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ABSTRACT

Detecting abnormal products through imagery data is essential to quality control
in manufacturing. Existing approaches towards anomaly detection (AD) often
rely on substantial amount of anomaly-free samples to train representation and
density models. Nevertheless, large anomaly-free datasets may not always be
available before inference stage and this requires building an anomaly detection
framework with only a handful of normal samples, a.k.a. few-shot anomaly de-
tection (FSAD). We propose two techniques to address the challenges in FSAD.
First, we employ a model pretrained on large source dataset to initialize model
weights. To ameliorate the covariate shift between source and target domains, we
adopt contrastive training on the few-shot target domain data. Second, to encour-
age learning representations suitable for downstream AD, we further incorporate
cross-instance pairs to increase tightness within normal sample cluster and better
separation between normal and synthesized negative samples. Extensive evalua-
tions on six few-shot anomaly detection benchmarks demonstrate the effectiveness
of the proposed method.

1 INTRODUCTION

Industrial defect detection is an important real-world use-case for visual anomaly detection meth-
ods. In this setting, anomaly detection models typically have to be trained with only defect-free, or
normal images, as defects rarely occur on functioning production lines. Anomaly detection methods
for this one-class classification setting typically assume that normal images are available in abun-
dance, even though this may not always be the case. For example, in certain applications such as
semiconductor manufacturing where image acquisition requires 3D scans using specialized equip-
ment (Pahwa et al., 2021), acquiring defect-free images is time-consuming and costly. Flexible
manufacturing systems also require rapid adaptation to changes in the type and quantity of products
to be manufactured (Shivanand, 2006). As a result, large numbers of defect-free images may not be
available for new products, or in the initial stages of bootstrapping a visual inspection system.

Although anomaly detection in general is a well-studied topic (Chandola et al., 2009; Pang et al.,
2021b), anomaly detection on images with only few normal and no abnormal images, or few-
shot anomaly detection (FSAD), has only recently begun to receive attention from the commu-
nity (Sheynin et al., 2021; Huang et al., 2022). In their pioneering work, Sheynin et al. (2021)
developed a generative adversarial model to distinguish transformed image patches from generated
ones. However, such adversarial models may be tricky to tune (Kodali et al., 2017) and the method
requires multiple transformations on test samples at inference time, resulting in additional computa-
tion overhead. The more recent work of Huang et al. (2022) learns a common model over multiple
classes of normal images using a feature registration proxy task, but their method requires a training
set with normal images from multiple known classes, which is a more restrictive setting.

In this work, we develop a simple yet effective method for few-shot anomaly detection. We achieve
this by synergistically combining transfer learning from a pretrained model with representation
learning on the few-shot normal data. Finetuning from a backbone network pretrained on a large
source domain dataset, e.g. ImageNet (Russakovsky et al., 2015), allows reusing good low-level
feature extractors and better initialization of network parameters (Kornblith et al., 2019). We be-
lieve finetuning from pretrained weights could particularly contribute to few-shot anomaly detection
when not enough training data is available for training good representations. However, as pointed
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out by some existing work (Xu et al., 2022; Li et al., 2021b), directly reusing the pretrained weights
may not fully unleash the power of finetuning. This is probably caused by two factors. First,
when the source domain data has a different data distribution from the target domain, the covariate
shift (Wang & Deng, 2018) causes performance degradation. Second, due to the fact that anomaly
detection requires feature representation that separates normal samples from abnormal ones. The
representations learned from ImageNet pretraining tasks, mostly semantic image classification, is
not necessarily optimal for anomaly detection.

To ameliorate the covariate shift between source and target domain data, we first propose to in-
troduce contrastive training to adapt pretrained model weights to the target data distribution for
downstream anomaly detection. Given initial model weights, we optimize a contrastive loss defined
on all available few-shot normal examples so that the pretrained low-level features will be adjusted
towards the target data distribution. We further encourage learnt feature representations to be suited
to the downstream anomaly detection task by encouraging normal samples to form a cluster in fea-
ture space. To achieve this, we introduce a cross-instance positive pair loss that randomly samples
two normal samples and encourages their feature embeddings to be close. Note that this differs from
standard contrastive training as closeness is encouraged across two different normal samples instead
of a sample and its augmented version. Finally, when prior knowledge on the anomalies is available,
e.g. we are able to synthesize negative examples (Li et al., 2021a), we further introduce an additional
negative pair loss to encourage better separation between normal and synthesized anomalous exam-
ples. We empirically reveal that the choice of negative sample synthesis is crucial to the success of
FSAD and should be used only when concrete prior knowledge on the anomalies is available. We
summarize the contribution of this work as below,

• We approach anomaly detection for industrial defect inspection from a transfer learning
perspective. We propose to do contrastive training on few-shot normal samples in the target
domain to alleviate the distribution shift between source and target domains.

• We further introduce an across instance positive pair loss to encourage normal samples to
form a tight cluster in the embedding space for better density-based anomaly detection.

• When prior knowledge on negative sample is available a negative pair loss is further incor-
porated to allow better separation between normal and synthesized negative samples.

• We demonstrate superior performance on 4 real-world industrial defect identification
datasets and 2 synthetic corruption identification datasets.

