¥ € [0.4,0.4] (Chen et al.
(2019) normalized the angle interval [—, 7] to this arbitrary interval)

State Space Abstraction Z: z = (Z, g)T
continuous - and y-coordinate

with Z € {0, ...,29}, 7 € {0, ..., 29}, regularly tiling the

Hindsight Experience Replay (HER) (Andrychowicz et al., [2017): We use the same ‘future’
strategy with four HER transitions as for the discrete maze navigation above.

A.1.3 NON-HOLONOMIC VEHICLE PARKING

We allow only for forward driving by not allowing negative velocities in direction of the heading of
the vehicle: v = max (0,v + a - At). If the (ego) vehicle leaves the parking lot (see 2- and y-limits
below), the episode terminates.

State Space S: s = (z,y, Uz, Uy, cos (U) , sin (z?))T with z € [—0.48,0.48], y € [—0.24,0.24], and

Y€ [—m, 7]
State Space Abstraction Z (for DQN-RL (PRIOR), VI-RL OM 2D, and VRN-RL (NO)): z =
(7, gj)T with z € {0, ...,24}, 5 € {0, ..., 12}, regularly tiling the continuous x- and y-coordinate

3D State Space Abstraction Z3p (for VI-RL 3D): z = (z, 7, 19)T with 9 € {0,..., 7}

Hindsight Experience Replay (HER) (Andrychowicz et al., 2017): Due to better performance,
we use the ‘final’ HER strategy for the non-holonomic vehicle parking tasks: The final abstract state
reached in the episode serves as the only HER goal z, ygr. Similarly to the ‘future’ strategy, a HER
transition is added to the memory using 2z, ygr as goal and adjusting the transition accordingly.

Moving Vehicle: We initialize the moving vehicle differently, depending on whether the selected

goal g = (z4,¥4,0,0,cos (¥,),sin (ﬁg))T (parking slot) is in the upper or lower row. If it is
in the upper row (y, < 0), we initialize the moving vehicle at position (x, — 0.08, —0.08) with
orientation ¥} = 0. If the goal is in the lower row (y, > 0), we initialize the moving vehicle
at position (z,4 + 0.08,0.08) with orientation ¥ = —m. This specific initialization of the moving
vehicle increases the likelihood of the ego vehicle having to deal with an encounter during parking.
The “forward” velocity is uniformly sampled from the interval [1.5, 3.5].

A.2 ADDITIONAL ALGORITHM DETAILS

A.2.1 VRN(-RL)

Network Architecture: The VRN is a CNN with two convolutional layers (no padding, stride one)
with 3 x 3 kernels and 16 and 32 feature maps, respectively. The 3 x 3 features maps resulting from
applying the convolutions to the 7 x 7 input, are flattened and passed through two fully-connected
layers with 64 hidden neurons each. The linear output layer outputs a vector of eight (four in case
of Stick Robot Navigation) refined Q-values. We use ReL.U activation.

Double DQN (Van Hasselt et al., 2016) training:

e Memory capacity: 160000

e Optimizer: Adam (Kingma & Bal [2014)
e Learning rate: 1 x 1074

e Batch size: 128

o Target update frequency: 1000

e Gradient clipping: [—1, 1]

e Discount v: 0.99

Input representation Z by environment:

13
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e Discrete Maze Navigation: Channel containing the layout map crop 7, channel with co-
sine of orientation, channel with sine of orientation, channel containing the value function

13 . t3) > z
prior” crop V;

o Stick Robot Maze Navigation: Channel containing the layout map crop &2, channel with z,
channel with y, channel with ¢, channel containing the value function “prior” crop V7

e Non-Holonomic Vehicle Parking: Channel containing the layout map crop d* (with moving
vehicle indicated as obstacle; marking all cells occupied by part of the moving vehicle),
channel with v,, channel with v,, channel with cos (¢), channel with sin (¢), channel

containing the value function “prior” crop V7

For the discrete maze navigation, we obtain the “cosine and sine of orientation” the following
way: We map the orientations ‘North’, ‘North-East’, ‘East’, etc. to the corresponding orientations:
“North” 9 = 0, ”"North East” ¥ = 7, and analogously. Based on these orientations ¥, we compute
the cosine and the sine.

