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A B S T R A C T

Despite recent progress of automatic medical image segmentation techniques, fully automatic results usually
fail to meet clinically acceptable accuracy, thus typically require further refinement. To this end, we propose
a novel Volumetric Memory Network, dubbed as VMN, to enable segmentation of 3D medical images in an
interactive manner. Provided by user hints on an arbitrary slice, a 2D interaction network is firstly employed
to produce an initial 2D segmentation for the chosen slice. Then, the VMN propagates the initial segmentation
mask bidirectionally to all slices of the entire volume. Subsequent refinement based on additional user guidance
on other slices can be incorporated in the same manner. To facilitate smooth human-in-the-loop segmentation,
a quality assessment module is introduced to suggest the next slice for interaction based on the segmentation
quality of each slice produced in the previous round. Our VMN demonstrates two distinctive features: First,
the memory-augmented network design offers our model the ability to quickly encode past segmentation
information, which will be retrieved later for the segmentation of other slices; Second, the quality assessment
module enables the model to directly estimate the quality of each segmentation prediction, which allows for an
active learning paradigm where users preferentially label the lowest-quality slice for multi-round refinement.
The proposed network leads to a robust interactive segmentation engine, which can generalize well to various
types of user annotations (e.g., scribble, bounding box, extreme clicking). Extensive experiments
have been conducted on three public medical image segmentation datasets (i.e., MSD, KiTS19, CVC-ClinicDB),
and the results clearly confirm the superiority of our approach in comparison with state-of-the-art segmentation
models. The code is made publicly available at https://github.com/0liliulei/Mem3D.
1. Introduction

Accurate segmentation of organs or lesions from medical imaging
data (e.g., CT, MRI) holds the promise of significant improvement of
clinical treatment, by allowing the extraction of accurate models for
visualization, quantification or simulation (Pham et al., 2000). The
traditional naive manual delineation is extremely inefficient for 3D
medical images and its performance highly depends on the physician’s
experience. Benefiting from the recent advancement of deep neural net-
works (DNNs), deep learning based automated segmentation systems,
including convolutional neural networks (CNNs)-based (Ronneberger
et al., 2015; Zhou et al., 2018; Milletari et al., 2016; Hesamian et al.,
2019; Zhou et al., 2022; Baumgartner et al., 2019) as well as more
recent Transformer-based (Hatamizadeh et al., 2022; Cao et al., 2021;
Chang et al., 2021; Shamshad et al., 2022), have achieved vast attention
and remarkably advanced the segmentation performance. However,
automatic segmentation methods have not demonstrated sufficiently
accurate and robust results for clinical purposes due to the inherent

∗ Corresponding author.
E-mail address: tianfei.zhou@vision.ee.ethz.ch (T. Zhou).

challenges of medical images, such as low tissue contrast, highly vari-
able and irregular shapes of segmentation targets, diverse imaging and
segmentation protocols, and variations across patients. Consequently,
interactive segmentation (Olabarriaga and Smeulders, 2001; Zhao and
Xie, 2013; Zhou et al., 2017; Bredell et al., 2018; Wang et al., 2018b,a;
Zhou et al., 2021) garners research interests of the medical image
analysis community, and recently became the choice in many real-life
medical applications.