2 RELATED WORK

Anomaly Detection: Traditional anomaly detection (AD) methods include PCA, cluster analysis
(Kim & Scott, 2012) and one-class classification (Schölkopf et al., 2001). With the advent of deep
learning, representation learning is employed to avoid manual feature engineering and kernel con-
struction. This leads to novel anomaly detection methods based on generative adversarial networks
(GAN) (Perera et al., 2019; Schlegl et al., 2017) and Autoencoders (Bergmann et al., 2019a). Among
them, anoGAN (Schlegl et al., 2017) was proposed to learn the manifold of normal samples and
anomalous samples cannot be perfectly projected onto the normal manifold by the generator learned
solely with normal samples. However, it requires expensive optimization for detecting abnormal
samples and training GANs is prone to some well-known challenges including instability and mode
collapse. Among the autoencoder based approaches, (Bergmann et al., 2019a) adopted SSIM metric
as the similarity measure between input and reconstructed images. Recently an effective line of
works approach AD through representation learning and formulate AD as detecting outliers in the
learned representation space (Ruff et al., 2018; Golan & El-Yaniv, 2018; Sohn et al., 2021). Among
these works, deep SVDD (Ruff et al., 2018) proposed to learn a feature embedding that groups nor-
mal samples closer to a cluster center. Follow-up works develop self-supervised pretraining methods
to learn representations suitable for separating abnormal samples from normal ones by optimizing
a proxy task (Golan & El-Yaniv, 2018; Sohn et al., 2021; Li et al., 2021a). Anomaly detection is
then implemented through fitting a density model on the learnt representations of normal training
samples. These approaches prevail in many anomaly detection benchmarks and are computationally
efficient. Nevertheless, representation learning requires a substantial amount of training data which
may not be readily available in certain industrial environments.
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Few-Shot Anomaly Detection (FSAD) aims to enable detecting anomalous samples with only a
few normal samples as training data, and is an emerging topic in anomaly detection. We first distin-
guish FSAD from the semi-supervised anomaly detection setting (Ruff et al., 2019) where a limited
number of labeled anomalies are available for training as it is sometimes referred to as few-shot
anomaly detection in the literature (Pang et al., 2021a). The pioneering FSAD method of Sheynin
et al. (2021) employs a hierarchical generative model to generate new samples from the few-shot
examples. A discriminator is designed to discriminate generated images from the real ones and
different transformations. Anomalies are then determined by whether the discriminator can cor-
rectly classify the type of transformations. Inspired by the few-shot learning paradigm, the RegAD
method of Huang et al. (2022) uses a registration based proxy task for representation learning; this
task aims to find the affine transformation that aligns the feature map of two samples from the same
semantic class. RegAD requires additional related training data, for instance, data from other classes
besides the target class on the MVTec dataset, for training the proxy task. The work of Ando &
Yamamoto (2022) addresses a different few-shot setting that requires normal samples to be provided
with semantic labels. When normal data comprises multiple semantic classes, embedding all nor-
mal samples into a single cluster may result in the failure to detect anomalies occuring between
semantic classes. Learning multiple prototypes was proposed to tackle this issue. In comparion, our
method adapts pretrained weights to target data using only a few normal training samples; unlike
some of these other works, no additional data is required during the representation learning phase.
This enables our method to be applied in a broader set of industrial anomaly detection scenarios.

Contrastive Learning: Pretraining feature representation through contrasting augmented samples
of the same identity has demonstrated promising results. SimCLR (Chen et al., 2020; He et al., 2020)
employed an N-pair loss (Sohn, 2016) to encourage two augmentations of the same instance (pos-
itive pair) to be close in the feature space and other instances (negative pair) to stay faraway. The
existence of negative pairs requires large batchsize for training, BYOL (Grill et al., 2020) intro-
duced an exponential moving average model to avoid collapsed predictions and get rid of negative
pairs. Apart from representation pretraining, contrastive learning has been recently demonstrated
to be effective for label efficient finetuning (Liu et al., 2021; Xu et al., 2022; Chen et al., 2022; Li
et al., 2021b). When source and target domain data distributions are subject to covariance shift,
contrastive training on the target data in a unsupervised fashion can potentially alleviate the domain
shift (Xu et al., 2022; Li et al., 2021b). In this work, we demonstrate that contrastive training on
the target domain data plays an important role in learning a good representation for downstream
anomaly detection.

3 METHODOLOGY

In this work, we assume a model pretrained on large external image collection (e.g. ImageNet) is
available. We refer to this external data as the source domain. Anomaly detection on industrial data
is the task to be solved and is referred to as the target domain. We first describe contrastive training
for adapting a pretrained model to the target domain distribution. We then introduce the cross-
instance positive pair loss to encourage normal samples to form a cluster in the feature space. When
prior knowledge on how to synthesize negative samples is available, we can introduce negative pairs
to encourage better separation of normal and abnormal samples in the feature space. An overview of
the proposed contrastive adaptation framework is shown in Fig. 1. Lastly, we describe how to build
the density-based anomaly detection model on the learnt representations.

3.1 CONTRASTIVE TRAINING FOR ADAPTATION

We first denote the few-shot training examples from target domain as DT = {Xi}i=1···NT
. The

parameters of a backbone network are denoted as Θ and z = f(X;Θ) encodes the input X into
feature space. Contrastive training updates the model parameters Θ by optimizing a contrastive loss
in an unsupervised manner as in Eq. 1. In this work, we consider the BYOL (Grill et al., 2020)
method for contrastive learning due to its smaller memory requirements.

LCon = − 1

NT

∑
Xi∈DT

q(g(zi))
⊤g(ẑi)

||q(g(zi))|| · ||g(ẑi)||
(1)

To learn effective representations, contrastive training contrasts between two random augmentations
of the same input image, denoted as t(X). The encoder network outputs the representation em-
bedding for each augmented input as z = f(t(X); Θ). The representations are further projected to
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Figure 1: Illustration of adapting source domain pretrained model through combining contrastive
training loss (green arrow lines), cross-instance positive pair loss (red arrow lines) and negative pair
loss (blue arrow lines) for few-shot anomaly detection. The dashed arrow lines indicate no gradient
backpropagation.

lower dimension through a projection head g(·). The cosine similarity is then calculated between the
predictor’s output q(g(z)) on the online view and the projector’s output g(ẑ) on the target view. To
avoid trivial solution, e.g. an encoder function giving constant outputs, the target view is the output
of an exponential moving average model, i.e. ẑ = f(X; Θ̂) and Θ̂t = βΘ̂t−1 + (1 − β)Θt where
β is a moving average hyperparameter. When a source domain model ΘS is available, contrastive
training on the target domain is initialized by the source domain model, i.e. Θ0 = ΘS , such that
the low-level feature extractors can be reused. Therefore, contrastive training serves as adapting a
pretrained network weights to the few-shot target domain training samples. A discussion on why
contrastive training helps can be found in the Appendix A.1.

