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Abstract

Vector representations of contextual embeddings learned by transformer-based models have
been shown to be effective even for downstream tasks in numerical domains such as time
series forecasting. Their success in capturing long-range dependencies and contextual
semantics has led to broad adoption across architectures. But at the same time, there is little
theoretical understanding of when transformers, both autoregressive and non-autoregressive,
generalize well to forecasting tasks. This paper addresses this gap through an analysis
of isotropy in contextual embedding space. Specifically, we study a log-linear model as
a simplified abstraction for studying hidden representations in transformer-based models.
In this formulation, time series embeddings are mapped to predictive outputs through a
softmax layer, providing a tractable lens for analyzing generalization. We show that state-
of-the-art performance requires embeddings to possess a structure that accounts for the
shift-invariance of the softmax function. By examining the gradient structure of self-attention,
we demonstrate how isotropy preserves representation structure, resolves the shift-invariance
problem, and provides insights into model reliability and generalization. Experiments across
22 different numerical datasets and 5 different transformer-based models show that data
characteristics and architectural choices significantly affect isotropy, which in turn directly
influences forecasting performance. This establishes isotropy as a theoretically grounded
and empirically validated indicator of generalization and reliability in time series forecasting.
The code for the isotropy analysis and all data are publicly available [ﬂ

1 Introduction

Transformer-based models models have been proven effective across various downstream tasks in numerical
domains, such as finance (Garza and Mergenthaler-Canseco| (2023); [Yu et al.| (2023))), energy (Gao et al.
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(2024)), climate science (Jin et al|(2024))), healthcare (Wang and Zhang| (2024)), transportation signals (Xul
(2024)), synthetic tabular generation (Dinh et al.| (2022); Borisov et al.| (2023)); Xu et al.| (2024))), among

others. The significant success of emergent transformer-based models in capturing long-range dependencies
and contextual semantics has led to their widespread integration across a wide variety of architectures. Several
methods have been developed recently in (Gruver et al. (2024); Dooley et al.| (2023); Nie et al.| (2023)); Rasul
let al.| (2024); (Woo et al|(2024); Jin et al.|(2024); Ansari et al|(2024)) that extend or apply transformer-based
models to numerical domains for time series forecasting. For many of these numerical downstream tasks,
training a linear classifier on top of the hidden-layer representations generated by the transformer-based
models has been shown to achieve near state-of-the-art performance (Jin et al|(2024)); Ansari et al. (2024)).
However, the existing models in (Gruver et al.| (2024)); |[Dooley et al.| (2023); Nie et al.| (2023); Rasul et al.|
(2024); [Woo et al.| (2024); Jin et al.| (2024); |Ansari et al.| (2024))) are treated as a ‘black box’ where numerical
forecasts are controlled by complex nonlinear interactions between many parameters. This makes it difficult
to comprehend how models arrive at their predictions and raises fundamental challenges in assessing the
reliability and generalization of model outputs in numerical domains.

Most scientific domains, e.g., finance, healthcare, rely on machine learning models to exhibit prediction
reliability. Thus, in such domains, it is necessary to open up the black box behind transformer-based
models and develop explanatory tools that can serve as good proxies for performance. Although recent
empirical studies (Jin et al. (2024); Nie et al.| (2023); Liu et al| (2024))) demonstrate the benefits of vector
representations of embeddings learned by transformer-based models in various numerical downstream tasks,
there is little theoretical understanding of their empirical success. This motivates the need for simplified
yet expressive abstractions that enable the study of hidden representation geometry independent of specific
architectural details. Thus, a fundamental question arises: “When (or how) do the hidden representations
of transformer-based models exhibit structural properties that enable reliable generalization in time series
forecasting?"

The main contribution of this paper is a novel approach for answering this question by exploiting the
isotropic property of transformer-based model hidden representations in the contextual embedding space.
Isotropy refers to the geometric property wherein vector representations in the embedding space are uniformly
distributed in all directions, a characteristic critical for maintaining the expressiveness of the embedding space
(Arora et al.| (2016)); [Mu and Viswanath| (2018))). To achieve reliable generalization in numerical domains,
we show that the hidden representations of transformer-based models must exhibit a structured form in
contextual embedding space that accounts for the shift-invariance problem (Singla et al.|(2021)); |Jacobsen|
let al.| (2020); Rojas-Gomez et al.| (2022))) of the softmax function (i.e., the softmax output remains unchanged
when all logits are shifted by a constant). Without such structure, the model can shift the logits while
keeping the training loss unchanged, thereby leaving the logits ineffective for numerical downstream tasks.
By formulating a gradient structure of self-attention in transformer-based models, we show how the isotropy
property of transformer-based model embeddings in the contextual embedding space preserves the underlying
structure of representations, thereby resolving the shift-invariance problem of the softmax function. In a
nutshell, our key contributions include:

o We consider a log-linecar model (Arora et al. (2016)); Mu and Viswanath| (2018)), |[Andreas and Klein|
(2015)); [Peters and Klakow| (2000); [Nelakanti et al.| (2013)) as a simplified abstraction to analyze
the hidden representations of transformer-based models and demonstrate theoretically why such
representations must exhibit structure to address the shift-invariance problem of the softmax function.

o We take a deeper look into the hidden representations of transformer-based models and show how
isotropy preserves the structural integrity of representations. In particular, we derive an upper bound
for the Jacobian matrix which collects all first-order partial derivatives of self-attention with respect
to the input pattern and show that the m largest eigenvectors of the transformer-based model hidden
representations minimize the gradient norm of self-attention. Then, by projecting the representations
into lower dimensions using these m largest eigenvectors, we find the isotropy within the clusters in
the contextual embedding space.

o Finally, we provide a comprehensive evaluation across 12 real and 10 synthetic time series datasets over
5 different transformer-based models. Our experiments demonstrate that the isotropy of transformer-
based model hidden representations varies significantly based on the input data characteristics (i.e.,
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domain, context length and noise level) and model design choices (i.e., tokenization techniques and
architecture), which in turn strongly influences forecasting performance in numerical domains.

2  Problem Setup in Numerical Domains

Overview of Section In this section, a general problem setup
is presented for transformer-based modeling of numerical time series. X
Time series inputs are tokenized and processed through self-attention
layers, leading to contextual embeddings that are mapped to pre-
dictive outputs. While the precise output head may vary across
architectures (e.g., regression or categorical distributions), we adopt
a log-linear abstraction as a simplified model to study embedding ge-
ometry. This abstraction enables a tractable foundation for isotropy
analysis in the contextual embedding space. A numerical downstream Quantization,
task is also defined in terms of logits, casting time series forecasting Patching etc.
as a prediction problem on tokenized sequences. Together, these for-
mulations establish the theoretical basis for studying the relationship
between isotropy and forecasting performance.

Time series

AW

St

Tokenization techniques

Time series tokens
[ [l [~ [ =]

Time Series Tokens and Similarity Measure. In transformer-
based forecasting models, both autoregressive and non-autoregressive
architectures can be viewed as learning predictive distributions over
future values from historical context. Formally, given a time series x1.741, = [21,...,27,...,Z7+1], where
the first T' time instances give the historical context, the next L time instances constitute the forecast region,
and x; € R is the observation of each time instance, we are interested in predicting the joint distribution of
the next L time instances, p(X741.74|X1.7). Since transformer-based models operate on tokens from a finite
vocabulary, using them for time series data requires mapping the observations to a finite set of tokens. Based
on different numerical applications and transformer-based model architectures, various tokenization techniques,
e.g., quantization and scaling (Ansari et al.| (2024); [Rasul et al.[ (2024))), patching (Woo et al.| (2024)); Jin et al.
(2024); [Nie et al.| (2023))), and adaptation of language model tokenizer in numerical domains (Gruver et al.
(2024); Dooley et al.| (2023)), can be applied to tokenize the time series and create a time series vocabulary V
of N time series tokens, i.e., |V| = N, as shown in Figure[l] Then, the realization of the next L time instances
can be obtained by computing predictive distributions p(k; | k_;) for I € {1,..., L}, where k_; denotes the
tokenized input sequence and k; is a time series token in vocabulary V.

