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ABSTRACT

Self-Refinement refers to a model’s ability to revise its own responses to produce
improved outputs. This capability can also serve as a fundamental mechanism for
Self-Improvement, for example by reconstructing datasets with refined results to
enhance intrinsic model performance. However, our comprehensive experiments
reveal that large language models (LLMs) show no clear evidence of inherent
Self-Refinement; on average, response quality degrades over successive iterations.
To address this gap, we propose EVOLVE, a simple yet effective framework for
eliciting and tracking the evolution of Self-Refinement through iterative training.
Moreover, we demonstrate the potential of leveraging Self-Refinement to achieve
broader Self-Improvement of intrinsic model abilities. Experiments show that the
evolved Self-Refinement ability enables the Llama-3.1-8B base model to surpass
GPT-4o, achieving 62.3% length-controlled and 63.3% raw win rates on AlpacaEval
2, and 50.3% on Arena-Hard. It also generalizes effectively to out-of-domain
reasoning tasks, improving performance on mathematical reasoning benchmarks
such as GSM8K and MATH.

1 INTRODUCTION

Large language models (LLMs) have demonstrated strong performance across a wide range of
tasks through training on massive datasets (Achiam et al., 2023; Dubey et al., 2024). However, the
supply of high-quality training data is becoming increasingly scarce, limiting further progress. As a
complementary direction, Self-Improvement methods seek to enhance a model’s intrinsic capabilities
by leveraging model-generated data and feedback with minimal external supervision (Tao et al.,
2024; Huang et al., 2022). A critical challenge in this field is ensuring the quality and robustness
of synthetic datasets while minimizing noise, often by leveraging intrinsic model mechanisms or
properties. To this end, we investigate inference-time Self-Refinement, where a model revises its own
outputs to improve response accuracy and stability. Previous work has investigated incorporating
Self-Refinement strategies into broader frameworks, ranging from prompt-based techniques that let
models iteratively revise their own drafts (Madaan et al., 2024; Paul et al., 2023) to approaches that
incorporate external feedback, such as preference signals or additional contextual cues (Stiennon
et al., 2020; Asai et al., 2024). These efforts raise a fundamental question: Can LLMs autonomously
refine their responses without external information, thereby achieving Self-Refinement?

To investigate this question, we conducted preliminary experiments to assess whether contemporary
LLMs possess an inherent Self-Refinement capability. To mitigate potential biases from prompt design,
we evaluated three distinct refinement templates (detailed in Appendix J), spanning a spectrum from
detailed guidance to minimal intervention: (1) a guided template requiring direct output of an
improved response, emphasizing clarity, accuracy, and conciseness without analysis; (2) a guided
template mandating an initial analysis of the example response’s strengths and weaknesses, followed
by the refined output; and (3) a minimalist template with no explicit instructions, to minimize prompt-
induced artifacts. These templates were applied across diverse LLMs with varying architectures,
enabling iterative Self-Refinement cycles. As shown in Fig. 1, our results reveal no clear evidence of
inherent Self-Refinement; on average, response quality degrades over successive iterations.
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Figure 1: Evaluation of Self-Refinement Capability Across Various Models. We use three refinement
templates to minimize prompt bias. The x-axis denotes the inference iteration number. For each
turn, responses are generated from 256 UltraFeedback test set samples, using the original prompt and
the prior turn’s output. These are then scored by the Skywork Reward Model (Liu et al., 2024). To
eliminate potential randomness, the reported values are the mean score of three independent runs with
different random seeds; higher scores indicate better quality. Templates are detailed in Appendix J.

Motivated by these findings, we move beyond diagnosis to ask: can this capability be effectively
activated and strengthened through training, and how might it be leveraged for sustained Self-
Improvement? Specifically, we first investigate fine-tuning methods to activate the Self-Refinement
capabilities of LLMs. Building on this, we further explore strategies to continuously enhance LLMs’
Self-Refinement abilities, encompassing ongoing data acquisition and iterative training updates. To
analyze the evolution of Self-Refinement capabilities in stages, we conduct our study within an
iterative preference training framework. Finally, we examine potential applications of activated
Self-Refinement capability, such as leveraging it to achieve Self-Improvement of the model’s intrinsic
capabilities. The contributions of our work are summarized as follows:

• We conduct a comprehensive study on eliciting and enhancing Self-Refinement capability through
iterative training, including proposing a novel training method to generate improved responses
from previous outputs, and exploring diverse strategies for effectively leveraging Self-Refinement
to collect datasets.

• We introduce EVOLVE, a simple yet effective framework for analyzing the evolution of Self-
Refinement ability throughout iterative training cycles. Furthermore, we investigate the potential
of leveraging Self-Refinement to achieve Self-Improvement of model intrinsic abilities.

• We empirically validate the effectiveness of our framework in enhancing Self-Refinement capabil-
ity. Starting from the Llama-3.1-8B base model, EVOLVE outperforms Llama-3.1-405B-Instruct
and GPT-4o, achieving 62.3% length-controlled and 63.3% raw win rates on AlpacaEval 2,
along with 50.3% on Arena-Hard, while also improving performance on mathematical reasoning
benchmarks such as GSM8K and MATH.

2 RELATED WORKS

LLM Self-Improvement. Self-Improvement in LLMs aims to enhance intrinsic model capabilities
with minimal external supervision, addressing the challenge of scarce high-quality training data (Tao
et al., 2024; Huang et al., 2022). Recent approaches leverage model-generated data to iteratively
improve model performance, often through synthetic dataset construction or feedback-driven opti-
mization (Wang et al., 2022a;b; 2025). For instance, self-consistency decoding (Wang et al., 2022a)
enables models to sample multiple outputs and select the most consistent, improving performance in
reasoning tasks, while methods like Self-Instruct (Wang et al., 2022b) automate instruction-tuning
data creation to enhance task generalization. Other works explore iterative bootstrapping, where
models refine their outputs over multiple rounds (Madaan et al., 2024; Huang et al., 2022), or employ
internal scoring mechanisms to filter and improve dataset quality (Yuan et al., 2024). Our work
builds on these foundations, focusing on activating and enhancing Self-Refinement as a mechanism
for sustained Self-Improvement, distinct from prior approaches by emphasizing iterative training to
strengthen intrinsic refinement capabilities.

Data Generation and Iterative Optimization. The scarcity of high-quality training data has moti-
vated the development of new data-generation strategies to enable sustainable iterative optimization
(Long et al., 2024; Ding et al., 2024). Techniques such as data augmentation through LLM-generated
synthetic datasets have proven effective in scaling training data for smaller models (Chen et al., 2023;
Xu et al., 2024; Taori et al., 2023). Recent studies further explore online data generation, where
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Figure 2: Our framework, EVOLVE, iteratively alternates between inference and training processes.
In iteration t, Model Mt uses the Self-Refinement strategy to collect preference data, which is then
utilized to enhance the model’s intrinsic capabilities via preference training (Eq. 5), yielding the next
iteration model Mt+1. The dataset is filtered through either a rule-based method or a reward model.

models dynamically generate and refine datasets during training (Tian et al., 2024; Xiong et al., 2023).
In this work, we develop a closed-loop system that harnesses models’ Self-Refinement capabilities to
autonomously generate graded data, enabling iterative model optimization.

3 METHODOLOGY

In this section, we first investigate the training method for activating Self-Refinement capabilities
in LLMs. Building on the activated Self-Refinement abilities, we further investigate approaches to
progressively enhance the Self-Refinement capacities of LLMs, encompassing both data acquisition
and iterative training components. Drawing on these findings, we propose a simple yet effective
framework EVOLVE for iterative training and inference to study the evolution of Self-Refinement
capabilities during the iterative training process.

Evaluation Protocol. To substantiate our analysis below, we now describe the evaluation protocol
employed in this section. For each generation round, we use 256 samples from the UltraFeedback
(Lambert et al., 2024a) test set to generate responses. These responses are then scored using the
Skywork Reward Model (Liu et al., 2024), a compact yet high-performing model on the RewardBench
leaderboard (Lambert et al., 2024b). Results are reported as average scores.

3.1 TRAINING STAGE OF EVOLVE: SYNERGISTIC OPTIMIZATION OF SFT AND PT
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Figure 3: Ablation of training combi-
nations. SFT activates Self-Refinement,
PT enhances it, and their synergy (blue,
ours) yields the best performance.

Starting from a base pretrained language model, we inves-
tigate post-training fine-tuning methods, covering a syn-
ergistic optimization process of Supervised Fine-Tuning
(SFT) and Preference Training (PT) stages, to activate and
enhance the Self-Refinement capability of LLMs. Specif-
ically, SFT serves to initiate Self-Refinement, enabling the
model to learn how to revise suboptimal responses, while
PT further strengthens this ability, improving the model’s
proficiency in applying it during iterative optimization.
These two stages complement each other, forming the
foundation of our framework. To support this claim, we
first present the experimental results of the different train-
ing configurations tested for the SFT and PT stages, as
shown in Fig. 3.

Supervised Fine-Tuning (SFT) for Activating Self-Refinement. Our experimental findings reveal
that the SFT stage is fundamental for instilling the Self-Refinement capability, enabling the effective
operation of the entire framework. Building on the standard Negative Log-Likelihood (NLL) SFT
loss, we introduce specific modifications to explicitly encourage the model to refine suboptimal
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responses:
LEVOLVE−SFT(πθ) = − E

(x,yw,yl)∼D
[log πθ(yw|x) + log πθ(yw|x, yl, z)], (1)

where (x, yw, yl) is sampled from a preference dataset D, x represents the prompt, yw is the preferred
response, and yl is the rejected response. The variable z denotes the refinement template, as shown in
Appendix D.1.

Without these SFT adaptations, the model fails to adequately learn Self-Refinement behavior. This is
reflected in Fig. 3, where the response quality oscillates significantly across inference turns.

