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ABSTRACT

In large-data applications, such as the inference process of diffusion models, it is
desirable to design sampling algorithms with a high degree of parallelization. In
this work, we study the adaptive complexity of sampling, which is the minimum
number of sequential rounds required to achieve sampling given polynomially
many queries executed in parallel at each round. For unconstrained sampling, we
examine distributions that are log-smooth or log-Lipschitz and log strongly or non-
strongly concave. We show that an almost linear iteration algorithm cannot return
a sample with a specific exponentially small error under total variation distance.
For box-constrained sampling, we show that an almost linear iteration algorithm
cannot return a sample with sup-polynomially small error under total variation
distance for log-concave distributions. Our proof relies upon novel analysis with
the characterization of the output for the hardness potentials based on the chain-like
structure with random partition and classical smoothing techniques.

1 INTRODUCTION

We study the problem of sampling from a target distribution on Rd given query access to its unnormal-
ized density, which is fundamental in many fields such as Bayesian inference, randomized algorithms,
and machine learning (Marin et al., 2007; Nakajima et al., 2019; Robert et al., 1999). Recently,
significant progress has been made in developing sequential algorithms for this problem inspired by
the extensive optimization toolkit, particularly when the target distribution is log-concave (Chewi
et al., 2020; Jordan et al., 1998; Lee et al., 2021; Wibisono, 2018; Ma et al., 2019).

The algorithms underlying the above results are highly sequential and fail to fully exploit con-
temporary parallel computing resources such as multi-core central processing units (CPUs) and
many-core graphics processing units (GPUs). While model-specific algorithmic subroutines such
as log-likelihood and log-likelihood gradient evaluations sometimes admit parallelization (Hol-
brook et al., 2021a;b), the algorithms’ generally sequential nature can lead to under-utilization of
increasingly widespread hardware (Brockwell, 2006).

A convenient metric for parallelism in black-box oracle models is adaptivity, which was recently
introduced in submodular optimization to quantify the information-theoretic complexity of black-
box optimization in a parallel computation model (Balkanski and Singer, 2018a). Informally, the
adaptivity of an algorithm is the number of sequential rounds it makes when each round can execute
polynomially many independent queries in parallel. In the past several years, there have been
breakthroughs in the study of adaptivity in optimization (Balkanski and Singer, 2018a;b; 2020;
Bubeck et al., 2019; Diakonikolas and Guzmán, 2019; Chakrabarty et al., 2023; 2024; Garg et al.,
2021; Li et al., 2020).

Although the adaptive complexity of optimization is well understood, we have a very limited
understanding of the adaptive complexity of sampling. Existing results are only on query complexity
of the low-dimensional sampling Chewi et al. (2022b; 2023a;b). This motivates us to study the
adaptive complexity of log-concave samplers. In this paper, we give the first lower bounds for the
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Figure 1: Comparison with existing parallel methods for strongly log-concave and log-smooth
distributions

parallel runtime of sampling in high dimensions and high accuracy regimes1. We study two types of
log-concave samplers: unconstrained samplers and box-constrained samplers.

Lower bound for unconstrained samplers. We first present the lower bound for unconstrained
samplers with very high accuracy. Specifically, for sufficiently large dimensions, an almost linear
iteration adaptive sampler fails to return a sample with a specific exponentially small accuracy for (i)
strongly log-concave and log-smooth distributions (ii) log-concave and log-smooth or log-Lipschitz
distributions, and (iii) composite distributions (see Theorem 4.1, Theorem 4.4, and Theorem 4.5
respectively). This is the first lower bound to the best of our knowledge for both deterministic adaptive
samplers and randomized ones for unconstrained distributions.

Take the strongly log-concave and log-smooth sampler as an example. Let d and ε denote the
dimension and accuracy, respectively. For any parallel samplers running in Θ̃(d) iterations, we prove
the accuracy is always ω̃(cd) with some constant c < 1. Conversely, improving accuracy beyond
our current bounds necessitates an increase in iterations. These correspond to the impossible region
(the red rectangle) in Figure 1. As a comparison, Anari et al.’s algorithm returns a sample with
ε accuracy under total variation distance within O(log2(d/ε)) iterations and makes O(d) queries
in each iteration (Anari et al., 2024), corresponding to the green area in Figure 1. This algorithm
is the only existing parallel methods and there is d or log(1/ε) gap compared to our lower bound.
For weakly log-concave samplers, the algorithm by Fan et al. requires Õ(log2(1/ε)) iterations for
log-Lipschitz distributions and Õ(d1/2 log2(1/ε)) iterations for log-smooth distributions, with O(1)
queries per iteration (Fan et al., 2023). We plug the accuracy of our lower bound in to their guarantees
and summarize the comparisons in Table 1.

Lower bound for box-constrained samplers. We also extend the result to the box-constrained
setting. Sampling from polytope-constrained has a wide range of applications including Bayesian
inference and differential privacy Silvapulle and Sen (2011); McSherry and Talwar (2007). The box
constraint represents the simplest case, such as in the Bayesian logistic regression problem with the
infinity norm. We show that for sufficiently large dimensions, any almost linear-iteration adaptive
sampler for box-constrained log-concave distributions fails to return a sample with sup-polynomially
small accuracy (see Theorem 5.1).

The best existing algorithm employs the soft Dikin walk to return a lower-accurate even high-accurate
sample within O(d3) iterations for general polytopes (Mangoubi and Vishnoi, 2023b). However,
there also exists a gap compared to our lower bounds. For strongly log-concave and log-smooth

1Throughout, we use the standard terminology Chewi (2023) low accuracy to refer to complexity results
which scale polynomially in 1/ε, and the term high accuracy for results which scale polylogarithmically in 1/ε,
here, ε > 0 is the desired target accuracy.
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Table 1: Comparison with existing upper bounds in different levels of accuracy. We note c is some
constant such that c ∈ (0, 1) and α is an arbitrary number satisfying α = ω(1). We hide the poly-
logarithmic term. ♣ For the upper bound of the log-concave sampler, we assume there exists an
O(d)-warm start with bounded Chi-square divergence, i.e., χ2

π(ρ0) = O(exp(d)). Here m2 denotes
the second moment. ♠ We only consider the potential functions taking form as f = f1 + ∥·∥2 /2
where f1 is convex and Lipschitz.

Problem type of adaptive sampling Upper bounds Our lower bounds

Unconstrained dist.
with ε = Θ(cd)

strongly log-concave + log-smooth Õ
(
d2

)
(Anari et al., 2024) Ω̃(d)

log-concave + log-smooth Õ(m2d
5/2) (Fan et al., 2023) ♣ Ω̃(d)

log-concave + log-Lipschitz Õ
(
m2d

2
)

(Fan et al., 2023) ♣ Ω̃(d)

composite ♠ Õ
(
d5/2

)
(Fan et al., 2023) Ω̃(d)

box-constrained dist.
with ε = Θ(d−α)

log-concave + log-smooth Õ(d3) (Mangoubi and Vishnoi, 2023a) Ω̃(d)

log-concave + log-Lipschitz Õ(d3) (Mangoubi and Vishnoi, 2023a) Ω̃(d)

strongly-log-concave + log-smooth Õ(d) (Lee et al., 2021) -

box-constrained dist.
with ε = Θ(cd)

log-concave + log-smooth Õ(d3) (Mangoubi and Vishnoi, 2023a) Ω̃(d)

log-concave + log-Lipschitz Õ(d3) (Mangoubi and Vishnoi, 2023a) Ω̃(d)

strongly-log-concave + log-smooth Õ(d4) (Lee et al., 2021) -

distributions, we can view the box-constrained distribution as a composite distributions. As a result,
the proximal sampler can find a high-accurate sample within Õ(d4) iterations, and a sample with low
accuracy within Õ(d) iterations (Lee et al., 2021). But the lower bounds are still unknown. We also
summarize it in Table 1.

Comparision to query complexity. The current understanding of the query complexity of sampling
is notably limited. For general strongly log-concave and log-smooth distributions, investigations
have been confined primarily to 1- and 2-dimensional tasks, and only apply to a certain constant
accuracy (Chewi et al., 2022b; 2023b). For high-dimensional tasks, even for the Gaussian distribution,
studies have only addressed constant accuracy (Chewi et al., 2023b). Also, a lower bound for box-
constrained log-concave samplers is conspicuously absent. Our work brings the first response to such
limitations and provides insights into future investigations of sampling algorithms.

Exponential accuracy requirements with privacy as an example. In differential privacy, one
requires bounds on the infinity-distance (Mangoubi and Vishnoi, 2022) or Wasserstein-infinity
distance (Lin et al., 2023) to guarantee pure differential privacy, and total variantion (TV), Kull-
back–Leibler (KL), or Wasserstein bounds are insufficient (Dwork et al., 2014). To achieve these
stringent privacy guarantees, Mangoubi and Vishnoi (2022) or Lin et al. (2023) both designed algo-
rithms that first generate an exponentially accurate sample w.r.t. TV, and then convert samples with
TV bounds to infinity-distance bounds. Moreover, in rare-event statistics, high-accuracy simulations
are required (Shyalika et al., 2023).

2 PRELIMINARIES

Sampling task Given the potential function f : D → R, the goal of the sampling task is to draw
a sample from the density πf = Z−1

f exp(−f), where Zf :=
∫
D exp(−f)dx is the normalizing

constant.

Distribution and function class If f is (strongly) convex, the distribution πf is said to be (strongly)
log-concave. If f is L-Lipschitz, the distribution πf is said to be L-log-Lipschitz. If f is twice-
differentiable and ∇2f ⪯ LI (where ⪯ denotes the Loewner order and I is the identity matrix), we
say the distribution πf is L-log-smooth.