In interactive segmentation, the user is factored in to play a crucial
role in guiding the segmentation process and in correcting errors as
they occur (often in an iteratively-refined manner). Research on this
topic dates back decades, with early efforts focusing on boundary
tracing techniques for natural image segmentation (Kass et al., 1988;
Mortensen and Barrett, 1995). For medical imaging segmentation, pio-
neering approaches treat the task as an restricted optimization problem,
which can be solved by max-flow (Boykov and Jolly, 2001), geodesic
energy minimization (Criminisi et al., 2008) or random walks (Grady
vailable online 6 September 2022
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et al., 2005; Grady, 2006). Yet, these methods require a large amount of
input from users to segment targets with low contrast and ambiguous
boundaries. With the advent of deep learning, there has been a dra-
matically increasing interest in deep interactive segmentation. Recent
methods demonstrate higher segmentation accuracy with fewer user
interactions than classical approaches. Despite this, current methods
have two major limitations. (1) Many approaches (Kitrungrotsakul
et al., 2020; Sun et al., 2018; Sakinis et al., 2019) only focus on
2D medical images, not allowing the integration of prior volumetric
knowledge regarding the 3D medical data. Slice-by-slice interactive
segmentation also imposes extremely high annotation cost to users.
Though some 3D networks (Çiçek et al., 2016; Rajchl et al., 2016;
Liao et al., 2020; Wang et al., 2018b,a) are able to exploit high-order,
volumetric features to segment voxels at a time, they require signifi-
cantly more parameters and computations in comparison with the 2D
counterparts. This necessitates compromises in the 3D network design
to fit into a given memory or computation budget. (2) These methods
are in practice not flexible for human-in-the-loop segmentation, since
they requires the user to manually inspect mis-segmented slices in order
to give additional interventions for refinement.

To address these issues, we propose a volumetric memory network
(VMN) to solve volumetric medical image segmentation as a memory-
based reasoning problem. Fundamental to our model is an external
memory component, which allows the model to store historical target
information in segmented slices in the memory and later retrieve
useful representations from the memory as guidance to segment the
incoming slice. In this way, our model makes full use of context within
3D data, and at the same time, avoids computationally expensive 3D
operations. During segmentation, we dynamically update the memory
to maintain shape or appearance variations of the target, facilitating
easy model updating without expensive parameter optimization. This
solves limitation 1. In addition to predicting the segmentation based
n the user’s inputs, VMN is equipped with a quality assessment com-
onent to estimate a confidence for each segmentation result, allowing
utomatic identification of mis-segmented slices for user interactions.
he quality assessment component is lightweight, bringing negligible
urden to VMN in model size or inference speed, meanwhile, it is
emonstrated to be a reliable selection criterion to support efficient
nteractive segmentation (see Table 7). In this manner, our VMN tackles
he limitation 2.

Based on VMN, we propose a novel interactive segmentation engine,
unning in a round-based workflow. In each round, the engine processes
he input image within three steps:

1. Initialization: the physician provides guidance on an arbitrary
slice, according to which a 2D interaction segmentation net-
work is employed to produce an initial 2D segmentation of the
specified target.

2. Segmentation: VMN propagates the initial mask sequentially and
bidirectionally to the entire volume, and at the same time,
predicts a segmentation quality for each slice.

3. Correction: the slice with the lowest quality score is fetched, and
the physician provides extra corrections on it for next-round
refinement (loop to step 1), or stop segmentation if the result
is already satisfactory.

The key contributions of this paper are as follows:

1. We propose a novel memory-augmented network named VMN
for interactive segmentation of volumetric medical data. It solves
the task by sequential label propagation, while taking into con-
sideration the rich 3D structures, and avoiding expensive 3D
operations.

2. We equip the memory network with a quality assessment com-
ponent to assess the quality of each segmentation. It facilitates
automatic suggestion of appropriate slices for iterative correc-
tion by involving human intervention in the loop. This self-
2

assessment strategy greatly promotes the practical utility of
our VMN so that it enables smooth and efficient interaction
segmentation.

3. Our approach outperforms previous methods by a significant
margin on three public datasets, while being able to handle
various forms of interactions (e.g., scribble, bounding box,
extreme clicking).

The present work builds upon our conference paper (Zhou et al.,
2021) and extends it in some significant aspects. First, we elaborate
on more detailed explanations of our VMN in Section 3. Second, we
provide a more inclusive review of relevant works in Section 2. Third,
we incorporate considerable new experimental results in Section 4, in-
cluding a more comparative study with recent approaches, new results
on CVC-ClinicDB, more ablative experiments, and visualization results.

In the remainder of this paper, we first provide a thorough review
of existing interactive segmentation and memory-augmented networks
in medical imaging in Section 2. In Section 3, we introduce our VMN
network for volumetric image segmentation, and verify it through
extensive experiments in Section 4. The paper is concluded in Section 5.

2. Related work

In this section, we discuss recent advances in two relevant fields,
i.e., interactive medical image segmentation and memory-aware neural
networks.

