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Abstract

Most languages of the world pose low-resource
challenges to natural language processing mod-
els. With multilingual training, knowledge can
be shared among languages. However, not all
languages positively influence each other and
it is an open research question how to select
the most suitable set of languages for multilin-
gual training and avoid negative interference
among languages whose characteristics or data
distributions are not compatible. In this pa-
per, we propose GradSim, a language grouping
method based on gradient similarity. Our ex-
periments on three diverse multilingual bench-
mark datasets show that it leads to the largest
performance gains compared to other similar-
ity measures and it is better correlated with
cross-lingual model performance. As a result,
we set the new state of the art on AfriSenti, a
benchmark dataset for sentiment analysis on
low-resource African languages. In our exten-
sive analysis, we further reveal that besides lin-
guistic features, the topics of the datasets play
an important role for language grouping and
that lower layers of transformer models encode
language-specific features while higher layers
capture task-specific information.

1 Introduction

Most natural language processing (NLP) research
today still focuses on a small number of languages.
Extending NLP models to further languages poses
different challenges, i.a., little (annotated) data
(Hedderich et al., 2021). Multilingual training can
help in those cases by sharing knowledge across
languages. However, adding new languages to the
multilingual training set may not necessarily lead to
performance gains. In fact, certain languages might
actually hurt the performance on downstream tasks
in a specific target language (Adelani et al., 2022;
Snæbjarnarson et al., 2023), for instance, due to
unrelatedness to the target language.

Figure 1: Exemplary transfer learning setup with
African languages: The motivation for this work is
that neither language family (indicated by node col-
ors) nor typological distance (indicated by distance of
languages in the plot) are consistent predictors of good
performance when choosing a source language for cross-
lingual transfer. Red cross: source language affecting
performance negatively. Green tick: source language
affecting performance positively.

As a solution, previous work investigates dif-
ferent measures for language similarity and selects
only languages similar to the target language for the
multilingual training set (i.a. Tan et al., 2019; Lin
et al., 2019; Pires et al., 2019; Oncevay et al., 2020;
Shaffer, 2021; Snæbjarnarson et al., 2023). How-
ever, it is an open research question whether lan-
guage similarity translates into performance gains
of multilingual models. For multilingual training,
other characteristics might play a role, such as top-
ical shifts of the training data. As a result, it is still
unclear how to select the set of languages that leads
to the most effective multilingual training setup.

In this paper, we study multilingual fine-tuning
of language models with a diverse set of training
languages.1 In particular, we show that linguistics-
based language similarities are only weakly corre-
lated with cross-lingual transfer performance. Fig-
ure 1 illustrates a sample case in which neither

1Note that our proposed method is generic and could also
be applied for multilingual pre-training.



language family information (indicated by node
colors) nor similarity of language embeddings (in-
dicated by proximity in the vector space) is helpful
for finding languages that have a positive cross-
lingual transfer score with the target language.
Thus, prior information about the languages, such
as their language families or typological features,
alone is not enough for an effective multilingual
training. Instead, similarity measures that capture
additional information about the data and task be-
yond linguistics similarity may achieve better per-
formance. Wang et al. (2020), for instance, show
that gradient similarity across languages measured
along the optimization trajectory correlates with
language proximity and cross-lingual performance.

We draw inspiration from this observation. How-
ever, instead of projecting conflicting gradients
throughout the training process, we propose to
leverage the gradient similarity to group languages
with a branch-and-bound-like algorithm that opti-
mizes the overall similarity score of all languages.
This approach has the following advantages: (i) It
can be applied without any prior knowledge of the
languages or topics of the given datasets, (ii) it is
well correlated with downstream task performance
of the multilingual model, (iii) it finds the best
language groups from a global perspective, i.e., in-
stead of selecting source languages independently
of each other (which may create groups of mutually
interfering languages), we form each group based
on a criterion that evaluates the group as a whole.

In our experiments, we show the superior perfor-
mance of our grouping method compared to various
baseline approaches on three multilingual datasets
with different tasks and set the new state of the
art on AfriSenti, a sentiment analysis dataset in 12
low-resource African languages.

Furthermore, we extensively analyze our models
with a topic analysis, a correlation-based analy-
sis and an ablation study, revealing important in-
sights, for instance that the topic distribution of
the training data heavily affects multilingual train-
ing and that lower layers of transformer models
encode language-specific features while higher lay-
ers capture task-specific information. This con-
firms results from prior work (i.a., Raganato and
Tiedemann, 2018; Jawahar et al., 2019; Tenney
et al., 2019; Kovaleva et al., 2019) from another
(correlation-based) perspective.

The code base for GradSim is available online.2

2https://github.com/boschresearch/gradsim

2 Related Work

Multilingual and multi-task training. A grow-
ing number of research projects investigates mul-
tilingual training to cover a variety of languages,
including low-resource languages (Hu et al., 2020;
Lange et al., 2020; Hedderich et al., 2021; FitzGer-
ald et al., 2022). In the context of low-resource
sentiment analysis, Wang et al. (2023) recently use
the cross-lingual transfer score between pairs of lan-
guages to select source languages for multilingual
training. Our approach differs from these works
in that we investigate language interactions from a
global optimization perspective.

Considering each language as a separate task,
multilingual training can be treated as a multi-task
learning (MTL) problem (Ruder, 2017). A line of
existing work utilizes gradient-based techniques
to improve multi-task learning (Chen et al., 2018;
Sener and Koltun, 2018; Yu et al., 2020; Wang
et al., 2020). They show that negative cosine sim-
ilarity between gradients leads to negative inter-
ference for MTL optimization, and projecting out
the conflicting gradients can improve the optimiza-
tion dynamics. Our work follows this insightful
observation. However, in contrast to their work, we
propose to leverage multilingual gradients for lan-
guage grouping to ensure that gradients are aligned
in each language group.