Oracle In this work, we investigate the model where the algorithm queries points from the domain
D to the oracle O. Given the potential function f , and a query x ∈ D, the 0-th order oracle answers
the function value f(x) and the 1-st order oracle answers both f(x) and its gradient value ∇f(x).
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Since the gradient can be estimated with sufficiently small errors using a polynomial number of
queries to a 0-th-order oracle, we will focus on the 0-th-order oracle for the remainder of this paper.
Our results under zeroth-order oracles can be extended to first-order oracles, as first-order oracles can
be obtained from 0-th-order oracles when polynomially many queries are allowed per round.

Adaptive algorithm class The class of adaptive algorithms is formally defined as follows (Di-
akonikolas and Guzmán, 2019). For any dimension d, an adaptive algorithm A takes f : Rd → R
and a (possibly random) initial point x0 and iteration number r as input and returns an output xr+1,
which is denoted as A[f,x0, r] = xr+1. At iteration i ∈ [r] := {1, . . . , r}, A performs a batch of
queries

Qi = {xi,1, . . . ,xi,ki}, with xi,j ∈ D, j ∈ [ki], ki = poly(d),
such that for any m,n ∈ [ki], xi,m and xi,n are conditionally independent given all existing
queries {Qj}j∈[i−1] and x0. Give queries set Qi, the oracle returns a batch of answers: O(Qi) =

{O(xi,1), . . . ,O(xi,ki)}.
An adaptive algorithm A is deterministic if in every iteration i ∈ {0, . . . , r}, A operates with the form

Qi+1 = Ai(Q0,O(Q0), . . . , Qi,O(Qi)),

where Ai is mapping into Rdki+1 with Qr+1 = xr+1 as output and Q0 = x0 as an initial point. We
denote the class of adaptive deterministic algorithms by Adet.

An adaptive randomized algorithm has the form
Qi+1 = Ai(ξi, Q

0,O(Q0), . . . , Qi,O(Qi)),

given access to a random uniform variable on [0, 1] (i.e., infinitely many random bits), where Ai is
mapping into Rdki+1 . We denote the class of adaptive randomized algorithms by Arand.

Measure of the output Consider the joint distribution of all involved points {x : x ∈ Qi, i =
0, . . . , r + 1} and the random bits ξi. Let the marginal distribution of the output xr+1 be ρ. We say
the output to be ε-accurate in TV if TV(ρ, πf ) := supA⊆D |ρ(A)− πf (A)| ≤ ε.

Initialization For initial point x0 ∼ ρ0, the initial distribution ρ0 is said to be M -infinite Rényi
warm start for π if R∞(ρ0∥π) ≤ M where R∞(·∥·) is the infinite Rényi divergence defined as
R∞(µ∥π) = ln

∥∥dµ
dπ

∥∥
L∞(π)

2.

Notion of complexity Given ε > 0, f ∈ F , and some algorithm A, define the running it-
eration T(A, f,x0, ε,TV) as the minimum number of rounds such that algorithm A outputs a
solution x whose marginal distribution ρ satisfies TV(ρ, πf ) ≤ ε, i.e., T(A, f,x0, ε,TV) =
inf
{
t : TV

(
ρ(A[f,x0, t]), πf

)
≤ ε
}

3. We define the worst case complexity as

CompWC(F , ε,x0,TV) := infA∈Adet supf∈F T(A, f,x0, ε,TV).

For some randomized algorithm A ∈ Arand, we define the randomized complexity as4

CompR(F , ε,x0,TV) := infA∈Arand supf∈F T(A, f,x0, ε,TV).

By definition, we have CompWC(F , ε,x0,TV) ≥ CompR(F , ε,x0,TV). In the rest of this paper, we
only consider the randomized complexity and we lower-bound it by considering the distributional
complexity:

CompD(F , ε,x0,TV) := supF∈∆(F) infA∈Arand Ef∼F T(A, f,x0, ε,TV),

where ∆(F) is the set of probability distributions over the class of functions F .
2Sometimes the warm start is defined as

∥∥dρ0
dπ

∥∥
L∞(π)

≤ M (Wu et al., 2022; Mangoubi and Vishnoi, 2023a),
but we adopt the version with logarithm.

3We note that in sampling, the iteration complexity is determined by the output of the last iteration, which is
analogous to last-iteration properties in optimizations (Abernethy et al., 2019).

4We note that in sampling, we cannot define the randomized complexity as the expected running iteration
over mixtures of deterministic algorithms as in the case of optimization (Braun et al., 2017), since the intrinsic
randomness ξi will affect the marginal distribution of output. Furthermore, Yao’s minimax principle (Arora and
Barak, 2009) cannot be applied, since the different definition of randomized complexity. We acknowledge that
another possible option not discussed in this paper is the “Las Vegas” algorithm, which can return “failure,” as
described in Altschuler and Chewi (2024).

4
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3 TECHNICAL OVERVIEW

We begin by reviewing existing techniques for determining query complexity in sampling and adaptive
complexity in optimization. We then discuss the challenges associated with applying these techniques
and describe our methods for addressing them.

3.1 EXISTING TECHNIQUES

Query complexity for sampling. The existing techniques for showing the (query) lower bound
for the sampling task fall into one of two main approaches. The first one involves reducing the task
of hypothesis test to the sampling task (Chewi et al., 2022b; 2023b). To do so, a family of hardness
distributions is constructed. On the one hand, the hardness distributions are well-separated in total
variation such that if we can sample well from the distribution with accuracy finer than the existing
gaps between them, we can identify the distribution with a lower-bounded probability. On the other
hand, with a limited number of queries, the probability of correctly identifying the distribution is
upper-bounded by information arguments such as Fano’s lemma (Cover, 1999). This methodology
has been effectively applied to establish lower bounds on query complexity with constant accuracy for
log-concave distributions in one or two dimensions (Chewi et al., 2022b; 2023b). However, whether
such a method can be extended to high-dimensional sampling remains unknown.

The second method is to reduce another high-dimensional task to the sampling task, such as inverse
trace estimation or finding stationary points (Chewi et al., 2023a;b). Specifically, they showed that
if there is a (possibly randomized) algorithm that returns a sample whose marginal distribution
is close enough to the target distribution w.r.t. the total variation distance, then there exists an
algorithm to solve the reduced task with a high probability over randomness of the task instance and
algorithm. On the other hand, the hardness of the reduced task is shown by sharp characterizations of
the eigenvalue distribution of Wishart matrices or chaining structured functions parameterized by
orthogonal vectors Chewi et al. (2023a;b). However, at the current stage, this method can only work
for constant or very low accuracy (ε = Θ̃(dc)).

Adaptive complexity in optimization. Existing methodologies for establishing adaptive lower
bounds for submodular optimization (Balkanski and Singer, 2020; Chakrabarty et al., 2022; 2023; Li
et al., 2020) utilize a common framework. At a high level, these methods involve designing a family
of submodular functions, parameterized by a uniformly random partition P = (P1, . . . , Pr+1) over
the coordinates ground set [d]. The key property of such construction is that even after receiving
responses to polynomially many queries by round i, any (possibly randomized) algorithm does
not possess any information about the elements in (Pi+1, . . . , Pr+1) with a high probability over
the randomness of partition P . As a result, the solution at round i will be independent of the part
(Pi+1, . . . , Pr+1) of the partition. Additionally, without knowing the information of Pr+1, any
algorithm cannot return a good enough solution. To hide future information of partition, they used
the chain structure or onion-like structure.

Furthermore, a similar approach based on the Nemirovski function parameterized by random or-
thogonal vectors has also been the main tool to prove lower bounds for parallel convex optimiza-
tion (Balkanski and Singer, 2018b; Bubeck et al., 2019; Diakonikolas and Guzmán, 2019; Garg et al.,
2021).

3.2 TECHNICAL CHALLENGES AND OUR METHODS

Our results for log-concave distributions leverage the same framework. We construct a family of
distributions parameterized by uniformly random partitions with chain structure. A similar argument
applies that any adaptive algorithm cannot learn any information about (Pi+1, . . . , Pr+1) before the
i-th round. However, there are technical challenges to apply a similar information argument as Chewi
et al. (2022b; 2023b), which we summarize below.

1. The hard distributions in Chewi et al. (2022b; 2023b) are well-separated, i.e., the total variation
distance between any two distributions is large enough, which benefits the argument of reduction
from identification to sampling. However, the hard distributions constructed by the random
partition are close w.r.t. the total variation distance.

5
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2. On the other hand, Chewi et al. (2023b) applied Fano’s lemma with the advantage of bounded
information gain for every query. However, it is unclear how to find the bound of all the
information gains for polynomially many queries.

As a result, the reduction from a hypothesis test no longer applies, and the implications of not knowing
the partition (Pi+1, . . . , Pr+1) remain unknown.

The technical contributions of this paper lie in tackling this challenge by characterizing the outputs.
Specifically, we show that without knowing (Pr, Pr+1), the output cannot reach the area {x ∈
Rd, |

∑
i∈Pr

xi −
∑

i∈Pr+1
xi| ≥ t} with reasonable threshold t (Lemma 4.3), taking advantage of

the concentration bound of conditional Bernoullis (Theorem A.1 and Theorem A.3). Without hitting
such an area, we can lower-bound the total variation distance between the marginal distribution and
the target distribution.

Moreover, we extend this result to the unconstrained distributions by taking the maximum opera-
tor between the original hard distribution and a function without information about the partition.
Additionally, we adapt the result to the smooth case by employing a classical smoothing technique.

4 LOWER BOUNDS FOR UNCONSTRAINED LOG-CONCAVE SAMPLING

In this section, we construct different hardness potentials over the whole space under different smooth
and convex conditions. Due to their similarity of the hardness potentials for different settings, we first
present the hardness potentials for strongly log-concave and log-smooth samplers in Section 4.1.1
and its analysis in Theorem 4.1. Then we present the other results in Section 4.2. All the missing
proofs can be found in Appendix B.