Figure 1: Time series tokenization.

Let ¥; = {w} 42, ...} be the set of all contextual embedding instances produced by a transformer-based
model for the time series token k;. Here, different contexts in the time series sequences yield different
self-attention-based embeddings of k;. By constructing > kieV ||, we define the inter-token cosine similarity
as:

Ccos £ Ei;ﬁj [COS(¢i7wj)]a (1)

where 9; and v, are random samples from W,. The expectation is taken over all pairs of different tokens.
This metric quantifies how distinct or overlapping contextual embeddings are across tokens, thereby providing
a measure of isotropy in the embedding space.

Model. We consider a general model for numerical data and open the black box of the transformer-based
model. To analyze representation geometry, we adopt the log-linear model commonly used in prior theoretical
work (Arora et al| (2016); [Mu and Viswanath| (2018); |/Andreas and Klein| (2015); Peters and Klakow] (2000);
Nelakanti et al.| (2013)). This adaptation is not intended to replicate the full transformer inference process,
which also involves multi-head attention, feedforward layers, normalization, and residual connections. Instead,
it serves as a tractable abstraction of the softmax parameterization commonly used in prediction heads. In
this formulation, contextual embeddings (generated through self-attention and subsequent transformations)
interact with token embeddings via inner products, and probabilities are obtained through normalization.
This provides a mathematical framework for studying isotropy in contextual embedding spaces. Formally, we
define the conditional distribution of a future time series token k; given a tokenized input sequence k_; using
a softmax-parameterized log-linear form, typical of many prediction heads:
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pr(ki=awi [ k) ocexp(($Zy(kp), 97)), (2)

where 17 € RP is a token embedding corresponding to the observation x;, and 1* ,(k_;) encodes the input
sequence k_; into a contextual representation in RP. The notation (-,-) denotes the inner product between
context and token embeddings. Moreover, we do not consider any prior distribution for input, which makes
our model more general than previous latent models in (Arora et al. (2016); Wei et al.| (2021))).

To define the numerical downstream task, let 27 (k,1):= (", (k—;), ;) be the i-th logit of the ground-truth
model, and assume that the numerical downstream tasks are defined by a function of the logits, i.e., f*(z*).
Also let Z*(k,1) ::Zlvll exp(zf(k,1)) be the partition function. In this abstraction, the partition function
normalizes the output probablhtles. Then, the normalized ground-truth model Vi€V is then

exp((0 (). ¥9) _ exp(ez (1)
T I 2

Since we do not know the ground-truth model in reality, we do not have access to the ground-truth components
f and ¥*,(k_;). Instead, we only have access to the trained model embeddings ¢, and ¢_;(k_;) that aim

to minimize training loss. We can then define the trained model’s logits as z(k,l)::{@/),l(k,l),1/)0}?31
Intuitively, z are the contextualized representations learned by the trained transformer-based model during
training. The downstream task is to learn a function f(k,[). Finally, the output distribution of the trained
model Vi€V is

exp(z;(k,1))

Loss Function. While transformer-based forecasting models in practice are trained with a variety of
objectives (e.g., mean squared error, likelihood-based losses, or cross-entropy), for theoretical analysis we

adopt a cross-entropy formulation. This abstraction allows us to express the training objective compactly in
expectation form and to connect it to KL divergence, thereby providing a tractable framework for studying
how embedding representations relate to generalization and reliability. For a tokenized input sequence k_;,
the loss is given by:

L=E, [ —p* (k= | k_y) log p(ki = | k_l)}
= Ex [ Dice(p (ke [ k-0) | ki [ k-) | + B [Hp (ki [ K-0) . 4)

where p(-|k_;) is the categorical distribution predicted by the trained model, p*(-|k_;) is the ground-truth
distribution, Dk, is the KL divergence, and () denotes entropy. This formulation highlights that minimizing
cross-entropy is equivalent to minimizing KL divergence up to an additive constant given by the ground-truth
entropy. Under large-scale training, the cross-entropy loss becomes small, implying that the KL divergence
term is also small. This supports the common assumption that the trained model distribution approximates
the ground-truth distribution in practice.

Downstream Numerical Task. We formulate time series forecasting as a downstream task, in which a
trained transformer-based model is used to predict future values of a time series. While practical models often
generate continuous outputs (e.g., through regression or likelihood-based heads), for theoretical analysis we
adopt a categorical abstraction. Specifically, the continuous observations are mapped into a finite vocabulary
of discrete tokens, so that forecasting can be cast as a conditional prediction problem over V. The downstream
task is then defined as a function of the logits z*(k,[) generated by the ground truth model, where each
logit corresponds to a token in V given the input sequence k_;. For interpretability, one can consider a
linear predictor that operates directly on the contextual representation ¢*,(k_;): f*(k,l) = (¢¥*,(k_1),u*) =

Zlvl z¥(k,1), where u* Zlvl aj; € RP and a} are coefficients. Although this linear form provides
mtultlon about how logits contribute to predictions, it does not guarantee reliable generalization, as KL
divergence is less sensitive to sign changes in f*(k,1) when logits have small magnitude [Wu et al.| (2023). To
improve robustness, we instead model the downstream task using a nonlinear activation on the logits:

VI V]

:Za;a(z;( ) —bY) ZM k1), ¢7) — b}),
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where o is the ReLU function and b} is a threshold parameter. This abstraction suppresses low-confidence logits
that contribute minimally to KL divergence, thereby focusing the task on high-relevance predictions. While
not intended as a literal description of forecasting architectures, this formulation provides a theoretical device
for analyzing robustness and highlights how isotropy in the embedding space supports reliable generalization
in time series forecasting.

Despite the empirical success of transformer-based approaches in numerical domains, there remains a
fundamental gap in understanding when these models generalize reliably. A key challenge lies in the mismatch
between training and inference performance, i.e., good training performance does not necessarily translate
to robustness at test time. To address this, we introduce a theoretical framework based on isotropy in the
contextual embedding space. Within this framework, strong isotropy in hidden representations stabilizes the
partition function and mitigates the shift-invariance issue observed in softmax-based abstractions, thereby
leading to more reliable inference. The next section formalizes this insight and provides a theoretical
justification for using isotropy as a key indicator of model reliability in time series forecasting.

3 The Role of Isotropy in Transformer-Based Models for Time Series Forecasting

Overview of Section This section develops a theoretical perspective on why isotropy in contextual
embeddings is critical for reliable generalization of transformer-based models in numerical forecasting.
Although strong performance is often observed during training, it does not always transfer to unseen scenarios,
particularly across heterogeneous numerical domains. To explain this mismatch, we introduce a framework
that links isotropy of hidden representations to the stability of the partition function. We show that isotropy
mitigates the shift-invariance issue in softmax-based abstractions, thereby enabling more robust generalization.
This establishes a formal connection between isotropy and inference reliability, motivating its use as an
indicator of model performance in numerical domains.