Language similarity measures. In order to
group languages for multilingual training or trans-
fer learning, related work has proposed different
ways to estimate the similarity between languages,
e.g., leveraging the language family taxonomy (Tan
et al., 2019; Shaffer, 2021; Chronopoulou et al.,
2023; Snæbjarnarson et al., 2023) or represent-
ing languages as information-rich vectors based
on their typological or conceptual features (Littell
et al., 2017; Lin et al., 2019; Oncevay et al., 2020;
Liu et al., 2023).

Another line of works measures language simi-
larity based on embeddings from multilingual pre-
trained language models (mPLMs) (Raganato and
Tiedemann, 2018; Lange et al., 2021b; Chang et al.,
2022; Lin et al., 2023). Tan et al. (2019) and Shaf-
fer (2021), for instance, perform language grouping
for multilingual named entity recognition and neu-
ral machine translation based on embeddings. In
contrast to these studies, we propose to use the gra-
dient cosine similarity between languages as the
similarity measure for language grouping. This



model-based similarity measure reflects how each
language interacts in the optimization process, with
no need of any prior knowledge of the languages.

3 Method

In this section, we describe our proposed language
grouping approach and the general multilingual
training in which we apply its results. Note that
the gradient-based similarity estimation is purely
model-based, thus, can be applied to other settings,
e.g., multi-domain or multi-task problems, as well.

3.1 Step I: Gradient Similarities

Due to the high discrepancy among languages,
multilingual optimization often suffers from the
conflicting gradient issue (Wang et al., 2020; Xu
and Murray, 2022), i.e., gradients of different lan-
guages point into different directions. Previous
works show that gradient similarity is correlated
with model performance (Chen et al., 2018; Sener
and Koltun, 2018; Wang et al., 2020; Yu et al.,
2020). Inspired by this observation, we propose to
use gradient similarity for grouping languages.

Given a set of languages L = {l1, l2, . . . , lN},
we study the gradient similarities across languages
by training a multilingual model jointly on all
languages and measure the language gradients
G = {g1, g2, . . . , gN} along the optimization pro-
cess. To reduce computational costs, we average
language gradients first at the epoch level and cal-
culate the per-epoch gradient cosine similarity be-
tween languages. Then we average the gradient
similarity over all epochs. Finally, we get a gradient
similarity matrix S ∈ RN×N across N languages,
with si,j = cos(gi, gj) =

gi·gj
|gi||gj | .

Since it is very expensive to calculate the gra-
dient similarity based on the gradients w.r.t. all
parameters, we choose to only use the gradients
based on the classification layer of the model. An
analysis of gradients of different layers and abla-
tions studies can be found in Sections 5.2 and 5.3.

3.2 Step II: Language Grouping

Based on the pairwise similarity matrix S from
Step I, we next determine the best grouping into a
pre-defined number of K groups.

In particular, our goal is to find the K language
groups which (i) cover all languages of the given
language set L, and (ii) maximize the overall simi-
larity score of all languages, which is a reduction
from the Set-Cover problem. We solve it using the

branch-and-bound-like algorithm as in Standley
et al. (2020) and Fifty et al. (2021).3 The algorithm
evaluates different combinations of K language
groups under the constraint that each language is
included in at least one, but potentially multiple
groups. We finally select the language grouping
that leads to the highest overall similarity score.

Given Γ = {γ1, . . . , γK} as a potential grouping
result, we define the overall similarity score for Γ as∑N

i=1 Sim(li|Γ) where Sim(li|Γ) is the collective
similarity score of language li in its language group
γj ∈ Γ. The collective similarity score of li ∈ γj is
defined as the average of all pair-wise similarities
between li and the other languages in γj .

3.3 Steps III : Training and Inference

Given the language groups Γ from Step II, we train
one multilingual model per group γj ∈ Γ, using
the training data from the respective languages. For
inference, we select the appropriate multilingual
model for each target language and apply it to the
test data. If a target language li appears in more
than one group, we select the group with the highest
collective similarity score of li for inference.

4 Experiments

In this section, we describe our experimental set-
tings as well as our results for three tasks.

4.1 Tasks and Datasets

We experiment with the following three datasets
covering different languages as well as text classifi-
cation and sequence tagging tasks. (Dataset statis-
tics are given in Table 8 and 9 in Appendix A.)

AfriSenti (Muhammad et al., 2023a,b): This
shared task dataset provides a challenging testbed
for sentiment analysis: Both the languages (12
African languages) and the text genre (Twitter)
pose challenges to NLP models. To investigate
multilingual training results, we focus on the mul-
tilingual subtask of the shared task (Subtask B),
and report macro-weighted F1 scores following
Muhammad et al. (2023b).

WikiAnn (Pan et al., 2017): This dataset of-
fers automatically extracted labels for named entity
recognition (NER). Following Shaffer (2021), we
select 15 languages for our experiments and use
micro-averaged F1 as the evaluation metric.

3Alternatively, the binary integer program (BIP) solver
could be used as in Zamir et al. (2018).
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Figure 2: Overview of our proposed method GradSim for language grouping. (Step I) We train all languages in
one multilingual model to measure the gradient similarities across languages. (Step II) We determine the best K
language groups based on the similarity measure from the first step. (Step III) We train one language model on each
language group and deploy it for inference.

Universal Dependency (UD) treebank v1.2
(Nivre et al., 2016): We experiment with part-of-
speech (POS) tagging using the 17 Universal POS
labels. Following prior work (Yasunaga et al., 2018;
Lange et al., 2021a), we use 27 languages from the
dataset with 21 high-resource and 6 low-resource
languages and report accuracy for evaluation.

