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ABSTRACT

Unlike traditional vision-only models, vision language models (VLMs) offer an
intuitive way to access visual content through language prompting by combining
a large language model (LLM) with a vision encoder. However, both the LLM
and the vision encoder come with their own set of biases, cue preferences, and
shortcuts, which have been rigorously studied in uni-modal models. A timely
question is how such (potentially misaligned) biases and cue preferences behave
under multi-modal fusion in VLMs. As a first step towards a better understanding,
we investigate a particularly well-studied vision-only bias - the texture vs. shape
bias and the dominance of local over global information. As expected, we find that
VLMs inherit this bias to some extent from their vision encoders. Surprisingly,
the multi-modality alone proves to have important effects on the model behavior,
i.e., the joint training and the language querying change the way visual cues are
processed. While this direct impact of language-informed training on a model’s
visual perception is intriguing, it raises further questions on our ability to actively
steer a model’s output so that its prediction is based on particular visual cues of
the user’s choice. Interestingly, VLMs have an inherent tendency to recognize
objects based on shape information, which is different from what a plain vision
encoder would do. Further active steering towards shape-based classifications
through language prompts is however limited. In contrast, active VLM steering
towards texture-based decisions through simple natural language prompts is often
more successful.

Texture Bias

Shape: Elephant
Texture: Bottle

Shape Bias
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Figure 1: Language can be used to steer visual cue preferences (biases) in vision language models
(VLMs). Here we illustrate the (visual) texture/shape bias (Geirhos et al., 2019) of some exemplary
VLMs, and highlight the steerability of InternVL-Chat 1.1 (Chen et al., 2024) through the
processing of vision and text inputs (prompts).

1 INTRODUCTION

As the old adage goes, all models are wrong, but some are useful. Similarly, recent machine learning
models have proven to be very useful in practice although we know their decisions to be impacted by
specific biases, such as cue preferences misaligned with human perception and shortcuts (Geirhos
et al., 2020a). Some of these cue biases are particularly misaligned in traditional, uni-modal models
and often reveal fundamental differences in the decision function compared to humans (Geirhos et al.,
2019; Subramanian et al., 2024; Wang et al., 2020; Buolamwini & Gebru, 2018; Raji & Buolamwini,
2019). However, the current generation of deep learning models is increasingly multi-modal, for
example, by fusion of large language models (LLMs) with modality-specific encoders (OpenAI,
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2023; Alayrac et al., 2022; Huang et al., 2023). On the one hand, this approach allows for an exciting
array of applications that can be defined at inference via prompts in natural language. On the other
hand, the once well-studied biases are now combined in multi-modal fusion, leaving open questions
on how and if the specific biases interact.

Specifically for vision language models (VLMs) we are therefore asking if we can talk models into
seeing the world differently - i.e., to what extent does the LLM-based multi-modal fusion change the
cues predominantly used for image classification and, furthermore, can we utilize natural language
prompts to override the inductive biases of vision encoders. If language is indeed able to influence a
vision-only bias, this may offer the possibility of aligning model behavior (with human behavior)
using intuitive language prompting.

In general, measuring biases in the visual cues used by a model to make a particular prediction is
hard. While we assume that there is a multitude of cue biases learned in vision models, only a few of
them are harmful or misaligned1. An example of a benign bias would be the "foreground" bias, i.e.,
models mostly classify images by their foreground objects. Similarly, objects in the image center are
usually perceived to be more important than objects in the periphery. These biases follow human
intuition and have therefore not been causing much controversial discussion. This is in contrast to the
texture vs. shape bias (Geirhos et al., 2019) - one of the best-studied cue biases in object recognition
models (Hermann et al., 2020; Shi et al., 2020; Islam et al., 2021; Benarous et al., 2023; Naseer et al.,
2021; Subramanian et al., 2024). It states that humans predominantly recognize objects in images
by their shape (96% shape over texture decisions), whereas vision models strongly prioritize texture
cues and discount the object’s shape often. Machine perception is thus at odds with human intuition,
even if the model accuracy is high.

We are the first to provide a large-scale study for VLMs for which we investigate the texture/shape
bias in object recognition in visual question answering and image captioning. Our investigation
shows that the texture bias is by default far less pronounced in VLMs than in most previously studied
vision-only models. As shown in Fig. 1, VLMs decide by shape more often than by texture - albeit
not matching the human shape bias (96%). Further, we find that by using biased instructions, we
can steer the model output to some extent in both directions, toward a texture or shape bias. This
demonstrates that visual biases in multi-modal models can be influenced by language, opening up
an exciting new possibility of aligning model outputs using language prompts, without the need for
retraining. In summary, our large-scale study offers the following findings:

• We show that VLMs preserve the bias of their vision-encoders to some extent, yielding
decisions that are more shape-biased than pure vision models albeit not reaching human
levels of the shape bias.

• We show that the vision encoder generates a biased representation that contains texture and
shape cues. Ultimately, the language modality (the LLM) tends to suppress either of the cues
such that objects are recognized purely on the grounds of either shape or texture (Sec. 4.2).

• We find that VLMs offer a unique opportunity to steer visual biases through language alone,
stemming from the multi-modal fusion. For instance, we can steer the shape bias as low
as 49% and as high as 72% through prompting alone without significantly affecting the
accuracy (Sec. 5).

2 RELATED WORK

Sparked by the success of vision language pretraining (Radford et al., 2021; Jia et al., 2021; Zhai
et al., 2022b; Sun et al., 2023b), where features extracted from image-text paired data are aligned in a
joint embedding space, recent VLMs added language modeling during training (Li et al., 2022; Yu
et al., 2022; Li et al., 2023b), enabling models to reason about images. Subsequently, finetuning these
VLMs on instruction-following data (Alayrac et al., 2022; Liu et al., 2023b; Luo et al., 2023; Dai et al.,
2023; Huang et al., 2023), such as reinforcement learning from human feedback (RLHF) (Ouyang
et al., 2022), enables users to prompt these models, easing their usability for humans. Resulting

1We are explicitly focusing on biases in terms of low-level vision cues such as shape versus texture or high
frequency versus low frequency. High-level biases, that may have a societal impact, are therefore explicitly
excluded from this investigation. Please see Appendix O for a discussion.
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models are commercialized (OpenAI, 2023; Gemini Team, 2023; Qwen Team, 2024) or open-sourced
(Liu et al., 2023b; Dai et al., 2023; Chen et al., 2024), and consequently become accessible to a wide
range of users.

This success of vision language models calls for improving our understanding of the visual cues
leveraged by VLMs and the degree to which these can be affected through language. In particular,
the fact that vision models leverage cues different from the ones intuitively used by humans has been
widely discussed. In our study, we focus on the texture vs. shape bias, as a particularly well-studied
example in vision-only models. Humans primarily rely on shape information to recognize objects.
This is in contrast to standard ImageNet-trained vision models, such as convolutional neural networks
(CNNs), are biased towards texture to make their classification decisions (Geirhos et al., 2019).
Nonetheless, shape information can still be present in layers/latent space of the model before the
classifier (Hermann et al., 2020; Islam et al., 2021). Prior research has shown that the texture bias
of CNNs can be reduced in training (Geirhos et al., 2019; Lukasik et al., 2023; Li et al., 2021;
Hermann et al., 2020; Geirhos et al., 2021; Gavrikov et al., 2023; Jaini et al., 2024). But the network
architecture has a high influence, and vision-only ViTs (Dosovitskiy et al., 2021) were shown to be
more shape-biased by default (Naseer et al., 2021), more human-like (Tuli et al., 2021), scalable
by data size (Zhai et al., 2022a), and can be explicitly designed to separate shape and texture in
their token space (Naseer et al., 2021). Jointly embedding vision and language in these networks
(but not CNNs), through CLIP (Radford et al., 2021), further increases their shape bias in zero-shot
classification (Geirhos et al., 2021). Yet, these models still do not reach human levels. The only
known models to achieve such levels are image-generative classifiers (Jaini et al., 2024), which also
combine vision and language in a different manner.

Measuring Texture/Shape Bias. A cornerstone of our analysis is the measurement of the tex-
ture/shape bias in (LLM-based) VLMs when performing tasks that are based on object recognition.
In the following, we summarize how this bias is measured for vision-only models, which forms the
basis for our study.

Like most studies on the shape-texture bias in vision models, we use the texture-shape cue-conflict
classification problem (cue-conflict) (Geirhos et al., 2019) consisting of 1,280 samples with conflicting
shape and texture cues synthetically generated via a style transfer model (Gatys et al., 2016) from
ImageNet (Deng et al., 2009) samples (see Fig. 1 for examples). The shape and texture classes belong
to 16 super-classes of ImageNet. Following (Geirhos et al., 2019), we have excluded 80 images from
the dataset where texture and shape cues belong to the same class. From an information perspective
alone, predicting either label (or both) would be correct. However, humans tend to prioritize the
shape cue for predictions which is in stark contrast to most models (Geirhos et al., 2019).

Using the shape or texture cue label as the correct label allows us to measure the shape and texture
accuracy, respectively. Based on these measurements, we measure the cue accuracy as the ratio of
predictions that contain either the shape or texture label (as opposed to a misclassification):

Cue Accuracy = Shape Accuracy + Texture Accuracy (1)

Throughout the paper, we will refer to this as the accuracy. We use the definition of shape bias
(Geirhos et al., 2019), which is defined by the ratio of shape decisions over accurate decisions:

Shape Bias = Shape Accuracy/Cue Accuracy (2)

While we primarily focus on measuring the shape bias in this study, accuracy is an important signal
for steering in later sections, as it demonstrates how the bias was obtained. For instance, achieving
perfect shape bias in any model would be possible by simply mislabeling all texture-biased detections
– but it would affect accuracy. Importantly, changes in accuracy (positive or negative) observed on
the cue-conflict dataset may not necessarily generalize to other datasets.