2.1. Interactive medical image segmentation

Segmenting targets interactively is a long standing research topic,
which shows superiority in producing higher-quality segmentation than
fully-automatic methods. It is often a key step in many medical ap-
plications, where image segmentation is particularly difficult due to
restrictions imposed by image acquisition, pathology and biological
variation (Olabarriaga and Smeulders, 2001). User interactions can be
supplied in several typical ways such as scribbles (Boykov and Funka-
Lea, 2006; Grady et al., 2005; Rother et al., 2004; Wang et al., 2016),
bounding boxes (Castrejon et al., 2017), extreme points (Maninis et al.,
2018; Agustsson et al., 2019) or point clicks (Sakinis et al., 2019;
Koohbanani et al., 2020; Zhang et al., 2021b). Most conventional
approaches (Boykov and Funka-Lea, 2006; Grady et al., 2005; Rother
et al., 2004; Wang et al., 2016) formulate the task as energy minimiza-
tion on a regular pixel grid, with unary potential capturing low-level
appearance properties and pairwise or higher-order potentials encour-
aging regular segmentation outputs. In recent years, deep learning
based techniques (Rajchl et al., 2016; Çiçek et al., 2016; Sakinis et al.,
2019; Liao et al., 2020; Kitrungrotsakul et al., 2020; Wang et al.,
2018b,a; Koohbanani et al., 2020; Zhang et al., 2021b) have received
considerable attention and significantly boosted segmentation perfor-
mance. The pioneering DeepCut method (Rajchl et al., 2016) directly
replaces the Gaussian mixture model in GrabCut by a CNN for MRI
segmentation, while most subsequent approaches (Çiçek et al., 2016;
Sakinis et al., 2019; Wang et al., 2018a,b; Luo et al., 2021; Wang et al.,
2020) solve the task by 2D or 3D fully convolutional networks (FCNs),
with user hints serving as network inputs. To reduce the cost of initial
annotations, some methods (Wang et al., 2018b; Bredell et al., 2018;
Zhou et al., 2021; Liao et al., 2020) take automatically-segmented
masks as network inputs and refine them via neural networks.

Despite the progress, previous methods employ computationally
expensive 3D CNNs for interactive volumetric image segmentation,
which causes low reaction speed in practice, especially for scenarios
requiring multi-round iterative interactions. In addition, most methods
require users to manually check the segmentation slice-by-slice and
identify inaccurate segments to provide corrections, which is laborious
and highly inefficient. To alleviate this, in addition to predicting seg-
mentation based on user’s inputs, some studies assess uncertainty of the

segmentation as the guidance of follow-up corrections. Conventional
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Fig. 1. Illustration of the proposed 3D interactive segmentation engine. (a) Simplified schematization of our engine that solves the task with an 2D interaction network (𝑓IN) and
a volumetric memory network (𝑓VMN). (b) Detailed network architecture of 𝑓VMN. © denotes concatenation.
algorithms (Baxter et al., 2016; Top et al., 2011) estimate uncertainty
of the whole volume by multi-step, iterative optimization, which is very
time-consuming. More recently, (Yoo and Kweon, 2019) introduces a
loss prediction module for uncertainty estimation within deep neural
networks. The method is task-agnostic, however, it relies on elaborate
designs of the loss function to account for changes of loss scale during
training. Our quality assessment module is superior to Yoo and Kweon
(2019) in that it is specifically designed for segmentation; considering
that IoU is a normalized metric, we can directly apply a simple MSE
loss for optimization.