As discussed in Section 2| we consider transformer-based forecasting models where outputs are often
parameterized through task-specific heads (e.g., regression, likelihood, or classification). For theoretical
analysis, we adopt a softmax-based formulation as an abstraction to connect logits and probabilities, enabling
isotropy analysis. The relationship between logits and this softmax-based abstraction directly impacts
downstream forecasting performance. However, the softmax function is inherently shift-invariant, i.e., its
output remains unchanged if all logits are shifted by the same constant. Shift invariance has been extensively
studied in the deep learning literature (e.g., |Singla et al.| (2021)); |Jacobsen et al.| (2020)); [Rojas-Gomez et al.
(2022)) and is recognized as a practical concern across various domains such as NLP and vision. For instance,
(Singla et al.| (2021))) shows that transformers can be sensitive to input shifts, and (Jacobsen et al.| (2020))
shows that such invariance can distort representation geometry and affect generalization. In time series
forecasting, this implies that unless hidden representations enforce structural stability, outputs under the
softmax-based abstraction may remain unaffected by meaningful representational changes. Since we cannot
control the logit shifts of a trained model on unseen data, strong predictive performance during training does
not necessarily imply reliable generalization in out-of-distribution scenarios. This lack of reliability due to
uncontrolled logit shifts is formalized in the following theorem:

Theorem 1. Let the logits of the ground-truth model be bounded. Then for any f*(k,l), there exists a
set of functions {21-(/{,1)}?;'1 such that for all k and Tjy1, the predictive distribution of the trained model
P (k1| k_;) matches that of the ground-truth model p* (k; | k_;) while f(k,1) = 0. In other words, there exists a

trained model with the same training loss as the ground-truth model, but with logits ineffective for numerical
downstream tasks.

Proof. The proof is provided in Appendix [A] O

Theorem [I] highlights that without additional structure in the hidden representations of transformer-based
models, the logits can be arbitrarily shifted while preserving training loss, rendering them ineffective for
forecasting tasks. Thus, theoretical guarantees for downstream performance require embedding spaces that
enforce geometric stability.

To prevent the shift-invariance problem from undermining forecasting reliability, it is necessary to stabilize
the partition function. Let W= (41, ...,¢y) " €RVI*D denote the contextual embeddings of the tokenized
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time series. Within our softmax-based abstraction, the stability of the partition function can be assessed
through the isotropy of the embedding space (Arora et al.| (2016)); [Mu and Viswanath| (2018))):
ming,ec Z(k,1)

I({¥i}) = ()

where C = T W is the input correlation matrix of input patterns and [ = 1,..., L. From equation |5, we can
see that when the partition function is constant (i.e., stable) for different samples, I({t;}) becomes close to
1, which indicates that the contextual embedding space is closer to isotropic and thus geometrically stable
(Arora et al. (2016)); Mu and Viswanath| (2018])). In this abstraction, probabilities depend consistently on
logits without being distorted by global shifts, thereby mitigating the softmax shift-invariance problem.

maxy,ec Z(k,1)’

Building on this theoretical foundation, we now turn to the following empirical question: “How can isotropy
be quantified and interpreted in practice, and how does it relate to forecasting generalization across numerical
domains?" Motivated by Theorem [I| we analyze structural properties of hidden representations, such as
effective dimensionality and cluster organization, in transformer-based models under our softmax-based
abstraction. These analyses reveal how isotropy manifests in contextual embeddings and how its presence
correlates with generalization ability across diverse numerical domains, thereby providing a practical indicator
of model reliability. Section [ introduces quantitative methods, including spectral alignment, principal
component analysis (PCA), and cluster-based isotropy metrics, which link theoretical reliability to empirical
generalization.

4 Study of isotropy in transformer-based models hidden representations

Overview of Section This section builds on the theoretical foundation of isotropy to address the
empirical question of how isotropy can be measured and interpreted in practice, and how it relates to
generalization across numerical domains. It introduces techniques such as spectral alignment, PCA, and
cluster-based isotropy metrics to examine the structural geometry of hidden representations in transformer-
based models. These methods uncover how isotropy manifests in model embeddings and how its presence
correlates with forecasting performance. Through this analysis, the section establishes a crucial link between
theoretical reliability and empirical generalizability.

Analysis Settings. For this study, we consider five different transformer-based models including Chronos-
T5 (Ansari et al.| (2024)), Chronos—Boltﬂ7 PatchTST (Nie et al.| (2023))), Moirai-1.0-R (Woo et al.| (2024)),
and Lag-Llama (Rasul et al.| (2024)). For illustration, we randomly select a real dataset (i.e., finance-Dataset
1) from a broader collection of 22 numerical datasets that we use in this paper since we see similar results
with all of these datasets. The details of these models and datasets could be found in Section [El

4.1 Effective Dimensions

In each layer of each model, we start with

a data matrix A € RVI*XP where |V| rep-

resents the number of tokens in the input Table 1: The effective dimension d(0.8)

time series sequence, and D corresponds to Layer 3 45 6 7 8 9 10 11 12
the embedding dimension. We apply PCA  Chronos-T5 4 4 4 4 4 4

to reduce the dimensionality from D to m Chronos-Bolt 1111 1 11 1 1 1

DO = = = =
N~ N

ie., A € RIV*™_ Then, the fraction of vari- Pat,ChTST
tured by the reduced tati Moirai 1 1 1 1
ance captured by the reduced representation Lag Llama 5 9 9 2 9 9

m—1

is given by: r, = # where o; de-
=0 gi

notes the i-th largest eigenvalue of the covariance matrix of A. We define the e-effective dimension as

d(e) £ argmin,, ,, > e. For instance, if d(0.8) = 3, then three principal dimensions retain 80% of the

variance. A higher d suggests a more isotropic space (Cai et al.|(2021)), where information is spread across

multiple dimensions rather than being concentrated in a narrow subspace. Table [I] presents the values of

d(0.8) for different layers and models. Surprisingly, all of these models have very small effective dimensions as

%https://huggingface.co/autogluon/chronos-bolt-base
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compared to original embedding dimensions. For instance, Chronos-Bolt has very small effective dimensions,
with d(0.8) = 1 for layers 1 through 12, as compared to its original embedding dimensions D = 512. The small
effective dimensionality is another way of telling that that Chronos-Bolts’s embedding vectors lie in a subspace
defined by a very narrow cone (Ethayarajh (2019)), and consequently, their inter-token cosine similarity is
large. If all the embedding vectors lie on a 1-dimensional line, the inter-token cosine similarity would be
close to 1, and there would be hardly any model capacity. Surprisingly, despite having such low effective
dimensionality, these transformer-based models still perform well in numerical domains. This counterintuitive
result motivate us to look deeper into the contextual embedding space.

4.2 Spectral Alignment for Generalization in Numerical Settings

Let G(®) = (g1(®),..., gy (®))" : RIVIXDP s RIVIXD he the function for self-attention, i.e., g;(¥) =
softmax(WAW ") ¥, where A=WoW . € RP*P and WoeRPX™ W xeRP*™ are the parameter matrices
for the query and key matrices of self-attention. The lemma below provides insights into how the isotropic
property of transformer-based models enables generalization in numerical domains. The proof of this lemma
follows the analysis in (Kim et al.[(2021)) and is provided in Appendix for completeness.

Lemma 1. Consider the Jacobian matriz .]E| which represents the gradient of the self-attention mapping
G (W) with respect to the input time series token embeddings. Then the spectral norm of J satisfies || J||2 <

2
% %
Al SV (pii +3) ‘%‘ — Z‘F‘l pi,j¢j‘ +A.
The residual term A and the station weight p; ; is defined in Appendix|B| For notatioanl simplicity, we express

2
v v . . o
the term > L:‘l ‘1/)1 -S> ljz‘l p@jwj‘ in Lemma [lfas . From Lemma (1} we can see that, in order to minimize

the norm of the gradient ||J||2, we essentially need to make I' small. When A is small and all the input time
series token embeddings are centered at the origin, Zzll 1; =0, we have I' = ZLZ‘l |wi — WTlPAwi|2 (see
Appendix .