3 MEASURING CUE BIASES IN VLMS

Given a dataset such as proposed in (Geirhos et al., 2019) for shapes and textures, we propose to
measure the cue bias of VLMs in two tasks: visual question answering (VQA) (Antol et al., 2015),
where we seek to obtain a zero-shot classification (Radford et al., 2021) of the object, and image
captioning (Vinyals et al., 2015) where we look for an accurate but brief description of objects in
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the image. For both tasks, we evaluate single-round answering with no shared conversation history
between conversations.

3.1 VQA CLASSIFICATION

Following the questioning style in LLaVA (Li et al., 2023a), we ask the model "Which option
best describes the image?" and provide an alphabetic enumeration of all class labels
in the style "A. airplane". For a simpler response extraction and confidence evaluation (see
below), we end the prompt by instructing the model to answer with only the letter corresponding to the
correct answer ("Answer with the option’s letter from the given choices
directly."). Compared to captioning, this is similar to the discrimination in ImageNet (Deng
et al., 2009) image classifiers (Krizhevsky et al., 2012; Srivastava et al., 2015; He et al., 2015; Huang
et al., 2017; Dosovitskiy et al., 2021) in the sense that it only allows the model to respond with a
single class and does not provide an option to not answer - if models follow the instruction.

Response Extraction. Despite instructing the models to only respond with an option letter, we
observe multiple response styles: option letter + label ("H. cat."), just the label ("cat."),
long explanation containing the option letter and/or label ("The image features a black
and white image of a cat."). In all cases, punctuation and capitalization may be differ-
ent ("H.", "H", "h)"). The first two response styles are easily correctable by simple post-
processing (we prioritize the option letter in case of a conflicting option letter and label), and in some
cases, explanations can be corrected as well if the response includes the option letter. However, we
avoid heavy post-processing and consider individual answers wrong if they are not recoverable. In
most cases, the ratio of these is negligible.

3.1.1 ACTIVE STEERING THROUGH PROMPTS

The above setting allows us to test the inherent cue bias of a given VLM. Yet, the multi-modal nature
of VLMs paves the way to not only test for a given bias but also to actively steer the model towards
using particular types of visual cues. Note that models are not trained to perform well under this task
and it is unclear how flexible they are in basing a particular decision on one or another type of cue
(for example on texture or shape).

To explore the flexibility of model predictions for given types of visual cues, we conduct experiments
comparing performance under a default neutral prompt and biased instructions.

In the simplest case, we can test the cue bias steering through hand-crafted prompting, where a
model is asked to identify the class using a particular visual cue (e.g.,"Identify the primary
shape in the image."). Details on our tested biased prompts can be found in Appendix C.3.

Automated prompt engineering. To further enhance the steering signal provided by the language
prompt, we further evaluate automatically crafted prompts. This is achieved by employing an LLM
as optimizer (Yang et al., 2024) to continuously generate new prompts in natural language targeting
to maximize either shape or texture bias in a feedback loop. We provide the LLM feedback about the
achieved accuracy and shape bias. Additionally, we opt for greedy token sampling in the VLM to
reduce noise in the feedback loop. For further details, we refer the reader to Appendix E.

3.2 IMAGE CAPTIONING

In this task, we are instructing models to generate brief descriptions ("Describe the image.
Keep your response short."). We specifically request the model to provide a short re-
sponse to encourage it to single out the most crucial aspects of the image according to its judgment.
Additionally, this has the benefit of faster inference.

Response Extraction. As the responses are open-ended we rely on zero-shot classifications of
the generated description to marginalize out the most descriptive class. To this end, we embed
the generated descriptions and all (raw) class labels using ember-v1 (Nur & Aliyev, 2024) and
predict the class with the smallest cosine distance (similar to zero-shot classification in CLIP
(Radford et al., 2021)). However, the generated caption may refer to multiple class labels (or
none). As an additional signal, we perform a more granular analysis using an additional LLM
(Nous-Hermes-2-Mixtral-8x7B-DPO (Teknium et al., 2024)) by instructing the model to

4
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Figure 2: Most VLMs prioritize shapes over texture cues. We measure the shape bias on the
cue-conflict dataset (Geirhos et al., 2019). For reference, we also provide measurements on an
ImageNet-trained ResNet-50 (He et al., 2015), zero-shot classification with CLIP ViT-L/14 (Radford
et al., 2021), and a human average (over 10 subjects (Geirhos et al., 2019)). The results in table
format are shown in Appendix B.

extract all mentioned classes (similar to Yan et al. (2021)). This allows us to understand if the model
detects both cues (but the embedding model enforces a specific prediction) and to quantify how often
the model response is too generic to detect any class.

4 CUE BIASES IN VLMS: AN ANALYSIS OF TEXTURE VERSUS SHAPE

We base our core analysis on the texture/shape cue-conflict dataset (Geirhos et al., 2019) evaluation
of the texture versus shape bias. Traditional image classification models like ResNet-50 trained
on ImageNet have been shown to severely prioritize texture cues (only 22% shape bias) starkly
contrasting the strong shape bias of humans (96%). As of now, results on multi-modal LLM-based
models are missing. Therefore, we start our experimental evaluation by measuring the shape bias for
the VQA and Image Captioning tasks, using a collection of diverse VLMs reflecting the multitude
of research directions. These models include connections of common pretrained CLIP encoders
and LLMs (Liu et al., 2023b;a; 2024; Dai et al., 2023; Bai et al., 2023b; Hong et al., 2023; Wang
et al., 2023; Sun et al., 2023a), mixture-of-expert-LLMs (Lin et al., 2024), optimized architectures for
resource-constrained systems (Kim et al., 2023), finetuning with RLHF (Sun et al., 2023c; OpenAI,
2023), or massive vision encoders (Chen et al., 2024). Additionally, we survey commercial, closed-
source models like Gemini Pro Vision 1.0 (Gemini Team, 2023), GPT-4V (Preview)
(OpenAI, 2023), and Qwen-VL Plus/Max (Qwen Team, 2024) where access is limited to APIs
and few details are known. For a detailed list of models, please refer to Appendix A.

4.1 KEY RESULTS

The results in Fig. 2 paint a fairly uniform picture across different models and on two different tasks.
Overall, the shape bias of VLMs is still significantly lower than that of humans (96%), but higher
than in typical image-only discriminative classifiers (e.g., 22% for an ImageNet-trained ResNet-50
(He et al., 2015; Geirhos et al., 2019)). Additionally, for most models the shape bias is higher than
the ca. 60% shape bias of CLIP ViT-L/14 (Radford et al., 2021) - an interesting result given that
this model is a common vision encoder used in many of our tested models. GPT-4V (OpenAI, 2023)
is an unexpected outlier both in terms of accuracy and in terms of texture bias. We further discuss
this particularity in Sec. 6.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Table 1: Comparison between VLMs and their encoders. We show the relative difference between
a VLM and its encoder in shape bias and accuracy when evaluated on cue-conflict tasks, along with
error consistency (Geirhos et al., 2020b). VLM performances are assessed using VQA, while the
vision encoders are evaluated using zero-shot classification. Statistically significant changes in shape
bias (p < 0.05 in a two-sided t-test) are denoted by an ∗ next to the value.

VLM - Encoder [%] Error Con-
VLM Vision Encoder Accuracy Shape Bias sistency [%]

LLaVA v1.5 13B (Liu et al., 2023a)

� CLIP ViT-L/14@336px (Radford et al., 2021)

−3.50 +4.2∗ 73.5
LLaVA v1.5 7B (Liu et al., 2023a) −3.00 +1.5 76.8
LLaVA-NeXT 34B (Liu et al., 2024) −9.92 −3.9∗ 67.1
LLaVA-NeXT 13B (Liu et al., 2024) −0.33 −2.7 70.9
LLaVA-NeXT 7B (Liu et al., 2024) −1.08 −0.2 67.5
MoE-LLaVA v1.5 Phi2 x4 (Lin et al., 2024) −1.42 −0.3 73.4
MoE-LLaVA v1.5 Qwen x4 (Lin et al., 2024) −24.25 +3.0 51.4
MoE-LLaVA v1.5 StableLM x4 (Lin et al., 2024) −3.67 −0.8 73.1

InstructBLIP FLAN-T5-XL (Dai et al., 2023)
� EVA-01-CLIP ViT-g/14@224px (Sun et al., 2023b)

−6.83 +1.8 73.7
InstructBLIP Vicuna-7B (Dai et al., 2023) −14.42 +7.4∗ 78.7

Emu2-Chat (Sun et al., 2023a) � EVA-02-CLIP-E/14+@448px (Sun et al., 2023b) −11.08 −9.5∗ 61.0

The task only marginally affects the shape bias. Despite conceptually different tasks, i.e., the
discriminative VQA task and the one open-ended captioning task, we do not observe fundamental
shifts in the utilized information cue. We were able to report shape bias under the image captioning
task for all models. However, a few models did not follow the VQA instructions and are, thus, not
reported in Fig. 2. Most of these models displayed a pronounced texture bias, which might hint
towards a correlation between underfitting and texture bias but to answer this question conclusively,
we would need more samples.