4.2 Training Details

For our experiments on AfriSenti, we use the pre-
trained AfroXLM-R large transformer (Alabi et al.,
2022), an XLM-R model adapted to African lan-
guages, as our base model. To measure language
gradients in Step I, we use 25% of the training data
in AfriSenti and set the batch size to 8 for compu-
tational efficiency. For multilingual training and
inference (Step III ), we use all training data and
a batch size of 32. In both stages, we finetune the
model with a learning rate of 1e-5 and set the maxi-
mum sequence length to 128. We set the number of
language groups to K = 4 which equals the num-
ber of language families in the dataset. We further
provide a comparison of different K in Section 5.3.

For the NER task, we follow the training setup
used in Shaffer (2021) for a fair comparison.
Specifically, we use XLM-R as our base model
and finetune it for 3 epochs. We set the batch size
to 20 with a learning rate of 2e-5 and a max se-
quence length of 300. Following Shaffer (2021),
we set the number of language groups to K = 4.

For the POS tagging task, we use the XLM-R
model as well and set the training epoch to 20.
We use a batch size of 8, a learning rate of 2e-5
and a maximum sequence length of 128. Here,
we specify K = 6 for language grouping, as 6

language families are covered by the 27 languages
we study.

On all three datasets, we use the AdamW opti-
mizer (Loshchilov and Hutter, 2017). The training
was performed on Nvidia A100 GPUs.4 All re-
ported results are averaged over 5 random seeds.

4.3 Baselines
Besides a monolingual model (trained only on the
target language) and a purely multilingual model
(trained on all available languages), we consider
the following baselines for language grouping that
have been presented by prior work:

Language family. We group languages based
on their language family information and train one
multilingual model per language family. Language
family-based grouping is also studied by, i.a., Tan
et al. (2019); Shaffer (2021); Chronopoulou et al.
(2023); Snæbjarnarson et al. (2023).

Typological similarity. Languages can be rep-
resented by typological features, e.g., the syn-
tax, phonology or inventory features. Using the
lang2vec tool and the URIEL knowledge base (Lit-
tell et al., 2017), we retrieve language vectors and
use the pairwise distances among them as the simi-
larity measure of our algorithm. This is similar to
Lin et al. (2019) and Oncevay et al. (2020).

Embedding distance. Multilingual pretrained
language models (mPLMs) also encode language-
specific information (Raganato and Tiedemann,
2018; Chang et al., 2022). Tan et al. (2019) and
Shaffer (2021) use mPLM-based language embed-
dings to determine language similarities for lan-
guage grouping. Following this idea, we compute

4All experiments ran on a carbon-neutral GPU cluster.



Method avg∗ am∗ dz ha ig∗ kr∗ ma∗ pcm pt∗ sw∗ ts twi yo∗

Oracle upper bound 71.46 69.87 69.45 80.15 78.48 70.72 52.41 68.67 71.85 61.59 55.42 64.79 75.52

Multilingual 59.97 51.99 56.62 66.10 67.64 61.03 43.07 55.70 67.37 58.18 42.86 49.94 62.87
Monolingual 68.29 49.00 57.16 80.36 79.55 70.72 48.73 68.24 66.12 62.50 44.66 54.56 75.09

Language family 66.19 67.84 68.54 78.88 68.16 61.10 51.10 67.32 64.88 58.38 47.04 54.60 64.36
Typological similarity 68.93 66.10 69.27 79.38 78.00 70.09 49.17 63.81 66.12 63.23 46.79 61.25 73.95
Embedding dis. (PLM) 68.81 72.09 67.20 71.57 74.49 71.89 51.49 69.09 67.32 62.50 52.01 60.88 75.09
Embedding dis. (FT) 69.62 59.69 67.36 79.78 78.71 69.99 50.01 68.46 66.43 62.62 49.20 64.01 75.07
GradSim (ours) 71.34 66.11 67.90 79.97 79.55 72.12 53.68 68.40 72.30 63.05 50.36 63.46 75.09

Table 1: Results on AfriSenti, a benchmark dataset for sentiment analysis on low-resource African languages. Bold
shows best results, underline highlights second-best results per language and on average. * indicates the settings
with statistically significant improvements (p-value < 0.05) using GradSim compared to Embedding dis. (FT), the
overall second-best system.

Method Average F1

SOTA Single model 74.08
GradSim+TAPT Single model (ours) 75.29

SOTA Ensemble 75.06
GradSim+TAPT Ensemble (ours) 75.34

Table 2: Results on AfriSenti in comparison to the state
of the art (Wang et al., 2023). We apply task-adaptive
pretraining (TAPT) and ensemble methods on top of
GradSim for a fair comparison to the state of the art.

sentence embeddings using the pretrained encoder
from our base model and average sentence embed-
dings of the same language. Then, we use the em-
bedding distance across languages as the similarity
measure in Step I (denoted by Embedding distance
(PLM)). As an alternative, we also consider embed-
dings from the language model fine-tuned on the
task (denoted by Embedding distance (FT)).

Oracle upper bound. As an upper bound,
we group languages based on the post-hoc cross-
lingual transfer performance. The cross-lingual
transfer performance is often used for source lan-
guage selection as in Adelani et al. (2022) and
Wang et al. (2023). We consider this an oracle
upper bound as it is a direct indication of how
knowledge learned from one language affects the
performance on another language. Note that this ap-
proach is computationally expensive as it requires
N×N transfer experiments for N languages, while
our gradient-based approach only needs a single
training run for collecting gradient information.

4.4 Results

Text classification. Table 1 shows our experimen-
tal results on the AfriSenti dataset (per language
and on average). While for a few languages, a
grouping based on our baseline approaches per-
forms best (e.g., embedding distance for am and

pcm, or typological similarity for sw), GradSim
performs best or second best for most languages
and, as a result, best on average. Its average result
comes very close to the oracle upper bound, which,
in contrast to our approach, requires prior knowl-
edge about cross-lingual transfer performance.