Preference Training (PT) for Strengthening Self-Refinement. PT stage is designed to further
enhance the model’s Self-Refinement capability based on the SFT phase, enabling it to more effectively
master and apply this skill. To improve the model’s ability to refine an initial response into a better
one during PT, we first consider the following scenario: given a prompt x and an initial response y1,
how can the model be guided to produce a refined response y2? We model this problem as follows:

max
π

E
y2∼π(·|x,y1,z)

[
p(y2 ≻ y1|x)− βDKL(π||πref |x, y1, z)

]
. (2)

where p(y2 ≻ y1|x) is the preference function, denoting the probability that y2 is preferred over y1
given x. By deriving the optimal policy from Eq. 2 and applying a mean squared error formulation,
we parameterize the policy model as πθ, yielding:

L(πθ;πref) = E
(x,y1,y2)∼ρ

[
log

(
πθ(y2|x, y1, z)πref(y1|x, y1, z)
πθ(y1|x, y1, z)πref(y2|x, y1, z)

)
−

(
p(y2≻y1|x)

β
− 1

2β

)]2

, (3)

where ρ denotes the true distribution (derivation in Appendix C.1). Given a curated preference dataset
D = {(x(i), y

(i)
w , y

(i)
l )}Ni=1 with yw ≻ yl, we further define the final Self-Refinement loss:

LSR(πθ;πref) = E
(x,yw,yl)∼D

[
1
2
− v(x, yl, yw, z;πθ)

]2
+ E

(x,yw,yl)∼D

[
1
2
+ v(x, yw, yl, z;πθ)

]2
, (4)

where v(x, y1, y2, z;πθ) = β log
(

πθ(y2|x,y1,z)πref (y1|x,y1,z)
πθ(y1|x,y1,z)πref (y2|x,y1,z)

)
. Finally, we combine the Self-

Refinement loss with the DPO loss (Rafailov et al., 2023), obtaining:
LEVOLVE−PT(πθ;πref) = αLSR(πθ;πref) + (1− α)LDPO(πθ;πref). (5)

The effectiveness of the PT stage is inherently tied to the foundational adjustments made during
SFT, while the SFT phase requires the continuous activation of the Self-Refinement capability from
the PT stage, demonstrating that the two phases are truly complementary. As shown in Fig. 3,
without the refinements introduced in the PT stage, the Self-Refinement capability acquired during
SFT remains limited. Thus, only through the synergistic optimization of both stages can the model’s
Self-Refinement ability be effectively activated and consistently strengthened. Furthermore, as
discussed in Appendix E, we explore alternative Self-Refinement objective formulations in the PT
stage, observing comparable improvements. This suggests that the development of Self-Refinement
stems from inherent advantages of the overall training paradigm, rather than a particular loss design.

3.2 INFERENCE STAGE OF EVOLVE: EXPLORING DYNAMIC GENERATION STRATEGIES

Building on the training stage, we next examine how to exploit the acquired Self-Refinement capability
during inference. To identify the most suitable strategy for our final framework, we systematically
summarize and compare four distinct generation strategies:

• Parallel Sampling: Given a problem x, the model generates multiple candidate answers
{y1, y2, . . . , yn} independently in parallel.

• Chain of Self-Refinement: For a problem x, the model first generates an initial answer y1.
Using the refinement template z, it then iteratively produces refined responses yn based on x
and the previous response yn−1.

• Few-Shot Self-Refinement: The model iteratively improves its outputs yn by conditioning on
both the input x and all prior generations {y1, y2, . . . , yn−1}.

• Self-Refinement with Self-Evaluation: The model first generates an initial response y1 for
the problem x, then evaluates it along multiple dimensions (e.g., relevance, helpfulness) to
produce an evaluation e1. At each subsequent step, a refined response yn is generated based on
x, the previous response yn−1, and the last evaluation en−1: yn ∼ πθ(· | x, yn−1, en−1). Each
evaluation en is generated from (x, yn).
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Figure 4: Illustration of four dynamic generation strategies.
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Figure 5: Performance of four
generation strategies. Chain of
Self-Refinement achieves the
best results across iterations.

The procedural logic of four generation strategies is presented in
Fig. 4 and corresponding prompt templates are provided in Ap-
pendix K. Based on the experimental results shown in Fig. 5, we can
make the following observations: Parallel Sampling maintains stable
mean rewards across iterations, as all outputs are drawn from the
same distribution. Chain of Self-Refinement achieves the best per-
formance, consistently improving response quality across iterations.
Few-Shot Self-Refinement exhibits an initial increase but eventually
degrades, as longer prompts hinder the model’s ability to capture
key information. Self-Refinement with Self-Evaluation also yields
iterative gains but remains weaker than Chain of Self-Refinement,
primarily due to the model’s limited self-evaluation capability, as
illustrated in Appendix K. Since Chain of Self-Refinement best
aligns with our training approach, consistently improves response quality, and incurs only
minimal overhead, we adopt it as the core generation strategy in our framework.

In summary, by integrating insights from both the training and inference phases, we propose EVOLVE,
a streamlined and effective framework, as illustrated in Fig. 2. Our EVOLVE framework iteratively
conducts preference training and data generation. This iterative training process continually enhances
the LLMs’ Self-Refinement capability, which in turn enables the hierarchical generation of high-quality
data. Through this mutually reinforcing mechanism, EVOLVE achieves sustained improvement in a
unified training loop.

4 EXPERIMENTS

Building on the evaluation in Fig. 1, where current LLMs show no clear evidence of inherent Self-
Refinement, we propose the EVOLVE framework to enhance this capability. In this section, we
demonstrate its effectiveness by addressing three key questions:

1. How much does EVOLVE improve model performance compared to prior methods (§4.2)?
2. Which components are responsible for the performance improvements of EVOLVE (§4.3)?
3. Does the Self-Refinement ability induced by EVOLVE generalize to out-of-domain tasks (§4.4)?

4.1 EXPERIMENTS SETTING

Models and Training Settings. Our experiments were conducted on the Llama-3.1-8B Base model
(Dubey et al., 2024) and Mistral-7B Base model (Jiang et al., 2023). During the SFT phase, we
fine-tune the base model on the llama-3.1-tulu-3-70b-preference-mixture dataset (Lambert et al.,
2024a) using Eq. 1, yielding the EVOLVE-SFT model. In the preference training phase, we
continue to train the EVOLVE-SFT model using 30K preference pairs from the UltraFeedback dataset
(Cui et al., 2023) with Eq. 5, obtaining the EVOLVE offline model. For online iterative training,
we construct new preference datasets through Self-Refinement: (1) we first sample 5K prompts from
UltraFeedback, generate four responses per prompt with the EVOLVE offline model using iterative
Self-Refinement, forming a dataset D = {x(i), y

(i)
1 , y

(i)
2 , y

(i)
3 , y

(i)
4 }; (2) we then score these responses

with the Skywork Reward Model (Liu et al., 2024), which is a compact yet high-performing model
on the RewardBench leaderboard (Lambert et al., 2024b); (3) we construct a new preference dataset
and train a new model, denoted EVOLVE iter1. Finally, we repeat the same procedure with another
10K prompts from UltraFeedback, producing the EVOLVE iter2 model.
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Figure 6: Evolution of Self-Refinement Capability through Iterative Training. (a) shows the evolution
of Self-Refinement capability for each iteratively trained model during the inference stage. (b) depicts
the performance progression of both the Direct and SR methods throughout iterative training. (c)
demonstrates the performance improvement brought by SR compared to Direct across training
iterations. Responses are generated from 256 UltraFeedback test set samples.

Baselines. . We first train the base model by applying standard SFT and DPO losses, following the
same procedure and dataset as in our method, to obtain the SFT model and the DPO offline model.
Based on these, we compare against several state-of-the-art baselines: (1) Iterative DPO (Snorkel,
2024; Xiong et al., 2023), an iterative preference optimization method; (2) SynPO (Dong et al.,
2024), which leverages a refiner model to enhance performance; (3) SRPO (Choi et al., 2024), an
offline preference optimization approach guided by an adversarial objective to improve response
quality iteratively; and (4) ScoRe (Kumar et al., 2024), an online reinforcement learning approach for
self-correction. Iterative DPO and SynPO are trained using DPO method, while SRPO is adapted for
our iterative setting. Since ScoRe is designed for reasoning tasks, we integrate it into general tasks
and perform RL training on the EVOLVE-SFT model. The specific implementation details of these
methods are provided in Appendix B.

Evaluation Benchmarks. We evaluate our models on AlpacaEval 2 (Li et al., 2023) and Arena-Hard
(Li et al., 2024), as well as on two cross-domain mathematical reasoning tasks: GSM8K (Cobbe
et al., 2021) and MATH (Hendrycks et al., 2021). AlpacaEval 2 consists of 805 questions drawn from
five datasets, while Arena-Hard comprises 500 well-defined technical questions. GSM8K contains
elementary- and middle-school-level math problems, whereas MATH includes more challenging
questions spanning diverse mathematical branches such as algebra, counting and probability, geometry,
number theory, and calculus. For AlpacaEval 2, we report both the raw win rate (WR) and the length-
controlled (LC) win rate (Dubois et al., 2024). For Arena-Hard, we measure the win rate relative to
the baseline model. For GSM8K and MATH, we adopt the Step-DPO evaluation script (Lai et al.,
2024). We assess all models under two settings: direct response generation (Direct) and responses
refined through three rounds of Self-Refinement (SR).

4.2 BOOST IN MODEL PERFORMANCE WITH EVOLVE

Consistent Gains in Inference and Iterative Training. We begin by investigating the evolution of
Self-Refinement capability during iterative training on the UltraFeedback test set, as shown in Fig. 6.
EVOLVE demonstrates that Self-Refinement is not only activated but also progressively strengthened
across iterations. As shown in Fig. 6(a) and Fig. 6(b), models trained with our framework continually
improve during inference, while their refinement ability evolves steadily throughout iterative training.
The training algorithm and Self-Refinement strategy complement each other to form a synergistic
training loop that drives continual gains. Fig. 6(c) further shows that the gain from Self-Refinement
over direct response generation increases with each iteration, confirming that EVOLVE enables
models to gradually internalize and reinforce this cognitive mode.

Superior Benchmark Performance over Baselines. On AlpacaEval 2 and Arena-Hard (Tab. 1),
EVOLVE achieves consistent improvements: it significantly boosts performance in the Direct setting
and delivers a qualitative leap under the SR setting, demonstrating the benefits of progressive
refinement. In contrast, preference-optimization methods built upon SFT often fail to enable effective
Self-Refinement, even when the training objective explicitly includes it. Although ScoRe also
shows strong refinement ability, RL-based approaches that rely on reward model scores frequently
suffer from instability in general domains, largely due to reward hacking that undermines reliable
optimization. These results confirm that EVOLVE provides more stable and comprehensive gains
across benchmarks compared to existing methods.
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Table 1: Performance comparison across AlpacaEval 2 and Arena-Hard benchmarks under the Direct
and SR settings. Reported values are scores, with parentheses indicating gains over SFT baseline.