On average, the shape bias is slightly higher for the image captioning task than for VQA (on average
63.9% versus 61.6% for those models that could be evaluated on both tasks). However, this comes at
some cost in accuracy (on average 71.0% versus 78.9%). This decrease in accuracy is due to generic
captions that do not refer to any class (see Appendix B for details). For VQA the range is from 52.9 -
73.8% and 54.1 - 73.2% for captioning - yet, outliers with a significantly lower (38.2%) shape bias
in captioning exist and for the individual models, the cue bias strongly depends on the considered
task (refer to the gap between circles and stars for several of the models in Fig. 2). Exceptions seem
to be, for example, the Gemini Pro Vision 1.0 model, several of the LLaVA models, and the
InternVL-Chat 1.2+ model for which the considered task barely influences the cue bias.

4.2 MECHANISTIC ANALYSIS

We have observed that the shape bias in VLMs differs from that of CLIP (ViT-L/14), the vision
encoding model used in most of the tested models. This prompts an inquiry into the VLM’s
decision process. Specifically, it raises the question of whether language can affect the purely
visual texture/shape bias. In this section, we want to specifically look at the vision encoder and its
representation having only access to the visual input, and the LLM combining both modalities.

4.2.1 VISION ENCODING

Most VLMs combine a frozen CLIP vision tower with an LLM via some projector (Dai et al., 2023;
Liu et al., 2023b; Alayrac et al., 2022). Hypothetically, the LLM could learn to perform zero-shot
classification using their encoders akin to a function call whenever the prompt requires some form of
classification and then simply forward the result. In such a case the VLM would also inherit the shape
bias from the encoder. To gain more insights we ablate the encoder using zero-shot classification
from the full model. We derive the encoder’s predictions by calculating the cosine similarity between
the encoded class labels2 and the input sample, selecting the label with the highest similarity to the
image. Specifically, we measure the difference in accuracy and shape bias between the encoders of
the VLM and the VLM itself, as well as their error consistency (Geirhos et al., 2020b).

Error consistency is a metric to assess whether two observers (e.g., a human and a model) sys-
tematically make errors on the same images. If that is the case, this suggests a deeper underlying
similarity compared to simply reaching similar overall accuracies, since those could be reached with

2We explore various prompt templates (and ensembles) in Appendix J, yielding consistent results.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

0.00 0.25 0.50 0.75 1.00
Token Confidence

texture
shape

(a) LLaVA-NeXT 7B

0.00 0.25 0.50 0.75 1.00
Token Confidence

texture
shape

(b) InternVL-Chat 1.1

0.00 0.25 0.50 0.75 1.00
Token Confidence

texture
shape

(c) MoE-LLaVA-Phi2

Figure 3: Confidence distribution of shape and texture tokens for all samples. All models
form highly biased decisions by completely ignoring one cue. Measured on LLaVA-NeXT 7B,
InternVL-Chat 1.1, and MoE-LLaVA-Phi2 for the VQA task.

very different strategies. The metric is based on Cohen’s kappa (Cohen, 1960) and computes how
frequently errors made by two observers overlap (up to perfect overlap) while correcting for the
overlap expected by chance. Cohen’s kappa is within [−1, 1], with a value of 0 indicating chance-
level consistency, positive values indicating systematic agreement, and negative values indicating
systematic disagreement. For our measurement, we treat all predictions other than the shape label
that are not related to the shape cues as errors.

The vision encoder provides a flexible representation. Our comparisons in Tab. 1 show that VLMs’
decisions differ from their isolated encoders. Even on the rather simple 16-way cue-conflict problem,
all VLMs decrease in accuracy compared to their encoders in zero-shot classification. This may be
expected as the increase in supported tasks in VLMs comes at a cost in specialization but is already a
sign of changes. Further, we note that the error consistency to their respective encoders only matches
up to 78.7%. This leaves at least 20% room for decisions that differ from the encoder proving that
the LLM and the text prompt further influence the shape bias, despite being a vision-only bias. This
deviation can only be possible if the generated vision tokens are flexible to some degree by containing
information belonging to both cues. This is further confirmed by the measurement of shape bias
which shows a −9.5% to +7.4% difference in both directions.

4.2.2 LLM PROCESSING OF VISION TOKENS

In the VQA task, we force the model to predict a single class - yet, the previous section has shown that
the vision tokens generated by the encoder contain information from both cues. To better understand
the processing, we evaluate the VQA prediction confidences as follows.

All answer options in our VQA prompts correspond to a single character and, thus, a token. Well-
behaving models, where the response consistently starts with the option letter (and nothing else) allow
us to gather insights into the prediction process. For these models, the logits of each token correspond
to the logits of option letters. By applying a softmax function, we can analyze the confidence in each
option (we map invalid tokens to a separate null class). This allows us to better study the sampling
behavior and make the following observation:

LLMs turn flexible representations into biased decisions. In Fig. 3, we visualize the confidence
of the token corresponding to the shape or texture answer option. This experiment can only be
performed on models where we have access to the logits, and the model consistently follows the
instructions to only respond with the predicted options letter. This limits the analysis to a few models
in our zoo, and we show similar results on LLaVA-NeXT 7B (Liu et al., 2024), InternVL 1.1
(Chen et al., 2024) and MoE-LLaVA-Phi2 (Lin et al., 2024).

To our surprise, we find that confidence in both options is almost binary. Analogously, when we only
focus on correct answers, we observe that the model is highly confident in its responses. As the model
places such high confidence in the selected cue, this suggests that information from the alternative
cue is effectively disregarded during LLM processing. This conclusion is further supported by the
observation that the second, significantly less confident prediction token does not align with the
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Figure 4: Language can steer the texture/shape bias to some extent. We test the same texture/shape-
biased instructions on multiple models, showing that these can already shift some decisions (usually
in favor of texture). The stated percentages refer to the achieved accuracy on cue-conflict. For
InternVL 1.1 and LLaVA-NeXT 7B we additionally test the understanding of texture/shape
by using synonyms. Furthermore, we use an LLM to automatically search for specific prompts to
optimize in either direction.

conflicting cue. For example, in LLaVA-NeXT 7B (Liu et al., 2024), this occurs in 70.7% of cases.
Only 17.7% of the top-2 pairs contain both, shape and texture. Thus, while the encoder has its own
inductive bias that directs the final decision, the actual biasing happens in the LLM, similar to linear
classification heads in discriminative models (Islam et al., 2021).

While it is not clear if these findings generalize to all other VLMs, the overall high error consistency
between all VLMs (see Fig. 13 for a heatmap) on our task hints that our results may generalize well
to other models.

5 PROMPT-BASED STEERING OF VLM OUTPUTS

In the previous section, we have seen that in VLMs, visual biases are not simply inherited from the
vision encoder, but the fusion with an LLM including the text prompt plays a crucial role. Given the
somewhat flexible representation of texture/shape bias, we test in the following if we can actively
talk VLMs into seeing the world differently, i.e., systematically steer the output towards either
end of the bias and go beyond the inductive bias. Therefore, we explore the influence of language
through prompt engineering on the visual bias (Sec. 3.1.1). Furthermore, since texture/shape bias is a
vision-only bias we contrast this language steering to visual steering through image preprocessing
(see Appendix F). While we expect strong model steerability through image preprocessing (obviously
at high costs in model accuracy), Fig. 1 indicates significant flexibility of (some) VLMs through
language, potentially offering a powerful way of shaping visual biases in a user-specified way without
the need to retrain a model.

5.1 STEERING TOWARDS SHAPE- OR TEXTURE-BIASED OUTPUTS

Our previous results suggest that VLMs learn a connected multi-modal understanding of shape and
texture. This opens the question of whether visual biases in outputs can be influenced through text
processing in these models. We test this hypothesis by recording texture/shape bias as a function
steering it via text through prompt engineering.

Bias steering through hand-crafted prompting. We start by asking VLMs to specifically identify
either the "shape" or the "texture" category in a given cue-conflict image. As shown in Fig. 4,
prompting can steer a visual bias (without significantly affecting accuracy). Details on these biased
prompts can be found in Appendix C.3. Neutral prompts often perform similarly to shape-biased
prompts, whereas texture-biased prompts deviate more significantly. This suggests that models
may be more inclined to use shape by default, but also have access to a certain amount of texture
information which can be accessed through biased prompting.
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To better test the representation of "shape" and "texture", we additionally replace the terms tex-
ture/shape with strong synonyms obtained from Thesaurus.com (Dictionary.com, 2024b;a). Then we
measure shape bias on (InternVL-Chat 1.1 (Chen et al., 2024) and LLaVA-NeXT 7B (Liu
et al., 2024)). Synonyms of either term can steer shape bias as well to a certain degree. For "texture"
synonyms, we observe more variance, as "texture" is overloaded by different meanings (e.g., some
synonyms like "feeling", "taste", or "touch" are unrelated to texture in vision). In contrast, "shape"
is a fairly well-defined term. This demonstrates that the steering is not coincidental but leverages a
learned representation.

While the effect of steering by language is systematically visible, language steering alone does
not fundamentally change the reliance on the underlying cue. This effect does not appear to be a
limitation of LLM capacity - the evaluation on InternVL-Chat 1.2+ (34B vs. 13B) does not
provide evidence that larger LLMs offer more steerability.

Bias steering through automated prompt engineering. Did our results indicate a limit on how
much language/prompting can influence biases, or merely reflect that the handcrafted prompts were
chosen suboptimally? To address this question, we test automatically crafted prompts (see Sec. 3).