Next, we prove that A minimizes the objective I' and contains the m largest eigenvectors of correlation matrix
W ' of time series token embeddings, where m is the rank of A.

Theorem 2. Let the eigenvalues of the correlation matrix W be ordered as \y > Ag > -+ > Ap, and
let v; € RP fori=1,...,D denote their associated eigenvectors. Then, the matriz A* that minimizes the
quantity T' has the optimal form A = ZZZ1 %’ym;.

Proof. The proof of Theorem [2]is provided in Appendix [C] O

Theorem [2] shows that the self-attention mechanism effectively projects input time series tokens onto a
low-dimensional contextual embedding space defined by the top eigenvectors of the correlation matrix ¥ ¥.
This result reveals that the self-attention mechanism in transformer-based models implicitly aligns with the
dominant directions (i.e., top eigenvectors) of the contextual embedding space, and hence, suggesting that
isotropy is not just a geometric artifact but a learned structural property that supports effective generalization
to numerical downstream tasks.

While the self-attention aligns input representations with the dominant eigenvectors of the embedding space,
the alignment may vary across different subregions of the contextual embedding space due to variations in
the input sequences, token types, or contextual patterns. As a result, the degree of isotropy may differ across
subregions of the contextual embedding space, which motivates the need to assess isotropy at a local (i.e.,
cluster) level rather than relying solely on a global metric. The next section explores these local structural
patterns and examines the geometry of the hidden representations through principal component analysis
(PCA), which helps reveal how variance is distributed across embedding dimensions.

VI
3The Jacobian matrix J = {a‘(giqi‘l’)} represents the gradient of the self-attention mapping G(¥) with respect to the
7 Jé5=1
input time series token embeddings.
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var ratio=0.52 var ratio=0.94 var ratio=0.97 var ratio=0.83

10 oo

(a) Chronos-T5 layer 8 (b) Lag-Llama layer 8 (c) PatchTST layer 2 (d) Moirai layer 2

Figure 2: Isolated or slightly overlapping cluster islands exist in the contextual embedding space for all
models. For brevity, we only show a few representative middle layers from each model.

4.3 Clusters in the Contextual Embedding Space

Motivated by the results of Lemma [I] and Theorem [2] this section investigates local structural patterns by
projecting the transformer-based models’ hidden representations into a lower-dimensional space using the
top m=3 eigenvectors via PCA, as shown in Figure [2l The three axes of the figure represent the first three
principal components of the covariance matrix of transformer-based model representations of each layer. For
instance, in Figure 2b and 24, the first three principal components account for 94% of the total variance
in layer 8 of Lag-Llama and 83% in layer 2 of Moirai. From Figure |2|a, [2| b, |2[ ¢ and [2[d, we can see that
there are disconnected or slightly overlapping islands that are far away from each other. In equation I the
space isotropy is measured on pairs of arbitrary time series token representations, which could reside in
two disconnected clusters. However, given that the variance is dominated by distances between clusters,
such estimation would be biased by the inter-cluster distances. Hence, it is more reasonable to consider a
per-cluster (i.e., local) investigation rather than a global estimate.

Isotropy within Clusters. We start by performing clustering on the transformer-based model represen-
tations in the contextual embedding space. There are various methods for performing clustering, such as
K-means and DBSCAN algorithm (Ester et al| (1996)). We select K-means clustering method because it is
reasonably fast in high embedding dimensions. We use the classical silhouette score analysis (Rousseeuw
(1987)) to determine the number of clusters |C| in the contextual embedding space (see Appendix [D| for
details). Since each transformer-based model contextual embedding instance 1; belongs to a particular cluster
through clustering, the cosine similarity should be measured after shifting the mean to the origin (Mu and
Viswanath| (2018)). Accordingly, we subtract the mean for each cluster (i.e., centroid) and calculate the
adjusted Ceos in Section [2| Assuming we have a total of |C] clusters, let ®;, = {¢} 47 ,...} be the set of
token k;’s contextual embeddings in cluster ¢ € C, and ;. be one random sample in ®;,. We define the
adjusted inter-token cosine similarity as

Clos £ Be [Eigj [cos (¢4, ¥5.)]] (6)

where ;, = 1b;, — Ey, [1i.]. Here E. is the average over different clusters, and 1;, is the original contextual
embedding shifted by the mean, with the mean taken over the samples in cluster ¢ (Kim et al| (2021)). The
inter-token cosine similarity takes values between —1 and 1. A value close to 0 indicates strong isotropy
and ensures the existence of structure in the transformer-based model representations. The stability of the
partition function Z(k,!) depends on balanced inter-token similarities (i.e., strong isotropy) in the contextual
embedding space. However, as shown in Section [£.2] hidden representations often form disconnected or weakly
overlapping clusters where global isotropy can be misleading due to the variance being dominated by large
distances between cluster centroids. By analyzing local isotropy within each cluster in equation [f] meaningful
intra-cluster geometry can be captured which ensures that no cluster disproportionately skews the partition
function normalization. This leads to more stable and interpretable model outputs.

To put it in a nutshell, this section provides a theoretical foundation showing that self-attention projects input
tokens onto a low-dimensional subspace aligned with the dominant eigenvectors of the embedding correlation
matrix. This alignment induces isotropy in transformer-based model hidden representations, stabilizing the
partition function and preserving the structure needed for reliable numerical downstream task performances.
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In Section [5] we extend this analysis by empirically evaluating how isotropy in different transformer-based
models’ hidden representations correlates with time series forecasting performances across a wide range of
numerical datasets, varying context lengths, and noise levels.

5 Experiments

Overview of Section This section empirically validates the theoretical insights developed in the
preceding sections through a combination of controlled and broad-based experiments. We begin with a
matching controlled experiment that implements a simple transformer-based model with a softmax output
head trained under cross-entropy loss which reflects the assumptions of our theoretical framework in Section [2]
This serves as a sanity check that bridges theory and practice, confirming that isotropy is tightly linked
to forecasting reliability when the model setup matches the analytical formulation. We then extend the
evaluation to diverse transformer-based models and datasets, analyzing both synthetic (qualitative) and real-
world (quantitative) domains. These broader experiments investigate how factors such as model architecture,
tokenization strategies, context length, and noise influence the isotropic structure of learned representations.
Across all settings, we find that higher isotropy consistently correlates with better generalization, reinforcing
its utility as a reliable, label-free diagnostic for the robustness of transformer-based models in time series
forecasting.

Baselines. We consider popular transformer-based models as the baselines for numerical downstream tasks,
including Chronos-T5 (Ansari et al.[ (2024)) and Chronos-Bolt (https://huggingface.co/autogluon/chronos-
bolt-base), PatchTST (Nie et al.| (2023)), Moirai-1.0-R (Woo et al.[(2024)) and Lag-Llama (Rasul et al.| (2024)).
The considered models use different architectures, time series tokenization techniques and hyperparameters
for numerical downstream tasks. For instance, Lag-Llama use decoder only transformer, PatchTST and
Moirai-1.0-R use vanilla Transformer encoder, while Chronos-T5 and Chronos-Bolt use encoder-decoder
transformer. Different baselines achieve contextual embedding in different ways. For example, PatchTST
focuses on tokenizing time series as patches and uses self-attention for modeling dependencies within each
patch and across patches, while Chronos-T5 and CHRONOS-Bolt adapt language modeling architectures
minimally and generate categorical tokens by applying scaling and quantization. The details of these baselines
are summarized in Table 2| We take the released weights of of the baselines and apply them directly to our
experimental datasets without fine-tuning. This setup allows us to study the generalization of transformer-
based models in time series forecasting, since models trained once are evaluated on unseen time series datasets.
In this context, the isotropy of embeddings reflects how well transformer-based models generalize their
forecasting capability to new numerical domains.