3.2 CROSS-INSTANCE POSITIVE PAIR LOSS

The contrastive training objective encourages adaptation to target distribution, but this does not guar-
antee the learned representation is suitable for downstream density-based anomaly detection. Since
anomaly detection inference is often implemented as fitting a multi-variate Gaussian distribution on
the normal samples in the feature space, normal samples should ideally be embedded close to each
other. Inspired by the success of one-class classification (Ruff et al., 2018) we propose to encourage
normal samples to form a tight cluster in the feature space. Specifically, we treat a pair of randomly
selected normal samples as a positive pair, the representations of each positive pair are encouraged
to be closer by minimizing the cosine similarity as in Eq. 2 where p is a random permutation of the
list {1, · · ·N}.

LPP = − 1
2NT

∑
i

∑
j∈p

f(t(Xi);Θ)⊤f(t(Xj);Θ̂)

||f(t(Xi);Θ)||·||f(t(Xj);Θ̂)|| +
f(t(Xj);Θ)⊤f(t(Xi);Θ̂)

||f(t(Xj);Θ)||·||f(t(Xi);Θ̂)|| (2)

Compared with the alternative of maintaining a fixed cluster center as proposed in (Ruff et al., 2018),
the cross-instance positive pair loss has two advantages. First, we do not need to fix the cluster
center at the start of training. This avoids introducing too much regularization on the representation
embedding as the cluster center may vary during the course of training. Second, we minimize the
cosine similarity between the online view and target view where the latter does not backpropagate
gradients. This avoids collapse to a trivial solution (e.g. all zero weights) (Ruff et al., 2018). We
note that the cross-instance positive pair loss is calculated on the features directly from the backbone
network. This is due to the fact that backbone output feature will be used for anomaly detection so
the loss should be optimized in the feature space.

3.3 INCORPORATING NEGATIVE PAIR LOSS

Synthesizing negative examples have been demonstrated to be successful in pretraining represen-
tation for anomaly detection. Well-calibrated synthesis approaches even achieved the state-of-the-
art performance on certain datasets where the synthesized ones can match the real anomalies very
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well (Li et al., 2021a). In this work, we propose to incorporate additional synthetic negative ex-
amples when prior knowledge is available. Specifically, we denote synthesizing negative sample
as tn(X), to encourage better separation between normal and abnormal samples we minimize the
cosine similarity between the original image embedding and the negative embedding as below:

LNP =
1

NT

∑
i

f(t(Xi); Θ̂)⊤f(tn(Xi); Θ)

||f(t(Xi); Θ̂)|| · ||f(tn(Xi); Θ)||
(3)

It is worth noting that the negative contrasting is also carried out directly on the backbone output
features to reflect the constraints are applied to the feature representations. A relevant design was
presented in (Ruff et al., 2019) for semi-supervised anomaly detection by minimizing the reciprocal
of the distance between annotated anomalies and normal sample cluster center. Again, we believe
minimizing the cosine similarity is compatible with the contrastive training objective and cross-
instance positive pair loss with no risk of having a trivial solution. The final training loss combines
the above three loss terms as Lall = LCon + λPPLPP + λNPLNP .

3.4 DENSITY-BASED ANOMALY DETECTION

To perform anomaly detection using the learnt representations, we follow the density-based ap-
proach in (Li et al., 2021a) and fit a multivariate Gaussian distribution to the few-shot normal sam-
ples. Note that the learnt feature representations must be L2-normalized before density estimation
and inference because during representation learning, we optimize the cosine similarity which is
agnostic to the magnitude of feature representations. Moreover, to increase the amount of data for
fitting the Gaussian distribution we produce NA times augmented samples from the few-shot nor-
mal samples. Formally, the mean µ and covariance Σ is obtained through maximum likelihood
estimation as below where DTA = DT ∪ DT ∪ · · · DT︸ ︷︷ ︸

NA times

.

µ = 1
|DTA|

∑
Xi∈DTA

f(t(Xi))
||f(t(Xi))|| , Σ = 1

|DTA|
∑

Xi∈DTA

(
f(t(Xi))

||f(t(Xi))|| − µ
)(

f(t(Xi))
||f(t(Xi))|| − µ

)⊤
(4)

The anomaly score is then given by the Mahalanobis distance as in Eq. 5 and test samples are ranked
by the anomaly score for anomaly detection.

dAS(X) =

√
(f(X)/||f(X)||)⊤ Σ−1 (f(X)/||f(X)||) (5)

4 EXPERIMENTS

We evaluate the performance of our method on four industrial defect identification datasets and
two datasets with synthetic common corruptions. We benchmarked against state-of-the-art anomaly
detection methods and achieved very competitive performance. Finally, we carry out ablation studies
on individual components and provide further insights into the negative pair loss.