2.2. Memory-aware neural networks

Memory networks augment neural networks with an external mem-
ory component, allowing for the network to explicitly access the past
experiences (Sukhbaatar et al., 2015; Kumar et al., 2016; Santoro et al.,
2016). They have been shown effective in various tasks such as few-
shot learning (Santoro et al., 2016), video tracking (Yang and Chan,
2018), and also been explored to solve reasoning problems in visual
dialog (Sukhbaatar et al., 2015; Kumar et al., 2016). In this work,
we, for the first time, explore memory-augmented neural networks for
solving the problem of 3D medical image segmentation. In contrast
to 3D CNN networks that perceive volumetric patterns through 3D
convolutions, our network stores volumetric cues within the memory,
and for each query slice, produces a memory summarization representa-
tion by taking into account the similarity between the query slice and
the stored memory. As a result, the memory network has the ability
to retrieve volumetric cues for each slice, and thus enables accurate
3D segmentation in a cheap manner. Concurrent to our conference
paper (Zhou et al., 2021; Cheng et al., 2021) introduces a memory-
augmented neural network for interactive video object segmentation.
However, it requires manual selection of frames for user correction and
only verifies scribble-guided segmentation.

3. Our approach

3.1. Overview

Let 𝑉 ∈ Rℎ×𝑤×𝑐 be a volumetric image to be segmented, which has
a spatial size of ℎ × 𝑤 and 𝑐 slices. Our approach aims to obtain a 3D
binary mask 𝑌 ∈ {0, 1}ℎ×𝑤×𝑐 for a specified target by utilizing user
guidance. As shown in Fig. 1(a), the physician is asked to provide an
initial input on an arbitrary slice 𝐼𝑖 ∈ Rℎ×𝑤, where 𝐼𝑖 denotes the 𝑖th
slice of 𝑉 . Then, an interaction network (𝑓IN, Section 3.2) is employed
to obtain a coarse 2D segmentation 𝑌𝑖 ∈ [0, 1]ℎ×𝑤 for 𝐼𝑖. Subsequently,
𝑌𝑖 is propagated to all other slices by VMN (𝑓VMN, Section 3.3) to obtain
𝑌 . Our approach also takes into account iterative refinement allowing
3

the segmentation performance to be progressively improved with multi-
round inference. To aid the refinement, the memory network has a
module that estimates the segmentation performance on each slice
and suggests the user to place guidance on the slice with the worst
segmentation quality.

3.2. Interaction network

The interaction network takes the user annotation at an interactive
slice 𝐼𝑖 to segment the specified target (or refine the previous result).
At the 𝑡th round, its input consists of three images: the original gray-
scale image 𝐼𝑖, the segmentation mask from the previous round 𝑌 𝑡−1

𝑖 ,
and a cue map 𝑀𝑖∈{0, 1}ℎ×𝑤 that encodes user guidance. Note that in
the first round (i.e., 𝑡=0), the segmentation mask 𝑌 −1

𝑖 is initialized as
a neutral mask with 0.5 for all pixels. These inputs are concatenated
along the channel dimension to form an input tensor 𝑿𝑡

𝑖∈Rℎ×𝑤×3. The
interaction network 𝑓IN conducts the segmentation for 𝐼𝑖 as follows:

𝑌 𝑡
𝑖 = 𝑓IN(𝑿𝑡

𝑖) ∈ Rℎ×𝑤. (1)

To further enhance performance and avoid mistakes in case of small
targets or low-contrast tissues, we propose to crop the image according
to the rough bounding-box estimation of user input, and apply 𝑓IN only
to the ROI. We extend the bounding box by 10% along sides to preserve
more context. Each ROI region is resized into a fixed size for network
input. After segmentation, the mask made within the ROI is inversely
warped and pasted back to the original location.

3.3. Volumetric memory network

Given the initial 2D segmentation 𝑌 𝑡
𝑖 , our VMN learns from the

interactive slice 𝐼𝑖 and segments the desired target in other slices.
It stores previously segmented slices in an external memory , and
takes into consideration of the stored 3D image and corresponding
segmentation masks to improve the segmentation of each 2D slice. The
network architecture is shown in Fig. 1(b). In the following paragraphs,
the superscript ‘𝑡’ is omitted for conciseness unless necessary.