Table 2: Transformer-based models, architectures, time series tokenization techniques and hyperparameter
choices. L stands for context length, dj for hidden layer dimension, n; for number of layers, ny for number
of heads, and 7 for learning rate.

Model Architecture Tokenization Technique Hyperparameters

E -Dec ith . S
Chronos-T5H neoder o oder wit ' Scaling & Quantization Default
autoregressive forecasting

Chronos-Bolt Enco.dor—De-codcr Wlth Scaling & Quantization Default
multi-step forecasting

PatchTST Vanilla Encoder Patching Patch length: 16, Stride: 8, d;, =32,n, =2,ng =4

Moirai Encoder Patching L = 1024, Patch length: selected by dataset-specific
validation

Lag-Llama Decoder Lag Feature L =32

Datasets. We conduct a comprehensive evaluation using 12 different real time series datasets from various
numerical domains, including energy, nature, finance, healthcare, retail and transportation. The sources of
these open-source datasets along with their descriptions, including how each dataset is used across different
transformer-based model can be found in Table [4] of Appendix [E] We also illustrate our findings using
KernelSynth (Ansari et al| (2024])) (see Algorithm [Efin Appendix [E| for details), a method that generates 10
additional synthetic datasets via Gaussian processes in Section [5| We select two different datasets from each



Published in Transactions on Machine Learning Research (10/2025)

Table 3: Real and Synthetic Datasets

Data Subset Domain | Dataset 1 | Dataset 2
Energy Australian Electricity — Queensland State | Australian Electricity — South Australia
Weather Solar Radiation Rainfall
Real Datasets Finance Exchange Rate NN5 Weekly Cash Withdrawals
Healthcare Hospital Patient Counts COVID-19 Deaths
Transportation | Transportation Signaling 1 Transportation Signaling 2
Retail Car Sales Dominick
Linear DotProduct kernel (C=0) DotProduct kernel (C=1)
seasonality seasonality kernel (period = 0.5W) seasonality kernel (period = 0.25H)
Synthetic Datasets | Trend RationalQuadratic kernel (o = 1) RationalQuadratic kernel (a = 10)
Non-Linear RBF kernel (length scale = 0.1) RBF kernel (length scale = 1)
Stochastic WhiteKernel (noise level = 0.1) WhiteKernel (noise level = 1)

numerical domain (as shown in Table|3)) and then perform qualitative analysis with synthetic datasets and
quantitative analysis with real datasets. The results of these analyses are provided in the next two sections.

5.1 Matching Controlled Experiment

To bridge our theoretical framework in Section [2] with the empirical evaluation in Section [5.2] and Section [5.3]
in this section, we conduct a matching controlled experiment using a simple transformer-based time series
forecasting model closely aligned with our problem formulation. Specifically, we adapt an open-source vanilla
transformer (Vaswani et al.| (2023))) implementation for time series forecasting by modifying its output layer
and loss function to match our theoretical assumptions. This controlled setup allows us to evaluate isotropy
under conditions that directly reflect the log-linear abstraction and KL divergence formulation introduced in
Section

Model Architecture. The controlled model consists of two standard transformer encoder layers, each
comprising multi-head self-attention with 10 heads, residual connections, layer normalization, and a feed-
forward network. The architectural details are chosen to align with our problem formulation in Section [2]
We introduced the following adaptations:

o Input tokenization: Raw numerical time series data is discretized via uniform quantization
into [V| = 512 bins. Each quantized value represents a time series token, forming a categorical
vocabulary consistent with the log-linear model in Section 2] These tokens are then embedded into
250-dimensional vectors, and sinusoidal positional encodings are added to preserve temporal order.
This transformation converts the continuous sequence of values into a sequence of categorical tokens
suitable for the transformer, thereby ensuring that the log-linear abstraction in equation [2| and
KL-divergence formulation in equation [4] is realized in practice.

o Transformer encoder: A two-layer transformer encoder (n; = 2), where each layer contains
multi-head self-attention with 10 heads (ny = 10) and a feed-forward block (dj, = 250). Softmax
normalization is applied within each attention layer, matching the theoretical derivation in Section [2]

o Output projection: The contextual embeddings are mapped to the vocabulary size |V| = 512
through a linear transformation, followed by a softmax layer to yield predictive distributions over
quantized values.

o De-tokenization: At inference, predicted token distributions are mapped back to real values
by taking the expectation over the quantization bins, enabling comparison with the ground-truth
numerical series.

Training Setup. The model was trained for 200 epochs with batch size 250 using the AdamW optimizer
(learning rate 5 x 10~%). The loss function was categorical cross-entropy, which directly minimizes the KL
divergence between predicted and ground-truth token distributions, as in equation [d] Input sequences of
length L = 128 are used with a forecast horizon of 1 step. Here, we train a lightweight vanilla transformer from
scratch on synthetic datasets generated from Gaussian process kernels (linear, trend, seasonality, non-linear,
and stochastic; see Algorithm [E|in Appendix [E]). For each domain, a different dataset from Table [3]is used to
evaluate the controlled model. This setup not only realizes the log-linear and KL divergence assumptions in
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practice but also tests whether isotropy remains a
reliable proxy for generalization when transferring
across datasets within and across domains. To ensure
robustness, each experiment was repeated across 6
random seeds.

Results. In Figure [3] we compare the NMSE vs
isotropy across different synthetic datasets to evalu- 107t
ate the controlled model. For instance, in the linear-

>10-2
Dataset 2, strong isotropy (inter-token cosine sim- 810
ilarity in equation |§| near 0, i.e., 0.0000023) corre- §10_3
sponds to NMSE of 9.6 x 1076, while in the stochastic- -
Dataset 1, a weaker isotropy (inter-token cosine sim-
ilarity far from 0, i.e., 0.12) corresponds to NMSE L‘mea“ ota?2) “earkoﬁzgn \Da‘?m “a\\lma{aﬂ (oo

of 0.038. Similar patterns can be observed across
all synthetic domains, where models with higher
isotropy consistently stabilized the partition func-
tion and generalized better to unseen datasets. These
results in Figure [3] therefore, validate our theoret-
ical justification by showing that the isotropy of the
contextual embedding space correlates strongly with
time series forecasting performance.

Figure 3: NMSE vs isotropy comparison across dif-
ferent synthetic datasets for the controlled model. All
reported results are averaged over 6 independent trials,
with error bars indicating the standard deviation across
runs to capture variability.

Implications. The matching controlled experiment in this section validates our theoretical framework in
Section [2] under assumptions precisely aligned with softmax outputs of self-attention and KL divergence in the
loss function. It demonstrates that isotropy serves as a reliable proxy for generalization in practice, extending
beyond the abstract log-linear formulation. Importantly, isotropy is computed solely from the embedding
geometry of the input sequences, independent of ground-truth outputs. In this sense, the diagnostic does not
require labels and can be applied in scenarios where only input data are available. In our study, outputs are
used exclusively for validation, i.e., to empirically correlate isotropy with forecasting error through NMSE.
Thus, these experiments already provide indirect empirical evidence that isotropy can function as a label-free
reliability signal in time series forecasting tasks where outputs may not be accessible. Building on this
foundation, the following sections extend the analysis to diverse transformer-based architectures and datasets,
demonstrating the broader applicability of isotropy beyond the controlled setting.

