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Abstract
Test-time adaptation (TTA) aims to correct perfor-
mance degradation of deep models under distribu-
tion shifts by updating models or inputs using un-
labeled test data. Input-only diffusion-based TTA
methods improve robustness for classification to
corruptions but rely on gradient guidance, limiting
exploration and generalization across distortion
types. We propose SteeringTTA, an inference-only
framework that adapts Feynman-Kac steering to
guide diffusion-based input adaptation for clas-
sification with rewards driven by pseudo-label.
SteeringTTA maintains multiple particle trajecto-
ries, steered by a combination of cumulative top-
K probabilities and an entropy schedule, to bal-
ance exploration and confidence. On ImageNet-C,
SteeringTTA consistently outperforms the base-
line without any model updates or source data.

1. Introduction
Deep networks often suffer drastic performance drops under
distribution shifts at test time. Test-time adaptation (TTA)
methods – either updating model weights or refining inputs
on-the-fly – can help, but existing diffusion-based input
adaptation methods still fail when corruptions lie in the low-
frequency band. For instance, Diffusion-Driven Adaptation
(DDA) (Gao et al., 2023) preserves low-frequency structure
via ILVR (Iterative Latent Variable Refinement) (Choi et al.,
2021). While effective against high-frequency noise, it can
amplify low-frequency corruptions (e.g., frost), leading to
semantic distortion and inaccurate classification.
Figure 1 shows a frost-corrupted image of a European fire
salamander. A ResNet-50 classifier (trained on clean im-
ages) classifies it as black & gold garden spider, with Eu-
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ropean fire salamander in its Top-5 predictions – an under-
standable confusion. After DDA’s low-frequency denois-
ing, however, the amplified frost pattern leads to a wildly
incorrect Top-1 prediction spider web, and European fire
salamander falls out of the Top-25. This example highlights
that uniformly restoring all low-frequency components can
eliminate semantic cues.
To address this, we ask: how can we restore images with-
out amplifying signals introduced by corruption, while still
sharpening the classifier’s plausible confusion set? We an-
swer by steering diffusion sampling via Sequential Monte
Carlo (SMC) and Feynman-Kac potentials (Singhal et al.,
2025), guided by a pseudo-label reward that (1) initially
preserves the original confusion group and (2) gradually
focuses on the correct class.
In this work, we propose SteeringTTA, the first diffusion-
based TTA framework to harness SMC steering. Steer-
ingTTA runs entirely at inference, maintains multiple parti-
cle trajectories, and uses a dynamic reward to guide resam-
pling and denoising. As Figure 1 demonstrates, our method
recovers an image that the classifier correctly labels as Eu-
ropean fire salamander, even under severe low-frequency
corruption.
Our contributions are summarized as follows:
• We pinpoint the failure of DDA-style adaptation for low-

frequency corruption, and motivate targeted steering.
• We introduce SteeringTTA that leverages Feynman-Kac

steering in diffusion restoration to selectively suppress
corruption frequencies while preserving object semantics.

• We design a scheduling for pseudo-label reward that first
maintains the classifier’s confusion set and then anneals
entropy to converge to the true label.

• We demonstrate on ImageNet-C that SteeringTTA out-
performs DDA, reliably recovering correct classes under
challenging low-frequency corruptions.

2. Related Work
Test-Time Adaptation. Methods either update model pa-
rameters (e.g., entropy minimization (Wang et al., 2020))
or refine inputs via self-supervision. Parameter updates risk
hyperparameter sensitivity and collapse, while input-only
approaches may not directly optimize accuracy.
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Figure 1: (a) Our motivation: from left to right, the original corrupted image, the DDA-denoised result, and our method’s
reconstruction, with corresponding ResNet-50 predictions. (b) Pipeline overview: at each diffusion step the image is
updated, the classifier output is used to compute a reward, and the update is steered to maximize this reward.

Diffusion-Based Input Adaptation. Diffusion purifiers
restore corrupted inputs: DiffPure (Nie et al., 2022) for
adversarial examples, DDA (Gao et al., 2023) via low-
frequency denoising, and GDA (Tsai et al., 2024) with
gradient-based style/semantic constraints. These enhance
robustness but rely on differentiable guidance.