3.3.1. Key and value embedding
Given a query slice 𝐼𝑞 , the network mines useful information from

memory  for segmentation. Here, each memory cell 𝑗 ∈  is
comprised of a slice image 𝐼𝑛𝑗 and its segmentation mask 𝑌𝑛𝑗 , where
𝑛𝑗 indicates the index of the slice in the original volume. As illustrated
in Fig. 1(b), we first encode the query 𝐼𝑞 as well as each memory cell
𝑗 = {𝐼𝑛𝑗 , 𝑌𝑛𝑗 } into pairs of key and value using dedicated encoders
(i.e., query 𝑞 and memory encoder 𝑚):

𝑲𝑞 ,𝑽 𝑞 = 𝑞(𝐼 ), (2)
𝑞
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𝑲𝑚
𝑛𝑗
,𝑽 𝑚

𝑛𝑗
= 𝑚(𝐼𝑛𝑗 , 𝑌𝑛𝑗 ). (3)

Here, 𝑲𝑞 ∈R𝐻×𝑊 ×𝐶∕8 and 𝑽 𝑞 ∈R𝐻×𝑊 ×𝐶∕2 indicate key and value em-
bedding of the query 𝐼𝑞 , respectively, whereas 𝑲𝑚

𝑛𝑗
and 𝑽 𝑚

𝑛𝑗
correspond

o the key and value of the memory cell 𝑗 . 𝐻 , 𝑊 and 𝐶 denote
he height, width and channel dimension of the feature map from the
ackbone network, respectively. Note that for each memory cell, we
pply Eq. (3) to obtain key–value embedding pairs. Subsequently, the
ey and value maps from different memory slices are stacked together
o build a pair of 4D key and value features (i.e., 𝑲𝑚 ∈ R𝑁×𝐻×𝑊 ×𝐶∕8

nd 𝑽 𝑚∈R𝑁×𝐻×𝑊 ×𝐶∕2), where 𝑁 = || denotes memory size.

.3.2. Memory reading
The memory read controller retrieves useful information from the

emory that is relevant to the current query. To achieve this, we
irst compute the similarities between all the pixels of the query key
ap (i.e., 𝑲𝑞) and the memory key map (𝑲𝑚). Following the key–

alue retrieval mechanism in Kumar et al. (2016), Sukhbaatar et al.
2015), the similarity matching is established in a non-local manner by
omparing every 3D location 𝑖 ∈ R3 in 𝑲𝑚 in with each spatial location
∈ R2 in 𝑲𝑞 as follows:

(𝑖, 𝑗) =
𝑲𝑚(𝑖) ⋅𝑲𝑞(𝑗)

‖𝑲𝑚(𝑖)‖‖𝑲𝑞(𝑗)‖
∈ [−1, 1], (4)

here 𝑲𝑚(𝑖)∈R𝐶∕8 and 𝑲𝑞(𝑗)∈R𝐶∕8 denote the features at the 𝑖th and
th position of 𝑲𝑚 and 𝑲𝑞 , respectively. Next, we compute the read
eight 𝑤𝑘 by softmax normalization:

(𝑖, 𝑗) =
exp(𝑠(𝑖, 𝑗))

∑

𝑜
exp(𝑠(𝑜, 𝑗))

∈ [0, 1]. (5)

ere, 𝑤(𝑖, 𝑗) measures the matching probability between 𝑖 and 𝑗. Then,
he value of the memory is retrieved by a weighted summation with
he soft weights:
𝑞(𝑗) =

∑

𝑖
𝑤(𝑖, 𝑗)𝑽 𝑚(𝑖) ∈ R𝐶∕2, (6)

here 𝑽 𝑚(𝑖) ∈ R𝐶∕2 denotes the feature of the 𝑖th 3D position in 𝑽 𝑚

nd 𝑯𝑞(𝑗) indicates the summarized representation of location 𝑗. For
ll 𝐻 ×𝑊 locations in 𝑲𝑞 , we independently apply Eq. (6) and obtain
he feature map 𝑯𝑞 ∈ R𝐻×𝑊 ×𝐶∕2. To achieve a more comprehensive
epresentation, the feature map is concatenated with query value 𝑽 𝑞

o compute a final query representation 𝑭 𝑞 = 𝚌𝚊𝚝(𝑯𝑞 ,𝑽 𝑞) ∈ R𝐻×𝑊 ×𝐶 .