5.2 Qualitative Analysis

We now analyze the time series forecasting by the baseline transformer-based models qualitatively. We focus
on synthetically generated time series for a controlled analysis of different types of time series patterns which
belong to 5 different domains, such as linear, seasonality, trend, non-linear and stochastic. We are particularly
interested in the isotropic measurement (through equation @ in the transformer-based model’s last layer as it
is related to the logits and probabilistic inference as explained in Section [2} So all isotropic measure provided
in this section is based on the last layer of the baselines.

We begin by analyzing time series forecasting performance (i.e., NMSE) for different baselines and its
relation with isotropy in Figure Ié—_ll For instance, in Figure (4] I b, we have (NMSE = 0.0000066 and cosine
similarity = | — 0. 00076@ for seasonality-Dataset 1 and (NMSE = 0.00012 and cosine similarity = 0.0047)
for seasonality-Dataset 2 for Chronos-T5. This shows that stronger isotropy exists (i.e., inter-token cosine
similarity value is close to 0) in Chronos-T5’s embedding space for seasonality-Dataset 1 which preserves the
structure in its hidden representations and causes good downstream task performance. On the other hand, a
weaker isotropy exists (i.e., inter-token cosine similarity value is far from 0) in Chronos-T5’s embedding space
for seasonality-Dataset 2, which, in turn, causes a lack of structure in its hidden representations, thereby
leading to bad forecasting performance as compared to seasonality-Dataset 1. The NMSE and inter-token

4The inter-token cosine similarity value close to zero indicates strong isotropy, with zero representing perfect isotropy. Since
both positive and negative deviations from the origin reduce isotropy, we report absolute values (e.g., |- 0.x|) to emphasize the
distance from zero, which is the quantity of interest.
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Figure 4: NMSE vs isotropy analysis for 10 different synthetic datasets of 5 different domains. All reported
results are averaged over 6 independent trials, with error bars indicating the standard deviation across runs
to capture variability.
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Figure 5: NMSE vs isotropy across numerical domains. The relationship between NMSE and isotropy is
consistent across domains, highlighting that stronger isotropy (i.e., inter-token cosine similarity in equation |§|
close to 0) leads to lower NMSE and vice versa.

cosine similarity can also vary across different transformer-based models and datasets. For example, in
Figure [d, the NMSE for trend-Dataset 1 is lower for PatchTST and Moirai, but higher for Chronos-T5,
Chronos-Bolt, and Lag-Llama, compared to their respective NMSE on trend-Dataset 2. Conversely, for
trend-Dataset 2, the NMSE is lower for Chronos-T5, Chronos-Bolt, and Lag-Llama, but higher for PatchTST
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and Moirai, compared to their respective NMSE on trend-Dataset 1. A similar analysis can also be observed
for other synthetic datasets and baselines in Figures [d b, @] d, and [ e. This shows that any dataset from
any particular domain may cause different forecasting performances for different baselines, as it generates
different hidden representations (see Appendix [F| for full visualization) in contextual embedding spaces, and
hence, different isotropy measures. We note that in some cases (e.g., Chronos Bolt in Figures ), isotropy
exhibits higher variability than NMSE. This arises because isotropy captures sensitivity in the embedding
geometry, which can fluctuate across runs, whereas the prediction head can compensate to keep forecasting
error relatively stable. Such discrepancies highlight the complementary role of isotropy as a diagnostic tool
beyond error metrics. In Figure 5] we show NMSE vs isotropy comparison across numerical domains. From
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Figure 6: Variations in Chronos-T5’s hidden representations for different input context lengths for the same
synthetic dataset non-linear-Dataset 1 : (a) Contextual embedding space for input context length L = 500.
(b) Contextual embedding space for input context length L = 100.

the figure, it can be seen that a consistent relationship exists between NMSE and isotropy, which justifies our
findings, i.e., stronger isotropy leads to lower NMSE and vice versa.

Next, we examine the influence of isotropy on forecasting performance in two important scenarios: a) different
input context lengths, and b) different levels of noises in the input data. The first scenario is important as it
provides an analysis that helps guide in selecting reasonable input context lengths rather than selecting the
length through random trials and errors. The second scenario is important as it gives us ideas on how the
level of noise in noisy data impacts performance, since the data in the real world is mostly noisy.

Isotropy in different input context lengths. We first analyze the effect of isotropy under varying input
context lengths. We begin with an illustration in Figure [] where we show how the hidden representations of
Chronos-T5 vary for two different input context lengths, such as L = 500 and L = 100, for non-linear-Dataset
1, which generates different isotropic measures for different input context lengths.

In Figure [7] we compare the NMSE vs isotropy across two different input context lengths, L = 500 and
L = 100, for different synthetic datasets and transformer-based models. As can be seen from the figure, the
isotropy values vary across different input context lengths and datasets. For instance, in Figure [7] b, we
have (NMSE= 0.0000066, cosine similarity= | — 0.00076|) and (NMSE= 0.0793, cosine similarity= 0.0011)
for L = 500 and L = 100, respectively, for Chronos-T5 with seasonality-Dataset 1. The decrease in isotropy
significantly increases the NMSE for the input context length L = 100. In contrast, in Figure [7] a, we have
(NMSE= 0.000025, cosine similarity= 0.2474) and (NMSE= 0.000009, cosine similarity= 0.0644) for L = 500
and L = 100, respectively, for Chronos-T5 with linear-Dataset 2. In this scenario, the isotropy increases for
the input context length I = 100, which causes the decrease in NMSE for chronos-T5. A similar analysis can
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Figure 7: NMSE vs isotropy comparison across different input context lengths for synthetic datasets. All
reported results are averaged over 6 independent trials, with error bars indicating the standard deviation
across runs to capture variability.

also be observed for other synthetic datasets and baselines in Figures[7] ¢, [7] d, and [7]e. In practice, the input
context length is often selected randomly or through trial and error, which may cause higher forecasting
errors for different datasets. Isotropy analysis enables us to understand how varying input context lengths
influence the hidden representations of the transformer-based model. This insight helps guide improvements
in forecasting performance by examining the isotropic properties of the contextual embedding space.
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Figure 8: NMSE vs isotropy comparison across different noise levels in synthetic datasets. All reported
results are averaged over 6 independent trials, with error bars indicating the standard deviation across runs
to capture variability.
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Isotropy in varying noise levels in datasets. Next, we focus on the second scenario to see the impact of
noisy datasets on transformer-based model’s performance. Figure |8| compares the NMSE vs isotropy across
two different cases, one without noise, and the other with Gaussian noise with a standard deviation o = 0.05
standard deviation. For instance, in Figure 8| ¢, we have (NMSE= 0.000024, cosine similarity= | — 0.00022|)
and (NMSE= 0.0012, cosine similarity= 0.0040) for ¢ = 0 and o = 0.05, respectively, for Chronos T5
with trend-Dataset 2. The decrease in isotropy significantly increases the NMSE for the noisy dataset.
A similar analysis can also be observed for other synthetic datasets and baselines in Figures [§] a, [§] b,
d, and [§] e. In practice, many real-world numerical domains, such as those in nature and energy, exhibit
noisy and dynamic behavior. In these environments, it is often infeasible to measure noise in real time
or to pre-process the input time series for improved performance. However, the isotropy in the hidden
representations of transformer-based models can be readily measured, and thus, can be leveraged to enhance
forecasting performance by identifying and mitigating the effects of noisy inputs in contextual embedding
space.