We also compare GradSim with the state-of-the-
art method on AfriSenti (Wang et al., 2023), which
uses AfroXLM-R with task-adaptive pretraining
(TAPT) (Gururangan et al., 2020) and performs
transfer learning after selecting the best source lan-
guages based on their cross-lingual transfer score.
For a direct comparison, we also apply TAPT and
use GradSim to group languages for multilingual
training. As shown in Table 2, GradSim sets the
new state of the art on AfriSenti. It is superior to the
previous approach of Wang et al. (2023) that only
considers the pairwise transfer scores, neglecting
possible interactions of different source languages.
Instead, GradSim maximizes the overall gradient
similarities from a global perspective.

Sequence tagging. Table 3 provides our results
for multilingual named entity recognition. We re-
port the state-of-the-art results from Shaffer (2021)
as baseline results. Our approach GradSim out-
performs the prior state of the art on most high-
resource languages and all low-resource languages,
again leading to the best overall results.

Our results for POS tagging are provided in
Table 4. GradSim outperforms multilingual and
monolingual training without language grouping as
well as language grouping based on other metrics.
It performs best on average over the low-resource
languages as well as on average over all languages.

Given the results on sequence tagging tasks, we
find that low-resource languages benefit more from
language grouping. For high-resource languages,
additional training sources from other languages



NER Multi. Mono. Family Embed.
(prior)

GradSim
(ours)

high-resource

ar∗ 86.65 85.25 84.92 85.25 88.02
he 84.21 84.51 82.47 84.83 84.06
da∗ 90.00 87.57 89.64 90.49 91.65
de 84.42 82.42 84.18 85.73 87.27
en 81.97 77.91 81.28 83.37 83.31
es∗ 89.59 82.01 88.87 89.90 90.85
fr 88.22 82.83 87.78 89.79 89.54
hi∗ 87.30 84.04 85.51 87.17 88.25
it 92.27 86.03 88.60 90.52 90.72
ru∗ 88.32 88.18 87.77 88.55 88.70
ko 85.97 86.54 84.66 86.91 85.92
ja∗ 71.08 66.83 66.83 71.40 75.56
zh 79.36 73.66 73.66 79.12 75.49

avg∗ 85.34 82.14 83.55 85.62 86.10

low-resource

sw∗ 88.22 63.30 55.11 90.13 90.22
yo∗ 77.24 7.74 21.81 85.33 86.22

avg∗ 82.73 35.52 38.46 87.73 88.22

avg (all)∗ 84.99 75.92 77.54 85.90 86.39

Table 3: Results on WikiAnn, a NER benchmark, in
micro F1. The numbers of the four baseline / previous
state-of-the-art methods are taken from Shaffer (2021)
and micro-averaged over the different classes. * indi-
cates the settings with statistically significant improve-
ments using GradSim compared to Embed. (prior), the
second-best system. Further baseline results are given
in Table 10 in Appendix B for space reasons.

have a less prominent impact when enough in-
language training data is available. It highlights the
value of multilingual learning with well-suited lan-
guages to enhance the performance of low-resource
languages, providing a key strategy for advancing
future low-resource NLP research.

Significance tests. We run permutation-based
significance tests following Dror et al. (2018) with
a significance level of 0.05 between GradSim and
the respective second-best system on all three
datasets. In Tables 1, 3 and 4, settings with
statistically significant improvements when using
GradSim are marked with *. The results show that
GradSim is significantly better than the second-best
system in 32 out of 37 single language settings
where GradSim outperforms the second-best sys-
tem across three datasets. In addition, its average
performance across all languages is significantly
better than the other systems on all three datasets.

5 Analysis

To analyze the behavior of the model, we perform
the following analyses on the AfriSenti dataset: A
qualitative analysis of the data in order to better un-

Multi. Mono. Family Embed.
(FT)

GradSim
(ours)

high-resource

bg∗ 99.42 99.34 99.21 99.38 99.40
cs∗ 99.00 99.00 98.91 98.99 99.01
da∗ 98.22 98.66 98.12 98.06 98.55
de 94.47 94.72 94.43 94.59 94.43
en 97.06 97.34 96.88 97.25 97.18
es 97.35 97.29 97.18 97.23 97.21
eu 95.95 96.01 96.01 96.04 96.09
fa∗ 97.30 97.31 97.20 97.35 97.41
fi∗ 97.51 97.64 97.61 97.51 97.70
fr∗ 96.58 96.48 96.21 96.40 96.67
he∗ 97.39 97.25 97.25 97.31 97.43
hi 97.56 97.62 97.49 97.64 97.55
hr 97.66 97.67 97.56 97.65 97.57
id 91.16 91.78 91.78 91.56 91.20
it∗ 98.60 98.68 98.45 98.51 98.58
nl∗ 93.76 93.94 93.67 93.80 93.88
no∗ 98.88 99.03 98.91 98.95 99.01
pl∗ 98.58 98.56 98.42 98.47 98.52
pt∗ 98.49 98.51 98.43 98.44 98.54
sl∗ 98.94 99.03 98.90 98.96 99.02
sv 98.86 98.71 98.77 98.81 98.81

avg∗ 97.27 97.36 97.21 97.28 97.32

low-resource

el∗ 98.56 98.41 98.20 98.57 98.59
et∗ 95.34 94.76 95.46 95.27 95.78
ga∗ 93.34 92.49 93.32 93.10 93.52
hu 96.82 96.87 97.01 97.14 96.94
ro 95.74 94.65 95.32 95.74 95.14
ta∗ 85.63 84.55 84.55 87.16 88.32

avg∗ 94.24 93.62 93.98 94.50 94.72

avg (all)∗ 96.60 96.53 96.49 96.66 96.74

Table 4: Results on the UD POS tagging dataset in ac-
curacy. * indicates the settings with statistically signifi-
cant improvements using GradSim compared to Embed.
(FT), the second-best system. Further baseline results
are provided in Table 11 in Appendix B.

derstand differences coming from data peculiarities
(Section 5.1), a correlation analysis to explain why
some grouping methods work better than others
(Section 5.2), and an ablation study to investigate
the impact of our design choices (Section 5.3).