Method
Direct Self-Refinement (SR)

AlpacaEval 2 Arena-Hard AlpacaEval 2 Arena-Hard
LC (%) WR (%) WR (%) LC (%) WR (%) WR (%)

Llama-3.1-8B Base
SFT 15.9 12.7 12.7 13.8 8.1 8.0

+SRPO offline 15.8 (-0.1) 16.0 (+3.3) 14.3 (+1.6) 22.2 (+8.4) 16.2 (+8.1) 13.2 (+5.2)

+SRPO iter1 21.9 (+6.0) 21.8 (+9.1) 21.9 (+9.2) 27.1 (+13.3) 20.2 (+12.1) 18.8 (+10.8)

+SRPO iter2 22.1 (+6.2) 22.4 (+9.7) 25.6 (+12.9) 27.5 (+13.7) 22.3 (+14.2) 21.8 (+13.8)

+DPO offline 17.9 (+2.0) 16.7 (+4.0) 16.5 (+3.8) 18.3 (+4.5) 12.6 (+4.5) 12.6 (+4.6)

+SynPO iter1 23.5 (+7.6) 23.1 (+10.4) 21.6 (+8.9) 22.5 (+8.7) 15.1 (+7.0) 14.0 (+6.0)

+SynPO iter2 23.1 (+7.2) 18.2 (+5.5) 19.6 (+6.9) 20.6 (+6.8) 13.8 (+5.7) 16.8 (+8.8)

+Iterative DPO iter1 24.6 (+8.7) 22.3 (+9.6) 22.4 (+9.7) 25.1 (+11.3) 16.9 (+8.8) 17.1 (+9.1)

+Iterative DPO iter2 34.1 (+18.2) 33.5 (+20.8) 29.6 (+16.9) 34.5 (+20.7) 27.8 (+19.7) 23.7 (+15.7)

EVOLVE-SFT (Ours) 15.9 (+0.0) 15.5 (+2.8) 16.5 (+3.8) 20.0 (+6.2) 18.6 (+10.5) 18.0 (+10.0)

+ScoRe 21.3 (+5.4) 27.9 (+15.2) 24.0 (+11.3) 35.8 (+22.0) 42.7 (+34.6) 34.0 (+26.0)

+EVOLVE offline (Ours) 19.1 (+3.2) 18.6 (+5.9) 17.4 (+4.7) 28.8 (+15.0) 27.1 (+19.0) 23.5 (+15.5)

+EVOLVE iter1 (Ours) 32.7 (+16.8) 33.5 (+20.8) 31.9 (+19.2) 50.2 (+36.4) 49.9 (+41.8) 37.5 (+29.5)

+EVOLVE iter2 (Ours) 45.0 (+29.1) 46.8 (+34.1) 38.0 (+25.3) 62.3 (+48.5) 63.3 (+55.2) 50.3 (+42.3)

Mistral-7B Base
SFT 17.0 15.8 11.7 9.2 5.6 4.0

+DPO offline 19.0 (+2.0) 19.3 (+3.5) 13.8 (+2.1) 13.0 (+3.8) 10.6 (+5.0) 3.9 (-0.1)

+Iterative DPO iter1 29.7 (+12.7) 33.5 (+17.7) 22.8 (+11.1) 15.3 (+6.1) 17.6 (+12.0) 13.7 (+9.7)

+Iterative DPO iter2 39.5 (+22.5) 41.8 (+26.0) 27.2 (+15.5) 7.3 (-1.9) 11.2 (+5.6) 21.1 (+17.1)

EVOLVE-SFT (Ours) 18.8 (+1.8) 17.4 (+1.6) 11.1 (-0.6) 20.5 (+11.3) 18.2 (+12.6) 12.9 (+8.9)

+EVOLVE offline (Ours) 16.2 (-0.8) 16.7 (+0.9) 13.3 (+1.6) 23.3 (+14.1) 22.7 (+17.1) 15.6 (+11.6)

+EVOLVE iter1 (Ours) 29.1 (+12.1) 30.2 (+14.4) 21.9 (+10.2) 39.0 (+29.8) 40.6 (+35.0) 25.3 (+21.3)

+EVOLVE iter2 (Ours) 39.3 (+22.3) 40.2 (+24.4) 27.7 (+16.0) 46.4 (+37.2) 49.7 (+44.1) 32.8 (+28.8)

4.3 IMPACT OF KEY COMPONENTS ON EVOLVE PERFORMANCE

We analyze three critical factors in EVOLVE: (1) the role of the DPO loss in the training objective,
(2) the importance of the Self-Refinement generation strategy for data collection, (3) the framework’s
dependence on the choice of reward model. The corresponding results are presented in Fig. 7, Fig. 8
and Appendix I.2.

Impact of DPO Loss. As shown in Fig. 7, omitting the DPO loss progressively degrades the
performance of EVOLVE. With iterative training, the absence of DPO loss results in a slower
improvement rate in both the Direct and SR settings. This highlights the crucial role of DPO loss in
strengthening the model’s ability to generate higher-quality responses directly.

Impact of Self-Refinement Generation Strategy. Fig. 8 shows that models trained on datasets
collected via Parallel Sampling (PS) consistently underperform compared to those using the Self-
Refinement generation strategy. This demonstrates that the Self-Refinement generation strategy is
essential for constructing high-quality preference datasets. Further evidence is provided in Ap-
pendix L, where we show that Self-Refinement improves responses by enhancing logical coherence
and producing clearer, more concise expressions.

Impact of Reward Model Selection. To assess the influence of reward models, we conducted
ablation studies using the Skywork Reward Model (Liu et al., 2024) and ArmoRM (Wang et al.,
2024). The results, shown in Tab. 10, demonstrate that models trained with ArmoRM exhibit
performance comparable to those trained with the Skywork Reward Model. This indicates that our
framework’s effectiveness is independent of the reward model, and its ability to consistently enhance
Self-Refinement capabilities remains robust across different reward model choices.

4.4 GENERALIZATION OF EVOLVE TO OUT-OF-DOMAIN REASONING TASKS

The results in Tab. 2 show that the Self-Refinement ability activated by EVOLVE generalizes effec-
tively to reasoning tasks, yielding measurable performance gains on GSM8K and MATH.
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Figure 7: Impact analysis of DPO Loss on EVOLVE Performance.
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Figure 8: Effect of Parallel Sampling (PS) vs. Self-Refinement on EVOLVE Performance.
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Figure 9: Model performance evaluation under the Self-Improvement setup: (a) shows performance
variation with increasing inference turns. (b) depicts improvement during iterative training. (c)
assesses the collected dataset quality using Skywork Reward Model.

Table 2: Accuracy of Various Methods on GSM8K
and MATH with Llama-3.1-8B.

Method GSM8K(%) MATH(%)

Direct SR Direct SR
SFT 60.9 62.3 18.2 29.5

+SRPO offline 66.7 63.9 36.2 34.5
+SRPO iter1 67.2 66.6 38.5 37.1
+SRPO iter2 65.0 68.7 41.5 39.3

+DPO offline 66.3 66.6 35.1 34.6
+SynPO iter1 67.6 66.9 38.0 37.0
+SynPO iter2 67.6 66.3 33.2 32.4
+Iterative DPO iter1 68.5 67.9 36.6 35.6
+Iterative DPO iter2 68.4 67.2 36.7 36.3

EVOLVE-SFT 64.3 70.9 32.8 45.5
+ScoRe 64.0 71.7 39.5 50.1
+EVOLVE offline 68.3 72.2 38.3 42.4

+EVOLVE iter1 70.2 71.7 46.1 47.8
+EVOLVE iter2 71.9 73.6 48.7 50.1

This demonstrates that our method can transfer
beyond its training domain and enhance reason-
ing ability without explicit exposure to math-
ematical data. For comparison, ScoRe also
exhibits strong generalization on these tasks,
which can be attributed to the inherent robust
generalization properties of RL. However, as
model accuracy on GSM8K and MATH in-
creases, the improvements from Self-Refinement
become less pronounced. We attribute this to
the absence of domain-specific training, which
prevents the model from mastering certain ad-
vanced problem-solving strategies. This ob-
servation motivates future work on incorporat-
ing domain-specific training for reasoning tasks,
with the goal of further strengthening the reason-
ing capabilities of EVOLVE.

5 EXTENSION: THE POTENTIAL OF SELF-REFINEMENT FOR ACHIEVING
MODEL SELF-IMPROVEMENT

Building on the discussion of activating and enhancing Self-Refinement capabilities, we now explore
a compelling question: Can the activated Self-Refinement ability of LLMs enable model intrinsic
performance Self-Improvement? We investigate this using our EVOLVE framework.

8

https://huggingface.co/Skywork/Skywork-Reward-Llama-3.1-8B-v0.2


432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 3: Performance Analysis of Self-Refinement Potential for Self-Improvement. Results evaluated
on AlpacaEval 2 (Li et al., 2023) and Arena-Hard (Li et al., 2024) under the Direct and SR settings.
Direct denotes direct response generation, SR indicates three rounds of Self-Refinement on responses.

Method
Direct Self-Refinement (SR)

AlpacaEval 2 Arena-Hard AlpacaEval 2 Arena-Hard
LC (%) WR (%) WR (%) LC (%) WR (%) WR (%)

Llama-3.1-8B Base
SPIN iter1 15.5 12.8 11.1 17.2 12.4 10.2
SPIN iter2 13.2 11.3 12.1 12.3 9.9 11.9
Self-Rewarding iter1 19.3 17.2 14.2 19.3 12.6 11.6
Self-Rewarding iter2 18.2 14.2 15.9 19.0 11.2 11.0
EVOLVErule iter1 23.9 24.5 22.0 37.4 35.7 31.1
EVOLVErule iter2 28.4 29.7 24.9 41.3 39.5 32.0

Mistral-7B Base
SPIN iter1 14.8 13.3 7.2 8.6 7.5 3.3
SPIN iter2 12.9 9.7 8.0 6.0 3.3 3.4
Self-Rewarding iter1 21.0 18.0 13.2 13.0 9.5 4.7
Self-Rewarding iter2 21.9 20.8 12.4 8.5 7.9 4.0
EVOLVErule iter1 19.7 21.0 14.2 28.2 28.7 17.9
EVOLVErule iter2 22.2 24.2 18.2 27.5 29.2 21.4

Rules for Achieving Model Self-Improvement. To objectively assess the model’s Self-Refinement
ability, we employ a streamlined rule-based method for dataset filtering in this section. Specifi-
cally, for a given problem x, the model generates a sequence of responses {y1, y2, y3, y4}. We then
directly designate y1 as the rejected response, while y4 as the chosen response. These pairs are used
to construct the preference dataset for subsequent preference training.