4.1 DATASETS

We provide an overview of the datasets used in the experiments. MVTec Dataset (Bergmann et al.,
2019b) contains 15 object categories, including 10 non-texture object categories and 5 texture ob-
ject categories. Each category contains 60-300 normal samples for training and 30-400 normal and
defect samples for testing. We follow the few-shot settings from (Sheynin et al., 2021) to create
2/5/10-shot anomaly detection protocols. AITEX Dataset (Silvestre-Blanes et al., 2019) is dedi-
cated to detecting defects in textile fabric. This dataset consists of 140 normal sample images and
105 defect sample images with corresponding defect mask for localization. The original image res-
olution is 4096×256 pixels and the defects occupy a very small percentage of pixels. To allow for
easier defect identification and mimicking a realistic defect identification procedure, we randomly
crop out 5 patches of size 256× 256 pixels from each image. Then 5/10/50-shot normal patches are
randomly sampled as training examples. In total, test set consists of 600 normal patches and 105
defect patches. Magnetic Tile Defects Dataset (Huang et al., 2020) consists of 6 different types
of defect magnetic tile surface images, namely “Blowhole”, “Crack”, “Fray”, “Break”, “Uneven”,
and “Free” (no defects). There are 1344 images in total of which 952 images contain defects. We
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randomly select 5/10/50-shot normal examples from the “Free” class as training data and evaluate
on the remaining images for anomaly detection. SemiCon Dataset (Pahwa et al., 2021) features 3D
images collected from 3D X-ray microscopy (XRM) scans on integrated circuit packaging intercon-
nects. The original dataset contains 53 3D images of memory dies and the anomaly detection task is
to identify voids in the solder region: a large void to solder ratio may indicate defective products. To
create an anomaly detection benchmark, we slice the 3D images to obtain 2D images. 5/10/50-shot
normal images are randomly selected for training, 110 defect samples and 500 normal samples are
used for testing. CIFAR10/100-C (Hendrycks & Dietterich, 2019) are adopted to simulate indus-
trial defects through synthesizing common corruptions. We propose an anomaly detection protocol
by treating all corrupted test samples as anomalies for each class. The dataset contains 5 levels of
15 different corruptions, e.g., noises, blurry, foggy. For easy comparison we choose 9 types of level
2 corruptions. 5000 clean testing samples from each class of original CIFAR10/100 dataset are used
as normal testing samples, the corresponding corrupted samples of that class are treated as defect
testing samples. We evaluate at 10-shot for both datasets. A few examples of anomalies for the
industrial datasets are presented in Fig. 2 with more examples to be found in the Appendix A.4.
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SemiCon MVTecAiTex MagneticTile

Figure 2: Examples of industrial image data used for anomaly detection.

4.2 COMPETING METHODS

We compare against multiple anomaly detection methods in the experiments. We first benchmark
the vanilla auto-encoder (AE) employed in (Bergmann et al., 2019a) which is trained to recon-
struct input images and the difference between input and reconstructs measures the anomaly score.
VAE (Kingma & Welling, 2014) imposes constraints on the latent variables to be Gaussian. Multiple
samples are drawn in the latent space and decoded to image space for measuring anomaly score (An
& Cho, 2015). DeepSVDD (Ruff et al., 2018) trains the network by forcing normal training sam-
ples to embed close to a cluster center. The learned cluster center can later serve as the prototype
for anomaly detection by measuring the distance as anomaly score. CutPaste (Li et al., 2021a)
introduced CutPaste as an augmentation approach to synthesize negative examples for pretraining
feature representation network. It is worth noticing that CutPaste mimics the real anomalies that
would appear in the MVTec dataset, therefore the effectiveness of CutPaste may not generalize to
other types of anomalies. RotNet (Golan & El-Yaniv, 2018) proposed a self-supervised pretrain-
ing approach by predicting the augmentations (rotations) applied. This approach is most effective
in anomaly detection on natural semantic images and the advantage may disappear on industrial
images where the pose of background is naturally more diverse. CSI (Tack et al., 2020) proposed
to contrast distribution shifted augmented images with original images to increase the gap between
normal and abnormal samples. This is similar to maintaining only the negative pair loss proposed
in this work. CFLOW-AD (Gudovskiy et al., 2022) adopted a conditional normalizing flow
model for fast anomaly localization. We adapt CFLOW-AD to training on few-shot anomaly
detection task. TDG (Sheynin et al., 2021) proposed to employ generative model for few-shot
anomaly detection by differentiating image patches into either fake or one of a list of predefined
augmentations. DifferNet (Rudolph et al., 2021) estimates density through normalizing flow with a
few supporting training samples. The above two approaches are compared on the MVTec dataset.
Ours (w/o np) optimizes on the combination of contrastive loss and cross-instance positive pair
loss. Assuming prior knowledge on the anomaly is available, Ours (w/ np) incorporates the nega-
tive pair loss and optimizes on the combination of all three losses. Among these methods, CutPaste
and Ours (w/ np) are built upon the prior knowledge of anomalies while other methods do not make
explicit assumptions on how the anomalies would look like.

4.3 EXPERIMENT DETAILS

Training Details: For all experiments, we use the ResNet18 (He et al., 2016) backbone for feature
extraction. For all competing methods, we initialize backbone weights with ImageNet pretrained
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weights. We set the weight for cross-instance positive pair loss as 0.8 and the weight for negative
pair loss as 0.6. We use the Adam optimizer Kingma & Ba (2015) for all experiments with learning
rate initialized to 3 × 10−4, β1 = 0.9 and β2 = 0.99. We fix the batch size to 64, thus creating 64
pairs for contrastive training. To generate cross-instance pairs, we randomly permute the 64 images
and each of the 64 image is paired with a randomly permuted one, resulting in 64 positive pairs.
Similarly, we pair each image to its negatively augmented one to create another 64 negative pairs.
For density model fitting, we use NA = 10. The area under the ROC (AUROC) is used to assess
performance, where anomalies are treated as the positive class.

Data Augmentation: For the negative pair loss, we synthesize negative examples tn(X) with Cut-
Paste augmentations (Li et al., 2021a) for MVTec datasets. For all industrial datasets, regular data
augmentation t(X) comprises affine transformation and color manipulations (e.g. blurring and
grayscaling). For CIFAR10/100-C, regular augmentation only includes affine transformation and
negative augmentation comprises blurring and randomly perturbing image brightness and contrast.