The results are shown in Fig. 4 in gray and denoted as "search". We observe that for both
LLaVA-NeXT-7B and InternVL-Chat 1.1, automatically generated prompts exceed the man-
ually crafted biased prompts in terms of their effectiveness to increase texture bias, and roughly match
them when it comes to increasing shape bias. For InternVL-Chat 1.1 the delta between both
extremes is 23.3%, which can only serve as a lower bound and is likely improvable by a better design
of the LLM task (or using other optimizers). In line with hand-crafted prompts, overall accuracy does
not change considerably or sometimes even improves. We should also note that the optimization
is done for the cue-conflict test set; this is simply done as a proof of concept to show that there are
prompts that can influence visual biases substantially and not to claim a SOTA shape bias.

5.2 STEERING TOWARDS LOW-FREQUENCY OR HIGH-FREQUENCY-BIASED OUTPUTS

Table 2: Prompt steering on frequency-cue-conflict.
Statistically significant changes are marked by * (two-
sided t-test with p < 0.05). We compare the "neutral"
prompt with found prompts to maximize ("search
(max)") or minimize the respective bias ("search
(min)").

Model Prompt Accuracy [%] LF Bias [%]

InternVL-Chat 1.1
neutral 92.92 34.5
search (max) 90.33 38.6*
search (min) 91.33 32.9

LLaVA-NeXT 7B
neutral 82.83 52.4
search (max) 84.25 54.5
search (min) 82.67 48.7*

So far, we have analyzed the texture/shape
bias. In this section, we show that steering
is possible for other biases, too. To this end,
we explore a bias originating in the spectral
domain, specifically focusing on low versus
high-frequency cue conflicts. This bias has
been shown to affect a classification model’s
robustness for example in (Wang et al., 2020;
Lukasik et al., 2023). A related observation
has been made in (Subramanian et al., 2024),
showing that the critical frequency band of
object recognition separates human percep-
tion from model vision.

To study the steerability of the low-frequency
bias (LF bias), we propose a new dataset of
stimuli following the texture/shape cue-conflict benchmark methodology (Geirhos et al., 2019): We
create 1,200 samples belonging to 16 ImageNet-super-categories by blending the spectral components
of two differently labeled images: 30% of the low-frequency components from one image and 70%
of the high-frequency components from the other.3

We test the same neutral prompt as for previous experiments and use our automated prompt search to
either maximize or minimize the bias. The results in Tab. 2 show that again we can steer the bias
by language. The range of course depends on the vision representation and language training and is
not as pronounced as for texture/shape bias. Still, we find that our prompts can result in statistically
significant changes in bias. On LLaVA-NeXT 7B, the prompts even improved accuracy alongside
the bias.

Independent from the prompting, it is interesting that the smaller LLaVA-NeXT 7B model almost
perfectly balances the conflicting cues, whereas the larger InternVL 1.1 model is significantly

3Details can be found in Appendix G.
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biased toward HF. We hope that this dataset can pave a new avenue for future research on frequency
bias.

6 DISCUSSION & LIMITATIONS

We acknowledge that the broader research question — whether models can be influenced to perceive
the world differently — extends beyond the scope of any single study. In our work, we focus
specifically on a well-defined and understood visual bias (texture/shape bias). We investigate how we
can steer the prediction of VLMs towards a larger texture/shape bias.

We also briefly compare our findings to human perception experiments conducted by Geirhos et al.
(2019). In their control experiments, humans were either instructed to identify the shape while
ignoring texture or conversely to identify the texture while ignoring the shape. This "human prompt
steering" worked, but only to a certain extent: When humans were tasked to ignore the shape, the
human shape bias decreased from 96% (neutral instruction) only to approx. 70% shape bias (texture-
biased instruction). Our tested VLMs behave somewhat similarly: their visual shape bias can be
steered through prompting, but it appears hard for them to completely go against their default visual
bias.

We complement the study on texture/shape bias by evaluations of low-frequency versus high-
frequency bias. The results show that the steerability of a bias is not limited to one specific bias but
generalizes beyond.

Yet, our study, like most studies, is not free of limitations. Even though we utilized a diverse array of
VLMs, there is a possibility that different models would lead to different conclusions. We believe
our results provide a fair reflection of the current VLM landscape but radically different VLM
architectures may lead to changes in bias mechanics and consequently alter our findings.

Further, not all models have been behaving as expected in our study: Given that GPT-4V often
achieves SOTA performance and is considered an important baseline, it has surprisingly poor accuracy
in both VQA and image captioning tasks compared to most other models - mostly due to refusal to
answer which affected 131/1280 VQA conversations, i.e., roughly 10%. This is substantially higher
than the refusal rate of all other models (< 1%). It is worth noting that refusal rates do not affect
the shape bias measurement. GPT-4V is also the model with the largest amount of generic image
captions (60.4%). Additionally, we acknowledge that other prompts may have led to better results,
however, the result is noteworthy, as the other VLMs mostly behave well under the same prompts.
Overall, prompting is a potential source of bias in our study. Different prompts could have yielded
different results, and certain models might have performed differently, particularly in Visual Question
Answering (VQA) tasks. While we mitigated this by utilizing simple, widely used prompts, other
choices remain to be explored in future investigations. We provide a brief exploration of alternatives
in Appendix C.2.

7 CONCLUSION

In this study, we investigated visual biases in multi-modal models. Through the lens of texture/shape
bias, we are able to show that visual biases are indeed influenced by language. Utilizing this finding,
we can show an intriguing aspect of VLMs: biases in the response can be steered through natural
language prompts as a simple form of alignment. This unique trait differentiates LLM-based from
task-specific, uni-modal models. While this form of steering was not able to fundamentally change the
utilized cue for the texture/shape bias, it comes at almost no impact in accuracy, and most importantly
does not require any retraining of the model. In fact, many attempts at steering shape bias in training
have yielded worse results through more expensive methods (Li et al., 2021; Lukasik et al., 2023).
Instead, we provide a simple and intuitive way for practitioners to adjust the output beyond the
inductive bias at runtime with minimal effort. Thus, we can indeed talk VLMs into seeing the world
differently.
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REPRODUCIBILITY STATEMENT

We used open-source data and models, with detailed descriptions of our evaluation process provided
in the appendix. The source code, evaluation results containing model answers for each sample,
prompts generated by the automated prompt search, and the frequency-cue-conflict dataset, along
with its creation scripts, are included in the supplementary materials. All files will be made publicly
available upon acceptance.
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A OVERVIEW OF VLMS

Here we provide an overview of all used models from the main paper.

Qwen-VL-Chat
(Bai et al., 2023b)

Adds vision capabilities to Qwen-7B (Bai et al., 2023a). We set a repetition
penalty of 1.2 for this model.
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Qwen-VL
Plus/Max (Qwen
Team, 2024)

AliBabas’s proprietary larger variants of Qwen-VL-Chat. Access only
via API.

CogAgent (Hong
et al., 2023)

A special model for interaction with graphical user interfaces (GUIs) at
high-resolution.

CogVLM (Wang
et al., 2023)

Adds "trainable visual expert module" in LLM layers to combine vision and
language.

Emu2 (Sun et al.,
2023a)

The 37B model claims "strong multi-modal in-context learning abilities".

InstructBLIP
(Dai et al., 2023)

Connects frozen vision encoders and LLMs through a trainable Q-Former.
Uses Vicuna or FLAN-T5 as LLMs.

LLaVA v1.5 (Liu
et al., 2023a)

Improvements of LLaVA with modifications on the image encoder, the
projector, and task-specific data. Uses Vicuna-7/13B as LLM.

LLaVA-NeXT (Liu
et al., 2024)

Successor of LLaVA v1.5 supporting higher resolutions through patch-
ing, and using better SFT training data for training, claiming “improved
reasoning, OCR, and world knowledge” (Liu et al., 2024). The 34B version
switches from Vicuna-7/13B to Nous Hermes 2 Yi 34B.

MoE-LLaVA
v1.5 (Lin et al.,
2024)

Variants of LLaVA v1.5 employing 4 sparsely activated Mixture-of-
Experts (MoE), and smaller LLMs (Qwen, Phi-2, StableLM).

LLaVA-RLHF
(Sun et al., 2023c)

Variants of LLaVA v1.5 aligned with Factually Augmented RLHF (Fact-
RLHF) (Sun et al., 2023c).

UForm-Gen
Chat (Kim et al.,
2023)

A small (1.5B) model for VQA and image captioning finetuned for multi-
modal chat.

Gemini 1.0
Pro Vision
(Gemini Team,
2023)

Google’s proprietary multi-modal model based on the Gemini Pro LLM.
Access only via API.

InternVL Chat
1.1/1.2+ (Chen
et al., 2024)

An open-source effort to provide an alternative to ViT-22B (Dehghani
et al., 2023). V1.1 is based on a 6B ViT and Vicuna-13B, V1.2+ uses
Nous Hermes 2 Yi 34B as LLM including additional SFT on 10x
more data.

GPT-4V
(Preview)
(OpenAI, 2023)

OpenAI’s proprietary multi-modal model based on the GPT-4 LLM. Access
only via API. Often considered to be the most powerful model.

For our main analysis, we prompt all models at the default generation parameters (e.g., temperature)
unless stated otherwise. Appendix H shows why this is not an issue.

B DETAILED RESULTS TABLE

Tab. 4 shows the shape bias and accuracy for the VQA and Image Captioning task (see Fig. 2 in the
main paper for a visualization). For the open-ended Image Captioning responses, we additionally
provide evaluations through an LLM (see Sec. 3). These include the number of generated tokens (to
measure how effective our “Keep [...] short.” instruction is), the ratio of responses where exactly one
class was detected (single class ratio), and the ratio of responses that do not refer to any description
(generic ratio). In Appendix L/Tab. 9, we provide ablations on Image Captioning under the removal
of generic responses.