SMC and FK Steering. Sequential Monte Carlo steers
diffusion by evolving multiple particles and resampling with
arbitrary potentials (Del Moral et al., 2006). Feynman–Kac
steering extends this to non-differentiable rewards without
retraining (Singhal et al., 2025).

3. Our Approach
We introduce SteeringTTA, a test-time adaptation method
that steers a pretrained diffusion model toward classifica-
tion objectives using FK potentials. After first reviewing
diffusion models and SMC, we describe how FK steering is
adapted for input restoration and detail our design choices –
resampling, proposal kernel, weighting – and our pseudo-
label reward.

3.1. Preliminaries
Diffusion Models. A diffusion model defines a forward
noising process with variance βt:

q(xt | xt−1) = N
(√

1− βt xt−1, βt I
)
, t = 1, . . . , T,

and trains a denoiser ϵθ to approximate the reverse process:

pθ(xt−1 | xt).

Starting from xT ∼ N (0, I), repeated denoising yields a
sample x0 close to the training distribution (Ho et al., 2020).

Sequential Monte Carlo (SMC). SMC approximates a
sequence of target distributions {πt}Tt=0 by maintaining K

weighted particles (x(k)
t , w

(k)
t ). At each reverse step:

1. Resampling: normalize {w(k)
t }, resample the particles

accordingly, and begin the next proposal step with uni-
form weights.

2. Proposal: sample backward each particle from defined
proposal distribution mt

x
(k)
t−1 ∼ mt(xt−1 | x(k)

t ).

3. Weighting: compute importance weights to correct the
discrepancy between mt and πt−1

w
(k)
t−1 = w

(k)
t

πt−1(x
(k)
t−1)mt(x

(k)
t | x(k)

t−1)

πt(x
(k)
t )mt(x

(k)
t−1 | x

(k)
t )

.

As K →∞, SMC recovers exact samples from π0.

Feynman-Kac (FK) Steering. To bias diffusion toward
high-reward outputs, define a tilted target distribution:

ptarget(x0) ∝ pθ(x0) · exp
(
λ · r(x0)

)
, (1)

with reward r(x0) and scale λ > 0. FK steering introduces
potentials Gt which tilt the distribution as

pFK(x0:T ) ∝ pθ(x0:T )

T−1∏
t=0

Gt

(
xt:T

)
, (2)
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ensuring the marginal of x0 follows ptarget by setting∏T−1
t=0 Gt(xt:T ) = exp

(
λ · r(x0)

)
. In practice, we estimate

x0 with intermediate states of reverse diffusion processes
via Tweedie’s formula (Chung et al., 2022; Efron, 2011):

x̂t =
xt −

√
1− αt ϵθ(xt)√

αt
, (3)

where αt =
∏t

s=1(1− βs), and evaluate r(x̂t) to compute
Gt. No backpropagation through r is required, allowing
non-differentiable and classification-aware rewards to steer
sampling processes.

3.2. Generalized FK steering for TTA
Given a corrupted input x0, we first perform N forward
noising steps to reach xN . We then run N reverse steps,
tracking K parallel particles. At each timestep t:

1. Resampling. Following Singhal et al. (2025), we mon-
itor particle degeneracy via the effective sample size
ESSt =

[∑K
i=1(Ĝ

i
t)

2
]−1

, where Ĝi
t are the normalized

FK potentials. If ESSt < K/2, we trigger multinomial
resampling to preserve diversity without extra computa-
tion.

2. Proposal. FK-Steering is compatible with any proposal
kernel τ(xt−1 |xt), e.g., the unbiased reverse kernel or
gradient-guided variants. Unlike typical generative tasks
where we generate i.i.d samples of the data distribution,
we need to preserve the semantics of the given image for
the following classification. To this end, we employ a
low-pass filter that maintains the overall semantics of an
image (Gao et al., 2023; Raman et al., 2023).

3. Weighting. Among potentials that satisfy Eq. (2), we
employ the difference potential following (Singhal et al.,
2025; Wu et al., 2023),

Gt(xt−1,xt) = exp(λ · (rϕ(x̂t−1)− rϕ(x̂t))) (4)

which directly rewards particles whose predicted clean
image x̂t−1 improves the classifier’s objective.

We maintain K particles, computing rewards on intermedi-
ate x̂(k)

t , and iteratively steering and pruning them. At t = 0,
the particle with the highest reward is chosen as the adapted
image; please refer to Algorithm 1 for details.