4.1 LOWER BOUND FOR STRONGLY LOG-CONCAVE SAMPLING

Theorem 4.1 (Lower bound for strongly log-concave and log-smooth samplers). Let d be
sufficiently large, and c ∈ (0, 1) be a fixed uniform constant. Consider the function class F ,
consisting of 1-strongly convex and 2-smooth functions. For any α = ω(1) and ε = O(cd), there
exists γ = O(d−α) and x0 ∼ ρ0 with ρ0 as Õ(d)-infinite Rényi warm start for any {πf}f∈F such
that CompR(F , ε,x0,TV) ≥ (1− γ) d

α log3 d
.

The assumption that d is sufficiently large is necessary for achieving a high success probability
and has also been adopted in prior works on the lower bounds of parallel optimization Balkanski
and Singer (2018a); Li et al. (2020). As we are only concerned with the order of complexity, we
do not estimate the exact value of c ∈ (0, 1). Actually, we can choose any c which satisfies that√

t
1−t

2π
√
d(d+2)

(√
t

2

)d
≥ cd with a fixed t ∈ (0, 1) depending on d (see Section 4.1.2).

4.1.1 CONSTRUCTION OF HARDNESS POTENTIALS FOR THEOREM 4.1

Before describing the details of hardness potentials, we first recall the properties of the smoothing
operator modified by Proposition 1 in Guzmán and Nemirovski (2015). We defer the details of proof
in Appendix A.3.
Theorem 4.2 (Smoothing operators). Let f : Rd → R be a 1-Lipschitz and convex function. There
exists a convex continuously differentiable function S1[f ](x) : Rd → R with the following properties:

1. f(x) ≥ S1[f ](x) ≥ f(x)− 1 for all x ∈ Rd;

2. ∥∇S1[f ](x)−∇S1[f ](y)∥2 ≤ ∥x− y∥2 for all x,y ∈ Rd;

3. For every x ∈ Rd, the restriction of S1[f ](·) on a small enough neighbourhood of x depends
solely on the restriction of f on the set B1(x) = {y : ∥y − x∥ ≤ 1}.

Furthermore, if f reaches its minimum of 0 at x⋆ = 0, then S1[f ] does likewise.

Let d0 ∈ N+ with d0 ≥ log3 d, and r = d/d0 − 2. Consider partition with fixed-size components as
P1 ∪ P2 ∪ · · · ∪ Pr+2 = [d], where |P1| = d0, |P1| = |Pi| for all i ∈ [r]. The partition is uniformly

6
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random among all partitions with such fixed-size parts, and we denote it as P . For any x ∈ Rd let
Xi =

∑
s∈Pi

xs for all i ∈ [r], and we denote X(x) = (X1, . . . , Xr+1). We define the 1-strongly
log-concave hardness potential fP : Rd → R as

fP(x) = S1[gP ](x) +
1

2
∥x∥2 ,

where S1 is the smoothing operator defined in Theorem 4.2 and gP : Rd → R is defined as

gP(x) = max
{
L ·
(
|X1|+

∑
i∈[r]

max
{∣∣Xi −Xi+1

∣∣− t, 0
})

, ∥x∥ −M
}
,

where t = 8(M + 1)
√
α log d and L = 1/(4

√
d). We will specify the parameter M later.

By construction, we observe that

1. When ∥x∥ ≥ 2M , it must be

L ·
(
|X1|+

∑
i∈[r]

max
{∣∣Xi −Xi+1

∣∣− t, 0
})

≤ ∥x∥ −M,

i.e., outside the ball of radius 2M , gP is only determined by its right term.
2. When ∥x∥ ≤ M , it must be

L ·
(
|X1|+

∑
i∈[r]

max
{∣∣Xi −Xi+1

∣∣− t, 0
})

≥ ∥x∥ −M,

i.e., within the ball of radius M , gP is only determined by its left term.

At the i-th iteration, we assume that no information about (Pi+1, . . . , Pr) is processed in advance.
For any query x ∈ Qi, if ∥x∥ ≤ 2M , the concentration of linear functions over the Boolean
slice (Theorem A.3) implies that gP(x) is independent of (Pi+1, . . . , Pr) with high probability over
P . Similarly, if ∥x∥ ≥ 2M , then gP(x) = ∥x∥ −M , which also demonstrates independence from
(Pi+1, . . . , Pr). Consequently, the solution at round i will be independent of the partition segment
(Pi+1, . . . , Pr+1). Moreover, lacking knowledge of (Pr, Pr+1), the output cannot reach the area
S = {x ∈ Rd | |

∑
i∈Pr

xi −
∑

i∈Pr+1
xi| ≥ t} with a reasonable threshold t, leveraging the

concentration bounds of conditional Bernoullis (Theorem A.3). Thus, the marginal distribution ρ of
xr+1 satisfies ρ(S) = 0 with a high probability over randomness of P .

So far we have not considered the inference of the smoothing operator. However, actually, it will
only have a constant effect since it preserves the function value and the local area within a constant
tolerance. The constant change in the value of the potential function will result in only a constant
alteration of the mass value, whereas the change in the local area will lead to the constant shrinking
of the unreachable area.

We give the formal description in the following lemma, which is our main technical contribution.
Lemma 4.3. For any randomized algorithm A, any τ ≤ r, and any initial point x0, X(A[fP ,x

0, τ ])
takes a form as

(x1, . . . , xτ , xτ , . . . , xτ ),

up to addictive error O(t) for every coordinate with probability 1− d−ω(1) over P .

Proof. We fixed τ and prove the following by induction for l ∈ [τ ]: With high probability, the
computation path of the (deterministic) algorithm A and the queries it issues in the l-th round are
determined by P1, . . . , Pl−1.

As a first step, we assume the algorithm is deterministic by fixing its random bits and choose the
partition of P uniformly at random.

To prove the inductive claim, let El denote the event that for any query x issued by A in iteration l,
the answer is in the form S1[g

l
P ](x) +

1
2 ∥x∥

2 where glP : Rd → R defined as:

glP(x) = max
{
L ·
(
|X1|+

∑
i∈[l−1]

max
{∣∣Xi −Xi+1

∣∣− t, 0
})

, ∥x∥ −M
}
,

i.e., El represents the events that ∀x ∈ Ql, fP(x) = S1[gP ](x) +
1
2 ∥x∥

2
= S1[g

l
P ](x) +

1
2 ∥x∥

2.
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Since the queries in round l depend only on P1, . . . , Pl−1, if El occurs, the entire computation path
in round l is determined by P1, . . . , Pl. By induction, we conclude that if all of E1, . . . , El occur, the
computation path in round l is determined by P1, . . . , Pl.

Now we analyze the conditional probability P [El | E1, . . . , El−1]. By the property 3 of Theorem 4.2,
S1[gP ](x) only depends on {gP(x) : x′ ∈ B1(x)}. Thus, it is sufficient to analyze the probability of
the event that for a fixed query x, any point x′ ∈ B1(x) satisfies that gP(x′) = glP(x

′).

Case 1: ∥x∥ ≤ 2M + 1. Given all of E1, . . . , El−1 occur so far, we can claim that Ql is determined
by P1, . . . , Pl. Conditioned on P1, . . . , Pl, the partition of [d] \

⋃
i∈[l] Pi is uniformly random. We

consider {0, 1}-random variable Yj , j ∈ [d] \
⋃

i∈[l] Pi. For any query x′ ∈ B1(x), we represent
Xi(x′) as a linear function of Yis as Xi(x′) =

∑
j∈[d]\

⋃
i∈[l] Pi

Yjx
′
j such that Yi = 1 if Yi ∈ Pi

and Yi = 0 otherwise. By the concentration of linear functions over the Boolean slice (Theorem A.3),
and recall t = 8(M + 1)

√
α log d, we have

PP

[
|Xi(x′)− E[Xi(x′)]| ≥ t

2

]
≤ 2 exp

(
− t2

16(2M + 2)2

)
= 2d−ω(1).

Similarly, PP
[
|Xi+1(x′)− E[Xi+1(x′)]| ≥ t

2

]
≤ 2d−ω(1). Combining the fact that E[Xi(x′)] =

E[Xi+1(x′)], we have with probability at least 1− d−ω(1), for any fixed i ≥ l

max
{∣∣Xi(x′)−Xi+1(x′)

∣∣− t, 0
}
= 0,

which implies gP(x′) = glP(x
′) with a probability at least 1− rd−ω(1).

Case 2: ∥x∥ ≥ 2M + 1. For any x′ ∈ B1(x), we have ∥x′∥ ≥ 2M , which implies

gP(x) = ∥x∥ −M = glP(x).

Combining these two cases, we have for any fixed query x, with a probability at least 1− rd−ω(1),
any point x′ ∈ B1(x) satisfies that gP(x′) = glP(x

′).

By union bound over all queries x ∈ Ql, conditioned on that E1, . . . , El−1 occur, with probability at
least 1− rpoly(d)d−ω(1), El occurs. Therefore by induction,

P(El) = P(El|E1, . . . , El−1)P(El−1|E1, . . . , El−2) . . .P(E2|E1)P(E1)
≥ 1− r2poly(d)d−ω(1) = 1− d−ω(1).

This implies that with high probability, the computation path in round l is determined by P1, . . . , Pl−1.
Consequently, for all l ∈ [τ ] a solution returned after l − 1 rounds is determined by P1, . . . , Pl−1

with high probability. By the same concentration argument, the solution is with a probability at least
1− d−ω(1) in the form

(x1, . . . , xτ , xτ , . . . , xτ ),

up to an additive error O(t) in each coordinate.

Finally, we note that by allowing the algorithm to use random bits, the results are a convex combination
of the bounds above, so the same high-probability bounds are satisfied.