.3.3. Segmentation readout
Given 𝑭 𝑞 , our VMN leverages a decoder network  to predict the

inal segmentation probability map for the query slice:
𝑞 = (𝑭 𝑞) ∈ [0, 1]ℎ×𝑤. (7)

.3.4. Quality assessment
While VMN provides a compelling way to produce 3D segmenta-

ion, it does not efficiently support human-in-the-loop scenarios. To
olve this, we equip the memory network with a lightweight quality
ssessment head, which computes a quality score for each segmentation
ask. In particular, we consider mean intersection-over-union (mIoU) as

he basic index for quality measurement. For each query 𝐼𝑞 , we take its
eature representation 𝑭 𝑞 and the corresponding segmentation mask 𝑌 𝑞

ogether to regress a mIoU score ℎ𝑞 :
𝑞 = (𝑭 𝑞 , 𝑌 𝑞) ∈ [0, 1], (8)

here 𝒀 𝑞 is firstly resized to a size of 𝐻 × 𝑊 and then concatenated
ith 𝑭 𝑞 for regression. The slice with the lowest score is curated

or next-round interaction. The quality-aware module (⋅) has two
ppealing properties: (1) it provides the interactive engine a mechanism
o automatically suggest the lowest-quality slice for user refinement; (2)
he quality regression loss provides auxiliary supervision signal to guide
he learning of VMN.
4

e

.4. Multi-round segmentation

Our VMN performs multi-round interaction to progressively im-
rove the segmentation performance. In particular, in the first round,
user hint as well as the corresponding slice image are provided to

he 2D interaction network 𝑓IN to predict an initial segmentation mask.
ext, VMN (i.e., 𝑓VMN) will transfer the segmentation mask bidirec-

ionally to all other slices to produce segmentation predictions and
orresponding segmentation quality scores. A new slice with the lowest
core will be chosen and the corresponding mask will be provided to
sers for corrections, which will trigger next-round segmentation.

.5. Detailed network architecture

.5.1. Loss function
Our VMN is end-to-end trainable. The training loss is a combination

f the segmentation loss and quality regression loss with the same
eights:

=
∑

𝑞
CE(𝑌 𝑞 , 𝑌 𝑞) + 2(ℎ𝑞 , ℎ̂𝑞), (9)

here CE and 2 represents the cross entropy loss and 𝓁2 loss, re-
pectively. 𝑌 𝑞 is the ground-truth mask of 𝐼𝑞 , while ℎ̂𝑞 is equal to the
ixel-level IoU between the predicted mask 𝑌 𝑞 and its matched ground
ruth mask 𝑌 𝑞 .

.5.2. Interaction network
The interaction network 𝑓IN is implemented with a cascaded struc-

ure as (Chen et al., 2018) to produce the segmentation in a coarse-to-
ine manner. First, the inputs are fed into a FPN-like network (Lin et al.,
017) which progressively fuses the high-level semantic information
from the deeper layers) with low-level details (from the earlier layers)
ia lateral connections to produce informative representations. A pyra-
id scene parsing module is appended at the deepest layer to gather

lobal contextual information. Second, we apply multi-scale fusion to
ggregate the information across different levels in the FPN network
s (Chen et al., 2018). Finally, a 1 × 1 convolutional layer is used to
roduce the initial segmentation mask. We note that our approach is
ot limited to this specific interaction network, and other architectures
ike U-Net (Ronneberger et al., 2015) can also be used instead. The
etwork is trained using a standard cross-entropy loss.

.5.3. Volumetric memory network
We utilize ResNet-50 (He et al., 2016) as the backbone network for

oth 𝑞 (Eq. (2)) and 𝑚 (Eq. (3)). The res4 feature map of ResNet-50
s taken for computing the key and value embedding. Note that 𝑞 and
𝑚 has the same structure except for the inputs. The input to 𝑞 is only
slice image, while the input to 𝑚 consists of a slice image and the

orresponding segmentation mask. For , we first apply Atrous Spatial
yramid Pooling module after the memory read operation to enlarge
he receptive field. We use three parallel dilated convolution layers
ith dilation rates 2, 4 and 8. Then, the learned feature is decoded
ith a residual refinement module proposed in Qin et al. (2019). The
uality-aware module, , consists of three 3×3 convolutional layers and
hree fully connected layers.