Analysis Setup. In this section, we focus on online iterative training. We select Self-Rewarding
(Yuan et al., 2024) and SPIN (Chen et al., 2024) as baselines, which build upon the DPO offline model
and are further trained using the same 5K-prompt dataset to produce the iter1 model, followed by a
10K-prompt dataset to yield the iter2 model, as described in Section 4.1. In contrast, our approach
employs the rule-based method described above for data filtering, relying on the model’s intrinsic
Self-Refinement capability without external supervision. Starting from the EVOLVE offline model,
we conduct two rounds of online training to obtain the EVOLVE iter1 and EVOLVE iter2 models.

Evolution of Self-Refinement and Dataset Augmentation We first investigate the evolution of
Self-Refinement capability during iterative training for model Self-Improvement and analyze the
quality of self-collected datasets, as shown in Fig. 9. Similar to experiments using reward models
for data filtering, we observe that EVOLVE-trained models achieve synergistic improvements in
both direct answering and Self-Refinement capabilities during iterative training. However, under
unsupervised conditions, the rate of capability improvement slows. Additionally, we compare the
quality of datasets collected by different methods, revealing that Self-Refinement enables superior
performance gains by facilitating the collection of higher-quality datasets, as shown in Fig. 9(c).

Challenges with Self-Rewarding and SPIN. As shown in Table 3, Self-Rewarding and SPIN exhibit
performance fluctuations and occasional declines, primarily due to the quality of their collected
datasets. Self-Rewarding suffers from low dataset discriminability, resulting in stagnant performance.
SPIN experiences further degradation due to even lower dataset quality, highlighting the challenges
of achieving Self-Improvement in data-scarce domains.

Summary. Self-Refinement significantly enhances model performance by collecting higher-quality
datasets without external supervision. However, experiments show it also introduces significant noise,
highlighting the field’s complexity and the need for further study. In Appendix F, we further explore
the upper bounds of Self-Improvement, offering deeper insights into its potential.

6 CONCLUSION

We present EVOLVE, a novel framework that integrates iterative preference training with Self-
Refinement-based inference. During training, EVOLVE enhances both direct question-answering per-
formance and Self-Refinement capabilities. At inference time, it employs multi-step Self-Refinement to
generate and refine outputs, creating preference data for subsequent training cycles. This synergistic
loop leads to substantial improvements in LLM performance, surpassing GPT-4o on benchmarks
such as AlpacaEval 2 and Arena-Hard. Furthermore, we investigate the potential of leveraging
Self-Refinement to achieve Self-Improvement of the model’s intrinsic abilities. While this work
primarily focuses on general tasks, future research will explore extending this framework to more
complex reasoning tasks and broader domains, including mathematics and coding.
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A ADDITIONAL RELATED WORKS

Reinforcement Learning from Human Feedback (RLHF). RLHF has proven effective in aligning
LLMs with human values (Christiano et al., 2017; Ouyang et al., 2022; Bai et al., 2022a; Song et al.,
2023; Touvron et al., 2023). This approach uses human-annotated preference datasets to train a
Reward Model, guiding LLM optimization through reinforcement learning. However, due to the high
cost of human annotations, AI-generated feedback has been proposed to automate this process (Bai
et al., 2022b; Lee et al., 2023). Additionally, to reduce training costs, Direct Preference Optimization
(DPO) (Rafailov et al., 2023) bypasses the reward modeling process and directly aligns LLMs using
preference datasets. However, the effectiveness of these methods heavily depends on the quality of
the preference dataset, making the acquisition of high-quality preference data a critical challenge.

In-Context Learning (ICL). ICL has become a fundamental capability of LLMs, enabling them to
perform tasks by conditioning on a few input examples without requiring parameter updates (Brown
et al., 2020). Recent studies, such as OPRO (Yang et al., 2024), show that LLMs can leverage their
ICL abilities to function as implicit optimizers, progressively improving performance on complex
problems. LLMs can also act as in-context reinforcement learners, optimizing behavior via reward
feedback (Monea et al., 2024). The SELF-REFINE (Madaan et al., 2024) is a special form of ICL.
It significantly enhances model performance through the FEEDBACK and REFINE mechanisms,
achieving remarkable results across multiple benchmarks. These findings indicate that integrating
ICL with model training presents a compelling strategy for constructing self-optimizing frameworks.

B IMPLEMENTATION DETAILS OF BASELINES

Iterative DPO (Snorkel, 2024; Xiong et al., 2023): We conduct the training process based on the
DPO offline model. Following the same online iterative training process as our method, we initially
extract a 5K prompt data from the UltraFeedback dataset (Cui et al., 2023) dataset. For each prompt,
we generate four responses in parallel. These responses are then scored and filtered using the Skywork
Reward Model (Liu et al., 2024) to construct a preference dataset, which is used to train the Iterative
DPO iter1 model via DPO (Rafailov et al., 2023). Next, we extract a new 10K prompt data from the
UltraFeedback dataset and repeat the above process to obtain the Iterative DPO iter2 model.

SynPO (Dong et al., 2024): We utilize the 10K unused dataset from the UltraFeedback as Seed Data
to train the Response Improver. In each iteration, the Response Improver is trained using SFT, taking
a prompt x and the response y generated by the previous policy model Mt−1 as input, with the chosen
response yw from the Seed Data as the target output. For the policy model, we first generate responses
for the 5K prompt dataset from UltraFeedback using both the DPO offline model and the current
policy model Mt−1, yielding {y(i)off } and {y(i)}, respectively. The policy model’s responses {y(i)}
are then refined by the Response Improver to produce {ŷ(i)}. We then use the Skywork Reward
Model to filter the {x(i), y

(i)
off , ŷ

(i)} dataset, and train the DPO offline model to obtain the SynPO iter1
model. This process is repeated with a new 10K prompt dataset to train the SynPO iter2 model.

SRPO (Choi et al., 2024): We train the SRPO model starting from the SFT model, with two key
modifications to the Iterative DPO process. First, we replace the training algorithm with SRPO across
all stages. Second, as SRPO is an offline algorithm without a specified data collection process, we
adopt our Self-Refinement approach for data collection. The offline data used, including its size,
aligns with the training process of EVOLVE.

ScoRe (Kumar et al., 2024): Starting from the EVOLVE-SFT model, we use the first 45K prompts
from the UltraFeedback dataset and apply the REINFORCE algorithm for online training, following
ScoRe’s two-stage training paradigm.

Self-Rewarding (Yuan et al., 2024): The training process of Self-Rewarding closely follows Iterative
DPO, generating four responses per prompt through parallel sampling and training the model using
DPO. The distinction lies in the construction of the preference dataset. Self-Rewarding employs
LLM-as-a-Judge to score each prompt-response pair (x, y), assigning a score to response y. In our
experiments, the policy model itself serves as the LLM-as-a-Judge, evaluating the same dataset
over 3 rounds and taking the average score as the final quality assessment. The highest-scoring
response is selected as the chosen response and the lowest-scoring one as the rejected response. The
LLM-as-a-Judge template used aligns with the Self-Rewarding paper. Through two iterative training
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rounds on the collected 5K and 10K preference datasets, we obtained the Self-Rewarding iter1 and
Self-Rewarding iter2 models.

SPIN (Chen et al., 2024): The training process of SPIN is similar to Iterative DPO, with the key
difference lying in the data collection method. For each prompt x, SPIN uses model to generate
a response y, which is directly treated as the rejected response. The chosen response yw from the
preference dataset serves as the alignment target. Based on the DPO offline model, SPIN first collects
preference data for 5K prompts from the UltraFeedback dataset and then conducts training to yield
the SPIN iter1 model. This process is then repeated with the SPIN iter1 model and 10K prompt
dataset from UltraFeedback, yielding the SPIN iter2 model.

C MATHEMATICAL DERIVATIONS

C.1 THE OPTIMAL SOLUTION TO THE Self-Refinement OBJECTIVE IN THE PREFERENCE
TRAINING PHASE

In this Appendix, we aim to derive the loss function corresponding to the following objective:

max
π

Ey2∼π(·|x,y1,z)

[
p(y2 ≻ y1|x)− βDKL(π||πref |x, y1, z)

]
. (6)

First, we can obtain the optimal solution of the objective:

max
π

Ey2∼π(·|x,y1,z)

[
p(y2 ≻ y1|x)− βDKL(π||πref |x, y1, z)

]
(7)

=max
π

Ey2∼π(·|x,y1,z)

[
p(y2 ≻ y1|x)− β log

π(y2|x, y1, z)
πref(y2|x, y1, z)

]
(8)

=max
π

βEy2∼π(·|x,y1,z)

[
− log

π(y2|x, y1, z)

πref(y2|x, y1, z) exp
(

p(y2≻y1|x)
β

)] (9)

=max
π

−βEy2∼π(·|x,y1,z)

[
log

π(y2|x, y1, z)Z(x, y1, z)

πref(y2|x, y1, z) exp
(

p(y2≻y1|x)
β

)]+ β logZ(x, y1, z) (10)

=max
π

−βDKL

π(y2|x, y1, z)
∥∥∥∥πref(y2|x, y1, z) exp

(
p(y2≻y1|x)

β

)
Z(x, y1, z)

+ β logZ(x, y1, z) (11)

where Z(x, y1, z) is the partition function. Considering the non-negativity of the KL divergence, the
optimal solution is:

π∗(y2|x, y1, z) =
πref(y2|x, y1, z) exp

(
p(y2≻y1|x)

β

)
Z(x, y1, z)

. (12)

Noting that p(y1 ≻ y1|x) = 1/2, we derive the following expression:

π∗(y1|x, y1, z) =
πref(y1|x, y1, z) exp

(
1
2β

)
Z(x, y1, z)

. (13)

Dividing Eq.12 by Eq.13 yields

π∗(y2|x, y1, z)
π∗(y1|x, y1, z)

=
πref(y2|x, y1, z)
πref(y1|x, y1, z)

exp

(
p(y2 ≻ y1|x)

β
− 1

2β

)
. (14)

Therefore, we have

log

(
π∗(y2|x, y1, z)πref(y1|x, y1, z)
π∗(y1|x, y1, z)πref(y2|x, y1, z)

)
=

p(y2 ≻ y1|x)
β

− 1

2β
. (15)
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By adopting the mean squared error as the loss function and parametrizing the policy model as πθ,
we finally obtain:

L(πθ;πref) = E
(x,y1,y2)∼ρ

[
log

(
πθ(y2|x, y1, z)πref(y1|x, y1, z)
πθ(y1|x, y1, z)πref(y2|x, y1, z)

)
−

(
p(y2 ≻ y1|x)

β
− 1

2β

)]2
,

(16)
where ρ represents the true distribution.