Further, we make the following observations:

Which models are the most shape-biased? The strongest shape bias is observed in
InstructBLIP Vicuna-7B (Dai et al., 2023) for VQA, but the model generally shows a lower
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accuracy compared to other models. A more accurate model is InternVL-Chat 1.1 (Chen et al.,
2024) which ranks second place for VQA but first for captioning.

Does LLM scale matter? LLM capacity does not seem to correlate with shape bias and unpre-
dictably skews the shape bias by a few percent in each way as can be seen in Qwen-VL, LLaVA
v1.5/NeXT/RLHF, or InternVL. Similarly, the overall largest models do not have the highest
shape bias. However, following the overall general trend, in our experiments, we also found that scale
usually improves accuracy.

Does RLHF align shape bias? RLHF-tuned VLMs are still rare at this point and we only have
three samples. On both LLaVA-RLHF (Sun et al., 2023c) models we see no changes in comparison
to the default LLaVA models. GPT-4V (OpenAI, 2023) (though it is unclear if vision was also RLHF
trained) shows one of the lowest shape biases in our study, but we do not know how the base model
ranks. Overall it is hard to derive a conclusive answer, but it seems that at least RLHF does not
necessarily guarantee an alignment of visual preferences.

Table 4: The shape bias and respective accuracy on the cue-conflict dataset for various VLMs in VQA
classification or image description tasks. For the image description task, we additionally provide
the average number of tokens generated by Vicuna’s tokenizer and the ratio of responses that only
contain a single class or are generic (do not mention any class) as judged by a separate LLM. “-”
indicates models that did not follow instructions on VQA and could, thus, not be evaluated.

VQA Image Captioning
Shape Accu- Shape Accu- Avg. Single Class Generic

Model Bias [%] racy [%] Bias [%] racy [%] Tokens Ratio [%] Ratio [%]

Gemini 1.0 Pro Vision (Gemini Team, 2023) 64.1 82.33 63.2 68.00 18.9 63.0 32.3
GPT-4V (Preview) (OpenAI, 2023) 47.9 69.75 53.6 52.67 44.8 37.2 60.4
Qwen-VL Plus (Qwen Team, 2024) 64.8 82.92 67.9 65.50 21.9 59.2 36.0
Qwen-VL Max (Qwen Team, 2024) 62.4 85.50 69.7 68.50 151.9 52.1 41.0
Qwen-VL Chat (Bai et al., 2023b) - - 38.2 67.42 27.3 59.1 33.2
InternVL Chat 1.1 (Chen et al., 2024) 68.3 89.33 73.2 75.58 16.9 74.9 19.4
InternVL Chat 1.2+ (Chen et al., 2024) 61.1 90.83 61.3 82.42 15.8 80.4 11.4
LLaVA v1.5 7B (Liu et al., 2023a) 61.4 80.75 61.4 76.08 12.1 73.8 19.2
LLaVA v1.5 13B (Liu et al., 2023a) 64.1 80.25 62.7 75.58 28.9 65.8 23.8
LLaVA-RLHF 7B (Sun et al., 2023c) 61.7 68.08 63.0 71.83 47.9 65.1 24.7
LLaVA-RLHF 13B (Sun et al., 2023c) 63.4 80.42 62.3 73.25 38.3 64.7 27.7
LLaVA-NeXT 7B (Liu et al., 2024) 59.2 82.58 64.0 65.08 20.2 55.5 39.5
LLaVA-NeXT 13B (Liu et al., 2024) 57.2 83.42 63.5 65.25 48.8 52.6 40.9
LLaVA-NeXT 34B (Liu et al., 2024) 56.0 73.83 66.2 57.50 93.4 36.2 59.1
MoE-LLaVA-StableLM (Lin et al., 2024) 59.1 80.08 63.0 73.92 24.1 67.4 21.6
MoE-LLaVA-Qwen (Lin et al., 2024) 62.9 59.50 63.2 75.33 13.3 69.4 20.7
MoE-LLaVA-Phi2 (Lin et al., 2024) 59.6 82.33 61.1 75.42 34.9 67.0 18.6
InstructBLIP Flan-T5-xl (Dai et al., 2023) 68.2 79.58 67.1 81.50 116.7 57.0 22.3
InstructBLIP Vicuna-7B (Dai et al., 2023) 73.8 72.25 67.7 80.67 94.0 60.9 28.0
Emu2-Chat (Sun et al., 2023a) 52.9 75.08 59.6 65.00 13.6 63.0 34.0
CogAgent Chat (Hong et al., 2023) - - 67.4 60.33 40.1 49.6 47.7
CogVLM Chat (Wang et al., 2023) - - 57.6 66.58 35.8 53.2 40.1
UForm Gen Chat (Kim et al., 2023) - - 38.8 64.50 30.2 59.3 33.0

C OVERVIEW OF PROMPTS

This section provides an overview of all the prompts we have used in our study, including fine-grained
details and ablation studies on their effectiveness.

C.1 MAIN PROMPTS

The prompt for VQA Classification is:

"{VQA_INSTRUCTION}
A. airplane
B. bear
C. bicycle
D. bird
E. boat
F. bottle
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G. car
H. cat
I. chair
J. clock
K. dog
L. elephant
M. keyboard
N. knife
O. oven
P. truck
Answer with the option’s letter from the given choices directly."

with a default setting VQA_INSTRUCTION="Which option best describes the
image?".

We use the following prompt for the Image Captioning task: "Describe the image. Keep
your response short."

C.2 EXPLORATION OF ALTERNATIVE PROMPTS

In initial testing, we found that the choice of prompts affects the eventual results and has the potential
to inevitably influence our study. Thus, in an effort to address this, we extensively evaluated our
models with multiple different prompting techniques, used in literature (Liu et al., 2023a; Dai
et al., 2023) and chose the best one. Our prompt for VQA is inspired by LLaVA’s prompts for
multiple-choice questions 4. In an additional experiment (Tab. 5), we ablated alternative prompts on
LLaVA-NeXT 7B (Liu et al., 2024). We change or use an empty VQA_INSTRUCTION and change
options to CLIP-style options ("X. a photo of a {class}"). However, we only observed a
minor fluctuation in accuracy and shape bias and no significant effects. Our default prompt delivers
the best accuracy and is, thus, our preferred choice.

Table 5: Exploration of alternative VQA prompts.

Shape Accu-
Prompt Bias [%] racy [%]

"Which option best describes the
image? [...]" (default)

59.2 82.58

Default with CLIP-style options 59.5 81.92

"Describe the object in the image:
[...]"

60.2 81.33

"Describe the object in the image:
[...]"
with CLIP-style options 59.4 80.17

Empty instruction (just options) 59.5 81.33

Our image captioning prompt is a reformulation of the VQA prompt ("Which option best describes
the image?" → "Describe the image."). In the following, we ablate if the suffix ("Keep your response
short.") may have interfered with our results. Additionally, we tested an alternative suffix that
explicitly asks for more details on LLaVA-NeXT 7B (Liu et al., 2024). The results for the former
investigation in Tab. 6, show that our suffix indeed did not heavily bias the results in terms of shape
bias. While adding the suffix leads to an impact in accuracy, it reduces the ratio of generic descriptions
(not referring to any class) and has on average almost 4x fewer tokens resulting in significantly faster
inference. Switching the suffix to "Be precise." increases shape bias, but at the same time also
increases the number of generated tokens and worryingly the ratio of generic responses. Overall, we
find that captioning prompts are more fragile, but our chosen default prompt provides an intriguing
balance. For all ablated prompts, we find that the shape bias is higher than in VQA.

4https://github.com/haotian-liu/LLaVA/blob/main/docs/Evaluation.md [On-
line; accessed 6. Mar. 2024]
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Table 6: Exploration of alternative Image Captioning prompts.

Shape Accu- Avg. Generic
Prompt Bias [%] racy [%] Tokens Ratio [%]

"Describe the image. Keep your
response short." (default)

64.0 65.08 55.5 39.5

"Describe the image." 63.6 68.25 202.9 46.8

"Describe the image. Be precise." 67.3 64.50 166.2 50.6

C.3 BIASED PROMPTS

Hand-crafted. For our hand-crafted biased prompts, we set VQA_INSTRUCTION
="Identify the primary {BIASED_TERM} in the image.", with BIASED_
TERM="shape" and BIASED_TERM="texture", for shape-, and texture-biased
prompts, respectively.

0.55 0.60 0.65 0.70
Shape Bias

LLaVA-NeXT-7B

InternVL-Chat 1.1

balance
character
composition
consistency
fabric
feeling
makeup
nature

pattern
quality
sense
smoothness
structure
surface
taste

touch
architecture
aspect
body
configuration
contour
format

frame
model
outline
shadow
silhouette
Texture-biased
Shape-biased

Figure 5: Detailed shape bias measurements under synonyms for biased VQA prompts.

Synonyms. We have retrieved the following strong synonyms from Thesaurus (Dictionary.com,
2024b;a).

• shape: architecture, aspect, body, configuration, contour, format, frame, model, outline,
pattern, shadow, silhouette

• texture: balance, character, composition, consistency, fabric, feeling, make-
up, nature, pattern, quality, sense, smoothness, structure, surface, taste, touch

The prompt is formed by replacing BIASED_TERM in the biased VQA prompt with the corresponding
synonym. We did not filter out any synonyms but still want to emphasize that some of them are
not reasonable in the context of vision (e.g., for texture) which explains why the variance between
them can be high. In Fig. 5, we also show the detailed shape bias measurements for each synonym
(complementary to Fig. 4 in the main paper). We find that “pattern” - a synonym for both terms -
tends to be more correlated with texture.