Low-level sub-goal / target vector-guided RL policy 7y (in case of VRN-RL):

Similar to|Wohlke et al.|(2021), we train a sub-goal-conditioned low-level policy 7y (als, f- (24, s))
for low-level control via TRPO (Schulman et al} [2015). It is trained using the “sub-episodes” that
arise within the training episodes of horizon 7" from repeated sub-goal selection of the high-level
policy w. The execution of a sub-goal z, has a maximum time horizon of T, < T', which is five for
the stick robot maze navigation and two for the non-holonomic vehicle parking tasks. Upon reaching
the sub-goal z, / satisfying the target vector 7, the low-level policy receives are sparse intrinsic
reward of one and otherwise zero. After reaching 7%, or succeeding in the sub-goal navigation, the
“sub-episode” ends and a new high-level sub-goal is selected.

TRPO hyper-parameters:

e Actor network: MLP with three hidden layers of 64 neurons each (ReLU activation)
o Critic network: MLP with three hidden layers of 64 neurons each (ReLU activation)
o GAE advantage estimator with A = 0.95

e Max KL:5 x 1074

e Damping: 5 x 1073

e Batch Size: 10000

e Discount: v = 0.99

For the stick robot maze navigation, the policy output is passed through a Tanh activation multiplied
by 1—15 to limit the output range (twice the minimum corridor width in the maze).

Low-Level Target Vector Generation (in case of VRN-RL):

o Stick Robot Maze Navigation: The four refined Q-values correspond to directional targets
‘North’, ‘East’, ‘South’, and ‘West’. According to the selected direction, the positional
target for the low-level policy are the continuous z- and y-coordinates of the center of the

corresponding neighboring high-level tile (i.e. (Z,y + 1)T for ‘North’). Furthermore, an
orientation target for the low-level policy matching the directional target is set: 0.2, 0,
—0.2, and —0.4 for ‘North’, ‘East’, ‘South’, and ‘West’, respectively. The target vector 7 is
repeatedly updated with respect to the (low-level) state s: It is computed as the difference
vector between the positional and orientational target and the corresponding components of
s. In case the directional target corresponds to the abstract state corresponding to the goal
configuration, the target vector 7 is set to the difference between the goal configuration and
the state s.

e Non-Holonomic Vehicle Parking: The eight refined Q-values correspond to directional tar-
gets ‘North’, ‘North-East’, ‘East’, ‘South-East’, ‘South’, ‘South-West’, ‘West’, and ‘North-
West’. According to the selected direction, the positional target for the low-level policy are
the continuous z- and y-coordinates of the center of the corresponding neighboring high-

level tile (i.e. (z + 1,5 — l)T for ‘South-East’). Furthermore, an orientation target for the
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low-level policy matching the directional target is set: Cosine and sine of the orientation 1
matching the direction (i.e. ¥ = % for ‘North-East’, or ¢ = ’Tg“ for ‘South-West’). The
target vector T is repeatedly updated with respect to the (low-level) state s: It is computed as
the difference vector between the positional and orientational target and the corresponding
components of s.

VRN-RL algorithm sketch: An overview over the algorithmic implementation of VRN-RL is pro-
vided in Alg.[2}