D IMPLEMENTATION DETAILS

D.1 SELF-REFINEMENT TEMPLATE

The Self-Refinement template used in this paper is as follows:

Self-Refinement Template

Below is a QUESTION from a user and an EXAMPLE RESPONSE.
Please provide a more helpful RESPONSE, improving the EXAMPLE RESPONSE by making the
content even clearer, more accurate, and concise. Focus on addressing the human’s QUESTION without
including irrelevant sentences.
Your RESPONSE should not only be well-written, logical, and easy-to-follow, but also demonstrate
expert-level insight, engaging the reader with the most relevant information.

QUESTION:
{Question}

EXAMPLE RESPONSE:
{Example_Response}

Now, refine and improve the RESPONSE further. You can consider two approaches:
1. REFINEMENT: If the EXAMPLE RESPONSE is sufficient and addresses most of the QUESTION’s
concerns, enhance clarity, accuracy, or conciseness as needed.
2. NEW RESPONSE: If the EXAMPLE RESPONSE lacks clarity or relevance to the QUESTION,
craft a more effective RESPONSE that thoroughly resolves the QUESTION.

Do not include analysis-just give the improved RESPONSE.

RESPONSE:

D.2 TRAINING DETAILS

In the SFT phase, we set the learning rate to 5 × 10−6, with a batch size of 128 and a maximum
sequence length of 1024. We employed a cosine learning rate schedule with 3% warm-up steps for 1
epoch and used the AdamW optimizer.

In the preference training phase, the learning rate was reduced to 1 × 10−6. Additionally, we set
α = 0.8. For training with the Reward Model Scoring dataset filtering mechanism, we set β = 0.01,
while for the Self-Improvement Rule-Based Selection mechanism, β = 0.05. The higher value of β
in the Self-Improvement Rule-Based Selection process is due to the presence of noisy data in the
filtered preference dataset, which requires stronger regularization.

D.3 INFERENCE DETAILS

During the iterative training and dataset collection process, we employed a sampling decoding strategy
with a temperature of 0.7 for direct response generation and Self-Refinement. For AlpacaEval 2, we
set the temperature to 0.9 for generation, while for MT-Bench and Arena-Hard, we followed the
official decoding configuration. For GSM8K and MATH, we utilized a greedy decoding strategy.
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D.4 EVALUATION BENCHMARKS DETAILS

AlpacaEval 2 (Li et al., 2023) consists of 805 questions from 5 datasets, MT-Bench (Zheng et al.,
2023) covers 80 questions across 8 categories in a multi-turn dialogue format, and Arena-Hard (Li
et al., 2024) is an enhanced version of MT-Bench with 500 well-defined technical questions. GSM8K
(Cobbe et al., 2021) includes elementary and middle school-level math problems, while MATH
(Hendrycks et al., 2021) contains more complex questions, spanning various mathematical branches
such as algebra, counting and probability, geometry, number theory, and calculus. We evaluate the
entire GSM8K test set, which contains 1319 math problems, and the first 1024 samples of the MATH
test set. For each benchmark, we report scores according to their respective evaluation protocols.

D.5 EXPERIMENT RESULTS ON MT-BENCH

For MT-Bench (Zheng et al., 2023), we report the average score using GPT-4 and GPT-4-Preview-
1106 as judges.

Table 4: Results on and MT-Bench (Zheng et al., 2023).

Method MT-Bench
GPT-4 Turbo GPT-4

SFT 6.4 6.9
+DPO offline 6.9 7.4

+Self-Rewarding iter1 6.9 7.5
+Self-Rewarding iter2 6.7 7.4

+Iterative DPO iter1 6.9 7.6
+Iterative DPO iter2 7.1 7.8

EVOLVE-SFT 6.4 7.0
+EVOLVE offline 7.0 7.6

+EVOLVErule iter1 7.1 7.5
+EVOLVErule iter2 7.1 7.7

+EVOLVE iter1 7.3 7.7
+EVOLVE iter2 7.7 8.1

D.6 COMPUTATIONAL OVERHEAD OF TRAINING AND INFERENCE

We compare the computational overhead between Iterative DPO and EVOLVE in the two-round
online iterative training, with the results presented as follows:

Table 5: Computational overhead during the training and inference stage.

Iter1 Iter2

Method Dataset Collection (5k) Training (5k) Dataset Collection (10k) Training (10k)

Iterative DPO 4h 25min 8h 50min
EVOLVE 5.5h 50min 11h 100min

To ensure a fair comparison, we introduce a normalization parameter α into our loss function, such
that the overall weight of the loss function during updates remains equal to 1.

D.7 ABLATION STUDY ON PARAMETER α

Fig. 10 shows the experimental results with different values of α on Llama-3.1-8B Base. Based on
the results which demonstrate the Self-Refinement capability performs optimally at α = 0.8, we
selected α = 0.8 in this work.
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Figure 10: Experimental results with different values of α on Llama-3.1-8B Base.

E ALTERNATIVE REFINEMENT LOSS

E.1 THE DERIVATION OF THE REFINEMENT LOSS FUNCTION FROM THE BRADLEY-TERRY
MODEL PERSPECTIVE

Alternatively, we can enhance the model’s Self-Refinement capability by leveraging insights from the
Bradley-Terry (BT) model theory. We define the objective function as follows:

max
π

Ey2∼π(·|x,y1,z)

[
r(y2|x, y1, z)− βDKL(π||πref |x, y1, z)

]
(17)

The solution process is analogous to that of Appendix C.1, allowing us to obtain the optimal solution:

π∗(y2|x, y1, z) =
πref(y2|x, y1, z) exp

(
r(y2|x,y1,z)

β

)
Z(x, y1, z)

, (18)

where Z(x, y1, z) is the partition function. Reorganizing the above equation, we obtain:

r(y2|x, y1, z) = β log
π(y2|x, y1, z)
πref(y2|x, y1, z)

+ β logZ(x, y1, z) (19)

The standard expression of the BT model is:

p∗BT(y2 ≻ y1|x) = σ(r∗(y2|x)− r∗(y1|x)) (20)

Here, to enhance the Self-Refinement capability of the language model, we make a slight modification.
Given the problem input x for the BT model, we also provide an arbitrary response yopt along with a
refinement template z, which serves as guidance for the model to generate better responses:

p∗BT(y2 ≻ y1|x, yopt, z) = σ(r∗(y2|x, yopt, z)− r∗(y1|x, yopt, z)). (21)

Then we define the refinement preference function:

p∗BT_refine(y2 ≻ y1|x, z) = p∗BT(y2 ≻ y1|x, y1, z)p∗BT(y2 ≻ y1|x, y2, z) (22)
= σ(r∗(y2|x, y1, z)− r∗(y1|x, y1, z))σ(r∗(y2|x, y2, z)− r∗(y1|x, y2, z))

(23)

= σ

(
β log

π∗(y2|x, y1, z)
πref(y2|x, y1, z)

− β log
π∗(y1|x, y1, z)
πref(y1|x, y1, z)

)
× σ

(
β log

π∗(y2|x, y2, z)
πref(y2|x, y2, z)

− β log
π∗(y1|x, y2, z)
πref(y1|x, y2, z)

) (24)

Assuming access to a well-curated preference dataset D = {(x(i), y
(i)
w , y

(i)
l )}Ni=1, we aim to leverage

this dataset to activate the Self-Refinement capability of language models, thereby gradually steering
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the models toward generating better responses during the inference phase. To achieve this, we
parametrize the policy model πθ and estimate its parameters through maximum likelihood estimation.
By treating the problem as a binary classification task, we have the negative log-likelihood loss:

LBT_SR(π) = − E
(x,yw,yl)∼D

[
log σ

(
β log

πθ(yw|x, yl, z)
πref(yw|x, yl, z)

− β log
πθ(yl|x, yl, z)
πref(yl|x, yl, z)

)]

− E
(x,yw,yl)∼D

[
log σ

(
β log

πθ(yl|x, yw, z)
πref(yl|x, yw, z)

− β log
πθ(yw|x, yw, z)
πref(yw|x, yw, z)

)] (25)

Finally, we integrate the Self-Refinement loss with the DPO loss derived from the BT model perspec-
tive to obtain the EVOLVE loss function from the BT model viewpoint:

LBT_EVOLVE(πθ;πref) = αLBT_SR(πθ;πref) + (1− α)LDPO(πθ;πref). (26)

E.2 TRAINING DETAILS

During the SFT phase, BT_EVOLVE follows the same procedure as EVOLVE. The primary dis-
tinction between BT_EVOLVE and EVOLVE arises in the preference training phase, where we set
β = 0.05 in BT_EVOLVE.

E.3 EXPERIMENT RESULTS

We compared BT_EVOLVE and EVOLVE across various benchmarks, with experimental results
presented in Table 6. Both BT_EVOLVE and EVOLVE demonstrated nearly identical performance
across all benchmarks, underscoring that the strength of our approach lies not in the algorithm itself,
but in the foundational principles it embodies. Specifically, it is the concept of refinement that drives
the effectiveness of our method and framework, enabling them to deliver impressive results.

Table 6: Comparison of experimental results between BT_EVOLVE and EVOLVE on AlpacaEval 2
(Li et al., 2023), Arena-Hard (Li et al., 2024), and MT-Bench (Zheng et al., 2023) under the Direct
and SR settings. LC and WR represent length-controlled win rate and raw win rate, respectively.