5.1 Topic Analysis

Although data analysis is valuable for research
progress, it is challenging for foreign languages.
Therefore, we choose a semi-automatic approach
involving machine translation and manual inspec-
tion for better understanding the input data of our
models: For each language, we first extract the
50 most relevant keywords via a term frequency-
inverse document frequency (TF-IDF) method.
Then, we use the pygoogletranslate API5 to trans-
late the keywords into English and remove dupli-
cate words and stop words. Table 6 provides exem-

5https://github.com/Saravananslb/
py-googletranslation

https://github.com/Saravananslb/py-googletranslation
https://github.com/Saravananslb/py-googletranslation


Grouping methods
Pearson correlation coefficient

↔ transfer score ↔ typological similarity ↔ topic similarity

Baseline

Cross-Transfer Score (oracle) 1 0.353 0.5079
Language Family 0.0869 0.5278 0.2680
Typological similarity 0.3530 1 0.0353
Embedding distance (PLM) 0.4029 0.7696 -0.2383
Embedding distance (FT) 0.4667 0.7240 -0.0252

Gradient similarity wrt. different layers (from deep to shallow)

Classification layer 0.6963 0.3944 0.4749
Encoder layer 23 0.6485 0.6377 0.1486
Encoder layer 21 0.5526 0.7811 0.1134
Encoder layer 18 0.4462 0.8181 -0.0601
Encoder layer 15 0.4602 0.8329 0.1083
Encoder layer 12 0.4532 0.8566 -0.0731
Encoder layer 6 0.4542 0.8586 -0.0342
Encoder layer 0 0.4526 0.8526 0.0721

Table 5: Results of our correlation analysis on the AfriSenti dataset.

Language (family) Keywords

Swahili god, thank you, major, national,
(Niger-Congo) minister, better, package, service,

continue, dr, education, citizens,
news, world, construction, people,
region, police, state, president, fa-
ther, army

Amharic flower, city, season, a matter,
(Afro-Asiatic) government, discussion, decem-

ber, press release, district, informa-
tion, administration, public, gov-
ernment, the racist, man, poison

Xitsonga mozambique, listen, wake up,
(Niger-Congo) awake, live, conform, sugar, home,

lake, leave, speed, connect, come

Table 6: Exemplary keywords from AfriSenti tweets
of different languages (reduced to a subset for space
reasons, full set is provided in Appendix D (Table 15)).

plary results for three languages of the AfriSenti
dataset. The complete set of keywords for all lan-
guages is provided in Appendix D (see Table 15).

While the keywords extracted for Swahili (sw)
and Amharic (am) are mainly centered around po-
litical and administrative topics, e.g., national, min-
ister, education, government etc, the keywords for
Xitsonge (ts) are more related to every-day life as-
pects. The multilingual model performance reveals
that indeed Swahili and Amharic can effectively be
trained together while Swahili and Xitsonga rather
harm each other, even though Swahili and Xitsonga
belong to the same language family and Swahili
and Amharic do not. When looking at the language
grouping results, GradSim indeed groups sw and
am together (see Table 12 in Appendix D), thus,
is able to capture their topical similarity, while a

language family-based grouping would cluster sw
and ts into the same group.

5.2 Correlation Analysis

Table 5 provides the results of our correlation anal-
ysis that we perform on the AfriSenti dataset. In
particular, we compute the Pearson correlation co-
efficient between the different grouping methods
(similarity measures) that we study and different
characteristics, such as model-specific character-
istics (measured by cross-lingual transfer score),
language-specific characteristics (measured by ty-
pological similarity) and topic-specific characteris-
tics (measured by keyword embedding distance).

From the results, we can draw a number of inter-
esting conclusions, namely:

(i) The transfer score is not correlated with lan-
guage family information and only weakly corre-
lated with embedding-based similarity measures
often used in related work. For gradient similar-
ity, we see considerably higher correlation values,
supporting our proposal of using this similarity
measure for language grouping.

(ii) There is a relatively weak correlation be-
tween the cross-lingual transfer score and the ty-
pological similarity, while language family and
embedding-based similarity measures show a high
correlation with typological language similariy.
This indicates that these similarity measures cap-
ture the linguistics-based language information
well, which, however, does not translate into better
transfer performance. Similar to the oracle mea-
sure (transfer score), gradient similarity based on
the classifier parameters is only weakly correlated



with typological language similarity.
(iii) Based on the keywords extracted for our

analysis in Section 5.1, we retrieve keyword em-
beddings from the pretrained model encoder and
average them for each language. We then compare
the similarities of the keyword-based language em-
beddings with our different similarity measures
using Pearson correlation. We find that they are
only weakly correlated with language family infor-
mation and even weakly negatively correlated with
embedding distances. However, the correlation
with the cross-transfer score and our proposed gra-
dient similarity is larger, indicating that the gradient
similarity can indeed pick up the topic information
of the data.

(iv) While higher layers are higher correlated
with task performance, lower layers show a higher
correlation with typological distance. This in-
dicates that lower layers encode rather general
language-specific information while higher layers
capture task-related information.