4.4 FEW-SHOT ANOMALY DETECTION ON INDUSTRIAL DATASETS

In this section, we explore identifying defects on industrial images. We first evaluate the few-shot
anomaly detection performance on MVTec dataset with results in Tab. 1. We make the following
observations. First, without any specific prior knowledge on the anomalies, our method (Ours (w/o
np)) outperforms all competing methods by a clear margin. Furthermore, with prior knowledge on
the potential anomalies, our method (Ours (w/ np)) still outperforms CutPaste with the same negative
augmentations in the 2-shot and 5-shot settings. We are only slightly behind CutPaste in the 10-
shot case. Both observations suggest the effectiveness of contrastive adaptation and cross-instance
positive pair loss. We further observe that CutPaste exhibits a significant lead on leather, wood and
toothbrush images. We attribute this to the fact that these categories contain many anomalies that
can be synthesized from CutPaste and scar augmentation: the “cut” defect for the “leather” category,
the “scratch” defect for “wood” and scar like defects for “toothbrush”. In contrast, our method relies
more on adaptation from the pretrained model and learning from few-shot normal samples. As a
result, its performance is generally better on more diverse types of objects: in the 2-shot setting, our
method outperforms CutPaste on 8 of the 15 categories while CutPaste is winning on 4/15 categories.
Table 1: Few-shot anomaly detection on MVTec dataset. Per-category AUROC is reported for all
competing methods. All numbers are in %. The results of DiffNet∗ and TDG∗ are derived from
(Sheynin et al., 2021), where − indicates per-class results are not available.

bottle cable caps. hazel. metal. pill screw tooth. transis. zipper carpet grid leather tile wood avg.

2
sh

ot

AE 73.49 64.22 62.43 73.54 35.97 75.19 35.56 73.33 48.92 40.73 22.11 45.13 31.52 73.35 58.42 53.26
VAE 68.73 61.83 60.47 73.82 41.20 76.08 39.98 72.22 68.83 38.16 25.08 40.85 37.40 72.69 44.91 54.75
DeepSVDD 85.79 66.06 51.62 53.39 50.44 77.27 51.23 69.72 58.04 59.30 70.06 38.10 40.42 81.02 51.23 60.28
Ours (w/o np) 88.06 59.05 58.82 60.77 68.51 65.55 56.48 73.63 72.84 70.74 76.00 61.18 63.11 68.25 77.85 68.06
CutPaste 86.39 64.59 61.56 73.59 49.92 66.91 41.93 82.04 55.53 59.97 52.26 46.25 83.82 71.28 84.79 65.38
Ours (w/ np) 90.95 66.55 59.38 68.82 68.96 66.68 54.90 74.81 74.33 72.82 73.18 61.77 65.28 69.64 79.85 69.86

5
sh

ot

AE 76.59 65.59 72.92 73.64 49.61 76.73 40.32 75.00 64.79 59.95 38.76 42.61 43.72 66.56 74.04 61.39
VAE 70.24 62.52 73.08 74.57 41.96 76.55 41.55 79.51 72.92 59.50 39.32 56.16 45.99 60.22 90.16 63.05
DeepSVDD 86.19 68.29 60.23 54.07 52.16 78.42 52.15 81.39 69.04 74.80 51.54 51.55 58.20 82.83 93.51 67.59
CSI 80.55 60.48 62.07 74.40 59.83 69.29 32.71 79.44 55.71 63.71 56.17 39.53 51.56 55.38 75.96 61.12
CFLOW-AD 98.17 81.65 73.12 88.25 74.88 68.22 45.09 82.50 84.79 83.53 73.48 50.96 87.84 91.59 92.37 78.43
DifferNet∗ - - - - - - - - - - - - - - - 72.10
TDG∗ - - - - - - - - - - - - - - - 77.90
Ours (w/o np) 94.58 70.67 74.06 78.29 79.66 81.56 62.70 87.18 78.08 75.03 84.67 62.31 74.90 78.34 89.66 78.11

CutPaste 98.41 80.32 69.20 89.90 72.24 82.85 59.13 90.89 68.56 68.89 73.13 49.94 83.93 91.50 96.08 78.33
Ours (w/ np) 95.73 78.05 74.26 86.89 78.57 81.31 62.26 88.81 74.80 75.70 79.90 61.85 77.92 75.34 90.12 78.76

10
sh

ot

AE 81.91 69.34 73.54 74.14 57.72 78.40 50.07 93.11 66.49 60.29 41.43 49.96 45.07 72.62 95.70 64.92
VAE 82.06 64.05 73.59 75.04 56.74 78.07 50.03 91.66 73.41 60.19 44.78 56.05 47.45 76.55 94.56 67.02
DeepSVDD 86.75 68.85 65.05 74.04 70.82 78.42 53.13 86.39 69.08 77.28 52.07 51.71 58.27 86.33 94.02 71.48
CSI 83.44 62.65 64.30 77.07 61.98 71.78 33.89 82.30 57.71 66.00 58.19 40.95 53.41 57.37 78.69 63.32
CFLOW-AD 99.50 84.58 75.75 91.42 77.57 70.67 46.71 85.47 87.84 86.53 76.12 52.79 91.00 94.88 95.69 81.10
DifferNet∗ - - - - - - - - - - - - - - - 73.60
TDG∗ - - - - - - - - - - - - - - - 78.00
Ours (w/o np) 97.84 71.07 79.23 78.72 80.57 82.81 61.85 95.12 87.21 83.71 84.73 63.10 76.88 81.14 89.69 80.92

CutPaste 98.71 81.83 83.15 94.47 88.92 85.63 64.55 91.50 70.01 86.90 83.92 55.13 99.50 91.81 96.21 84.82
Ours (w/ np) 99.03 83.49 78.38 87.25 79.47 82.55 63.92 94.71 87.21 84.45 79.95 63.14 78.88 81.14 97.15 82.71

We further evaluate defect identification performance on another three industrial datasets, namely
SemiCon, AITEX and MagneticTile, with results in Tab. 2. The following observations are drawn
from the results. First, without any prior knowledge, our model achieves the state-of-the-art perfor-
mance under lower budgets of available training samples (5 and 10 shots) on all three datasets. It is
only slightly behind DeepSVDD at 50-shot on AITEX. This suggests adapting pretrained models to
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target domain is effective for realistic industrial image defect identification tasks. Second, methods
demonstrating strong performance on MVTec dataset may not generalize to other types of defects.
For example, while CutPaste is one of the best performing methods on MVTec, its performance on
SemiCon and AITEX is much worse than more traditional approaches. One potential reason for this
poor performance is that the synthesized negative samples used in CutPaste are not representative of
the defects in SemiCon and AITEX datasets; a more detailed analysis can be found in the Appendix.
Table 2: Few-shot defect identification results on additional three industry image datasets. AUROC
is reported as evaluation metrics. All numbers are in (%).