3.3. Test-time Reward
Candidate set construction. As ground-truth labels are
unavailable at test time, we define an adaptive candidate set,

C(x0) =
{
y :

∑
y′∈desc(y)

p(y′ | x0) ≥ P%
}
, (5)

accumulating classes in descending order of predicted prob-
ability on the corrupted input until their total mass exceeds
P%. This preserves the classifier’s initial confusion group.

Algorithm 1 SteeringTTA

1: Input: Corrupted image x0, Diffusion model pθ(x0:T ),
Classifier fϕ, Potentials Gt, Proposal τ(xt | xt+1),
Reward function rϕ(·), Number of particles K

2: N : diffusion range
3: ϕD: low-pass filter of scale D
4: x̂t: predicted clean image at timestep t
5: C : set built with fϕ(x0).
6: Sample xi

N ∼ q(xN | x0) ▷ forward pass
7: Define rϕ(·)← rϕ(·, t, C) ▷ Eq. 6
8: Initial weights, Gi

N = exp(λ · rϕ(x̂i
N )) for i ∈ [K]

9: for t = N − 1 to 0 do
10: Resample:
11: Sample indices ait ∼ Multinomial(xi

t, G
i
t)

12: and set xi
t = x

ai
t

t for i ∈ [K]
13: Propose: ▷ low-pass filtering
14: xi

t−1, x̂
i
t−1 ∼ τθ(xt−1 | xt)

15: xi
t−1 ← xi

t−1 − w∇xt

∥∥ϕD(x0)− ϕD(x̂i
t−1)

∥∥
2

16: Weight:
17: Gi

t−1 for i ∈ [K] using:

Gi
t−1 =

pθ(x
i
t−1 | xi

t)

τ(xi
t−1 | xi

t)
Gt−1(x

i
N , . . . ,xi

t−1)

18: end for
19: Output: xg

0 ← arg max
i∈[K]

rϕ(x̂
i
0)

Reward formulation. Our steering reward at step t is

rϕ(x̂t, t, C) = (1− α(t)) log
∑

y∈C(x0)

p(y | x̂t)− α(t)H
(
C(x0)

)
, (6)

with an entropy on the classes in the adaptive candidate set,

H
(
C(x0)

)
= −

∑
y∈C(x0)

p(y | x̂t) log p(y | x̂t). (7)

The log-sum term encourages boosting total probability over
the plausible labels by steering it to be close to 1, preventing
jumps to unrelated classes; the entropy term discourages the
predicted probability to be an uniform distribution, pushing
the sampler to commit to a single label.

Annealing schedule. We linearly anneal α(t) from 0 at
t = N (favoring exploration via log-sum) to 1 at t = 0
(favoring exploitation via entropy minimization). Early iter-
ations thus maintain the original confusion set, while later
ones refine focus on the correct class.

4. Experiments
4.1. Experimental Settings
Dataset. We evaluate on ImageNet-C (Hendrycks & Diet-
terich, 2019), which applies fifteen corruption types at five
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Table 1: Average top-1 accuracy (%) on severity 5 ImageNet-C. “Baseline” denotes corrupted images evaluated without any
adaptation; other methods are described in the main text. See Appendix A for corruption abbreviation definitions.

Method Blur Digital Noise Weather Avg.
Def. Glass Mot. Zoom Contr. Elast. JPEG Pixel Gauss. Impl. Shot Bright Fog Frost Snow

Baseline (w.o. Adaptation) 12.00 5.80 12.80 21.20 3.00 14.60 43.20 30.40 5.20 6.00 8.20 54.80 21.40 20.80 16.80 18.41
Diffpure (Nie et al., 2022) 2.00 6.20 5.60 9.80 0.40 18.60 43.20 24.60 5.00 4.40 6.00 42.60 1.60 12.80 10.00 12.85
DDA (Gao et al., 2023) 12.40 10.20 13.00 23.40 2.80 34.20 50.20 47.80 50.40 49.60 51.40 55.00 18.60 27.60 19.40 31.07
Grad-DDA 12.40 11.00 13.20 24.40 2.40 32.20 50.80 51.40 49.00 49.20 50.20 53.60 16.40 28.20 20.60 31.00
SteeringTTA (Ours) 12.20 11.00 12.80 23.80 2.40 33.80 49.00 49.80 52.60 50.60 53.40 52.80 18.40 29.40 21.60 31.57
SteeringTTA (GT) 12.40 10.60 13.40 26.00 2.20 34.60 50.20 51.80 57.40 57.40 58.60 53.80 18.20 30.80 24.40 33.45

severity levels to the ImageNet validation set. Following
the small-subset protocol, we randomly sample one image
per class for 100 classes, forming five disjoint splits (1,500
images per split at severity 5). We report mean of Top-1
accuracy across these splits.