5.3 Ablation Study

Gradients from different layers. Table 7 shows
an ablation study of our model. The main design
choice of our approach is the position in the model
where to take the gradients. In our analysis, we
compare model performance when using gradients
from different layers. We see a clear trend that
higher layers are better suited than lower layers. In
particular, taking the gradients directly from the
classification layers leads to the best results.
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60

65
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Figure 3: Ablation study of different number of groups
on AfriSenti: average F1 w.r.t. number of groups.

Number of language groups. For our experi-
ments, we choose the number of language groups
K to be the same as the number of language fam-
ilies covered in the datasets.6 However, K is a
hyperparameter of our method. Therefore, we in-

6Except for WikiAnn, where we set K to the same number
as prior work (Shaffer, 2021) for a fair comparison.

vestigate the performance for K ∈ {1 . . . 8} in
Figure 3. Choosing K = 2 can already improve
the performance compared to purely multilingual
training (K = 1). Until K = 4, the performance
further improves and then converges for larger K.

Gradient from layer Task performance

Classification layer 71.34
Encoder layer 23 69.95
Encoder layer 21 69.43
Encoder layer 18 69.21
Encoder layer 15 68.91
Encoder layer 12 69.19
Encoder layer 6 69.19
Encoder layer 0 68.22

Table 7: Ablation study of gradients from different lay-
ers on the AfriSenti dataset.

6 Discussion

In this section, we summarize our main findings.

Language similarity is not enough to determine
transfer suitability. When sharing knowledge
across languages, the information about linguistics-
based language similarity (e.g., whether the lan-
guages come from the same language family or
how languages are typologically similar to each
other) is not enough for optimal performance. This
observation is in line with the findings by Tan et al.
(2019), Shaffer (2021) and Malkin et al. (2022)
that languages from the same family may still ex-
hibit distinct linguistic features and, thus, language-
family based grouping can enhance model perfor-
mance only to a certain extent. In addition, we find
that there are other aspects that will affect multilin-
gual model performance and, therefore, need to be
taken into account, such as the topical distribution
of the data.

Gradient-based method does not require any
prior knowledge. Our proposed gradient-based
approach for grouping languages is a pure model-
based approach, thus, does not require any prior
knowledge about the language, task or data. As a
result, it can be successfully applied, even when
the data distribution (e.g., topical distribution) is
unknown (e.g., because we are dealing with foreign
languages). While our current work only presents
results for language grouping for multilingual mod-
els, the method itself is more general and can be
applied to other settings as well, such as multi-task
learning or multi-domain setups.



Lower layers capture language, upper layers
task information. Adding to previous work on
analyzing transformer-based pretrained language
models (Raganato and Tiedemann, 2018; Jawahar
et al., 2019; Tenney et al., 2019), our correlation
analysis shows that gradient similarity between lan-
guages from lower layers are more correlated to
language-specific distances, i.e., low layers seem to
encode language-specific information, while gradi-
ent similarity from upper layers are more correlated
to task-specific performance, i.e., upper layers tend
to capture task-specific information.

7 Conclusion

In this paper, we addressed the challenging prob-
lem of grouping languages for effective multi-
lingual training. We proposed a gradient-based
grouping approach and showed in our experiments
that it is better correlated to cross-lingual trans-
fer performance than language family or language
embedding-based grouping. In our analysis, we
identified topical distribution differences as one
potential challenge that can be addressed effec-
tively by our approach. Furthermore, our corre-
lation analysis confirmed results from prior work
that lower layers of transformer-based pretrained
models seem to encode language-specific features,
while upper layers capture task-specific informa-
tion. Our method shows superior performance com-
pared to a variety of baseline methods for language
grouping on three diverse datasets and, in particu-
lar, sets the new state of the art on a multilingual
sentiment analysis benchmark dataset consisting of
low-resource African languages.

Limitations

One limitation of our work is the scope of evalu-
ation. While we performed experiments on three
diverse text classification and sequence tagging
tasks, GradSim is generally applicable to a wide
range of tasks and could thus be evaluated on even
further tasks.

Besides, our experiments currently focus on mul-
tilingual settings and datasets. Experiments for
multi-domain and multi-task settings are outside
the scope of this work, however, an interesting di-
rection for future work.

Finally, compared to the large number of lan-
guages in the world, the set of languages in our
work is still limited and, thus, our results might not
be representative for all languages of the world.

However, we chose the datasets for our experi-
ments with the aim of covering a broad variety
of languages, including African languages which
are typically under-explored in NLP research.

Ethics Statement

Our work focuses on multilingual and low-resource
settings. For instance, we investigate our models
on African languages which are typically under-
represented and under-explored in NLP research.
Including them into NLP research is important
from an ethical point of view.
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A Dataset Information

Table 8 provides statistics of AfriSenti, the bench-
mark dataset we chose for our text classification ex-
periments. Table 9 gives language information for
the WikiAnn and Universal Dependencies datasets.
We selected 15 languages from WikiAnn for NER
following prior work (Shaffer, 2021) and 27 lan-
guages for POS tagging following Yasunaga et al.
(2018); Lange et al. (2021a).

Family Language
Dataset

Train Dev Test

Afro-Asiatic Amharic (am) 5,985 1,498 2,000
Algerian Arabic (dz) 1,652 415 959
Hausa (ha) 14,173 2,678 5,304
Moroccan Arabic (ma) 5,584 1,216 2,962

English-Creole Nigerian Pidgin (pcm) 5,122 1,282 4,155

Indo-European Mozambican
Portuguese (pt) 3,064 768 3,663

Niger-Congo Igbo (ig) 10,193 1,842 3,683
Kinyarwanda (kr) 3,303 828 1,027
Swahili (sw) 1,198 454 749
Xitsonga (ts) 805 204 255
Twi (twi) 3,482 389 950
Yoruba (yo) 8,523 2,091 4,516

Table 8: Language information and dataset statistics
of AfriSenti. 12 African languages from 4 language
families are included in our study.