SemiCon AITEX Magnetic Tile
5-shot 10-shot 50-shot 5-shot 10-shot 50-shot 5-shot 10-shot 50-shot

AE 65.38 70.24 71.74 47.01 60.59 63.30 51.58 52.66 54.70
VAE 72.42 73.53 80.14 52.99 66.36 67.88 51.90 53.40 54.30
DeepSVDD 52.02 71.40 79.09 70.15 74.40 80.07 54.80 55.90 57.73
RotNet 55.13 75.55 80.45 71.20 75.19 80.02 55.69 57.14 60.00
CutPaste 48.71 71.60 75.03 50.23 69.58 79.83 57.82 61.00 62.14
Ours (w/o np) 78.87 80.72 82.00 73.44 77.45 78.14 58.23 61.93 63.55

4.5 DETECTING SYNTHETIC NOISE CORRUPTIONS

In this section, we evaluate on detecting synthetic noise corruptions as anomalies. The synthesized
corruptions mimic noise patterns that are commonly seen in industrial environments. We bench-
mark on CIFAR10-C and CIFAR100-C with 10-shot training samples for this purpose. In a similar
fashion to MVTec, we adapt ImageNet pretrained weights to each individual semantic class. For
CIFAR100-C, we choose the 20 superclasses as the semantic class for simplicity. We present the
anomaly detection results on each semantic category of CIFAR10-C in Tab. 3. We first observe from
the results that in average our methods, both with and without prior knowledge, lead the competing
methods with a clear margin. The closest competing method, CutPaste, is 4% lower than Ours (w/
np). This is in contrast to the extraordinary performance demonstrated on MVTec by CutPaste.
We attribute this to the fact that the corruptions in CIFAR10-C are diverse and may not be easily
synthesized by the augmentation methods specifically tailored for the MVTec dataset. We further
benchmark on CIFAR100-C and compare with DeepSVDD and CutPaste. We draw similar con-
clusions from the results. Our method is still stronger than CutPaste with a clear margin. This is
caused by the mismatch between the negative samples synthesized by CutPaste and corruptions in
the dataset.

Table 3: 10-shot anomaly detection on CIFAR10-C dataset. All numbers are reported as AUROC in
%.

Airpl. Auto. Bird Cat Deer Dog Frog Horse Ship Truck Avg.

AE 54.38 53.67 54.86 53.79 56.15 54.3 51.70 54.79 55.89 50.38 53.99
VAE 57.47 52.17 56.32 56.11 58.67 57.09 59.18 54.06 56.90 50.61 55.86
DeepSVDD 63.27 61.64 60.75 60.71 61.54 62.11 63.00 59.83 63.72 67.29 62.37
RotNet 69.21 53.21 66.03 64.00 67.30 67.84 70.20 70.84 59.05 63.04 64.07
CutPaste 58.62 73.01 70.56 75.57 68.65 71.32 72.26 70.82 72.53 66.79 70.01
Ours (w/o np)71.68 64.68 75.74 74.38 76.55 74.69 81.40 79.10 60.02 74.53 72.27
Ours (w/ np) 72.23 67.66 78.41 77.45 75.33 75.20 75.35 75.88 72.20 75.85 74.56

Table 4: Anomaly detection on CIFAR100-C dataset. Per super class performance is reported. All
numbers are reported as AUROC in %.

Sup.Cls. 0 Sup.Cls. 1 Sup.Cls. 2 Sup.Cls. 3 Sup.Cls. 4 Sup.Cls. 5 Sup.Cls. 6 Sup.Cls. 7 Sup.Cls. 8 Sup.Cls. 9

Deep SVDD 75.10 73.48 70.35 63.52 73.53 76.19 69.91 74.76 79.70 67.13
CutPaste 75.96 69.59 70.51 75.71 72.50 74.14 76.22 76.69 71.79 78.31

Ours (w/ np) 77.61 66.69 77.84 76.21 79.93 78.17 73.33 78.80 74.63 81.17
Sup.Cls. 10 Sup.Cls. 11 Sup.Cls. 12 Sup.Cls. 13 Sup.Cls. 14 Sup.Cls. 15 Sup.Cls. 16 Sup.Cls. 17 Sup.Cls. 18 Sup.Cls. 19 Avg

70.00 73.17 60.82 56.91 66.36 65.81 60.60 69.88 70.52 71.30 69.24
80.28 75.83 77.92 78.56 70.87 78.84 72.83 71.63 72.97 75.61 74.84
81.27 75.59 80.11 79.98 75.56 80.04 73.65 77.54 77.16 78.13 77.17