D LLM-BASED RESPONSE EXTRACTION FOR CAPTIONS

We rely on an LLM to extract labels from the generated captions for the Image Captioning task.
For every generated description we instruct Nous-Hermes-2-Mixtral-8x7B-DPO (Teknium
et al., 2024) with the following prompt:
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"Your task is to extract all objects that are described in the gi-
ven message. Only answer with all letters from the given choices
that apply. If none apply, reply with X. Do not explain. These are
the possible objects:
A. airplane
B. bear
C. bicycle
D. bird
E. boat
F. bottle
G. car
H. cat
I. chair
J. clock
K. dog
L. elephant
M. keyboard
N. knife
O. oven
P. truck
Message: {Generated Image Caption}"

Then we simply split the generated string into a list. We found this prompt by manually testing some
examples and picking the best-performing one. For example, we experimented with other options to
denote generic responses like “-”. However, we found that this increases hallucinations, presumably
as “-” is often used to begin bullet points and, thus, causes the model to continue generation.

E DETAILS ON AUTOMATED PROMPT SEARCH

Loosely inspired by (Yang et al., 2024), we utilized an LLM to optimize prompts. we switched
to Mixtral-8x7B-Instruct-v0.15, as it performed better than the Nous Hermes version in
early tests. The results shown in Sec. 5.1/Fig. 4 are a summary of multiple prompts that we tried in
numerous multi-round conversations. In Fig. 6 we show the impact on accuracy: in most cases the
accuracy remains similar or even improves. Of course, outliers where accuracy severely decreases
exist.

We instruct the model to provide a prompt in a new line starting with “PROMPT: ” that we then
extract and automatically evaluate. Afterwards, we return the results to the LLM and ask it to generate
the next prompt.

We have experimented with multiple prompts but ultimately our approaches can be loosely divided
into prompts that try to maximize or minimize shape bias without significantly affecting accuracy.
Besides linguistic tweaks, we experimented with the following techniques:

1. Offering rewards: We offered tips to the LLM to encourage it to generate more and better
results6. However, Mixtral seems to be fine-tuned to refuse such attempts.

2. Adding in-context examples: We added an example (in language) of what it means to be
shape or texture-biased in classification. This often seemed to bias the model to generate
prompts that contain the example, too.

3. Summarizing previous attempts: We encouraged the LLM to summarize previous attempts
before generating the next prompt, hoping to keep the most important aspects in context.
The LLM did not always follow this suggestion.

5https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1 [Online; ac-
cessed 6. Mar. 2024]

6https://twitter.com/voooooogel/status/1730726744314069190 [Online; accessed 6.
Mar. 2024]
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Figure 6: Shape bias vs. accuracy on cue-conflict in comparison for LLM generated prompts. Black
points denote the default instruction.

4. Returning the extracted prompt: The LLM sometimes did not start the prompt with the
requested prefix or misplaced it. We mitigated this by including the extracted prompt in our
responses.

5. Encouragements in response: Initially, we only returned the accuracy and shape bias but
found that the LLM sometimes abruptly quits the search. Thus we included encouragements
in the form of questions like “What is your next prompt?”. This seemed to improve
conversations in terms of length, but could not entirely prevent the LLM from quitting.

6. Simple but creative prompts: When just instructed the LLM to generate prompts, we
noticed that it would sometimes collapse to verbose prompts where it would attempt to
rephrase terms by synonyms. Inspired by regularization terms in optimization, we ask the
model to keep its prompt simple and creative to avoid minor tweaking in favor of more
radical changes.

In all cases, we append a mock conversation (i.e., both roles are written by us) to the history containing
the neutral prompt and the respective shape bias/accuracy. An example conversation is shown in
Tab. 11.

Optimization with LLMs is a highly exciting but also very active research field, where best practices
have not yet emerged. For example, we have noticed that our instruction sometimes caused the LLM
to refuse to continue when it found that the search was exhausted, or caused the LLM to maximize
shape bias despite the instruction to minimize it. Overall, this is not an issue for our study as we are
merely interested in understanding if quantitatively more texture/shape-biased prompts exist. The
prompt shown in Tab. 11 (first message) is the final iteration integrating all of the above techniques.

F STEERING THE TEXTURE/SHAPE BIAS IN VISION

Earlier work demonstrated that ImageNet-models can still detect objects even if the image is split
into patches and shuffled (Zhang & Zhu, 2019; Shi et al., 2020; Naseer et al., 2021). As patch size
decreases, the operation is destroying more global shape information, yet retaining local texture
information. We utilize this technique to significantly increase texture bias. Oppositely, to increase the
shape bias we experiment with added Gaussian noise to inputs. This is loosely inspired by applying
“diffusion-like noise” during training (and inference) which has been shown to drastically improve
the shape bias of ImageNet-ResNets (Jaini et al., 2024). However, we only apply the noise during
inference and use a more simplistic approach by adding N (0, σ2) noise to all channels, consecutively
clamping values to [0, 1]. We visualize the effects on one cue-conflict sample in Fig. 7.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Noise increases shape bias

Patch shuffling increases texture bias

Figure 7: Steering by Vision. For one example image, we show how patch shuffling (top) increases
texture bias by destroying shape information. Below we show how adding Gaussian noise increases
shape bias by destroying texture information. Please note that we show more extreme values than
those used in our experiments for visualization purposes.
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Figure 8: Image preprocessing can strongly steer texture/shape bias. Left: Shuffling image
patches with decreasing patch size results in a strong texture bias. Right: Increasing Gaussian noise
introduces a strong shape bias.

We show results on LLaVA-NeXT 7B in Fig. 8. Adding noise results increases the VLMs shape bias
up to 89.5% at σ2 = 0.5, and patch shuffling decreases shape bias (increases texture bias) to 8.4% at
28× 28 patches. In both cases, the bias is indeed steered up to a certain threshold: the accuracy on
one cue (texture or shape accuracy) increases whereas the accuracy on the other decreases. Beyond a
specific point, the operation is destroying one cue entirely and can no longer be considered steering.
Further, this form of steering comes at a cost in accuracy - yet, all results are still well beyond
random chance. Inspired by these strong results, we repeat the experiments on the naturally more
shape-biased and larger InternVL-Chat 1.1 (Chen et al., 2024). In this model, we can further
extend the range to 91.7% shape bias (σ2 = 0.3), and down to 6.1% (28× 28 patches).

G FREQUENCY-CUE-CONFLICT

We create 1,200 samples belonging to 16 ImageNet-super-categories. The stimuli are generated by
blending the low and high-frequency components of two differently labeled images. Specifically, we
select two random ImageNet samples from the 16-class subset (Geirhos et al., 2019) with conflicting
labels. Each image is then converted to grayscale by selecting the L channel, resized to 256 px on
the shortest edge while preserving the aspect ratio, and finally center-cropped to 224× 224 px. We

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Shape: cat dog elephant truck
Texture: bottle clock dog chair

(a) texture/shape-cue-conflict (Geirhos et al., 2019)

LF: airplane bird clock elephant
HF: bottle boat bicycle truck

(b) frequency-cue-conflict

Figure 9: Examples from the cue-conflict datasets. Images are constructed from two conflicting
features cues: (a) texture/shape-cue-conflict (Geirhos et al., 2019) conflicting shape and texture; (b)
frequency-cue-conflict conflicting high- (HF) and low-frequency (LF). Please zoom in for details.

finally blend the two images by using 30% of the low-frequency components from one image and
70% of the high-frequency components from the other. The resulting stimuli are saved as JPEG with
100% quality. Fig. 9b shows some examples from the dataset.

H ABLATION OF TEMPERATURE SCALING

We are interested in determining if generation parameters can influence the behavior of shape bias.
Generally, VLMs only expose a few controllable parameters but all offer some form of stochastic
sampling of tokens, often via temperature scaling of the token logits. Most models default to low-
temperature settings (or settle for a greedy token strategy) which is more correlated with precise
answers and reasonable for VQA. On the contrary, higher temperatures are correlated with more
creative outputs and eventually token gibberish at extreme values. In general, temperature scaling
also results in better-calibrated models (Guo et al., 2017).

Exemplarily, we study this on LLaVA-NeXT 7B for both VQA and Image Captioning. We repeat
the non-greedy experiments 3 times for statistically meaningful results; however, we generally notice
a marginal error between runs. Our results in Fig. 10, show no correlation between temperature and
shape bias. As expected, the accuracy (slightly) decreases, because less confident tokens mapping to
correct predictions are now replaced by false predictions. Yet, this affects texture/shape information
alike. This can easily be explained by our token sampling analysis in Sec. 4. On average, texture/shape
options are fairly similarly confident and top-1 tokens have a very high confidence (in the VQA
setting) which the temperature scaling barely affects.

On the one hand, this finding serves as important confirmation that our comparison of VLMs at
default values (picked by the original authors) is reasonable as it does not interfere with the shape bias.
On the other hand, this implies that users seeking more creative outputs can tune the temperature (and
similarly other parameters that control stochastic token sampling) without changing the underlying
reasoning paths for vision inputs.
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Figure 10: Temperature scaling has no significant effect on shape bias neither under VQA (left)
nor Image Captioning (right) tasks but starts to decrease accuracy at higher levels. Experiments
performed on LLaVA-NeXT 7B with 3 seeds (except Temperature = 0 and Temperature = 1 of
Image Captioning where we use a single seed).