B Additional Baseline Experimental
Results

Here we provide the experimental results on the
WikiAnn and UD POS tagging dataset with group-
ing methods based on cross-lingual transfer score,
typological language similarity and language em-
beddings distance.

Comparing GradSim to other baseline methods
in Table 10 and 11 , we can draw similar conclu-
sions as in Section 4.4: First, GradSim achieves the
best average performance and performs especially
well in low-resource languages, revealing the im-
portance of multilingual learning with suitable sets
of source languages for low-resource languages.
Additionally, GradSim comes very close to the ora-
cle upper bound without any prior knowledge about
the cross-lingual transfer performance.

C Language Grouping Reults

In this section, we provide further details in Table
12, 13 and 14 of our language grouping results
with the best language groups based on different
similarity measures on the three datasets.

WikiAnn NER dataset

Family Language

Afro-Asiastic Arabic (ar)
Hebrew (he)

Indo-European Danish (da)
German (de)
English (en)
Spanish (es)
French (fr)
Hindi (hi)
Italian (it)
Russian (ru)

Niger-Congo Swahili (sw)
Yoruba (yo)

Koreanic Korean (ko)

Japonic Japanese (ja)

Sino-Tibetan Mandarin (zh)

UD POS tagging

Family Languages

Indo-European Bulgarian (bg)
Czech (cd)
Danish (da)
German (de)
Greek (el)
English (en)
Spanish (es)
Persian (fa)
French (fr)
Irish (ga)
Hindi (hi)
Croatian (hr)
Italian (it)
Dutch (nl)
Norwegian (no)
Polish (pl)
Portuguese (pt)
Romanian (ro)
Slovenian (sl)
Swedish (sv)

Basque Basque (eu)

Uralic Finnish (fi)
Estonian (et)
Hungarian (hu)

Afro-Asiastic Hebrew (he)

Austronesian Idonesian (id)

Dravidian Tamil (ta)

Table 9: Language information of WikiAnn and Uni-
versal Dependencies datsets for NER and POS tagging
tasks, respectively.

D Keyword extraction results

In Table 15, we give the full set of keywords ex-
tracted from the AfriSenti dataset of 12 African
languages.



Oracle upper bound Typological similarity Embedding dis (PLM & FT) GradSim (ours)

high-resource

ar 88.43 87.40 88.38 88.02
he 85.22 84.12 84.88 84.06
da 92.36 92.22 92.17 91.65
de 88.24 88.01 87.89 87.27
en 83.98 83.75 83.42 83.31
es 91.58 91.92 91.38 90.85
fr 89.72 90.13 89.83 89.54
hi 88.99 86.20 89.00 88.25
it 91.13 91.16 90.84 90.72
ru 88.70 88.71 88.39 88.70
ko 87.03 84.61 86.99 85.92
ja 67.74 67.80 67.33 75.56
zh 76.43 76.72 75.93 75.49

avg 86.12 85.60 85.88 86.10

low-resource

sw 90.37 78.79 89.70 90.22
yo 86.22 61.91 6.20 86.22

avg 88.30 70.35 47.95 88.22

avg (all) 86.41 83.56 80.82 86.39

Table 10: Additional experimental results on the WikiAnn dataset. We compare the grouping performance based on
different language simialrity measures. We have the same language grouping results for Embedding distance (PLM)
and Embedding distance (FT) (See Table 13) and merge them in one column.

Oracle
upper bound

Typological
similarity

Embedding
distance (PLM)

Embedding
distance (FT)

GradSim
(ours)

high-resource

bg 99.42 99.40 99.35 99.37 99.40
cs 99.01 98.99 99.01 98.99 99.01
da 98.56 98.04 98.09 98.07 98.55
de 94.68 94.61 94.36 94.55 94.43
en 97.36 96.92 97.16 97.26 97.18
es 97.36 97.35 97.23 97.25 97.21
eu 96.06 96.01 95.98 96.07 96.09
fa 97.34 97.24 97.35 97.33 97.41
fi 97.66 97.50 97.63 97.53 97.70
fr 96.59 96.40 96.51 96.45 96.67
he 97.44 97.24 97.29 97.30 97.43
hi 97.60 97.60 97.61 97.63 97.55
hr 97.68 97.40 97.74 97.65 97.57
id 91.36 91.75 91.36 91.59 91.20
it 98.60 98.56 98.58 98.51 98.58
nl 94.01 93.53 93.72 93.79 93.88
no 99.04 98.91 98.92 98.96 99.01
pl 98.59 98.54 98.49 98.49 98.52
pt 98.56 98.56 98.49 98.42 98.54
sl 99.03 98.87 99.02 98.96 99.02
sv 98.74 98.88 98.80 98.83 98.81

avg 97.37 97.25 97.27 97.29 97.32

low-resource

el 98.62 98.42 98.50 98.56 98.59
et 95.58 95.65 95.04 95.26 95.78
ga 93.50 93.46 93.28 93.08 93.52
hu 96.99 96.90 97.39 97.14 96.94
ro 95.20 95.92 94.76 95.79 95.14
ta 88.33 86.16 88.04 87.02 88.32

avg 94.70 94.42 94.50 94.48 94.72

avg (all) 96.77 96.62 96.66 96.66 96.74

Table 11: Additional experimental results on the UD POS tagging dataset.