4.1.2 PROOF OF THEOREM 4.1

Verification of fP . Since gP is 1-Lipschitz and convex, by Theorem 4.2, S1[gP ] is 1-smooth and
convex, which implies fP(x) = S1[gP ](x) +

1
2 ∥x∥

2 is 1-strongly convex and 2-smooth.

Bound of total variation distance. We first estimate the normalizing constant as follows.

ZfP ≤
∫
Rd

exp

(
−gP(x) + 1− 1

2
∥x∥2

)
dx (by Property 1 of Theorem 4.2)

≤ e

∫
Rd

exp

(
−∥x∥+M − 1

2
∥x∥2

)
dx (by definition of gP )

= exp(M + 1)
2Γd(1/2)

Γ(d/2)

∫ ∞

0

td−1 exp(−t2/2)dt = exp(M + 1) · (2π)d/2. (1)
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Consider a subset S =
{
x ∈ Rd : ∥x∥ ≤ M,Xr+1 −Xr ≥ t

}
. By Lemma 4.3, with probability

1− d−ω(1) over P , ρ(A[fP ,x0, r])(S) = 0. Also by Property 1 in Theorem 4.2, and definition of fP
and gP , we have for any x ∈ S, and M ≥ 1,

fP(x) ≤ gP(x) +
1

2
∥x∥2 ≤ 1

2
∥x∥+ 1

2
∥x∥2 ≤ M +M2

2
≤ M2.

Thus, we have πfP (S) =
∫
S
exp(fP(x))dx

ZfP
≥

∫
S
exp(−M2)dx

ZfP
= |S| exp(−M2)

ZfP
. Recall t = 8(M +

1)
√
α log d, we define the height of the sphere cap as h = M − t√

2d0
= M − 8(M + 1)

√
α log d
2d0

.

Let b = (2Mh− h2)/M2 = 1−
(
1 + 1

M

)2 64α log d
d0

. By Lemma A.4 and Eq. equation 1, we have

πfP (S) ≥ |S| exp(−M2)

ZfP

≥ |S|
VdMd

· Vd ·
1

(2π)d/2
·Md exp(−2M2)

=
Ib
(
d+1
2 , 1

2

)
2

· πd/2

Γ(d/2 + 1)
· 1

(2π)d/2
·
(
d

4

)d/2

exp

(
−d

2

)
,

by taking M2 = d/4, where Γ(·) is Gamma function, Ix(a, b) is incomplete Beta function.

We recall d0 = log3 d and let d0 = ω(α log d). For sufficient large d, we have b → 1, which implies
b ≥ t for any fixed t ∈ (0, 1), Ib

(
d+1
2 , 1

2

)
≥ It

(
d+1
2 , 1

2

)
. By the expansion of the incomplete Beta

function,

It

(d+ 1

2
,
1

2

)
= Γ

(d
2
+ 1
)
t(d+1)/2(1− t)−1/2

( 1

Γ
(
d+1
2 + 1

)
Γ
(
1
2

) +O
( 1

Γ
(
d+1
2 + 1

))),
we have Ib

(
d+1
2 , 1

2

)
≥
√

t
1−t ·

2√
π
· td/2

d+2 . Furthermore, by Stirling’s approximation, Γ
(
d
2 + 1

)
=√

2π(d/2)
(

d
2e

)d/2 (
1 +O

(
1
d

))
, we have

πfP (S) ≥
Ib
(
d+1
2 , 1

2

)
2

· 1

Γ(d/2 + 1)
· 1

2d/2
·
(
d

4

)d/2

exp

(
−d

2

)
≥

√
t

1−t

2π
√
d(d+ 2)

(√
t

2

)d

.

Thus, there exists a constant c ∈ (0, 1
2 ) such that with probability 1− d−ω(1) over P ,

TV(ρ(A[fP ,x
0, r]), πfP ) ≥ Ω(cd).

Initial condition. For any potential function f ∈ F , it holds that f reaches its minimum value of 0
at the origin. Consider initial distribution ρ0 as normal(0, Id). By Lemma A.5 and Lemma A.6, the
initial condition holds.

4.2 LOWER BOUNDS FOR WEAKLY LOG-CONCAVE SAMPLING

Here, we consider the potentials without strong convexity or taking composite forms. Similarly, we
show exponentially small lower bounds for almost linear iterations (Theorem 4.4 and Theorem 4.5).
Theorem 4.4 (Lower bound for weakly log-concave samplers). Let d be sufficiently large, and
c ∈ (0, 1) be a fixed uniform constant. Consider the function class F , consisting of convex and
1-smooth or 1-Lipschitz functions. For any α = ω(1) and ε = O(cd), there exists γ = O(d−α) and
x0 ∼ ρ0 with ρ0 as Õ(d)-infinite Rényi warm start for any f ∈ F such that CompR(F , ε,x0,TV) ≥
(1− γ) d

α log3 d
.

The proof can be found in Appendix B. The main difference from Theorem 4.1 is the requirement of
the initial point. Since any strongly log-concave distribution always has a bounded second moment,
ρ0 ∼ normal(0, Id) can be Õ(d)-warm start. However, a weakly log-concave distribution may
have an unbounded second moment, leading to ρ0 ∼ normal(0, Id) not being a warm start, and
our lower bound uncomparable to the existing upper bound. As for the smoothness condition, the
smoothing operator only causes a constant change in function value and a constant expansion of the
local structure, which will not change the order of the lower bound. We note that changing from a
strongly log-concave distribution to a weakly log-concave one will only increase the logarithmic base
c without changing the complexity order for our constructions (Eq. equation 5). However, the lower
bound remains almost exponential because the proportion of the unreachable area is exponentially
small.
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4.3 LOWER BOUND FOR COMPOSITE SAMPLING

Theorem 4.5 (Lower bound for composite potentials). Let d be sufficiently large, and c ∈
(0, 1) be a fixed uniform constant. Consider the potential function class F , consisting of functions
f(·) = f1(·) + 1

2∥ · ∥2, where f1 is convex, 1-Lipschitz. For any α = ω(1) and ε = O(cd),
there exists γ = O(d−α) and x0 ∼ ρ0 with ρ0 as Õ(d)-warm start for any f ∈ F such that
CompR(F , ε,x0,TV) ≥ (1− γ) d

α log3 d
.

The proof can be found in Appendix C. It is almost the same as Theorem 4.1 except for the smoothness
condition. Similarly, the smoothing operator will not change the order of the complexity.

5 LOWER BOUNDS FOR BOX-CONSTRAINED LOG-CONCAVE SAMPLERS

In various applications, such as Bayesian inference and differential privacy Silvapulle and Sen (2011);
McSherry and Talwar (2007), the domain is constrained by polytopes. The simplest form of constraint
is the box constraint, and we show the impossibility of obtaining a sup-polynomially small accuracy
sample within almost linear iterations (Theorem 5.1) for box-constrained samplers.
Theorem 5.1 (Lower bound for log-smooth and log-concave samplers). Let d be sufficiently
large, and c ∈ (0, 1) be a fixed uniform constant. Consider the potential function class F as convex
and 1-smooth or 1-Lipschitz function over the cube centered at the origin with length 1. For any
ε = Ω(d−ω(1)), there exists γ = O(d−ω(1)) and x0 ∼ ρ0 with ρ0 as Õ(d)-infinite Rényi warm start
for any {πf}f∈F such that CompR(F , ε,x0,TV) ≥ (1− γ) d

log3 d
.

The proof can be found in Appendix D. The main difference from Theorem 4.4 is that the lower
bound holds for low-accuracy samplers. The reason is that to obscure the information, it is sufficient
to construct an unreachable area with a d−ω(1) proportion of the support set while keeping the
distribution value bounded by a uniform constant. Similarly, taking advantage of the smoothing
operator, we can prove that the smooth case is almost the same as the Lipschitz case with constant
changes in distribution value and local structure.

6 CONCLUSIONS AND FUTURE WORKS

This work established adaptive lower bounds for log-concave distributions in various settings. We
demonstrated almost linear lower bounds for unconstrained samplers with specific exponentially
small accuracy for (i) strongly log-concave and log-smooth, (ii) log-concave and log-smooth or log-
Lipschitz, and (iii) composite distributions. Additionally, we proved that box-constrained samplers
cannot achieve sup-polynomially small accuracy within almost linear iterations. Our adaptive lower
bounds also introduced new lower bounds for query complexity. Our proof relies upon novel analysis
with the characterization of the output for the hardness potentials based on the chain-like structure
with random partition and classical smoothing techniques.

However, these bounds are applicable only in high-dimensional settings. In low-dimensional settings,
even the query complexity of high-accuracy samplers remains unclear. Furthermore, it is not known
whether our bounds are tight in all settings. Therefore, it is an open question to design optimal
algorithms or find optimal lower bounds.

Furthermore, extending our lower bounds to related tasks, such as sampling for diffusion models,
presents an interesting direction for future work. While there has been considerable progress on
parallel sampling methods for diffusion models (Shih et al., 2024; Gupta et al., 2024; Chen et al.,
2024), the theoretical lower bounds for these methods remain unexplored. Notably, sampling methods
in diffusion models focus on simulating a reverse dynamics, while log-concave sampling is not solely
grounded in some dynamics. This distinction introduces unique challenges for deriving lower bounds
for diffusion models.
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A USEFUL TOOLS

A.1 CONCENTRATION AND TAIL BOUNDS

Lemma A.1 (Concentration of Lipshictz function of conditioned Bernoullis). Let X1, . . . , Xn be

{0, 1} random variables conditioned on
n∑

i=1

Xi = k. Let f : {0, 1}n → R be a 1-Lipschitz function5.

Then for any t > 0,

Pr[|f(X1, . . . , Xn)− E[f(X1, . . . , Xn)]| ≥ t] ≤ 2 exp

(
− t2

8k

)
.