Algorithm 2: VRN-RL training (with low-level TRPO policy)

i=0,Dy, D+ 0, ¢; =, ,0 « // initialize memories and parameters
for n'"®" < 1 to nyya, do

while |Dy| < TRPO batch size do

m~ M, so.m ~ So,m, 9m ~ Sg,m // sample MDP m, start, and goal
an (37gm) — VIoptimistic (‘bm7gm) // obtain value prior

t

=0, 8¢ = So,m» d¢ = False, Dz, D, ,D,,Dg,D, < 0,k =0,t, =0 // start
episode in m

Ito — ‘/pv St, (I)m

Q (s¢,7) = fu, (Tyy) // VRN refines values
Zg.t, < epsilon-greedy (Q (s, ")) // select sub-goal
while ¢t < T and —d; do

ag ~ Trgniter (Stv fT (St7 Zg,tk-))
St41,Tt,dy < step (s¢, ag, Pm,Tm) // take step in the environment
Dz — fZ (St)
DL < (St7 at, T, St+1)
St = St+1,t —t+1
if (fz (1) = zg,0,) V (t — ), = T%,) then
Dz <14, D., < 244, Dr < 0, Dg <~ False ~ // sub-goal reached
k+k+1,t,=t
It)c — ‘/p) St, (I)m
Q (st,°) = fu, (Ly,) // VRN refines values
Zgt, < epsilon-greedy (Q (s¢,-)) // select new sub-goal

D1« Ty, D., < 241, Dr 10, Dy < d,
Dz T V84, P, D = [z (5¢)
for j <~ O0to|D. | —1do

=y

Du + (Zj,24,5,Lj41,75,d;) // add transitions to memory
Dy < HERguaeey (Zj5 29,55 Zj+1, Dz, ) // generate HER
| transitions
orj<«0Oto|D. |—1do
Ib,zz,l'gex[,rb,db <~ Dy // sample batch from memory

MSE (1 4 (1 %) 9Q (T vz mae, Q (oo, 210 ) 107) .Q (T, 2410 )

;41 < update (£, ;) // take a gradient step on VRN
parameters
141+1
if © mod rarget network update frequency = 0 then
| U =
O pier 1 < TRPO (6, DL) // update low-level policy parameters
| Dy, 1]
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A.2.2 VI-RLOM 2D

VI-RL OM 2D works similar to VRN-RL just that no VRN value refinement takes place and the
high-level sub-goals are selected based on the value function prior Vz (fz (s)) by treating the values
in the 3 x 3 neighborhood of z = fz (s) as Q-values Qz (z, z4).

A.2.3 DQN(-RL) (PRIOR)

Network Architecture: We use a basic CNN architecture with three convolutional layers with 5 x 5,
3 x 3, and 3 x 3 kernels, respectively, and strides of 2, 2, and 1, respectively. The layers have 16, 32,
and 32 feature maps, respectively. The 3 x 3 features maps resulting from applying the convolutions
to the 25 x 25 input (24 x 12 map for parking padded to size), are flattened and passed through
fully-connected layers. Due to using a dueling DQN architecture (Wang et al., 2016)), the flattened
feature vector first passes through one fully-connected layer with 64 hidden neurons to then split
into the value and the advantage head, which feature another fully-connected layer with 64 hidden
neurons and a linear output layer, each. The output of the DQN architecture is a vector of eight
Q-values. We also use ReL.U activation.

Input representation by environment:

e Discrete Maze Navigation: Channel containing the maze layout map ® (1 for free space,
0 for obstacle), channel with agent position 1 else 0, channel with goal position 1 else 0,
channel with cosine of orientation, channel with sine of orientation

o Non-Holonomic Vehicle Parking: Channel containing the layout map ® (with moving vehi-
cle indicated as obstacle (similar to VRN-RL)), channel with agent position 1 else 0, chan-
nel with goal position 1 else 0, channel with v,, channel with v,, channel with cos (),
channel with sin ()

Additional channel with (non-cropped) value function “prior” in case of PRIOR option.

Training: DQN(-RL) (PRIOR) uses the same double DQN training algorithm as VRN(-RL), the
same hindsight strategies, and the same overall training loop (including low-level policy, in case of
DQN-RL) as in Alg.|l|and Alg.[2|just that the DQN network is employed instead of the VRN (and
value “prior” generation takes only place, in case of PRIOR). It just uses a batch size of 64 instead
128.
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