4.6 ABLATION STUDY

In this section, we investigate the effectiveness of the individual components using the CIFAR10-C
dataset. In particular, we demonstrate the importance of contrastive training on few-shot target do-
main normal samples (Contrast. Train), incorporating cross-instance positive pair loss (Positive Pair
Loss) and incorporating the negative pair loss (Negative Pair Loss). We further evaluate incorpo-
rating L2 normalization (L2 Norm) during anomaly detection density model fitting and inference.
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We present the ablation study results in Tab. 5. We make the following observations from the re-
sults. First, as we expected, reusing ImageNet pretrained weights for downstream anomaly detection
yields significant improvement in performance (52.54% → 67.32%). This suggests the significance
of a good representation for anomaly detection. Adapting pretrained model to the target distribution
through contrastive training further improves 2% in average (67.32% → 70.05%). To encourage
feature embedding suitable for density-based anomaly detection, we further incorporate the positive
pair loss and this again yields additional 3% improvement (70.05% → 73.68%). As an alternative
approach, one could encourage all normal samples’ features to embed close to a fixed cluster cen-
ter (F.C.) following Ruff et al. (2018). However, as the cluster center must be fixed through the first
forward pass, this could pose too much constraint on the representation learning and yield inferior
results (68.21%). Finally, when we combine negative pair loss, this gives a final boost of perfor-
mance to 74.56%. We also hypothesize that L2 normalization on feature representation is necessary
and the ablation study validated the hypothesis. By removing the L2 normalization on anomaly
inference features the performance drops from 74.56% to 72.11%, indicating the normalization is
essential to fitting better density model and distance-based anomaly detection.
Table 5: Ablation study on CIFAR10-C 10-shot FSAD. CIPP stands for cross-instance positive pair.

Pretrained Weights Contrast. Train Positive Pair Loss Negative Pair Loss L2 Norm Avg. Acc.

- - - - ✓ 52.54
ImageNet - - - ✓ 67.32
ImageNet ✓ - - ✓ 70.05
ImageNet ✓ F.C. (Ruff et al., 2018) - ✓ 68.21
ImageNet ✓ C.I.P.P. - ✓ 73.68
ImageNet ✓ C.I.P.P. ✓ ✓ 74.56
ImageNet ✓ C.I.P.P. ✓ - 72.11

4.6.1 WHEN DOES INCORPORATING NEGATIVE EXAMPLES HELP?

As we discussed, incorporating negative example during adaptation is not always beneficial. The
advantage hinges on whether prior knowledge on abnormal sample distribution is available. To
verify this point, we evaluate incorporating negative pair loss on 3 industry datasets, SemiCon, AI-
TEX and Magnetic Tile. SemiCon dataset features anomalies that are quite different from MVTec,
while AITEX and Magnetic Tile are relatively more similar to the texture categories of MVTec.
We choose CutPaste (Li et al., 2021a) as negative augmentation for these 3 datasets. The results
in Tab. 6 demonstrate that when the negative augmentation is substantially different from the real
anomalies, e.g. the void circles in SemiCon dataset, incorporating negative pair loss with inappro-
priate augmentation will harm performance (78.87 → 62.97%). On the contrary, when anomalies
can be simulated, even imperfectly, e.g. Magnetic Tile dataset, incorporating negative pair loss will
further improve performance. Overall, we conclude that incorporating negative pair loss is only
helpful when prior knowledge on the potential anomalies is concrete and anomalies can be sim-
ulated through negative augmentation. Our model without negative pair loss is suitable for tasks
without prior knowledge or when generating negative augmentation is difficult.

Table 6: Effect of negative pair loss with CutPaste augmentation on industry image datasets.

SemiCon AITEX Magnetic Tile

Ours (w/o np) 78.87 73.44 58.23
Ours (w/ np) 76.29 65.54 59.45

5 CONCLUSION

Industry defect inspection requires the capability of anomaly detection with very limited normal
samples for training. To meet this demand, we proposed a few-shot anomaly detection approach
through adapting models pretrained on large external image collections to few-shot normal samples
from the target task. We achieve this adaptation by optimizing a contrastive loss and cross-instance
positive pair loss. When prior knowledge on possible anomalies is available we further incorporate
a negative pair loss to separate normal sample embeddings from the synthesized negative samples.
We extensively evaluated the performance of the proposed method on four real industrial defect
detection datasets and two synthetic datasets mimicking realistic corruptions. Our method achieved
state-of-the-art performance on all datasets when only a handful of normal samples are available.
Finally, we show that the benefit of using synthetic negative samples is task-dependent and should
only be considered when accurate prior knowledge is available.
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A APPENDIX

A.1 DISCUSSIONS ON CONTRASTIVE TRAINING HELPING ADAPTATION

Recent works have demonstrated that contrastive training helps adapt model parameters to target
domain distributions (Liu et al., 2021; Xu et al., 2022; Chen et al., 2022; Li et al., 2021b). We argue
that contrastive training on target domain data can alleviate the negative impact of covariate shift.
For simplicity, we denote the source domain dataset as DS , e.g. the ImageNet dataset, and the target
domain dataset as DT , e.g. anomaly detection dataset. The objective of supervised training on the
source domain can be seen as minimizing the following cross entropy loss where h(·) is the classifier
on source domain and f(·) is the backbone network to be transferred.

ΦS∗,ΘS∗ = argmin
Φ,Θ

1

|DS |
∑

Xi,yi∈DS

LCE(h(f(Xi; Θ); Φ), yi) (6)

Covariate shift between source and target dataset indicates a distributional misalignment, i.e.
pS(X) ̸= pT (X) which is easily manifested by the difference in the contents of the source and
target domain data. Therefore, it is reasonable to believe the backbone network optimized for source
domain model is not optimal for the target domain distribution. To ease the negative impact caused
by covariate shift, we introduce contrastive training on target domain by optimizing an unsupervised
contrastive loss with model parameters initialized by the source domain ones, as in Eq. 7.

ΘT∗ = argmin
Θ

1

|DT |
∑

Xi∈DT

LCon(f(t(Xi); Θ), f(t(Xi); Θ̂)), s.t. ΘT
0 = ΘS∗ (7)

By minimizing the contrastive loss, the network is able to capture key features from the target do-
main to discriminate non-identical instances and we empirically demonstrate this to be effective for
adapting source model to a target domain for downstream anomaly detection. We further provide
another perspective into the effectiveness of contrastive learning. When the augmentations are cho-
sen to be mimic the commonly seen variations within normal samples, contrasting two augmented
images forces the network to produce similar representations regardless of the augmentations. This
means the representation learned from contrastive training allows the network to learn features in-
variant to common variations in appearance and pose that one could encounter in industrial imaging
environments. Such ability will help bring normal samples closer in the feature space, thus benefit
downstream anomaly detection.