Method
Direct Self-Refinement (SR)

AlpacaEval 2 Arena-Hard MT-Bench AlpacaEval 2 Arena-Hard
LC (%) WR (%) WR (%) GPT-4 Turbo GPT-4 LC (%) WR (%) WR (%)

BT_EVOLVE offline 19.8 19.3 20.0 7.0 7.5 27.8 25.7 24.8
BT_EVOLVE iter1 31.9 34.5 31.1 7.1 7.5 50.6 51.8 41.0
BT_EVOLVE iter2 45.2 47.7 39.5 7.4 7.7 66.2 66.6 49.9

EVOLVE offline 19.1 18.6 17.4 7.0 7.6 28.8 27.1 23.5
EVOLVE iter1 32.7 33.5 31.9 7.3 7.7 50.2 49.9 37.5
EVOLVE iter2 45.0 46.8 38.0 7.7 8.1 62.3 63.3 50.3

Table 7: Accuracy Comparison of BT_EVOLVE and EVOLVE on GSM8K (Cobbe et al., 2021) and
MATH (Hendrycks et al., 2021) tasks using Direct and SR generation strategies.

Method GSM8K(%) MATH(%)

Direct SR Direct SR

BT_EVOLVE offline 67.6 71.7 37.7 44.1
BT_EVOLVE iter1 70.3 73.2 46.5 47.4
BT_EVOLVE iter2 70.1 71.6 50.2 52.0
EVOLVE offline 68.3 72.2 38.3 42.4
EVOLVE iter1 70.2 71.7 46.1 47.8
EVOLVE iter2 71.9 73.6 48.7 50.1
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F FURTHER EXPLORATION OF SELF-IMPROVEMENT WITH MORE ITERATIONS
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Figure 11: Investigation of the upper bound of the training iterations. We divided the last 15K samples
from the UltraFeedback dataset into 3 subsets (5K each) and performed three additional training
iterations. The evaluations are performed on the UltraFeedback test dataset.

As shown in Fig. 11, EVOLVErule’s performance of Self-Refinement (SR) has essentially reached its
upper bound, exhibiting stabilization with minor fluctuation within a certain range. Meanwhile, the
performance of Direct Response Generation (Direct) continues to improve. Based on this trend, the
performance of Direct is expected to approach that of SR, achieving little or almost no gap. Besides,
the Self-Rewarding demonstrates performance convergence by Iter 3 according to the trend.

G COMPARISON WITH OPEN-SOURCE MODELS
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Figure 12: Length-controlled win rate on Al-
pacaEval 2 improves with EVOLVE iterations,
surpassing GPT-4 level for the base versions of
Llama-3.1-8B when utilizing the Self-Refinement
strategy.

Model Size LC(%) WR(%)

Llama-3.1-8B-Base-EVOLVE (iter2, SR) 8B 62.3 63.3
GPT-4o (05/13) - 57.5 51.3
GPT-4-turbo (04/09) - 55.0 46.1
GPT-4o-mini (07/18) - 50.7 44.7
Llama-3.1-8B-Base-EVOLVE (iter1, SR) 8B 50.2 49.9
GPT-4_1106_preview - 50.0 50.0
Llama-3.1-8B-Base-EVOLVE (iter2, Direct) 8B 45.0 46.8
Claude 3 Opus (02/29) - 40.5 29.1
Llama-3.1-405B-Instruct-Turbo 405B 39.3 39.1
Qwen2-72B-Instruct 72B 38.1 29.9
Llama-3-70B-Instruct 70B 34.4 33.2
Llama-3.1-8B-Base-EVOLVE (iter1, Direct) 8B 32.7 33.5
Mistral Large (24/02) 123B 32.7 21.4
Gemini Pro - 24.4 18.2
Llama-3.1-8B-Instruct 8B 20.9 21.8

Table 8: Results on AlpacaEval 2 leaderboard.
LC and WR represent length-controlled and raw
win rate, respectively. "Direct" refers to the di-
rect response generation strategy, while "SR"
denotes the Self-Refinement generation strategy.
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H QUALITY EVALUATION OF DATA COLLECTED UNDER THE
SELF-IMPROVEMENT SETTING
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Figure 13: Quality Evaluation of the Dataset Collected under the Self-Improvement Setting. We
evaluate the dataset collected without supervised signals using two reward models: Skywork Reward
Model (Liu et al., 2024) (Figure a) and ArmoRM (Wang et al., 2024) (Figure b). Both reward
models are 8B Parameter Scale and have demonstrated outstanding performance on the RewardBench
leaderboard (Lambert et al., 2024b). The y-axis indicates the percentage of samples in the dataset for
which the chosen response achieves a higher reward score compared to the rejected response. By
leveraging different reward models for scoring, we aim to minimize potential biases in the evaluation
results. The assessments from both reward models consistently demonstrate the effectiveness of the
Self-Refinement generation strategy in enhancing the dataset quality.

I DETAILS OF ABLATION STUDIES

I.1 DPO LOSS AND GENERATION STRATEGY

The specific experimental results for Fig. 7 and Fig. 8 are presented in Tab. 9 below.
Table 9: Ablation study on AlpacaEval 2 and Arena-Hard. LC and WR represent length-controlled
win rate and raw win rate, respectively.

Method
Direct Self-Refinement (SR)

AlpacaEval 2 Arena-Hard AlpacaEval 2 Arena-Hard
LC (%) WR (%) WR (%) LC (%) WR (%) WR (%)

EVOLVE iter1 using PS 28.7 29.7 29.8 41.0 42.5 35.5
EVOLVE iter2 using PS 40.7 42.7 37.1 59.4 60.6 49.6

EVOLVE offline w/o DPO 19.3 19.2 18.3 25.9 24.8 25.0
EVOLVE iter1 w/o DPO 31.4 33.0 29.6 47.4 49.2 39.5
EVOLVE iter2 w/o DPO 38.3 41.3 36.0 54.9 56.3 48.6

EVOLVE offline 19.1 18.6 17.4 28.8 27.1 23.5
EVOLVE iter1 32.7 33.5 31.9 50.2 49.9 37.5
EVOLVE iter2 45.0 46.8 38.0 62.3 63.3 50.3

I.2 IMPACT OF DIFFERENT REWARD MODELS

We also conducted ablation studies on the influence of different reward models adopted during
the entire iterative training process. The results are presented in Tab. 10. It can be seen that the
performance of the models trained with ArmoRM is generally consistent with that of the models
trained with the Skywork Reward Model reported in this paper. This suggests that the effectiveness
of our framework is not dependent on the reward model, and its ability to continually enhance the
Self-Refinement capability is robust to this choice.
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Table 10: Results on AlpacaEval 2 (Li et al., 2023) and Arena-Hard (Li et al., 2024) under the Direct
and SR settings, when using Skywork Reward Model and ArmoRM as the reward model to retrain
the entire iterative process based on the EVOLVE offline model, respectively.

Method
Direct Self-Refinement (SR)

AlpacaEval 2 Arena-Hard AlpacaEval 2 Arena-Hard
LC (%) WR (%) WR (%) LC (%) WR (%) WR (%)

SFT 15.9 12.7 12.7 13.8 8.1 8.0
EVOLVE-SFT 15.9 15.5 16.5 20.0 18.6 18.0
EVOLVE offline 19.1 18.6 17.4 28.8 27.1 23.5

Skywork Reward Model
EVOLVE iter1 32.7 33.5 31.9 50.2 49.9 37.5
EVOLVE iter2 45.0 46.8 38.0 62.3 63.3 50.3

ArmoRM
EVOLVE iter1 34.1 28.8 29.3 48.7 35.7 39.1
EVOLVE iter2 45.4 42.5 40.6 63.8 58.1 56.4

J EVALUATION OF SELF-REFINEMENT CAPABILITIES IN OPEN-SOURCE
MODELS

In this section, we evaluate the Self-Refinement capabilities of several prominent open-source models.
To provide a comprehensive assessment, we examine the performance of the Llama-3.1-8B-Instruct,
Qwen2.5-7B-Instruct, and Gemma-2-9B-Instruct models across three different refinement templates.
The templates employed in this evaluation are as follows:

Direct Refinement Template

Below is a QUESTION from a user and an EXAMPLE RESPONSE.
Please provide a more helpful RESPONSE, improving the EXAMPLE RESPONSE by making the
content even clearer, more accurate, and concise. Focus on addressing the human’s QUESTION without
including irrelevant sentences.
Your RESPONSE should not only be well-written, logical, and easy-to-follow, but also demonstrate
expert-level insight, engaging the reader with the most relevant information.

QUESTION:
{Question}

EXAMPLE RESPONSE:
{Example_Response}

Now, refine and improve the RESPONSE further. You can consider two approaches:
1. REFINEMENT: If the EXAMPLE RESPONSE is sufficient and addresses most of the QUESTION’s
concerns, enhance clarity, accuracy, or conciseness as needed.
2. NEW RESPONSE: If the EXAMPLE RESPONSE lacks clarity or relevance to the QUESTION,
craft a more effective RESPONSE that thoroughly resolves the QUESTION.

Do not include analysis-just give the improved RESPONSE.

RESPONSE:
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Analysis-Guided Refinement Template

Below is a QUESTION from a user and an EXAMPLE RESPONSE.
Please provide a more helpful RESPONSE, improving the EXAMPLE RESPONSE by making the
content even clearer, more accurate, and concise. Focus on addressing the human’s QUESTION without
including irrelevant sentences.
Your RESPONSE should not only be well-written, logical, and easy-to-follow, but also demonstrate
expert-level insight, engaging the reader with the most relevant information.

QUESTION:
{Question}

EXAMPLE RESPONSE:
{Example_Response}

Now, refine and improve the RESPONSE further. You can consider two approaches:
1. REFINEMENT: If the EXAMPLE RESPONSE is sufficient and addresses most of the QUESTION’s
concerns, enhance clarity, accuracy, or conciseness as needed.
2. NEW RESPONSE: If the EXAMPLE RESPONSE lacks clarity or relevance to the QUESTION,
craft a more effective RESPONSE that thoroughly resolves the QUESTION.

Format your answer as follows:
ANALYSIS: <Analyze the strengths and shortcomings of the EXAMPLE RESPONSE>
RESPONSE: <Provide an improved response>

Minimal-Prompt Refinement Template

Below is a QUESTION from a user and an EXAMPLE RESPONSE.
Please provide a better RESPONSE.