Models. For input restoration, we use a pretrained uncon-
ditional diffusion model (256× 256) trained on ImageNet-
1K (Dhariwal & Nichol, 2021). The classifier is fixed with
the ResNet-50 (He et al., 2016) trained on ImageNet. Dur-
ing TTA, the classifier provides pseudo-labels for steering
and serves as the evaluator – its weights remain frozen,
preventing information leakage from the target data.

Baselines. We compare SteeringTTA against:
• Diffpure (Nie et al., 2022): Diffusion based adversarial

purification that simply adds a small amount of noise and
then reverses until t = 0.

• DDA (Gao et al., 2023): Diffusion-Driven Adaptation
with default hyperparameters.

• Gradient-guided DDA (Grad-DDA): an ablation that
steers DDA’s reverse process via our pseudo-label reward
using gradient ascent.

• SteeringTTA (GT): SteeringTTA using the ground-truth
log-likelihood log p(y|x) as the reward; upper-bound of
improvement from SteeringTTA.

Implementation Details. We use K = 4 particles and
N = 50 reverse steps, and follow the resampling schedule
of Singhal et al. (2025): resample whenever ESS < K/2 at
every 5 steps. Our test-time reward combines the cumulative
Top-K probability using adaptive threshold P = 70%, with
an entropy term, and employs a linear annealing schedule
α(t) : 0→ 1. We set the reward scale λ = 1. We use an
ensemble for the final predictions (Gao et al., 2023), taking
argmaxy

1
2

(
p(y|x0) + p(y|x g

0 )
)
, the most probable class

predicted from the original x0 and adapted image x g
0 . All

hyperparameters were fixed a priori (no per-image tuning);
each experiment was run once on a NVIDIA A100 GPU.

4.2. Experimental Results
Overall Performance. Table 1 presents average Top-1 ac-
curacy on severity 5 ImageNet-C. SteeringTTA outperforms
DDA by 0.51%, while Grad-DDA shows no significant gain.

Table 2: Performance gain vs. DDA per corruption category.

Category DDA Grad-DDA Ours GT

Blur 14.75 +0.50 +0.20 +0.85
Digital 33.75 +0.45 +0.00 +0.95
Noise 50.47 −1.00 +1.73 +7.33

Weather 30.15 −0.45 +0.40 +1.65

Average 31.07 −0.07 +0.51 +2.39

We hypothesize that this is due to Grad-DDA’s higher sensi-
tivity to noise in the guidance. Although both methods use
the same guidance, Grad-DDA applies it by injecting gradi-
ents directly into the pixel space along a single trajectory,
which can amplify label noise into high-frequency artifacts
D.2. In contrast, SteeringTTA utilizes guidance through re-
sampling and weighting, avoiding direct pixel-level updates.
GT-guided SteeringTTA further improves by 2.39%, indicat-
ing the gap to the ideal upper-bound. These results confirm
that FK steering with pseudo-label rewards is more effective
than gradient guidance alone for robust TTA.

Category-wise gains. Table 2 reports relative improve-
ments over DDA by corruption type. Gradient-guided adap-
tation shows mixed results; it improves blur and digital but
degrades noise and weather. GT-guided steering delivers
large gains (up to +7.3%), particularly for noise. Our Steer-
ingTTA yields consistent, moderate improvements except
for digital; 0.51% gain on average.

5. Conclusion
We present SteeringTTA, a novel test-time adaptation frame-
work that steers a pretrained diffusion model using Feynman-
Kac potentials. By integrating a pseudo-label-driven reward
into the reverse diffusion process, SteeringTTA directly op-
timizes classification accuracy – unlike prior methods that
rely on surrogate objectives or gradient-only guidance. Our
multi-particle sampling explores diverse hypotheses and se-
lects high-reward paths to prevent collapse. On ImageNet-C,
SteeringTTA outperforms DDA by 0.51% top-1 accuracy,
validating the effectiveness of reward-based steering. Future
work includes adaptive resampling, richer reward designs,
and applications to other domains and real-world shifts.
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A. Corruption Abbreviations
This section provides the full names of the corruption-type
abbreviations used in Table 1, to help interpret the per-
category results.