A.2 FURTHER ANALYSIS

In this section, we provide additional evaluations on qualitative examination of representation learn-
ing and discuss the when incorporating negative samples should be employed.
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A.2.1 QUALITATIVE EXAMINATION OF REPRESENTATION LEARNING:

The benefit of incorporating each of the proposed three losses for adaptation to target anomaly de-
tection are validated through empirical experiments on multiple datasets. In this section, we provide
qualitative observations into the advantage of incorporating these losses through t-SNE visualiza-
tion of test data representations Van der Maaten & Hinton (2008). Specifically, we randomly select
1,500 testing samples from CIFAR10-C dataset for visualization. The feature points are projected
into 2D space and visualized in Fig. 3. The feature embedding with ImageNet pretrained weights
only, (a) w/o Adaptation, shows a substantial overlap between normal and abnormal samples. When
contrastive training is applied, (b) w/ Contrastive Loss, we observe a clear seperation between nor-
mal and abnormal samples. When additional positive pair loss, (c) PP Loss, and negative pair loss,
(d) w/ NP Loss, are incorporated, the normal samples are further grouped into a tighter cluster with
larger distrinction between normal and abnormal samples.

(a) w/o Adaptation (b) w/ Contrastive Loss (c) w/ PP Loss (d) w/ NP Loss

Figure 3: T-SNE visualization of anomaly detection testing data on selected testing samples from
CIFAR10-C dataset. Blue and red colors indicate normal and abnormal samples respectively.

A.3 COMPARING REAL ANOMALIES V.S. NEGATIVE AUGMENTATION

In this section, we provide visual examples for both real anomalies and negative augmentation ob-
tained through CutPaste Li et al. (2021a). We randomly sample 4 normal training samples from
SemiCon dataset and augment the selected samples through CutPaste. The synthesized negative ex-
amples are compared with 4 randomly selected real anomalies in Fig. 4. The qualitative examination
indicate that CutPaste augmentation may not be suitable for all types of industrial images and this is
reflected in the relatively poor performance of CutPaste and Ours (w/ np) on SemiCon and AITEX
dataset.

A.4 ADDITIONAL VISUALIZATION OF INDUSTRIAL DATASETS

We provide more examples of the industrial datasets used in this work, namely the SemiCon, AITEX
and Magnetic Tile. We illustrate both normal and defect samples of AITEX and Magnetic Tile in
Fig. 5, SemiCon in Fig. 4. We notice that most defects in the SemiCon datasets are caused by the
circular void in the solder area. The defects in AITEX are often curvilinear and the background is
dense with repetitive patterns. The defects for Magnetic Tile is more subtle.

A.5 DISTRIBUTION OF ANOMALY SCORES

In this section, we further compare different ablated models through visualizing the distribution of
anomaly scores on CIFAR10-C few-shot anomaly detection task. Specifically, we compare a) w/o
contrastive finetuning; b) w/ contrastive finetuning; c) additionally w/ PP loss; and d) additionally w/
NP loss. The results in Fig. 6. We make the following observations. First, directly using the model
pretrained on ImageNet, a) w/o contrastive finetuning, failed to differentiate normal and abnormal
samples as the two distributions are almost the same. With contrastive finetuning on target data, b)
w/ contrastive finetuning, we see a clear gap between normal and abnormal distributions, suggesting
better anomaly detection performance. By further incorporating the positive pair loss, c) w/PP loss,
the gap between two distributions are more significant. Finally, incorporating negative pair loss, d)
w/ NP loss, is most effectiv for differentiating normal from abnormal samples.
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Figure 4: Samples of applying CutPaste on industry dataset SemiCon. First row is the original
samples, and second row is the corresponding generated sample from CutPaste augmentation. Third
row shows a few samples of the real defective images.

Figure 5: Illustration of Aitex(upper) and Magnetic Tile dataset. The first row of each dataset are
normal examples, second rows are defective examples.
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(a) w/o contrastive finetuning (b) w/ contrastive finetuning

(c) w/ PP loss (d) w/ NP loss

Figure 6: Comparing different ablated models through anomaly score distributions.
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A.6 EVALUATION ON ADDITIONAL BACKBONE

We evaluate the effectiveness of the proposed representation learning approach with stronger back-
bone network. In specific, we evaluate ResNet101 on the SemiCon dataset in a few-shot anomaly
detection setting. The results in Tab. 7 reveal that contrastive finetuning and across instance positive
pair are also effective with stronger backbone network.

Table 7: 5-shot anomaly detection with ResNet101 on SemiCon dataset.

Contrast. Train Positive Pair Loss Avg. Acc.

- - 67.72
✓ - 84.22
✓ ✓ 86.65

A.7 IMBALANCED ANOMALY DETECTION

We notice that the original anomaly detection dataset is already highly imbalanced. For example,
the AiTex dataset consists of 600 normal and 100 abnormal samples in the testing set. Since the
ratio between normal and abnormal samples does not affect model training, we further implemented
a controlled experiment where we manually decrease the number of anomalies in the SemiCon
dataset. Specifically, we fix the normal samples to 500 and randomly subsample 5, 10, 20 and 50
abnormal samples for evaluation. The results in Tab. 8 demonstrate the superiority of proposed
method against existing competing methods.

Table 8: Generated by Spread-LaTeX

#Anomalies 5 10 20 50

deepsvdd 52.01 49.71 49.97 52.40
cutpaste 86.31 83.82 72.82 74.31
VAE 80.56 78.12 67.67 73.91
AE 62.12 65.52 76.83 74.39
Ours 88.36 86.50 85.87 80.72
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