Lemma A.2 (Irwin-Hall tail bound (Corollary 5 in Zhang and Zhou (2020))). Suppose Y

follows the Irwin-Hall distribution with parameter k, i.e., Y =
k∑

i=1

Ui where Ui ∼ U [0, 1]. Denote

X = Y − k
2 . Then for 0 < x < k/2,

P [X ≤ −x] = P [X ≥ x] ≤ exp

(
−2x2

k

)
.

There also exists constants 0 < c0 < 1, such that for all
√
k ≤ x ≤ 3k

400 , we have

P [X ≤ −x] = P [X ≥ x] ≥ c0 · exp
(
−978

x2

k

)
.

Theorem A.3 (Concentration of linear functions over the Boolean slice (Theorem 4.2.5 in

Polaczyk (2023))). Let X1, . . . , Xn be {0, 1} random variables conditioned on
n∑

i=1

Xi = k. Let

f : {0, 1}n → R be f(x) =
n∑

i=1

αixi with αi ≥ 0 for all i ∈ [n]. Then for any t > 0,

P[|f(X1, . . . , Xn)− E[f(X1, . . . , Xn)]| ≥ t] ≤ 2 exp

− t2

16
k∑

i=1

(α↓
i )

2

 ,

where for a finite sequence x, we denote by x↓ the non-increasing rearrangement of the elements of
x.
Theorem A.4 (Volume of cap Li (2010)). The volume of cap V ⊆ Rd with height h and radius r is
given by

V =
1

2
Vdr

nI(2rh−h2)/r2

(
d+ 1

2
,
1

2

)
.

where Ix(a, b) is the regularized incomplete beta function, Vd is the volume of d-dimensional ball.

A.2 INITIALIZATION

Lemma A.5 (Initialization (Chewi et al., 2022a, Lemma 29)). Suppose that f is convex with
f(0) = 0 and ∇f(0) = 0, and assume that ∇f is L-Lipschitz. Consider distribution π ∝ exp(−f).
Let m :=

∫
R ∥·∥ dπ. Then, for µ0 = normal(0, L−1Id),

R∞(µ0∥π) ≤ 2 +
d

2
ln(m2L),

where Rq(µ∥π) is Renýi divergence defined as, for q ∈ (1,∞), Rq(µ∥π) = 1
q−1 ln

∥∥∥dµ
dπ

∥∥∥q
Lq(π)

.

Rényi divergence is monotonic in the order: if 1 < q ≤ q′ , then Rq ≤ Rq′ . We also note that
if q → 1, it is identical to the KL divergence, Hπ(ρ), and if q = 2, it is related to the chi-squared
divergence via R2(ρ∥π) = ln

(
1 + χ2

π(ρ)
)
.

5A function f : 0, 1n → R is c-Lipschitz, if each variable can affect the value additively by at most c.
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Lemma A.6 (Bouned second moment for strongly log-concave distributions, (Dalalyan et al.,
2022, Proposition 2)). Suppose π ∝ exp(−f) is α-strongly log-concave with mode x⋆, then it holds
that

∫
∥· − x⋆∥22 dπ ≤ d

α .

A.3 SMOOTHING APPROXIMATION

We briefly recall the results shown in Guzmán and Nemirovski (2015). For χ > 0 and 1-Lipschitz
continuous and convex function f : E → R, let

Sχ[f ](x) = min
h∈χDomϕ

[f(x) + χϕ(h/χ)],

where ϕ is smoothing kernel which is a twice continuously differentiable convex function defined on
an open convex set Domϕ ⊆ E with the following properties,

1. 0 ∈ Domϕ and ϕ(0) = 0, ϕ′(0) = 0;
2. There exists a compact convex set G ⊆ Domϕ such that 0 ∈ intG and ϕ(x) > ∥x∥ for all

x ∈ ∂G.
3. For some Mϕ < ∞ we have ∀e ∈ E, h ∈ G,

⟨e,∇2ϕ(h)ei⟩ ≤ Mϕ ∥e∥2 .

Then the smoothing approximation Sχ[f ](x) satisfies

1. Sχ[f ](x) is convex and Lipschitz continuous with constant 1 w.r.t. ∥·∥ and has a Lipschitz
continuous gradient, with constant Mϕ/χ, w.r.t. ∥·∥: for any x, y

∥∇Sχ[f ](x)− Sχ[f ](y)∥∗ ≤ χ−1Mϕ ∥x− y∥ .

2. sup
x∈E

|f(x) − Sχ[f ](x)| ≤ χρ∥·∥(G), where ρ∥·∥(G) = max
h∈G

∥h∥. Moreover, f(x) ≥

Sχ[f ](x) ≥ f(x)− χρ∥·∥(G).

3. Sχ[f ] depends on f in a local fashion: the value and the derivative of Sχ[f ] at x depends
only on the restriction of f onto the set x+ χG.

If we choose χ = 1, ∥·∥ = ∥·∥2, ϕ(x) = 2 ∥x∥22 with Mϕ = 1 and G = {x : ∥x∥ ≤ 1}, we obtain
properties 1-3 in Theorem 4.2.
Finally we show the minimum point will not change. By the definition of S1[f ],

S[f ](x) = f(x+ h(x)) + ϕ(h(x)),

where h : E → G is well defined and solves the nonlinear system of equations

F (x, h(x)) = 0, F (x, h) := f ′(x+ h) + ϕ′(h).

Also, we have
∇S[f ](x) = −ϕ′(h(x)).

Thus

∇S[f ](x) = 0 ⇒ h(x) = 0 ⇒ F (x, h) = F (x, 0) = f ′(x) + ϕ′(0) = f ′(x) = 0 ⇒ x = 0.

Furthermore, when x = 0, we have

F (0, h) = f ′(h) + ϕ′(h) = 0,

which implies h = 0, Thus S[f ](0) = f(0 + h(0)) + ϕ(h(0)) = 0.

B PROOF OF THEOREM 4.4

B.1 PROOF OF SMOOTH CASE

We consider the hardness functions fP : Rd → R:

fP(x) = S1[gP ](x),

15
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where S1 and gP are as defined in Section 4.1.1, but we allow L to be much smaller, such that

L ·

(
|X1|+

∑
i∈[r]

max
{∣∣Xi −Xi+1

∣∣− t, 0
})

≤ ∆ for all x ∈ B2M .

Similarly, we have the following characterization of the output.
Lemma B.1. For any randomized algorithm A, any τ ≤ r, and any initial point x0, X(A[fP ,x

0, τ ])
takes form as

(x1, . . . , xτ , xτ , . . . , xτ ),

up to addictive error O(t/2) with probability 1− d−ω(1) over P .

We omit the proof of Lemma B.1 since it is almost the same as the proof of Lemma 4.3.

Now we are ready to prove the smooth case of Theorem 4.4.

Verification of fP . Since gP is 1-Lipschitz and convex, by Theorem 4.2, S1[gP ] is 1-smooth and
convex.

Bound of total variation distance. We first estimate the normalizing constant as follows.

ZfP =

∫
Rd

exp (−Sδ[gP ](x)) dx

≤
∫
Rd

exp (−gP(x) + 1) dx (by Property 1 of Theorem 4.2)

≤ e

∫
Rd\BM

exp (−∥x∥+M) dx+ e

∫
BM

dx (by definition of gP )

= exp(M + 1)
2Γd(1/2)

Γ(d/2)

∫ ∞

M

td−1 exp(−t)dt+
2Γd(1/2)

Γ(d/2)

∫ M

0

td−1dt. (2)

Consider a subset S =
{
x ∈ Rd : ∥x∥ ≤ M,Xr+1 −Xr ≥ t

}
. By Lemma B.1, with probability

1− d−ω(1) over P ,

ρ(A[fP ,x
0, r])(S) = 0.

Also, by Property 1 in Theorem 4.2, and definition of fP and gP , we have for any x ∈ S,

fP(x) ≤ gP(x) ≤ ∆.

Thus, we have

πfP (S) =

∫
S
exp(fP(x))dx

ZfP

≥
∫
S
exp(−∆)dx

ZfP

=
|S| exp(−∆)

ZfP

.

Recall t = 8(M + 1)
√
α log d, we define the height of the sphere cap as

h = M − t√
2d0

= M − 8(M + 1)

√
α log d

2d0
.

Let b = (2Mh− h2)/M2 = 1−
(
1 + 1

M

)2 64α log d
d0

. By Lemma A.4 and Eq. equation 2, we have

πfP (S) ≥ |S| exp(−∆)

ZfP

≥ |S|
VdMd

·
2Γd(1/2)
Γ(d/2)

∫M

0
td−1dt

exp(M + 1) 2Γ
d(1/2)

Γ(d/2)

∫∞
M

td−1 exp(−t)dt+ 2Γd(1/2)
Γ(d/2)

∫M

0
td−1dt

· exp(−∆)

=
Ib
(
d+1
2 , 1

2

)
2

·
∫M

0
td−1dt

exp(M + 1)
∫∞
M

td−1 exp(−t)dt+
∫M

0
td−1dt

· exp(−∆)

=
Ib
(
d+1
2 , 1

2

)
2

·
∫ d−1

0
td−1dt

exp(d)
∫∞
d−1

td−1 exp(−t)dt+
∫ d−1

0
td−1dt

· exp(−∆), (3)
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by taking M = d− 1.

We first estimate
∫∞
d−1

td−1 exp(−t)dt as

lim
d→∞

∫∞
d−1

td−1 exp(−t)dt

Γ(d)
= lim

d→∞

Γ(d, d− 1)

Γ(d)
=

1

2
.