5.3 Quantitative Analysis

Next, we present our main results on 12 real datasets which belong to 6 different numerical domains including
energy, nature, finance, healthcare, retail, and transportation. As our qualitative analysis in Section [5.2] we
select two different datasets from each numerical domain and the isotropy measure from transformer-based
model’s last layer to show the impact of isotropy on NMSE performance for different transformer-based
models. As before, the isotropy measure in the figures of this section corresponds to equation @
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Figure 9: NMSE vs isotropy analysis for 12 different real datasets of 6 different domains. All reported results
are averaged over 6 independent trials, with error bars indicating the standard deviation across runs to
capture variability.

In Figure [0} we analyze the time series forecasting performance of different baselines and its relation with
isotropy for different real datasets. For instance, in FigureEle7 we have (NMSE = 0.0061 and cosine similarity
= 0.0020) for retail-Dataset 1 and (NMSE = 0.1255 and cosine similarity = 0.1931) for retail-Dataset 2 for
Moirai. This indicates the existence of stronger isotropy in Moirai’s embedding space for retail-Dataset 1
which preserves the structure in its hidden representations and causes good downstream task performance.
On the other hand, a weaker isotropy exists in Moirai’s embedding space for retail-Dataset 2, which yields
a lack of structure in its hidden representations and, consequently, bad downstream task performance as
compared to retail-Dataset 1. The NMSE and inter-token cosine similarity can vary across different real
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Figure 10: NMSE vs isotropy comparison across different input context lengths for real datasets. All reported
results are averaged over 6 independent trials, with error bars indicating the standard deviation across runs
to capture variability.

datasets and transformer-based models. For example, in Figure [h, the NMSE for energy-Dataset 1 is lower
for Chronos-T5, Chronos-Bolt, PatchTST, and Moirai, but higher for Lag-Llama, compared to their respective
NMSE on energy-Dataset 2. Conversely, the NMSE for energy-Dataset 2 is lower for Moirai but higher for
the other baselines, compared to their respective NMSE on energy-Dataset 1. A similar analysis can also be
observed for other synthetic datasets and baselines in Figure [0] ¢ and [ e. This again shows that datasets
from the same numerical domain can cause varying forecasting performance across different baselines, as
they generate distinct hidden representations in contextual embedding spaces, and hence, different isotropy
measures, depending on the transformer-based model architecture and tokenization strategy.

Finally, in Figure[I0] we compare the NMSE vs isotropy for varying input context lengths to observe its impact
on the real datasets. We compare the results for two different input context lengths: 1) the recommended
input context length L = 144 and the reduced input context length L = 96. As can be seen from the figure,
the inter-token cosine similarity values in Lag-Llama become far from 0, i.e., from 0.0097 to 0.0220 for
energy-Dataset 1 (Figure[10|a) and from 0.0026 to 0.0103 for transport-Dataset 1 (Figure [10|f), which in turn
decreases the NMSE performances. On the other hand, the inter-token cosine similarity values in Lag-Llama
become close to 0, i.e., from 0.1091 to 0.0112 for nature-Dataset 2 (Figure [L0] b) and from 0.2014 to 0.0133
for finance-Dataset 1 (Figure [L0|c), which in turn improves the NMSE performances. A similar analysis can
also be observed for other real datasets and baselines in Figures [I0] a, [I0] b, [I0] ¢, [I0] d, [I0] e, and [I0]f. Thus,
the variation in the recommended input context length may not only decrease the NMSE performances, but
can also increase for some datasets.

In Summary, while error metrics are essential, they are retrospective and require labeled data. In contrast,
isotropy offers a label-free, structure-aware diagnostic of embedding quality that reflects a transformer-based
model’s generalization potential. Our results show that isotropy correlates with performance across diverse
settings, capturing representational properties that error metrics overlook. This makes isotropy a necessary
tool for assessing robustness and generalizability of transformer-based models.

6 Conclusion and Limitations

In this work, we introduced a novel approach to investigate the role of isotropy in transformer-based model
hidden representations for numerical downstream tasks. By deriving an upper bound for the Jacobian matrix
which collects all first-order partial derivatives of self-attention with respect to the input pattern, we showed
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that the self-attention mechanism implicitly aligns with the dominant eigenvectors of the input correlation
structure and induces isotropy in the contextual embedding space. The existence of isotropy in the contextual
embedding space was found to stabilize the partition function and enable better generalization in numerical
downstream tasks across different models and datasets. Our empirical analysis across 10 synthetic and 12
real numerical datasets, and 5 different transformer-based models further validated the consistent relationship
between isotropy and forecasting performance, highlighting isotropy as a reliable indicator of structured
representation learning. These insights open up a new interpretability frontier for transformer-based models
in numerical domains.

While isotropy offers a principled way to preserve useful structure, there may be alternative approaches to
approximating the partition function and guiding numerical reasoning. Moreover, developing mechanisms
to recover or enhance structure when isotropy is weak remains an important avenue for future work. In
particular, promising directions include leveraging isotropy to guide fine-tuning strategies, inform inference-
time decision-making (e.g., filtering low-quality predictions), and identify optimal representation depths in
multi-layer transformers. Exploring these applications, alongside baseline performance comparisons, could
translate our theoretical findings into practical tools for improving downstream performance. Ultimately, we
believe that incorporating structural insights like isotropy into the transformer-based model design pipeline
can significantly improve their reliability and adaptability to numerical domains.
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A Proof of Theorem [1]

Theorem 1. Let the logits of the ground-truth model be bounded. Then for any f*(k,l), there exists a
set of functions {z;(k, l)}M1 such that for all k and Ty41, the predzctwe distribution of the trained model

(ki | k_;) matches that of the ground-truth model p*(k; | k_;) while f(k,1) = 0. In other words, there exists a
trained model with the same training loss as the ground-truth model, but with logits ineffective for numerical
downstream tasks.

Proof. We select 7 € R such that Vk,Tj41, 7 < minjey b3
2i(k,1) =z} (k1) + 7, we get Vj € V,

—max ey 2} (k, 1), and V&, T;11,Vj € V. By setting

+ min b} — max z;

8k 1) = b < 2] (k1) + min by — may

“(k, Ty41) — b3 <0,
this implies that o(%;(k,1) — b%) = 0. Hence, Vk, Ti11 and we have f(k,1) =
B Proof of Lemmal(ll

VI
895712‘.1/)} , which represents the gradient of the self-attention
i Jig=1

mapping G(W) with respect to the input time series token embeddings. Then the spectral norm of J satisfies

1% %
1912 < 1Al S (o + 3) [ = S pr| +

Lemma 1. Consider the Jacobian matriz J = [

Proof. In Lemma the residual term A is given by A = |Als ZL;‘J Dij

exp(y] Av;)
VI exp(v] Avy)
891( )

A %
S pigt| 2 S 2

and the attention weights p; ; are defined as p; ; = Accordlng to the analysis, the gradient

k=1
of ¢;(¥) with respect to the variable 1; is expressed as J; ; =
where the matrix Q° is defined by Q' = diag(p;,:) — pi..p; .-

the probability matrix P, F;; € RIVIXIVI denotes a matrix with a smgle entry at the (j,7)-th position and
zeros elsewhere, and 0; ; € {0,1} is the Kronecker delta. We thus have

= pr +WTQ (WA ; + E;; #AT)

Here Di: correbponds to the i-th row of

VI
1Tl < > 1l
i,j=1
V] V] V]
<D pigt Z (TQE Al + Y [UTQE; U2 |Al
i,j=1 i,j=1
V[ IV VI V| ‘
< VI+ A2 Z ZPUWJ sz V5 +[Al2 Z |‘I'TQlej1/)iT‘
i=1 \ j=1 i,j=1
VI V| V] VI
< |V|+|A|2zzpi,j|% sz q¢q‘2+‘A‘2 Z qu’ 'I’sz )l
i=1 j=1 i,j=1
V| 1 VI \A\2 V|
<AL (pm + 2) i = @ Tpi 2+ [V + (Al D pigley — @ | Z |l
i=1 i#j
v . v v 2 |A|2 v
= |Al2 Z (pi,i + 2) i — @ Tpi P+ V] + [Al Zpi,j ¥; — Zpi,q"/)q +— Z il
i=1 i#£] q=1
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Theorem |2 I shows that A minimizing the objective Z 1 — W T WA;|? contains the largest m eigenvectors
of the correlation matrix ¥ T ¥ of input time series token embeddings where m is the rank of A.