QUESTION:
{Question}

EXAMPLE RESPONSE:
{Example_Response}

RESPONSE:
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Figure 14: Evaluation of Self-Refinement Capability Across Various Models. We use three refinement
templates to minimize prompt bias. The x-axis denotes the inference iteration number. For each turn,
responses are generated from 256 UltraFeedback test set samples, using the original prompt and the
prior turn’s output. These are then scored by the ArmoRM (Wang et al., 2024). To eliminate potential
randomness, the reported values are the mean score of three independent runs with different random
seeds. For better visualization, ArmoRM scores are scaled by a factor of 100 due to their originally
narrow value range; higher scores indicate better quality.
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To ensure robust evaluation and mitigate biases from a single reward model, we employed two
distinct reward models—Skywork Reward Model (Liu et al., 2024) and ArmoRM (Wang et al.,
2024)—to score the results, as shown in Fig. 1 (Skywork Reward Model) and Fig. 14 (ArmoRM). Our
experiments demonstrate that, despite their widespread adoption, current open-source models often
struggle to effectively refine their responses, which can even lead to a degradation in performance.
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K ANALYSIS OF VARIOUS DYNAMIC GENERATION STRATEDIES

Prompt Template of Chain of Self-Refinement Generation Strategy:

Chain of Self-Refinement Template

Below is a QUESTION from a user and an EXAMPLE RESPONSE.
Please provide a more helpful RESPONSE, improving the EXAMPLE RESPONSE by making the
content even clearer, more accurate, and concise. Focus on addressing the human’s QUESTION without
including irrelevant sentences.
Your RESPONSE should not only be well-written, logical, and easy-to-follow, but also demonstrate
expert-level insight, engaging the reader with the most relevant information.

QUESTION:
{Question}

EXAMPLE RESPONSE:
{Example_Response}

Now, refine and improve the RESPONSE further. You can consider two approaches:
1. REFINEMENT: If the EXAMPLE RESPONSE is sufficient and addresses most of the QUESTION’s
concerns, enhance clarity, accuracy, or conciseness as needed.
2. NEW RESPONSE: If the EXAMPLE RESPONSE lacks clarity or relevance to the QUESTION,
craft a more effective RESPONSE that thoroughly resolves the QUESTION.

Do not include analysis-just give the improved RESPONSE.

RESPONSE:

Prompt Template of Few-Shot Self-Refinement Generation Strategy:

Few-Shot Self-Refinement Template

Below is a QUESTION from a user and several EXAMPLE RESPONSES, ordered in a Self-Refinement
sequence.
Please provide a more helpful RESPONSE, improving the previous EXAMPLE RESPONSES by
making the content even clearer, more accurate, and concise. Focus on addressing the human’s
QUESTION without including irrelevant sentences.
Your RESPONSE should not only be well-written, logical, and easy-to-follow, but also demonstrate
expert-level insight, engaging the reader with the most relevant information.

QUESTION:
{Question}

EXAMPLE RESPONSES (in Self-Refinement order):
{Example_Responses}

Now, refine and improve the RESPONSE further. You can consider two approaches:
1. REFINEMENT: If the EXAMPLE RESPONSES are sufficient and addresses most of the QUES-
TION’s concerns, enhance clarity, accuracy, or conciseness as needed.
2. NEW RESPONSE: If the EXAMPLE RESPONSES lack clarity or relevance to the QUESTION,
craft a more effective RESPONSE that thoroughly resolves the QUESTION.

Do not include analysis-just give the improved RESPONSE.

RESPONSE:

Self-Refinement with Self-Evaluation Generation Strategy: The Self-Refinement with Self-
Evaluation generation strategy adopts the same Self-Refinement template as the Chain of Self-
Refinement generation strategy, thereby minimizing potential performance degradation caused by
template variations.
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Self-Evaluation Template

Below is a QUESTION from a user and a RESPONSE provided by an AI system.

QUESTION:
{Question}

RESPONSE:
{Example_Response}

Please provide a detailed and comprehensive ANALYSIS of both the QUESTION and the RESPONSE.
Your ANALYSIS should focus on the following aspects:

1. Understanding the Question: Evaluate how well the AI system understood the intent and nuances of
the QUESTION. Highlight any gaps or misinterpretations, and suggest ways to better align with the
user’s needs.

2. Quality of the Response:

- Accuracy: Assess whether the RESPONSE is factually correct and provides relevant informa-
tion. Point out any inaccuracies or missing details.

- Depth: Analyze whether the RESPONSE is sufficiently detailed and addresses the QUES-
TION fully. Suggest areas where additional depth or examples could enhance the RESPONSE.

- Clarity: Comment on the RESPONSE’s clarity, structure, and language. Identify any ambigu-
ous or confusing parts and recommend improvements.

- Engagement: Evaluate how engaging and conversational the RESPONSE is, considering tone
and style. Suggest ways to make it more user-friendly and engaging.

- Safety: Ensure the RESPONSE avoids offensive, harmful, toxic, or inappropriate content.
Assess whether it adheres to ethical and safety guidelines, promoting inclusivity and respect.
Highlight any instances of potentially harmful or inappropriate content, and suggest strategies
for improvement.

3. Suggestions for Improvement:

- Provide actionable recommendations to improve the RESPONSE quality.

- Suggest alternative approaches or strategies the AI system could use to deliver a better
RESPONSE in the future.

Your ANALYSIS must be factual, insightful, and constructive, with a clear focus on enhancing the
quality, usefulness, and safety of future RESPONSES. Ensure that all points are rooted in verifiable
facts or evidence, avoiding any fabrication or speculative statements. Keep your analysis concise, clear,
and to the point, avoiding unnecessary elaboration.

ANALYSIS:
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Examples of Self-Evaluation:

Prompt:
Gloria is shoe shopping when she comes across a pair of boots that fit her shoe budget. However, she
has to choose between the boots and two pairs of high heels that together cost five dollars less than
the boots. If one pair of heels costs $33 and the other costs twice as much, how many dollars are the
boots?

Example Response:
Let’s break down the problem step by step:

1. One pair of high heels costs $33.
2. The other pair of high heels costs twice as much as the first pair, so it costs 33 ∗ 2 = 66 dollars.
3. The total cost of the two pairs of high heels is 33 + 66 = 99 dollars.
4. The boots cost five dollars less than the two pairs of high heels, so the boots cost 99−5 = 94 dollars.

Therefore, the boots cost $94.

EVOLVE Self-Evaluation:
1. Understanding the Question: The AI system accurately understood the intent and nuances of the
QUESTION. The problem is well-defined, and the AI system correctly identified the key elements,
such as the cost of the boots, the two pairs of high heels, and the relationship between their costs.

2. Quality of the Response:
- Accuracy: The RESPONSE is factually correct and provides relevant information. The AI

system correctly calculated the cost of the boots based on the given information.
- Depth: The RESPONSE is sufficiently detailed and addresses the QUESTION fully. The AI

system provided a clear and concise explanation of the solution, including the steps taken to
arrive at the answer.

- Clarity: The RESPONSE is clear, structured, and well-written. The AI system used appro-
priate language and tone, making the response easy to understand.

- Engagement: The RESPONSE is engaging and conversational. The AI system used a
friendly and approachable tone, making the response more user-friendly.

- Safety: The RESPONSE avoids offensive, harmful, toxic, or inappropriate content. The AI
system adheres to ethical and safety guidelines, promoting inclusivity and respect.

3. Suggestions for Improvement:
- Provide a more detailed explanation of the solution, including the reasoning behind each

step. This would help users better understand the problem-solving process.
- Offer alternative approaches or strategies, such as using a different method to solve the

problem or providing a visual representation of the solution.
- Consider incorporating more examples or scenarios to illustrate the problem-solving process

and demonstrate the AI system’s capabilities.
In conclusion, the AI system provided a high-quality RESPONSE that accurately addressed the
QUESTION. The response was factually correct, sufficiently detailed, clear, engaging, and safe.
However, there is room for improvement, particularly in providing a more detailed explanation of the
solution and offering alternative approaches or strategies. By incorporating these suggestions, the AI
system can deliver an even better RESPONSE in the future.

Table 11: An Example of Model Self-Evaluation. The small language model without domain-specific
evaluation training demonstrates limited self-evaluation capability. Most of its assessments tend to be
superficial or overly accommodating, often aligning uncritically with the provided answer’s reasoning.
In this particular case, the given solution incorrectly interpreted the problem’s requirements in its
final step, leading to an erroneous conclusion (the correct answer should be 99 + 5 = 104 dollars).
However, the model fails to constructively identify this critical error.
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Prompt:
Raymond and Samantha are cousins. Raymond was born 6 years before Samantha. Raymond had a
son at the age of 23. If Samantha is now 31, how many years ago was Raymond’s son born?

Example Response:
Samantha is currently 31 years old. Raymond was born 6 years before Samantha, so Raymond is
currently 25 years old. Raymond had his son when he was 23 years old. To find out how many years
ago Raymond’s son was born, we subtract Raymond’s age when his son was born from his current
age. So, 25 (Raymond’s current age) - 23 (Raymond’s age when his son was born) = 2 years ago.
Therefore, Raymond’s son was born 2 years ago.

The answer is: 2 years ago.

EVOLVE Self-Evaluation:
1. Understanding the Question: The AI system has accurately understood the intent of the
QUESTION, which is to determine how many years ago Raymond’s son was born based on the given
information about Raymond and Samantha’s ages. The AI system has correctly identified the key
elements of the problem, including the age difference between Raymond and Samantha, Raymond’s
age when his son was born, and Samantha’s current age.

2. Quality of the Response:
- Accuracy: The RESPONSE is factually correct and provides relevant information. It

correctly calculates the number of years ago Raymond’s son was born based on the given
information.

- Depth: The RESPONSE is sufficiently detailed and addresses the QUESTION fully. It
provides a clear and concise answer to the problem.

- Clarity: The RESPONSE is clear, structured, and easy to understand. It uses simple language
and avoids any ambiguous or confusing parts.

- Engagement: The RESPONSE is engaging and conversational, using a friendly and ap-
proachable tone. It provides a clear and concise answer to the problem, making it easy for
the user to understand.

- Safety: The RESPONSE avoids offensive, harmful, toxic, or inappropriate content. It
adheres to ethical and safety guidelines, promoting inclusivity and respect.

3. Suggestions for Improvement:
- Provide a more detailed explanation of the calculation process, including the steps taken to

arrive at the final answer. This would help users better understand the reasoning behind the
solution.

- Consider providing alternative approaches or strategies for solving the problem, such as
using a different method or providing a visual representation of the information.

- Ensure that the RESPONSE is consistent with the user’s expectations and provides a clear
and concise answer to the problem. This would help users better understand the information
and make more informed decisions.