Thus for sufficiently large d, we have
∫∞
d−1

td−1 exp(−t)dt ≤ 2Γ(d− 1), which implies that∫ d−1

0
td−1dt

exp(d)
∫∞
d−1

td−1 exp(−t)dt+
∫ d−1

0
td−1dt

≥ (d− 1)d

2 exp(d)Γ(d+ 1) + (d− 1)d
.

Furthermore, by Stirling’s approximation, Γ(d+ 1) =
√
2πd

(
d
e

)d (
1 +O

(
1
d

))
, we have∫ d−1

0
td−1dt

exp(d)
∫∞
d−1

td−1 exp(−t)dt+
∫ d−1

0
td−1dt

≥ (d− 1)d

2 exp(d)dΓ(d+ 1) + (d− 1)d

≥ (d− 1)d

4 exp(d)
√
2πd

(
d
e

)d
+ (d− 1)d

=
(d− 1)d

4
√
2πd · dd + (d− 1)d

=
(1− 1/d)d

4
√
2πd+ (1− 1/d)d

≥ 1

8e
√
2πd

(4)

We also recall d0 = log3 d and let d0 = ω(α log d). For sufficient large d, for any fixed t ∈ (0, 1),

we have Ib
(
d+1
2 , 1

2

)
≥
√

t
1−t ·

2√
π
· td/2

d+2 . Combining Eq. equation 3,equation 4, we have

πfP (S) ≥
√

t

1− t
· 2√

π
· td/2

d+ 2
· 1

8e
√
2πd

exp (−∆)

≥ td/2

4eπ
√
2 exp(∆)(d+ 2)

. (5)

Thus, there exists a constant c such that with probability 1− d−ω(1) over P ,

TV(ρ(A[fP ,x
0, r]), πfP ) ≥ Ω(cd).

Initial condition Finally, we estimate the upper bound of the second moment of πfP for any P ,

m2 =

∫
Rd

∥x∥2 πfP (x)dx

=
1

ZfP

∫
Rd

∥x∥2 exp(−fP(x))dx.

We first upper bound the integral as∫
Rd

∥x∥2 exp(−fP(x))dx ≤
∫
Rd

∥x∥2 exp(−gP(x) + 1)dx (By Property 1 of Theorem 4.2)

≤ e

∫
Rd\BM

∥x∥2 exp(−∥x∥+M)dx+ e

∫
BM

∥x∥2 dx

= e
2Γd(1/2)

Γ(d/2)

∫ ∞

M

td−1t2 exp(−t+M)dt+ e
2Γd(1/2)

Γ(d/2)

∫ M

0

td−1t2dt

The second inequality is implied from gP(x) ≥ max{∥x∥ −M, 0}.
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Then we lower bound the normalization constant as

ZfP =

∫
Rd

exp(−fP(x))dx

≥
∫
Rd

exp(−gP(x))dx (By Property 1 of Theorem 4.2)

≥
∫
Rd\BM+∆

exp(−∥x∥+M)dx+

∫
BM+∆

exp(−∆)dx

=
2Γd(1/2)

Γ(d/2)

∫ ∞

M+∆

td−1 exp(−t+M)dt+
2Γd(1/2)

Γ(d/2)

∫ M+∆

0

td−1 exp(−∆)dt.

The second inequality is implied from gP(x) ≤ max {∥x∥ −M,∆}, with sufficiently small L such

that L ·

(
|X1|+

∑
i∈[r]

max
{∣∣Xi −Xi+1

∣∣− t, 0
})

≤ ∆ for all x ∈ B2M .

Now the goal is to bound ∫∞
M

td+1 exp(−t+M)dt+
∫M

0
td+1dt∫∞

M+∆
td−1 exp(−t+M)dt+

∫M+∆

0
td−1 exp(−∆)dt

.

For the first term in the numerator, we have∫ ∞

M

td+1 exp(−t+M)dt

= eM
∫ ∞

M

td+1 exp(−t)dt

= ed/2Γ

(
d+ 1,

d

2

)
(By M = d

2 )

= ed/2d!e−d/2ed

(
d

2

)
(By Γ(n+ 1, z) = n!e−zen(z))

= d!ed

(
d

2

)
≤ 2d!ed/2 (By ed

(
d
2

)
∼ ed/2)

where en(x) =
n∑

k=0

xk

k! is the truncated Taylor series for the exponential function, M = d
2 , and d is

sufficiently large. For the second term in the numerator, by Stirling’s approximation, d! ∼
√
2πd

(
d
e

)d
,

we have ∫ M

0

td−1t2dt =
1

d+ 2

(
d

2

)d+2

= O(d!ed/2).

For the first term in the denominator, we have∫ ∞

M+∆

td−1 exp(−t+M)dt

= eM
∫ ∞

M+∆

td−1 exp(−t)dt

= ed/2Γ

(
d− 1,

d

2
+ ∆

)
(By M = d

2 )

= ed/2(d− 2)!e−d/2−∆ed−2

(
d

2
+ ∆

)
(By Γ(n+ 1, z) = n!e−zen(z))

= e−∆(d− 2)!ed−2

(
d

2
+ ∆

)
≥ e−∆(d− 2)!ed/2(1− o(1))

2
(By ed

(
d
2

)
∼ ed/2)
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Thus

lim
d→∞

EπfP

[
∥x∥2

]
≤ 4e

d!ed/2(1 +O(1))

e−∆(d− 2)!ed/2(1− o(1))
= 4e∆+1d(d+ 1).

By Lemma A.5, we have the initialization condition of Renýi divergence as,

R∞(µ0∥πfP ) = Õ(d).

B.2 PROOF OF LIPSCHITZ CASE

We consider the hardness functions fP : Rd → R:

fP(x) = gP(x),

where gP : Rd → R is defined as Appendix C.

Similarly, we have the following characterization of the output.
Lemma B.2. For any randomized algorithm A, any τ ≤ r, and any initial point x0, X(A[fP ,x

0, τ ])
takes form as

(x1, . . . , xτ , xτ , . . . , xτ ),

up to addictive error O(t/2) with probability 1− d−ω(1) over P .

We omit the proof of Lemma B.2 since it is almost the same as the proof of Lemma 4.3.

Now we are ready to prove the Lipschitz case of Theorem 4.4.

Verification of fP . It is clear that gP is 1-Lipschitz and convex.

Bound of total variation distance. We omit the proof since it is almost the same as the smooth
case except for scaling with constant e due to the smoothing operator.

Initial condition. We omit the proof since it is almost the same as the smooth case except for
scaling with constant e.

C PROOF OF THEOREM 4.5

We consider the hardness functions fP : Rd → R:

fP(x) = gP(x) +
1

2
∥x∥2 ,

where gP : Rd → R is defined as,

gP(x) = max

L ·

|X1|+
∑
i∈[r]

max
{∣∣Xi −Xi+1

∣∣− t, 0
} , ∥x∥ −M

 ,

where t = 8M
√
α log d and L = 1

4
√
d

.

Similarly, we have the following characterization of the output.
Lemma C.1. For any randomized algorithm A, any τ ≤ r, and any initial point x0, X(A[fP ,x

0, τ ])
takes form as

(x1, . . . , xτ , xτ , . . . , xτ ),

up to addictive error O(t/2) with probability 1− d−ω(1) over P .

Proof of Lemma C.1. We fixed τ and prove the following by induction for l ∈ [τ ]: With high
probability, the computation path of the (deterministic) algorithm A and the queries it issues in the
l-th round are determined by P1, . . . , Pl−1.

As a first step, we assume the algorithm is deterministic by fixing its random bits and choose the
partition of P uniformly at random.
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To prove the inductive claim, let El denote the event that for any query x issued by A in iteration l,
the answer is in the form glP(x) +

1
2 ∥x∥

2 where glP : Rd → R defined as:

glP(x) = max

L ·

|X1|+
∑

i∈[l−1]

max
{∣∣Xi −Xi+1

∣∣− t, 0
} , ∥x∥ −M

 ,

i.e., El represents the events that ∀x ∈ Ql, fP(x) = gP(x) +
1
2 ∥x∥

2
= glP(x) +

1
2 ∥x∥

2.

Since the queries in round l depend only on P1, . . . , Pl−1, if El occurs, the entire computation path
in round l is determined by P1, . . . , Pl. By induction, we conclude that if all of E1, . . . , El occur, the
computation path in round l is determined by P1, . . . , Pl.

Now we analysis the conditional probability P [El | E1, . . . , El−1].

Case 1: ∥x∥ ≤ 2M . Given all of E1, . . . , El−1 occur so far, we can claim that Ql is determined
by P1, . . . , Pl. Conditioned on P1, . . . , Pl, the partition of [d] \

⋃
i∈[l]

Pi is uniformly random. We

consider {0, 1}-random variable Yj , j ∈ [d] \
⋃
i∈[l]

Pi. We represent Xi(x) as a linear function of Yis

as Xi(x) =
∑

j∈[d]\
⋃

i∈[l]

Pi

Yjxj such that Yi = 1 if Yi ∈ Pi and Yi = 0 otherwise. By the concentration

of linear functions over the Boolean slice (Theorem A.3), and recall t = 8M
√
α log d, we have

PP

[
|Xi(x)− E[Xi(x)]| ≥ t

2

]
≤ 2 exp

(
− t2

16(2M)2

)
= 2 exp

(
−64M2α log d

64M2

)
= 2 exp (−α log d) = 2d−ω(1).

Similarly, P
[
|Xi+1(x)− E[Xi+1(x)]| ≥ t

2

]
≤ 2d−ω(1). Combining the fact that E[Xi(x)] =

E[Xi+1(x)], we have with probability at least 1− d−ω(1), for any fixed i ≥ l

max
{∣∣Xi(x)−Xi+1(x)

∣∣− t, 0
}
= 0,

which implies gP(x) = glP(x) with a probability at least 1− rd−ω(1).

Case 2: ∥x∥ ≥ 2M . We have

gP(x) = ∥x∥ −M = glP(x).