Table A.1: Definitions of corruption abbreviations.

Abbrev. Corruption

Def. Defocus blur
Glass Glass blur
Mot. Motion blur
Zoom Zoom blur
Contr. Contrast
Elast. Elastic transform
JPEG JPEG compression
Pixel Pixelate
Gauss. Gaussian noise
Impl. Impulse noise
Shot Shot noise
Bright Brightness change
Fog Fog
Frost Frost
Snow Snow

B. Ablation Studies
B.1. Effects of hyperparamters
Reward Coefficient λ. The coefficient λ rescales the
reward in Eq. (1) which is then exponentiated by the
difference-potential of Eq. (4) to obtain particle weights.
With the candidate–set threshold fixed at P = 70%, the
reward values approximately lie in [−0.25, 0]; the corre-
sponding potential is therefore upper-bounded by 0.25, so
larger λ values exponentially attenuate the weights of low-
reward particles at very early steps. Table B.2 lists Top-1
accuracy on ImageNet-C for several λ values, confirming
that the default setting λ = 1 consistently outperforms
λ = 5 across all variants on average.

Adaptive Threshold P . Table B.2 contrasts P ∈
{50%, 70%} showing P = 70 consistently outperforms
which means that in P = 50, the ground-truth (GT) label
is frequently excluded – expected because corrupted inputs
place the GT label deep in the posterior tail.

Table B.2: Ablation on varying λ and adaptive threshold P .

Settings Category Avg.
λ P Blur Digital Noise Weather

1 50% 15.30 33.20 52.07 29.95 31.33
5 50% 14.80 33.95 50.93 29.05 30.93
1 70% 14.95 33.75 52.20 30.55 31.57
5 70% 15.15 32.45 50.07 29.45 30.56

B.2. Robustness Across ImageNet-C Subsets
We randomly sample the ImageNet-C into five disjoint splits,
each comprising 100 classes across all 15 corruption types.
As Table B.3 shows, our method attains the best Top-1 ac-
curacy on every split, demonstrating that its superiority is
robust and not merely the result of a fortuitous partition.

Table B.3: Comparison of results on 5 ImageNet-C subsets.

Method Subset Avg.
1 2 3 4 5

Baseline 18.60 15.67 19.47 20.47 17.87 18.41
Diffpure 13.87 10.60 13.40 14.40 12.00 12.85
DDA 32.27 28.33 32.27 33.27 29.20 31.07
Grad-DDA 32.47 27.53 32.20 32.93 29.87 31.00
Ours 33.20 28.80 32.33 33.47 30.07 31.57
GT 35.20 30.40 34.33 35.20 32.13 33.45

B.3. Benefit of Post-ensemble Aggregation
Table B.4 compares the effect of the ensemble strategy for
DDA, Grad-DDA, SteeringTTA (Ours) and SteeringTTA
(GT). The ensemble strategy improves the performance by
about 1–2% on average. The improvement with the ensem-
ble for different corruptions is generally not significant ex-
cept for weather corruption; the increase for weather corrup-
tion is up to +8.8%.

Table B.4: Effect of ensemble for the final predictions.

Method Blur Digital Noise Weather Avg.

DDA 14.05 33.10 51.80 22.65 28.97
+ Ensemble 14.75 33.75 50.47 30.15 31.07
Grad-DDA 14.50 35.10 50.80 23.65 29.69
+ Ensemble 15.25 34.20 49.47 29.70 31.00
Ours 14.25 33.85 52.87 21.75 29.20
+ Ensemble 14.95 33.75 52.20 30.55 31.57
GT 14.80 35.80 59.20 26.05 32.28
+ Ensemble 15.60 34.70 57.80 31.80 33.45

B.4. Impact of Classifier Guidance Scale for Grad-DDA
Table B.5 provides an ablation study with varying guidance
scale s = {1, 10} and threshold P = {50, 70}. The results
show that s = 1 is significantly better than s = 10. However,
the gap between P = 50 and P = 70 is marginal in general.