Method Language groups

Oracle upper bound

group 0 am, ha, kr, ma, pt, sw
group 1 dz, pcm
group 2 ig
group 3 pcm, ts, twi, yo

Language Family

group 0 am, dz, ha, ma
group 1 ig, kr, sw, ts, twi, yo
group 2 pcm
group 3 pt

Typological dis.

group 0 am, dz, ha, ig, ma, sw,
twi, yo

group 1 kr
group 2 pcm, ts
group 3 pt

Embedding dis. (PLM)

group 0 am, dz, ma, pt, twi
group 1 ha, ig, kr, pcm, ts, twi
group 2 sw
group 3 yo

Embedding dis. (FT)

group 0 am, kr, pt, sw
group 1 dz, ma, pcm
group 2 ha, ig, ma, ts, yo
group 3 ma, ts, twi

GradSim (ours)

group 0 am, ha, kr, ma, pt, sw
group 1 dz, pcm, ts, twi
group 2 ig
group 3 yo

Table 12: Language grouping results on AfriSenti
dataset. Unbolded languages are the source-only lan-
guages in the group, i.e., they only participate in the
multilingual training but are evaluated in another lan-
guage group during inference (details see Section 3.2).

Method Language groups

Oracle upper bound

group 0 ar, fr, sw, yo
group 1 he, da, de, en, es, hi, it, ko
group 2 ja
group 3 ru, zh

Language Family

group 0 ar, he
group 1 da, de, en, es, fr, hi, it, ru
group 2 sw, yo
group 3 ko
group 4 ja
group 5 zh

Typological dis.

group 0 ar, he
group 1 da, de, en, es, fr, it, ru
group 2 sw, yo
group 3 hi, ko, ja, zh

Embedding dis. (PLM)

group 0 ar, en, es, fr, hi, it, sw
group 1 he, da, de, ru, ko
group 2 ja, zh
group 3 yo

Embedding dis. (FT)

group 0 ar, en, es, fr, hi, it, sw
group 1 he, da, de, ru, ko
group 2 ja, zh
group 3 yo

GradSim (ours)

group 0 ar, en, es, sw, yo
group 1 he, da, de, ko, ja
group 2 fr, hi, it, ru
group 3 zh

Table 13: Language grouping results on the WikiAnn
dataset. The 15 languages we study covers 6 language
families, while we use K = 4 numbers of groups for
our experiment following prior work Shaffer (2021) for
a fair comparison.

Method Language groups

Oracle upper bound

group 0 bg, de, fa, pl, sl, sv, el

group 1
cs, da, en, es, fr, hr, it,
no, pt, ga, ro, eu, fi, et,
hu, he

group 2 hi
group 3 id
group 4 nl
group 5 ta

Language Family

group 0
bg, cs, da, de, en, es, fa,
fr, hi, hr, it, nl, no, pl,
pt, sl, sv, el, ga, ro

group 1 eu
group 2 fi, et, hu
group 3 he
group 4 id
group 5 ta

Typological dis.

group 0
bg, cs, da, de, en, es, fi,
fr, hr, it, nl, no, pl, pt,
sl, sv,el, et, ga, hu, ro

group 1 eu
group 2 fa
group 3 he
group 4 id
group 5 hi, ta

Embedding dis. (PLM)

group 0 bg,nl

group 1 cs, da, de, en, it, no, pl,
pt, sv, fi, id

group 2 es, fa, hi, hr, el
group 3 fr, he, ta
group 4 ga, eu, et
group 5 sl, ro, hu

Embedding dis. (FT)

group 0 bg, de, fa, nl, pl, sl, sv,
el

group 1 cs, da, hr, it, no, ro, hu
group 2 en, es, fr, pt, he
group 3 hi
group 4 ga, eu, fi, et
group 5 id, ta

GradSim (ours)

group 0 bg, cs, pt, ro, eu, hu, he
group 1 da, de, sv, fi, et
group 2 en, es, fr, hi, it, id
group 3 fa, pl, el
group 4 hr, nl, ta
group 5 no, sl, ga

Table 14: Language grouping results on the Universal
Dependency POS tagging dataset.



Languages Keywords

am flower, city, season, a matter, government, discussion, december, press release, district, information,
administration, public, government, the racist, man, poison

dz advantage, god, on my mind, welcome, my lord, dramatically, from, i swear, the people, , sugar,
complain, we manage, overwhelming, i was overwhelmed, wicked, the incident, need, cash, poor

ha ameen, safe, bring, amen, lord, bless you, fight, money, now, ai, whether, month, nonsense

ig love, good, bless, husband, god, happy, birthday, leader, glory, king, thank you, sustain, glory, jesus,
money, people, crazy, power, mouth, people, problem, dug, pieces, down, stupid, shut up, devil, fear,
kill, call, poison, anger

kr very, good, Rwanda, god, good, peace, day, best, thank you, lord, together, comfort, under, discus-
sion, news, plan, president, problem, person’, bad, child, now, woman

ma god, justice, for you, thanks, upon you, amazing, regards, good luck, congrats, blessed, development,
one thousand, cave, between, facing, good, awake, president, facing, good, awake, president, special,
causes, minister, film, desert, causes, minister, film, desert

pcm you, love, fine, god, sweet, my, baby, fit, bless, thank, today, hustle, rush, happy, enjoy, like, even,
life, no, say, like, person, people, pain, go, even

pt no, say, like, them, again, person, want, people, you all, use, pain, why, god, lord, eternal, gospel, sin,
Christ, church, earth, repentance, Jesus, name, message, June, worse, nothing, people, unfortunately,
problem

sw god, thank you, major, national, minister, better, package, service, continue, dr, education, citizens,
news, world, construction, people, region, police, state, president, father, army

ts mozambique, listen, wake up, awake, live, conform, sugar, home, lake, leave, speed, connect, come

twi mother, god, thousand, money kill, sleep, yes, a little, even, why, who, stop, team, good, father,
word, say, that

yo all, god, give, good, day, lord, come, amen, how, that, know, put, son, word, may, want, who, her,
become, go

Table 15: Keyword extraction results.