Combining these two cases, we have for any fixed query x, with a probability at least 1− rd−ω(1),
we have gP(x) = glP(x).

By union bound over all queries x ∈ Ql, conditioned on that E1, . . . , El−1 occur, with probability at
least 1− rpoly(d)d−ω(1), El occurs. Therefore by induction,

P (El) = P (El|E1, . . . , El−1)P (El−1|E1, . . . , El−2) . . . P (E2|E1)P (E1)
≥ 1− r2poly(d)d−ω(1) = 1− d−ω(1).

This implies that with high probability, the computation path in round l is determined by P1, . . . , Pl−1.
Consequently, for all l ∈ [τ ] a solution returned after l − 1 rounds is determined by P1, . . . , Pl−1

with high probability. By the same concentration argument, the solution is with a probability at least
1− d−ω(1) in the form

(x1, . . . , xτ , xτ , . . . , xτ ),

up to an additive error O(t/2) in each coordinate.

Finally, we note that by allowing the algorithm to use random bits, the results are a convex combination
of the bounds above, so the same high-probability bounds are satisfied.

Now we are ready to prove Theorem 4.5.
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Verification of fP . Since gP is 1-Lipschitz and convex, gP + 1
2 ∥·∥

2 is 1-Lipschitz and 1-strongly
convex.

Bound of total variation distance. We first estimate the normalizing constant as follows.

ZfP =

∫
Rd

exp

(
−gP(x)−

1

2
∥x∥2

)
dx

≤
∫
Rd

exp

(
−∥x∥+M − 1

2
∥x∥2

)
dx (by definition of gP )

≤
∫
Rd

exp

(
M − 1

2
∥x∥2

)
dx

= exp(M)
2Γd(1/2)

Γ(d/2)

∫ ∞

0

td−1 exp(−t2/2)dt = exp(M) · (2π)d/2. (6)

Consider a subset S =
{
x ∈ Rd : ∥x∥ ≤ M,Xr+1 −Xr ≥ t

}
. By Lemma C.1, with probability

1− d−ω(1) over P ,

ρ(A[fP ,x
0, r])(S) = 0.

Also, by definition of fP and gP , we have for any x ∈ S,

fP(x) = gP(x) +
1

2
∥x∥2 ≤ 1

2
∥x∥+ 1

2
∥x∥2 ≤ M +M2

2
≤ M2.

Thus, we have

πfP (S) =

∫
S
exp(fP(x))dx

ZfP

≥
∫
S
exp(−M2)dx

ZfP

=
|S| exp(−M2)

ZfP

.

Recall t = 8(M + 1)
√
α log d, we define the height of the sphere cap as

h = M − t√
2d0

= M − 8(M + 1)

√
α log d

2d0
.

Let b = (2Mh− h2)/M2 = 1−
(
1 + 1

M

)2 64α log d
d0

. By Lemma A.4 and Eq. equation 6, we have

πfP (S) ≥ |S| exp(−M2)

ZfP

≥ |S|
VdMd

· Vd ·
1

exp(M) · (2π)d/2
·Md exp(−M2)

≥ |S|
VdMd

· Vd ·
1

(2π)d/2
·Md exp(−2M2)

=
Ib
(
d+1
2 , 1

2

)
2

· 1

Γ(d/2 + 1)
· 1

2d/2
·
(
d

4

)d/2

exp (−d/2) .

by taking M2 = d/4. Similarly, we have

πfP (S) ≥

√
t

1−t

2π
√
d(d+ 2)

(√
t

2

)d

.

Thus, there exists a constant c ∈ (0, 1
2e ) such that with probability 1− d−ω(1) over P ,

TV(ρ(A[fP ,x
0, r]), πfP ) ≥ Ω(cd).
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D PROOF OF THEOREM 5.1

D.1 PROOF OF SMOOTH CASE

We define the hardness functions fP : [−1, 1]d → R as, fP(x) = S1[gP ](x) where gP : Rd → R is
defined as

gP(x) = L ·

∣∣X1
∣∣+ ∑

i∈[r]

max
{∣∣Xi −Xi+1

∣∣− t, 0
}

with t = 2
√
d0 + 2

√
2 + 1

√
α log d with α = ω(1), α = O(d1/3) and L = 1

2
√
d

.

Similarly, we have the following characterization of the output.

Lemma D.1. For any randomized algorithm A, any τ ≤ r, and any initial point x0, X(A[fP ,x
0, τ ])

takes form as
(x1, . . . , xτ , xτ , . . . , xτ ),

up to addictive error O(t/2) with probability 1− d−ω(1) over P .

Proof of Lemma D.1. We fixed τ and prove the following by induction for l ∈ [τ ]: With high
probability, the computation path of the (deterministic) algorithm A and the queries it issues in the
l-th round are determined by P1, . . . , Pl−1.

As a first step, we assume the algorithm is deterministic by fixing its random bits and choose the
partition of P uniformly at random.

To prove the inductive claim, let El denote the event that for any query x issued by A in iteration l,
the answer is in the form S1[g

l
P ](x), where glP : Rd → R is defined as

glP = L ·

|X1|+
∑

i∈[l−1]

max
{∣∣Xi −Xi+1

∣∣− t, 0
} ,

i.e., El represents the events that ∀x ∈ Ql, fP(x) = S1[gP ](x) = S1[g
l
P ](x).

Since the queries in round l depend only on P1, . . . , Pl−1, if El occurs, the entire computation path
in round l is determined by P1, . . . , Pl. By induction, we conclude that if all of E1, . . . , El occur, the
computation path in round l is determined by P1, . . . , Pl.

Now we analysis the conditional probability P [El | E1, . . . , El−1]. By the property 3 of Theorem 4.2,
S1[gP ](x) only depends on the {gP(x) : x′ ∈ B1(x)}. Thus, it is sufficient to analyze the probability
of the event that for a fixed query x, any point x′ ∈ B1(x) satisfies that gP(x′) = glP(x

′). Given
all of E1, . . . , El−1 occur so far, we can claim that Ql is determined by P1, . . . , Pl. Conditioned on
P1, . . . , Pl, the partition of [d] \

⋃
i∈[l]

Pi is uniformly random. We consider {0, 1}-random variable

Yj , j ∈ [d] \
⋃
i∈[l]

Pi. We represent Xi(x′) as a linear function of Yis as Xi(x) =
∑

j∈[d]\
⋃

i∈[l]

Pi

Yjx
′
j

such that Yi = 1 if Yi ∈ Pi and Yi = 0 otherwise. By the concentration of linear functions over the
Boolean slice (Theorem A.3), and recall t = 2

√
d0 + 2

√
2 + 1

√
α log d, we have

PP

[
|Xi(x′)− E[Xi(x′)]| ≥ t

2

]
≤ 2 exp

− t2

32
d0∑
i=1

(x↓
i )

2


≤ 2 exp

(
−
4
(
(d0 + 2

√
2δ + δ2)α log d

)
32(d0 + 2

√
2δ + δ2)

)

= 2 exp

(
−α log d

8

)
= 2d−ω(1).

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Similarly, P
[
|Xi+1(x′)− E[Xi+1(x′)]| ≥ t

2

]
≤ 2d−ω(1). Combining the fact that E[Xi(x′)] =

E[Xi+1(x′)], we have with probability at least 1− d−ω(1), for any fixed i ≥ l

max
{∣∣Xi(x′)−Xi+1(x′)

∣∣− t, 0
}
= 0,

which implies with a probability at least 1− rd−ω(1), any point x′ ∈ B1(x) satisfies that gP(x′) =
glP(x

′).

By union bound over all queries x ∈ Ql, conditioned on that E1, . . . , El−1 occur, with probability at
least 1− rpoly(d)d−ω(1), El occurs. Therefore by induction,

P (El) = P (El|E1, . . . , El−1)P (El−1|E1, . . . , El−2) . . . P (E2|E1)P (E1)
≥ 1− r2poly(d)d−ω(1) = 1− d−ω(1).

This implies that with high probability, the computation path in round l is determined by P1, . . . , Pl−1.
Consequently, for all l ∈ [τ ] a solution returned after l − 1 rounds is determined by P1, . . . , Pl−1

with high probability. By the same concentration argument, the solution is with a probability at least
1− d−ω(1) in the form

(x1, . . . , xτ , xτ , . . . , xτ ),

up to an additive error O(t/2) in each coordinate.

Finally, we note that by allowing the algorithm to use random bits, the results are a convex combination
of the bounds above, so the same high-probability bounds are satisfied.

Now we are ready to prove the smooth case of Theorem 5.1.

Verification of fP . gP is convex and 1-Lipschitz. By Theorem 4.2, fP is convex and 1-smooth.

Bound of total variation distance. We first estimate the normalizing constant as follows. By
property 1 of Theorem 4.2, we have

ZfP =

∫
[−1,1]d

exp(−S1[gP ])dx ≤
∫
[−1,1]d

exp(−gP + 1)dx ≤ e

∫
[−1,1]d

dx ≤ e · 2d.

Consider a subset S =
{
x ∈ [−1, 1]d : |Xi| ≤ t

2 ,∀i ∈ [r], 3t
2 ≤ Xr+1 ≤ t

2 + t
√
α
}

. By Lemma
D.1, with probability 1− d−ω(1) over P ,

ρ(A[fP ,x
0, r])(S) = 0.

On the other hand, for any P , recall t = 2
√

d0 + 2
√
2 + 1

√
α log d, α = O(d1/3) and L = 1

2d1/2 ,
we have

fP(x) ≤
(
3t

2
+ t

√
α

)
L ≤ 4α

√
d0 log dL < 1.

for sufficient large d. Thus, we have

πfP (S) =

∫
S
exp(−f(x))dx

ZfP

≥
∫
S
exp(−1)dx

ZfP

≥ |S|
e22d

.