Table B.5: Ablation on classifier scale s and threshold P for
Grad-DDA.

Settings Category Avg.
s P Blur Digital Noise Weather

1 50% 15.25 34.40 48.33 30.40 31.01
10 50% 9.55 22.45 10.93 23.00 16.85
1 70% 15.25 34.20 49.47 29.70 31.00

10 70% 9.50 24.35 13.60 23.05 17.89
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B.5. Computational Costs
We compare per-image latency at the p sample loop ker-
nel to isolate adaptation cost. On a single NVIDIA A100
and the brightness corruption, Grad-DDA takes 8.0 sec-
onds, whereas SteeringTTA takes 13.2 seconds. This gap
stems from SteeringTTA’s multiple particles: it simulates
K particles per image, which multiplies neural nets func-
tion evaluations (NFEs) for the backbone UNet and requires
doubled overall runtime than the single-particle Grad-DDA
in the case of K = 4.

C. Detailed Related Works
C.1. Diffusion Models for Test-Time Adaptation
Test-time adaptation (TTA) using diffusion models has
emerged as a promising research direction to improve robust-
ness of a discriminative model e.g., image classifier, under
distribution shifts. Recent works can be categorized into
two branches based on what is adapted at test time: (1) joint
adaptation that adapts both inputs and model parameters us-
ing diffusion-based feedback, and (2) input-only adaptation
that refines test inputs via a diffusion model keeping the
discriminative model fixed.

Joint Adaptation. The most common way to improve
robustness at test time is to update both the input and model
weights simultaneously. Raman et al. (2023) applies pseudo-
label ensembling to refine the classifier as it transforms
each test image (Raman et al., 2023). Similarly, Diffusion-
TTA (Prabhudesai et al., 2023) ties the classifier and dif-
fusion model in a feedback loop: the classifier conditions
the reverse diffusion process, while diffusion outputs guide
small weight updates. SDA (Guo et al., 2024) uses a diffu-
sion model to translate target images into a synthetic domain
that mimics the source, then fine-tunes the classifier on this
synthetic data so the model itself adapts. These joint strate-
gies may yield higher performance gains than input-only ap-
proaches, allowing a discriminative model to actively adapt
to generated samples. However, they may be more sensitive
to hyperparameters and introduce additional computational
overhead.

Input-only Adaptation. Diffpure (Nie et al., 2022) puri-
fies adversarial attacks by using a small diffusion timestep.
Diffpure suggests that only adding a small amount of noise
and solving the reverse stochastic differential equation in
diffusion could effectively wash out adversarial perturbation.
However, Diffpure showed performance degradation when
it applied to test time adaptation (Tsai et al., 2024; Gao
et al., 2023). DDA (Gao et al., 2023) adapts test images only
via a diffusion model trained on a source domain. It aligns
corrupted images to the source domain by denoising them
with low-pass filtering. However, as DDA preserves low-
frequency information only using ILVR (Choi et al., 2021),
without considering following classification tasks, it often

fails to recover images for correct classification. GDA (Tsai
et al., 2024) also attempts to denoise corrupted test images
using a diffusion model, but it incorporates additional style
and semantic constraints in the reverse process. In addition,
it minimizes marginal entropy during the reverse process
considering downstream classification tasks. However, as
it is computed only on top-1 pseudo-labels, it may not be
reliable when class predictions are wrong. Both DDA and
GDA rely on gradient-based diffusion process, which limits
the guidance to differentiable objectives.

C.2. Sequential Monte Carlo for Diffusion Models
Some recent works in diffusion models employ Sequential
Monte Carlo (SMC) for more flexible sampling in the re-
verse process. In contrast to gradient-based guidance, with
SMC, particles (or samples) evolve through diffusion pro-
cesses; they are reweighted and resampled according to an
user-defined criterion. A practical trigger for resampling is
the effective sample size (ESS):

ESSt =
[ K∑
i=1

(Ĝi
t)