In conclusion, the AI system has accurately understood the intent of the QUESTION and provided a
high-quality RESPONSE. However, there are still opportunities for improvement, such as providing
a more detailed explanation of the calculation process and considering alternative approaches or
strategies for solving the problem. By addressing these areas, the AI system can deliver even better
RESPONSES in the future.

Table 12: An Example of Model Self-Evaluation. The proposed solution contains an initial computa-
tional error (Raymond was born 6 years before Samantha, he should be the older individual,
implying his current age should be 31+6=37 years). Nevertheless, the model’s Self-Evaluation
process merely yields some uninformative assessments.

L QUALITATIVE EXAMPLES
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Prompt:
What type of soil is suitable for cactus?

EVOLVE Direct Response:
Cacti, being succulent plants adapted to arid environments, thrive in well-draining soils that replicate their
natural desert conditions. The ideal soil for cacti should meet these characteristics:
1. Well-Draining: Cacti cannot tolerate waterlogged conditions. The soil should have excellent drainage to
prevent root rot.
2. Low Nutrient Content: Cacti prefer soils low in organic matter and rich in minerals, especially calcium and
magnesium. Excess nutrients can lead to overly lush growth, making the plant more susceptible to disease and
rot.
3. Sand-Like Texture: The soil should be composed of a mix of coarse sand, perlite, or pumice, which helps
with drainage and aeration.
4. Coarse-Grained: Fine, compacted soils can retain water, which is detrimental to cacti. A gritty, well-aerated
soil is essential.

Here’s a typical cactus soil mix:
- Coarse Sand: About 40-50% (to ensure excellent drainage)
- Pumice or Perlite: About 30-40% (to improve aeration and drainage)
- Compressed Coco Coir: About 10-20% (to hold some moisture and provide a gentle nutrient base)
- Calcitic Lime: Optional (to raise the pH and provide calcium, essential for healthy growth)

You can purchase a pre-mixed cactus soil or create your own by combining these components. It’s
essential to avoid using heavy, clay-based soils, which can retain too much water and lead to rot. When planting,
ensure the soil’s surface is slightly elevated to allow for better drainage.

Always ensure the soil remains slightly dry between waterings to mimic the natural desert environ-
ment. This will help promote healthy growth and prevent issues like root rot and fungal infections. Happy cactus
growing!

EVOLVE Self-Refinement Response:
The ideal soil type for cacti is well-draining, nutrient-poor, and slightly acidic to neutral (pH 6.5-7.5). Here’s a
detailed breakdown:
1. Composition:

• Primary Ingredients:
– Coarse grit or sand (40-50%): Provides excellent drainage, preventing waterlogging which can

lead to root rot.
– Perlite or pumice (20-30%): Improves aeration, retains some moisture, and enhances drainage

further.
– Loam or vermiculite (10-20%): Adds a bit of fertility and retains some moisture, though still

minimal.

• Optional Additives:
– Calcined clay (1-5%): Helps maintain soil structure and provide slight nutrient content.
– Activated charcoal (1-2%): Improves drainage, reduces odors, and filters out harmful sub-

stances.

2. Characteristics:
• Well-draining: Absolutely crucial. Cacti cannot tolerate waterlogged conditions.

• Nutrient-poor: Too much fertilizer can lead to excessive growth, making the cactus weak and
susceptible to disease.

• Acidic to slightly alkaline: Most cacti prefer a neutral pH, but slightly acidic (around 6.5-7.0) is often
ideal.

• Loose and airy: Allows roots to breathe and develop properly.

Instead of creating your own mix, it’s highly recommended to use a commercially available cactus-specific
potting mix.

These blends are formulated with the perfect proportions of the above ingredients and are readily
available at garden centers and nurseries.

By using this well-draining, nutrient-poor soil, you’ll create an optimal environment for your cacti to
thrive, just like their natural desert home.

Table 13: A generated example on AlpacaEval 2 shows that both Direct Response Generation and Self-
Refinement provide highly valuable responses for cactus planting.
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Prompt:
Mick pays his teacher $800 for 40 lessons worth 2 hours each. If this will be all he is going to pay for
his lessons, how much did he receive?

EVOLVE+RM Direct Response:
Based on the information provided, Mick paid $800 for 40 lessons, with each lesson lasting 2 hours.
The calculation for the total time spent in lessons is as follows:

Total hours = Number of lessons × Duration per lesson = 40× 2 = 80 hours

Since Mick is only paying $800 for these lessons and there’s no additional payment men-
tioned, the amount he "received" (which seems like a bit of a misinterpretation in this context, as he’s
paying for the lessons, not receiving a sum) is the same as what he paid, which is $800.

Therefore, Mick received (in the sense of what he paid) $800.

If the question were framed differently, ensuring clarity on what "received" exactly means
(like "the total value of the lessons he paid for"), then the answer would still be $800. But considering
the literal receipt of cash, it aligns with $800 he paid.

EVOLVE+RM Self-Refinement Response:
Mick paid a total of $800 for his lessons. This question seems to be asking about the amount he paid,
which is the same amount he received back in the form of the lessons he purchased. Therefore, Mick
received $800.

The question mixes concepts of payment and "receiving back" (which is usually more about value
received), but since all the money was paid upfront, it logically means Mick received the full value of
what he paid for (40 lessons at $20 each = $800). Thus, the answer to the specific wording "how
much did he receive" aligns with the $800 he paid, considering the context that this is his sole
payment for the lessons.

To summarize, Mick received $800.

GPT4-1106-Preview Response:
To determine the amount Mick received per lesson, we need to divide the total amount paid by the
number of lessons he received.

Mick paid $800 for 40 lessons.

So, $800 ÷ 40 lessons = $20 per lesson.

Each lesson is 2 hours long, so to find out how much Mick received per hour, we divide
the amount per lesson by the number of hours per lesson:

$20 per lesson ÷ 2 hours per lesson = $10 per hour.

Thus, Mick received $10 per hour for his lessons.

Table 14: A case study on AlpacaEval 2 demonstrates that our approach, EVOLVE, allows the
model to understand questions more deeply and comprehensively than the baseline GPT-4-1106-
Preview. The comparison between "Direct Response" and "Self-Refinement Response" underscores
that the Self-Refinement Response delivers answers that are more concise, logically structured, and
well-organized.
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Prompt:
if it takes 8 hours to fly to Singapore, stop over for an hour and a half and then fly 14 hours to London then what
is the total travel time if the plane is delayed in Singapore

EVOLVE+RM Direct Response:
The total travel time, including the stopover, is 20 hours.

Here’s the breakdown:

1. Direct flight to Singapore: 8 hours
2. Stopover: 1.5 hours
3. Direct flight to London: 14 hours

Total: 8 hours + 1.5 hours + 14 hours = 23.5 hours

However, you mentioned a delay in Singapore. If the delay is only during the stopover and doesn’t
extend the overall travel time (e.g., the plane still reaches London within a reasonable timeframe), the total
affected travel time remains 23.5 hours.

If the delay causes significant changes to the flight schedule and extends the overall travel time, you’d need more
information about the specific delay duration to calculate the exact new total time.

Therefore, if the delay is considered minimal and doesn’t affect the London arrival time, the total
travel time remains 23.5 hours.

EVOLVE+RM Self-Refinement Response:
Here’s how to calculate the total travel time, considering a delay in Singapore:

1. Calculate the base travel time without delay:
• Singapore to London: 8 hours (flight) + 1.5 hours (stopover) + 14 hours (second flight) = 23.5 hours

2. Account for the delay in Singapore:
• Let the delay be represented as ’x’ hours.

3. Calculate the new total travel time:
• New Singapore to London travel time: 8 hours (flight) + 1.5 hours (stopover) + x hours (delay) + 14

hours (second flight) = 23.5 + x hours

Therefore, the total travel time with the delay is 23.5 + x hours.

To get a specific number, you need to know the duration of the delay (x). For example, if the delay
is 2 hours:

• Total travel time: 23.5 + 2 = 25.5 hours

GPT4-1106-Preview Response:
To calculate the total travel time, we need to add up all the segments of the journey along with any delays.

Here’s the breakdown:

- Flight to Singapore: 8 hours
- Stopover in Singapore: 1.5 hours
- Flight to London: 14 hours

Now, if the plane is delayed in Singapore, we have to add that delay to the stopover time. However,
you haven’t specified the duration of the delay.

Let’s assume the delay is D hours. The total travel time would then be:

Total travel time = 8 hours (first flight) + 1.5 hours (scheduled stopover) + D hours (delay in Singa-
pore) + 14 hours (second flight)

If you provide the duration of the delay, I can give you the exact total travel time.

Table 15: A case study on AlpacaEval 2 reveals that the Self-Refinement Response exhibits a more coherent
problem-solving logic, comparable to GPT-4-1106-Preview, whereas the Direct Response demonstrates more
fragmented and disorganized reasoning. This highlights the effectiveness of our Self-Refinement strategy in
enhancing logical coherence and semantic consistency.
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M DOWNSTREAM TASK EVALUATION

To assess whether the iterative training process leads to models’ catastrophic forgetting of general
knowledge, we conducted complementary evaluations on various downstream tasks beyond our
main experiments. We follow the established evaluation protocols in lm-evaluation-harness
and present the results for all models in Tab. 16, where the number below each benchmark’s name
indicates the number of few-shot examples used during evaluations.

Our evaluation results on multiple dounstream tasks, such as ARC-C and BoolQ, are consistent
with obervations reported in SimPO (Meng et al., 2024) and Self-Rewarding (Yuan et al., 2024).
Specifically, our method does not lead to catastrophic forgetting during the post-training phase, as
evidenced by the fact that the model’s performance on these downstream tasks remains roughly
similar to the baseline. Yuan et al. (2024) explain that this phenomenon may be due to the training
data are based on Open Assistant prompts which may not be especially relevant to skills needed in
downstream tasks, hence it is expected that the task performance stays roughly similar, or may even
drop. Furthermore, this phenomenon is referred as an "alignment tax" by Ouyang et al. (2022).

N USE OF LLMS

We use LLMs only to refine the language and grammar in our paper. We do not use them for
generating research ideas or for finding related work. We provide our complete original text to
OpenAI’s GPT-4o with instructions to make it more professional, coherent, and native-sounding for a
research paper. We then carefully review all suggestions to guarantee that no factual content is altered
and that all changes remain true to our original writing.
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