I AGREEMENT SETS ON TEXTURE/SHAPE CUE-CONFLICT

In this section, we aim to identify "agreement sets" of VLMs predictions on the texture/shape
cue-conflict dataset (under the default VQA), i.e., we want to find samples where all 19
models behave the same to see if we can identify some common patterns. Specifically, we
search for samples where all models predict the shape label, texture label, or generally make
a correct or wrong prediction, respectively. For each agreement set, we show 4 random
examples in Fig. 11. For this analysis alone it is not evident to us when models predict
texture or shape labels, respectively. Overall, the very low number of samples where all
models make a false prediction (6 out of 1,200) is a good indication of the quality of the
texture/shape cue-conflict dataset (Geirhos et al., 2019). We find that these error samples are
still recognizable (but we may be biased knowing the ground truth). There seems to be also a
quite large subset of samples where all models make correct predictions (320 out of 1,200).

J RESULTS ON CLIP MODELS

In this section, we provide results for CLIP models that we referenced in the main paper. We provide
results for different architectures under three different prompting strategies: a computation of zero-
shot centroids from 80 different prompts including usage of the class name (Radford et al., 2021), "a
photo of {class}." which is often used as a default prompt (note the dot), and "{class}" (without dot).
We will argue that the latter is more comparable to the VQA task of our VLMs - but of course, VLMs
may have a better representation in weights. Either way, the shape bias does not significantly deviate
between the three strategies. Tab. 7 shows the obtained shape bias (and accuracy) measurements.

We also noticed that the observed scaling laws in (Geirhos et al., 2021) do not always hold for vision
encoders, despite an increase in parameters from EVA02-CLIP-E/14+ (5B) to EVA02-CLIP-8B, we
actually see a significant decrease in shape bias (but an improvement in accuracy).

Our results also contain (rather uncommon) ResNet-based CLIP models. Note these are the only
models, where the 80 prompts significantly improve accuracy. In terms of shape bias, ResNet-based
CLIPs significantly underperform any ViT or ViT-based CLIP.

K RESULTS ON IMAGENET-TRAINED MODELS

Complementary to the results on CLIP, we also provide some shape bias evaluations of ImageNet-
trained/finetuned models in Tab. 8. Note how ViTs are much more shape-biased than ResNets, as
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Shape: bird clock bicycle airplane
Texture: cat bicycle dog bird

(a) All models agree on shape (total N = 161/1200).

Shape: bird airplane keyboard boat
Texture: car chair clock car

(b) All models agree on texture (total N = 38/1200).

Shape: bird bicycle airplane car
Texture: bear dot chair boat

(c) All models predict correctly (total N = 320/1200).

Shape: bear keyboard bear knife
Texture: oven truck oven oven

(d) All models predict falsely (total N = 6/1200).

Figure 11: Agreement sets. We show 4 random samples where all VLMs show the same
behavior under the default VQA prompt.
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Table 7: Zero-shot classification on cue-conflict with different CLIP(-like) joint embedding models.

Model Prompt Shape Bias [%] Accuracy [%]

EVA01-CLIP-g/14 (Sun et al., 2023b) 80 Prompts (Radford et al., 2021) 66.03 87.83
EVA01-CLIP-g/14 (Sun et al., 2023b) "a photo of a {class}." 66.03 87.08
EVA01-CLIP-g/14 (Sun et al., 2023b) "{class}" 66.44 86.67

EVA02-CLIP-8B@448px (Sun et al., 2024) 80 Prompts (Radford et al., 2021) 58.26 91.83
EVA02-CLIP-8B@448px (Sun et al., 2024) "a photo of a {class}." 57.58 89.00
EVA02-CLIP-8B@448px (Sun et al., 2024) "{class}" 56.60 88.33

EVA02-CLIP-E/14+ (Sun et al., 2023b) 80 Prompts (Radford et al., 2021) 65.62 90.67
EVA02-CLIP-E/14+ (Sun et al., 2023b) "a photo of a {class}." 64.44 89.75
EVA02-CLIP-E/14+ (Sun et al., 2023b) "{class}" 62.48 86.17

CLIP-ViT-L/14 (Radford et al., 2021) 80 Prompts (Radford et al., 2021) 60.95 84.08
CLIP-ViT-L/14 (Radford et al., 2021) "a photo of a {class}." 60.20 84.17
CLIP-ViT-L/14 (Radford et al., 2021) "{class}" 60.16 81.17

CLIP-ViT-L/14@336px (Radford et al., 2021) 80 Prompts (Radford et al., 2021) 61.52 86.83
CLIP-ViT-L/14@336px (Radford et al., 2021) "a photo of a {class}." 60.56 86.42
CLIP-ViT-L/14@336px (Radford et al., 2021) "{class}" 59.80 83.75

CLIP-ResNet-50 (Radford et al., 2021) 80 Prompts (Radford et al., 2021) 19.70 77.83
CLIP-ResNet-50 (Radford et al., 2021) "a photo of a {class}." 20.96 72.75
CLIP-ResNet-50 (Radford et al., 2021) "{class}" 20.77 71.83

CLIP-ResNet-101 (Radford et al., 2021) 80 Prompts (Radford et al., 2021) 25.50 74.83
CLIP-ResNet-101 (Radford et al., 2021) "a photo of a {class}." 25.23 71.00
CLIP-ResNet-101 (Radford et al., 2021) "{class}" 25.41 70.83

shown in (Geirhos et al., 2021), and yet, after ImageNet-finetuning, the previously well-performing
CLIP (ViT-L/14@336px) model drops from 59.80 % to just 32.1 % of shape bias.

Table 8: Classification on cue-conflict with ImageNet-trained/finetuned models.

Model Shape Bias [%] Accuracy [%]

ResNet-50 (He et al., 2015) 22.3 67.33
ResNet-50 (timm) (Wightman, 2019) 23.1 65.42
ResNet-152 (timm) (Wightman, 2019) 28.6 65.83
ViT-B/16 (ImageNet-21k pretraining) (Dosovitskiy et al., 2021) 45.4 63.67
ImageNet-finetuned CLIP (ViT-L/14@336px) (Wightman, 2019) 32.1 82.75

L ADDITIONAL THOUGHTS ON THE IMAGE CAPTIONING TASK

Did our choice of embedding model bias the results? While we assume that most embedding
models will provide similar classification performance if the description clearly mentions one class, it
is unclear how the classification is biased if the description refers to multiple classes, invalid classes,
or is generic. Thus, we additionally ablate results with SFR-Embedding (Meng et al., 2024) which
at the time of writing was the overall SOTA English embedding model on the Massive Text Embedding
Benchmark (MTEB) (Muennighoff et al., 2023). While the accuracy improved by a negligible amount,
shape bias results were largely unaffected. Thus, we settled for the faster ember-v1 models.

What happens if the description mentions multiple classes? Based on our LLM analysis, we
notice that in the majority of cases (min: 79.3%, mean: 92.2%, median: 93.0%, max: 97.6%;
minimum is given by InstructBLIP Flan-T5-xl (Dai et al., 2023)), descriptions do not refer
to multiple labels, thus a potential bias of the embedding model is negligible for our analysis.

What happens if the description is generic? According to our LLM analysis, many generated
descriptions do not refer to any object class (min: 11.4%, mean: 31.9%, median: 32.3%, max:
60.4%) - in stark contrast to VQA responses. However, we also notice that the embedding accuracy
is above random choice in these cases. This suggests that the LLM may have missed objects and
slightly overreported the ratio.
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In the cases where the caption is indeed generic, our choice of embedding model may have biased our
study. However, the previously mentioned embedding with SFR-Embedding (Meng et al., 2024)
showed similar trends. Thus, we assume that most other SOTA embedding models would behave
similarly - yet, we are excited how future embedding models will embed these cases.

Another option is to remove generic responses from the analysis. We observe that this typically
increases shape bias (and accuracy) - naturally more notably in cases where the generic ratio was
high (Tab. 9). E.g., for the extreme case of GPT-4V (OpenAI, 2023), shape bias increases by 9.3%
and accuracy by 40.47% (!). This preprocessing also seems to restore scaling laws to a large extent:
larger models achieve higher shape bias and accuracy. One outlier to this trend is InternVL Chat
v1.2+ (Chen et al., 2024). It may be intriguing to replace the reported results in Sec. 4/Fig. 2 with
the analysis on non-generic responses, but we avoid doing so, as this would a) remove a significant
portion of results; b) lead to poorly comparable results obtained on different subsets.

Table 9: Comparison of shape bias and accuracy for the Image Captioning task for all responses and
only responses which an LLM did not classify as generic.

All responses Non-generic
Model Shape Bias [%] Accuracy [%] Shape Bias [%] Accuracy [%]

Gemini 1.0 Pro Vision 63.2 68.00 65.7 88.40
GPT-4V (Preview) 53.6 52.67 62.9 93.14
Qwen-VL Plus 67.9 65.50 71.9 88.56
Qwen-VL Max 69.7 68.50 72.1 91.52
Qwen-VL Chat 38.2 67.42 40.1 83.92
InternVL Chat 1.1 73.2 75.58 74.5 87.89
InternVL Chat 1.2+ 61.3 82.42 62.3 88.15
LLaVA v1.5 7B 61.4 76.08 62.8 87.24
LLaVA v1.5 13B 62.7 75.58 65.1 88.24
LLaVA-RLHF 7B 63.0 71.83 64.7 83.80
LLaVA-RLHF 13B 62.3 73.25 66.3 86.08
LLaVA-NeXT 7B 64.0 65.08 66.9 92.48
LLaVA-NeXT 13B 63.5 65.25 65.3 92.95
LLaVA-NeXT 34B 66.2 57.50 73.6 96.39
MoE-LLaVA-StableLM 63.0 73.92 64.1 86.28
MoE-LLaVA-Qwen 63.2 75.33 64.4 88.03
MoE-LLaVA-Phi2 61.1 75.42 63.1 86.05
InstructBLIP Flan-T5-xl 67.1 81.50 68.7 89.09
InstructBLIP Vicuna-7B 67.7 80.67 68.4 90.27
Emu2-Chat 59.6 65.00 60.3 89.94
CogAgent Chat 67.4 60.33 70.8 97.38
CogVLM Chat 57.6 66.58 61.9 93.72
UForm Gen Chat 38.8 64.50 37.9 83.00

M ABLATION OF MULTI-MODAL TRAINING STAGES

Table 10: Comparison of LLaVA v1.5-7B models between Stage 1 and Stage 2 with additional
non-generic metrics.