2
]−1

,

where Ĝi
t are the normalized potentials. When ESSt <

0.5K, resampling prevents weight collapse and maintains
particle diversity (Singhal et al., 2025; Wu et al., 2023).
By biasing the sampling distribution toward higher-potential
regions, SMC can incorporate non-differentiable rewards
without retraining or backpropagating through the diffusion
model. This property is particularly appealing for test-time
adaptation, where reward functions may be implicit or non-
differentiable.
Wu et al. (2023) introduces a twisted diffusion sampler
offering asymptotically exact conditional generation via
SMC, outperforming naive conditional heuristics on tasks
like image inpainting. Kim et al. (2025) proposes test-time
Diffusion Alignment as Sampling(DAS), which uses SMC
to maximize a reward that reflects alignment to a given
goal, avoiding reward over-optimization issues common
in RL fine-tuning and reward under-optimization issues in
gradient-guidance. Singhal et al. (2025) presents a compre-
hensive Feynman-Kac (FK) steering framework that for-
malizes diffusion models with SMC, allowing arbitrary,
possibly non-differentiable rewards to modify the gener-
ative trajectory without updating model parameters. Their
method shows strong performance on text-to-image tasks,
often rivaling specialized fine-tuned models, all via particle-
based sampling. Various works also explore SMC to address
domain gaps in designing biological sequence (Li et al.,
2024), text generation (Singhal et al., 2025) and inverse
problems (Cardoso et al., 2023) highlighting the versatility
of particle filtering strategies for diffusion models.
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D. Qualitative Results

DDABaseline SteeringTTA(Ours)SteeringTTA(GT)

Pred.Label: Rock Python
Confidence : 0.54
Rank of GT: 1

Pred.Label: Mud turtle
Confidence : 0.74
Rank of GT: 1

Pred.Label: Harvestman
Confidence : 0.98
Rank of GT: 1

Pred.Label: Stringray
Confidence : 0.87
Rank of GT: 1

Pred.Label: Garfish
Confidence : 0.35
Rank of GT: 2

Pred.Label: Bao constrictor
Confidence : 0.36
Rank of GT: 2

Pred.Label: Garfish
Confidence : 0.48
Rank of GT: 3

Pred.Label: Mud turtle
Confidence : 0.38
Rank of GT: 1

Pred.Label: Chain mail
Confidence : 0.35
Rank of GT: 212

Pred.Label: Electric ray
Confidence : 0.13
Rank of GT: 296

Pred.Label: Harvestman
Confidence : 0.99
Rank of GT: 1

Pred.Label: Barn spider
Confidence : 0.53
Rank of GT: 2

Pred.Label: Barn spider
Confidence : 0.27
Rank of GT: 10

Pred.Label: Electric ray
Confidence : 0.95
Rank of GT: 2

Pred.Label: Electric ray
Confidence : 0.72
Rank of GT: 2

Pred.Label: Electric ray
Confidence : 0.77
Rank of GT: 2

Pred.Label: Petri dish
Confidence : 0.87
Rank of GT: 1

Pred.Label: Golf ball
Confidence : 0.35
Rank of GT: 3

Pred.Label: Golf ball
Confidence : 0.22
Rank of GT: 3

Pred.Label: Face powder
Confidence : 0.57
Rank of GT: 2

Pred.Label: Jay
Confidence : 0.42
Rank of GT: 1

Pred.Label: Jay
Confidence : 0.90
Rank of GT: 1

Pred.Label: Indigo bird
Confidence : 0.19
Rank of GT: 3

Pred.Label: Indigo bird
Confidence : 0.26
Rank of GT: 17

Pred.Label: Black&gold spider
Confidence : 0.33
Rank of GT: 1

Pred.Label: Longicorn beetle
Confidence : 0.54
Rank of GT: 2

Pred.Label: Longicorn beetle
Confidence : 0.75
Rank of GT: 2

Pred.Label: Black&gold spider
Confidence : 0.12
Rank of GT: 1

Clean

Brightness
Ground Truth: 
Rock Python

Snow
Ground Truth : 
Petri dish

Impulse Noise
Ground Truth : 
Mud turtle

Frost 
Ground Truth : 
Jay

Elastic Transform
Ground Truth : 
Black & gold garden spider 

Pixelate
Ground Truth : 
Harvestman

JPEG Compression
Ground Truth : 
Stringray

Figure D.1: Qualitative results comparing the original corrupted image, DDA, GT-based SteeringTTA and ours.
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Grad-DDA

SteeringTTA

Figure D.2: From top to bottom, the adapted image with Grad-DDA (scale = 10) and our method’s with same rewards.
Some unreliable high-frequency artifacts appear in Grad-DDA which are not in ours.
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