Lemma 1 implies that one of the key components in the Jacobian’s upper bound takes the form |¢; —
Z =1 pwwj\ . Consequently, during optimization, it is natural to aim for a reduction in the gradient
magnitude, which motivates minimizing the expression ZM [ — Eljv‘l pi,j¥j|*. This leads to understand
the choice of W® and WX that minimize ZM | — Zlvll pi,j¥|?, which is equivalent to solving the
optimization problem minja |, <, ZLZ|1 [ — EM1 pij¥j|?, where the scalar constraint p regulates the size of
A.

To proceed, we consider the objective in the scenario where p is small. In this case, we can approximate the
attention weights by p; ; ~ \Tl)l + ‘Tl)I’L/JTA’lb]’ Now, we define the average of embedding as ¢ = ¥ '1/|V|. It
then follows that Z'Vl [0 =W Tp; |2 = ZM )i —1p— W T WAp;|%. Assuming all input time series patterns are
zero-centered, i.e., ¥ = 0, we have ZLZII [y — OTWAY; > =tr (I — €T WA)?@ "W). Theorem I establishes

that the optimal A that minimizes ZLZH |p; — U TWAY;|? is spanned by the top m eigenvectors of ¥ ¥,
where m equals the rank of A.

C Proof of Theorem

Theorem 2. Let the eigenvalues of the correlation matric ¥ W be ordered as \y > Ao > -+ > Ap, and
let v; € RP fori=1,...,D denote their associated eigenvectors. Then, the matriz A* that minimizes the

quantity Zzll f@/}i — \IIT\IIAzM2 has the optimal form A =31", /\%%%T.

Proof. Given that Wg € RP*™ and W € RP*™ it follows that the matrix A has rank m. Hence, we

know mina ZL‘;'I s — BT ®AY;||? > levlmﬂ Ag- Now, if we set A to A = >"; +7;7,", then we obtain

S s = S TOAG2 = b (1= S0 ) wTw) Y pmt1 A

Therefore, the optimal solution A for minimizing Zl-‘i'l |s — B TWAY;||? is essentially characterized as a
linear combination of the top m eigenvectors of ¥ T ¥. Since a small gradient will prefer a small quantity of
ZIVll i — O TWAY;||2, the self-attention mechanism implicitly drives the weight matrices W¢g and W to
align with the dominant eigen-directions of ¥ T . O

D Clustering in the Contextual Embedding Space

Clustering. We begin with the isotropy assesmment by performing clustering on the transformer-based model
representations in the contextual embedding space. There are various methods for performing clustering, such
as k-means, DBSCAN (Ester et al.| (1996])). We select K-means clustering method because it is reasonably fast
in high embedding dimensions (e.g., d > 768 for GPT2, ELMo, BERT etc.). We use the celebrated silhouette
score analysis (Rousseeuw| (1987))) to determine the number of clusters |C| in the contextual embedding space.
After performing K-means clustering, each observation p (i.e., one of the J vector representations in V) is
assigned to one of C clusters. For an observation p assigned to the cluster ¢ € C'; we compute the silhouette
score as follows

b(p) — a(p)
max b(p), a(p)

Z dist(p, q mlﬂZdlSt (p,q s(p) =

qu,qu gee

b

a(p) = ‘

where a(p) is the mean distance between an observation p and the rest in the same cluster class p, while
b(p) measures the smallest mean distance from p-th observation to all observations in the other cluster class.
After computing the silhouette scores s(p) of all observations, a global score is computed by averaging the
individual silhouette values, and the partition (with a specific number of clusters) of the largest average score
is pronounced superior to other partitions with a different number of clusters. We select the best |C| that
belongs to the partition that scores highest among the other partitions.
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E Dataset Description

Real Datsets. One of our goals in this paper is to study how variations in time series characteristics affect
isotropy and forecasting performance. For this, we selected real datasets from the Monash Time Series
Forecasting Archive (https://forecastingdata.org/), a widely used benchmark covering diverse domains and
structural properties. Additionally, we included a transportation dataset from a separate public source
(https://github.com/phonism/llm4cp) to introduce greater variability.

Table 4: The complete list of datasets used for our quantitative and qualitative analysis. The table is divided
into three sections, representing how the datasets were used for baseline models.

Dataset Domain Freq. Num. Series Series Length Prediction

min avg max Length (H)
Australian Electricity Energy 30min 5 230736 231052 232272 48
Car Parts Retail 1M 2674 51 51 51 12
Covid Deaths Healthcare 1D 266 212 212 212 30
Dominick Retail 1D 100014 201 296 399 8
Exchange Rate Finance 1B 8 7588 7588 7588 30
FRED-MD Economics 1M 107 728 728 728 12
Hospital Healthcare 1M 767 84 84 84 12
NN5 (Weekly) Finance 1w 111 113 113 113 8
Weather Nature 1D 3010 1332 14296 65981 30
Transportaion Signal| Transport 1D 3010 1332 14296 65981 30
Synthetic (10 kernels) Numerical - 1000000 1024 1024 1024 64

Synthetic Datasets. We use KernelSynth (Ansari et al.| (2024))), a method to generate synthetic dataset
using Gaussian processes (GPs). KernelSynth allows generation of large, diverse datasets tailored to specific
patterns or statistical properties, which is particularly useful when real-world data is scarce or incomplete. In
this synthetic data generation process, the GPs are defined by a mean function, u(t), and a positive definite
kernel, k(x;,x;), which specifies a covariance function for variability across input pairs (x;,z;). A kernel
bank IC (which consists of linear, RBF, and periodic kernels) is used to define diverse time series patterns.
The final kernel #(z;, x;) is constructed by sampling and combining kernels from K using binary operations
like + and x. Synthetic time series are generated by sampling from the GP prior, GP(u(t) = 0, &(z;, z;)).
The following algorithm presents the pseudocode for KernelSynth which essentially follows the approach
in (Ansari et al| (2024)).

Algorithm 1 KERNELSYNTH: Generating Synthetic Sequences via Gaussian Process Kernels

Input: Kernel bank K, maximum kernels per time series J = 5, and length of the time series lsyn = 1024.
Output: A synthetic time series x1,;

syn®

1§ ~U{L,J} > sample the number of kernels
20 {k1(t, 1), ..., Kk;(t, 1)} ES'e > sample j kernels from the Kernel bank K
30 k*(t, 1) + k1 (¢, 1)

4: for i + 2 to j do

5: *~ {4, x} > pick a random operator (add or multiply)
6: E*(t, 1) «+ k*(t, 1)) * ki(t, 1) > compose kernels
7: end for

8: X1, ~ GP(0,s*(t,t)) > draw a sample from the GP prior
9:

return xq;

syn

F Full Visualization of PCA plots for different models

The full visualization of PCA plots of different models is provided below. We use the synthetic Dataset 1,
and Dataset 2 from non-linear domain for illustration.
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