All responses Non-generic
Shape Accur- Avg. Single Class Generic Shape Accur-

Model Bias [%] acy [%] Tokens Ratio [%] Ratio [%] Bias [%] acy [%]

Stage 1 61.8 73.25 143.5 54.1 31.4 64.5 90.32
Stage 2 61.4 76.08 12.1 73.8 19.2 62.8 87.24

LLaVA models are trained in two stages. During Stage 1 training the vision encoder and LLM
remain frozen and only the parameters of the connector in between are updated. During Stage 2, the
parameters of the LLM are included as well. To ablate the effect of these different training stages on
our results, we repeated our experiments with a Stage 1 LLaVA-1.5-Vicuna-7B checkpoint in
comparison to the final Stage 2 model and show the results in Tab. 10.
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It is worth noting, that due to the lack of proper instruction-tuning, the Stage 1 model does not follow
the VQA instructions and depending on the prompt either generates gibberish (e.g., “The image
is a collage of various items, including a bottle, a jar, a can, a
spoon, a fork, a knife, [..keeps repeating..]”) or is consistently giving a
wrong prediction. However, we can assess the bias in the captioning setting. These answers are
repetitive and noisy, too, but can still be discriminated by the embedding models.

We observe the following trends: instruction tuning (Stage 2) reduces the verbosity of generated
descriptions (avg. tokens) and increases accuracy. The shape bias of all responses is only marginally
affected (slightly decreases). The instruction-tuned model generates significantly fewer generic
captions (i.e., those that do not refer to any label), but it also reduces the ratio of answers referring
to multiple classes and, thus, becomes more biased by forgetting one cue. Because we force the
sentence embedding models to make a prediction even on generic captions, we may bias the results.
To compensate for this we repeated the analysis only on the non-generic captions (similar to Tab. 9).

For non-generic responses the Stage 1 model performs better (higher accuracy) and achieves a higher
shape bias. Taken together, this indicates that instruction tuning (at least in this specific LLaVA
model) seems to force the model to make stronger predictions (i.e., more correct predictions but also
forgetting one cue) and increases texture bias.

N DOES MULTI-MODAL TRAINING GUARANTEE SHAPE-BIASED ENCODERS?

We aim to understand a critical aspect of encoder training: the combination of vision and language.
It was already demonstrated that ViT-CLIP models show an increased shape bias in comparison
to vision-only models independent of their architecture, training data, or method (Geirhos et al.,
2021). This may suggest that joint embedding alone increases shape bias. To verify this hypothesis,
we measure the shape bias of a ResNet-50-based CLIP (Radford et al., 2021) - and observe an
opposite trend. With just 20.8% (refer to Appendix J for details), this model even slightly reduced
shape bias compared to an ImageNet-trained ResNet-50 (22.2%). As such, just fusing language into
encoder training does not guarantee an increased shape bias and the results strongly depend on the
vision architecture, as well. For the design of shape-biased VLMs, it is, thus, reasonable to rely on
representations of ViT-based CLIP as opposed to vision-only models.

O OTHER BIASES IN DEEP NEURAL NETWORKS

We want to emphasize that we deliberately exclude high-level, societal biases from our considerations.
Our study merely considers biases in the sense of low-level feature-based cues preferences.

High-level vision biases have been widely investigated, such as single-demographic effects (race
and gender) for face recognition tasks (Buolamwini & Gebru, 2018; Raji & Buolamwini, 2019).
For language models, several works focus on investigating societal biases, such as gender and race
(Barikeri et al., 2021; Lauscher et al., 2021) and ways of debiasing them (Lauscher et al., 2021; Meade
et al., 2022; Guo et al., 2022), or explicitly forcing them (Haller et al., 2023). A recent study also
found that LLMs are biased towards high-value over likely options (Sivaprasad et al., 2024). Another
study focused on encoded moral beliefs (Scherrer et al., 2023). LLMs can also pick up human traits
- one study found that adding "take a deep breath" to prompts improves performance (Yang et al.,
2024). Of course, some of the uni-modal biases also apply to VLMs (e.g., (Yang et al., 2024)), but a
few works have also explicitly focused on biases in VLMs. For example, neurons of CLIP (Radford
et al., 2021) were studied in (Goh et al., 2021), revealing that some neurons respond to the same
concept regardless of its presentation, which is a potential reason for the high generalizability. On
the other hand, this enables attacks by rendering text on images (typographic attacks). Additionally,
several works demonstrated that VLMs fail to count objects (Radford et al., 2021; Liu et al., 2021;
Thrush et al., 2022), and generally struggle in structured tasks (Zhai et al., 2022a).

P CLASS-WISE TEXTURE/SHAPE BIAS

Following the original shape bias study (Geirhos et al., 2019), we include plots that show the
class-specific texture/shape bias for all our models in VQA and Image Captioning (Fig. 12).
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(b) Image Captioning

Figure 12: Shape bias per object class. We show the results of all our models under the VQA (left)
and Image Captioning (right) task.

Q ERROR CONSISTENCY PLOT

Figure 13 shows the error consistency between our predictions of our VLMs in the VQA, CLIP
models including their encoders, ImageNet-trained or fine-tuned models, and ten human subjects.

R RESPONSIBILITY TO HUMAN SUBJECTS

We did not collect any human data ourselves. Instead, the human shape bias data is taken from
(Geirhos et al., 2019) who collected the data in a controlled psychophysical laboratory (Wichmann-lab
in Tübingen, Germany). Participants provided written informed consent and were compensated above
minimum wage. The data was open-sourced by the authors on GitHub without personally identifiable
information. The experiment was conducted in accordance with institutional guidelines for human
subjects research. For further information on the human experiment, we refer the reader to (Geirhos
et al., 2019).
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Figure 13: VLMs make similar errors on the cue-conflict dataset and share similarities with their
vision encoders. In terms of errors, VLMs are also more similar to humans than ImageNet-
trained/finetuned models. We measure the pair-wise error consistency (Geirhos et al., 2020b)
between predictions. For this analysis, an error is any answer that does not belong to the shape
class (analogous to (Geirhos et al., 2021)). Shown responses belong to LLM-based VLMs (under
the VQA task), other selected models including ImageNet models, (some) VLM encoders under
ImageNet-finetuning and zero-shot classification, and ten human subjects.
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Table 11: Example conversation for LLM-guided Prompt Search. ∗Mock conversation.

User∗ Your task is to help me design an ideal image classification prompt for a
vision/language model to MINIMIZE the shape bias without significantly
hurting accuracy. The provided photos show natural objects modified to
contain shape and texture of conflicting object classes. E.g., it could be
a photo of an elephant (shape) with dog fur (texture). The model should
classify the image as ’dog’ based on the texture of the object and ignore
the shape. The model’s accuracy is the percentage of correctly classified
images. The shape bias is the ratio of how often the model classified
based on shape over texture. You can test your prompt by outputting
a single new line starting with ’PROMPT: ’. Do not list options - the
system will provide them automatically. Try to keep the prompt as
short and simple as possible but be creative. It might be reasonable to
summarize insights of previous attempts and to outline your goals before
responding with a new prompt, but make sure that only the prompt starts
with ’PROMPT:’. In response to the prompt you will be told the accuracy
and shape bias. Then you will refine the prompt and we will continue
until I say stop. Let’s go!

Assistant∗ PROMPT: Which option best describes the image?
User∗ Prompt: [...], Accuracy: 82.58 %, Shape Bias: 59.43 %. What is your

next prompt?

Assistant To minimize the shape bias while maintaining accuracy, let’s encourage
the model to focus more on textures than shapes. Here’s my next prompt:
PROMPT: Based on the surface characteristics and patterns, which
category does the image most resemble?

User Prompt: [...], Accuracy: 78.25 %, Shape Bias: 50.9 %. Can you improve
this?

· · ·
Assistant I have provided various prompts and explored different approaches to

minimize the shape bias while maintaining high accuracy. The current
optimal prompt is: [...] Here are some additional suggestions for mini-
mizing the shape bias: [...]
These methods may require more computational resources and time
investment. If you have other questions or need guidance on different
topics, please don’t hesitate to reach out. Wishing you the best in your
continued efforts!
At this point, I believe that we have explored various approaches, and
the current prompt is the best-performing one among those tested. If you
decide to pursue any of the mentioned alternatives, I am confident that
you will find ways to improve the model’s performance and minimize
the shape bias. Good luck with your continued work!
As our conversation has concluded, I would like to thank you for engag-
ing in this exercise, and I hope I have been helpful in providing prompts
and suggestions. If you have other questions or need guidance on differ-
ent topics in the future, please don’t hesitate to reach out. Wishing you
the best in your projects and research!
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