By Lemma A.2, similarly, we have

|S|
2d

≥ c1 exp(c2α log d).

Thus, with probability 1− d−ω(1) over P ,

TV(ρ(A[f,x0, r]), πfP ) ≥ Ω(d−ω(1)).

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

D.2 PROOF OF LIPSCHITZ CASE

We define the hardness functions fP : [−1, 1]d → R as:

fP(x) = L ·

∣∣X1
∣∣+ ∑

i∈[r]

max
{∣∣Xi −Xi+1

∣∣− t, 0
}

with t = 2
√
αd0 log d with α = ω(1), α = O(d1/3) and L = 1

2
√
d

.

Similarly, we have the following characterization of the output.

Lemma D.2. For any randomized algorithm A, any τ ≤ r, and any initial point x0, X(A[fP ,x
0, τ ])

takes form as
(x1, . . . , xτ , xτ , . . . , xτ ),

up to addictive error O(t/2) with probability 1− d−ω(1) over P .

Proof of Lemma D.2. We fixed τ and prove the following by induction for l ∈ [τ ]: With high
probability, the computation path of the (deterministic) algorithm A and the queries it issues in the
l-th round are determined by P1, . . . , Pl−1.

As a first step, we assume the algorithm is deterministic by fixing its random bits and choose the
partition of P uniformly at random.

To prove the inductive claim, let El denote the event that for any query x issued by A in iteration l,
the answer is in the form

L ·

|X1|+
∑

i∈[l−1]

max
{∣∣Xi −Xi+1

∣∣− t, 0
} ,

i.e., El represents the events that ∀x ∈ Ql, fP(x) = L ·(
|X1|+

∑
i∈[l−1]

max
{∣∣Xi −Xi+1

∣∣− t, 0
})

.

Since the queries in round l depend only on P1, . . . , Pl−1, if El occurs, the entire computation path
in round l is determined by P1, . . . , Pl. By induction, we conclude that if all of E1, . . . , El occur, the
computation path in round l is determined by P1, . . . , Pl.

Now we analysis the conditional probability P [El | E1, . . . , El−1].

Given all of E1, . . . , El−1 occur so far, we can claim that Ql is determined by P1, . . . , Pl. Conditioned
on P1, . . . , Pl, the partition of [d] \

⋃
i∈[l]

Pi is uniformly random. We consider {0, 1}-random variable

Yj , j ∈ [d] \
⋃
i∈[l]

Pi. We represent Xi(x) as a linear function of Yis as Xi(x) =
∑

j∈[d]\
⋃

i∈[l]

Pi

Yjxj

such that Yi = 1 if Yi ∈ Pi and Yi = 0 otherwise. By the concentration of linear functions over the
Boolean slice (Theorem A.1), and recall t = 2

√
αd0 log d, we have

PP

[
|Xi(x)− E[Xi(x)]| ≥ t

2

]
≤ 2 exp

(
− t2

32d0

)
= 2 exp

(
−4αd0 log d

32d0

)
= 2 exp

(
−α log d

8

)
= 2d−ω(1).

Similarly, P
[
|Xi+1(x)− E[Xi+1(x)]| ≥ t

2

]
≤ 2d−ω(1). Combining the fact that E[Xi(x)] =

E[Xi+1(x)], we have with probability at least 1− d−ω(1), for any fixed i ≥ l

max
{∣∣Xi(x)−Xi+1(x)

∣∣− t, 0
}
= 0,
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which implies fP(x) = L ·

(
|X1|+

∑
i∈[l−1]

max
{∣∣Xi −Xi+1

∣∣− t, 0
})

with a probability at least

1− rd−ω(1).

By union bound over all queries x ∈ Ql, conditioned on that E1, . . . , El−1 occur, with probability at
least 1− rpoly(d)d−ω(1), El occurs. Therefore by induction,

P (El) = P (El|E1, . . . , El−1)P (El−1|E1, . . . , El−2) . . . P (E2|E1)P (E1)
≥ 1− r2poly(d)d−ω(1) = 1− d−ω(1).

This implies that with high probability, the computation path in round l is determined by P1, . . . , Pl−1.
Consequently, for all l ∈ [τ ] a solution returned after l − 1 rounds is determined by P1, . . . , Pl−1

with high probability. By the same concentration argument, the solution is with a probability at least
1− d−ω(1) in the form

(x1, . . . , xτ , xτ , . . . , xτ ),

up to an additive error O(t/2) in each coordinate.

Finally, we note that by allowing the algorithm to use random bits, the results are a convex combination
of the bounds above, so the same high-probability bounds are satisfied.

Now we are ready to prove the Lipschitz case of Theorem 5.1.

Verification of fP . fP is convex and 1-Lipschitz.

Bound of total variation distance. We first estimate the normalizing constant as follows.

ZfP ≤
∫
[−1,1]d

dx = 2d.

Consider a subset S =
{
x ∈ [−1, 1]d : |Xi| ≤ t

2 ,∀i ∈ [r], 3t
2 ≤ Xr+1 ≤ t

2 + t
√
α
}

. By Lemma
D.2, with probability 1− d−ω(1) over P ,

ρ(A[fP ,x
0, r])(S) = 0.

On the other hand, for any P , recall t = 2
√
αd0 log d, α = O(d1/3) and L = 1

2d1/2 , we have

fP(x) ≤
(
3t

2
+ t

√
α

)
L ≤ 4α

√
d0 log dL < 1.

for sufficient large d.Thus, we have

πfP (S) =

∫
S
exp(−f(x))dx

ZfP

≥
∫
S
exp(−1)dx

ZfP

≥ |S|
e2d

.

By Lemma A.2, we have

|S|
2d

≥

(
c0 · exp

(
−978

9t2

16

d0

)
− exp

(
−2

t2α
4

d0

))(
1− 2 exp

(
− t2

16d0

))r

=

(
c0 · exp

(
−4401

2
α log d

)
− exp

(
−2α2 log d

))(
1− 2 exp

(
−α log d

4

))r

≥ c1 exp(c2α log d).

The last inequity holds since exp(−2α2 log d) = O
(
c0 · exp

(
− 4401

2 α log d
))

and r ≤ d while

2 exp
(

α log d
4

)
= Ω(dα). Thus, with probability 1− d−ω(1) over P ,

TV(ρ(A[f,x0, r]), πfP ) ≥ Ω(d−c2α).
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E UPPER BOUNDS

E.1 UPPER BOUND FOR LOG-CONCAVE SAMPLING

In this section, we apply the algorithms in Fan et al. (2023) to our setting, which is summarized in
Theorem E.1.
Theorem E.1 (Upper bound for very high accurate and weakly log-concave samplers (Propo-
sition 4 Fan et al. (2023))). For any uniform constant c ∈ (0, 1/(2e)), if an initial point x0 ∼ ρ0
satisfies χ2

π(ρ0) = O(exp(d)), we can find a random point xT that has cd total variation distance to
π in

• T = Õ
(
m2d

5/2
)

steps if π is 1-log-smooth and weakly log-concave;

• T = Õ
(
m2d

2
)

steps if π is 1-log-Lipschitz and weakly log-concave,

where, m2 denotes the second moment. Furthermore, each step accesses only O(1) many queries in
expectation.

To prove this Theorem, we first recall the definition of semi-smooth (Definition E.2), then state the
results for weakly log-concave samplers (Theorem E.3). Finally, we applies recent estimates of the
worst-case Poincaré constant for isotropic log-concave distributions (Theorem E.5).
Definition E.2 (semi-smooth). We say f : Rd → R is bounded from below and is Lα-α-semi-smooth,
i.e., f satisfies for all u, v ∈ Rd,

∥∂f(u)− ∂f(v)∥ ≤ Lα ∥u− v∥α ,

for Lα > 0 and α ∈ [0, 1]. Here ∂f represents a subgradient of f . When α > 0, this subgradient
can be replaced by the gradient. This condition implies f is L1-smooth when α = 1 and a Lipschitz
function satisfies this with α = 0.
Theorem E.3 (Proposition 4 Fan et al. (2023)). Suppose π ∝ exp(−f) satisfies CPI-PI and f is
1-α-semi-smooth. Let ε ∈ (0, 1). Then we can find a random point xT that has ε total variation
distance to π in

T = O

(
d

α
α+1

CPI
· log

(
d

α
α+1

CPIε

)
log

(
χ2
π(µ0)

ε2

))
,

steps. Furthermore, each step accesses only O(1) many f(x) queries in expectation.
Definition E.4 (Poincaré inequality). A probability distribution π satisfies the Poincaré inequality
(PI) with constant CPI > 0 if for any smooth bounded function u : Rd → R, it holds that

Varπ(u) ≤
1

CPI
E
[
∥∇u∥2

]
.

Theorem E.5 (Poincaré Inequality for log-concave distribution Klartag (2023)). If d ≥ 2, then
log-concave distribution π satisfies (C log d ∥Cov(π)∥op)−1-PI, where C > 0 is a universal constant,
where Cov(π) is the covariance matrix of distribution π and ∥Cov(π)∥op is its operator norm.

Remark E.6. ∥Cov(π)∥op can be bounded by second moment as

∥Cov(π)∥op ≤ Tr(Cov(π)) = E
[
∥X − EX∥2

]
≤ m2.

E.2 COMPOSITE SAMPLERS

In this section, we apply the algorithm in Fan et al. (2023) to composite samplers
Theorem E.7 (Implication of Proposition 6 Fan et al. (2023)). If f = f1+f2 where f1 is 1-strongly
convex and 1-smooth, and f2 is 1-Lipschitz, then for π ∝ exp(−f), we can find a random point xT

that has ε total variation distance to π in

T = O

(
d1/2 log

(
d1/2

ε

)
log

(√
Hπ(µ0)

ε

))
steps.
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