. Experiment

.1. Experimental setup

.1.1. Data
To evaluate the effectiveness of our method, we conduct extensive
xperiments on three public datasets:
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Table 1
Quantitative segmentation results on MSD (Simpson et al., 2019) test in terms of DSC (Mean ± Standard Deviation, %). Automatic
(non-interactive) approaches are shown in gray. ∗ denotes current best-performed model in the leaderboard of MSD challenge (https:
//decathlon-10.grand-challenge.org/evaluation/challenge/leaderboard/). † indicates statistically significant results (𝑝-value < 0.05) in
comparison with MIDeepSeg. See Section 4.4.1 for details.
Approach Interaction Lung cancer Colon cancer

SNAS (Kim et al., 2019) No 68.6 N/A
V-NAS (Zhu et al., 2019) No 55.3 N/A
UMCT (Xia et al., 2020) No N/A 56.0
C2FNAS (Yu et al., 2020) No 70.4 58.9
3D nnU-Net (Isensee et al., 2018) No 66.9 56.0
∗Swin UNETR No 77.0 59.0

Interactive 3D nnU-Net (Isensee et al., 2018) scribble 73.9 ± 16.8 68.1 ± 34.7
bounding box 74.7 ± 16.3 68.5 ± 33.2
extreme clicking 75.1 ± 15.5 69.8 ± 31.0

UGIR (Wang et al., 2020) scribble 76.0 ± 13.8 71.9 ± 19.6
bounding box 76.5 ± 13.4 72.4 ± 19.5
extreme clicking 76.9 ± 12.8 72.5 ± 19.6

DeepIGeoS (Wang et al., 2018b) scribble 76.6 ± 13.5 72.3 ± 19.5
bounding box 77.2 ± 13.3 73.0 ± 19.2
extreme clicking 77.5 ± 12.6 73.2 ± 19.1

MIDeepSeg (Luo et al., 2021) scribble 78.9 ± 10.1 74.8 ± 12.5
bounding box 79.3 ± 9.9 75.6 ± 12.3
extreme clicking 79.9 ± 9.8 76.0 ± 11.8

VMN (ours) scribble †80.9 ± 9.2 †79.7 ± 11.7
bounding box †81.5 ± 9.1 †79.3 ± 11.4
extreme clicking †82.0 ± 8.8 †80.4 ± 11.2
Table 2
Quantitative segmentation results on KiTS19 (Heller et al., 2019) test in terms of DSC (Mean ± Standard Deviation, %). Automatic
(non-interactive) approaches are shown in gray. †: current best-performed model in the leaderboard of KiTS19 challenge (https:
//kits21.kits-challenge.org/results). † indicates statistically significant results (𝑝-value < 0.05) in comparison with MIDeepSeg. See
Section 4.4.2 for details.
Approach Interaction Kidney organ Kidney tumor

Mu et al. (Mu et al., 2019) No 97.2 78.9
MSS U-Net (Zhao et al., 2020) No 96.9 80.5
Zhang et al. (Zhang et al., 2019) No 97.4 83.1
Hou et al. (Hou et al., 2019) No 96.7 84.5
3D nnU-Net (Isensee et al., 2018) No 96.9 85.7
†3D U-Net (Isensee and Maier-Hein, 2019) No 97.4 85.1

Interactive 3D nnU-Net (Isensee et al., 2018) scribble 94.5 ± 4.0 86.3 ± 15.9
bounding box 95.3 ± 3.8 86.8 ± 15.8
extreme clicking 95.6 ± 3.1 87.6 ± 14.4

UGIR (Wang et al., 2020) scribble 96.0 ± 3.8 87.1 ± 16.3
bounding box 96.3 ± 3.0 87.8 ± 15.6
extreme clicking 96.7 ± 2.7 88.1 ± 13.5

DeepIGeoS (Wang et al., 2018b) scribble 95.7 ± 3.4 87.6 ± 14.3
bounding box 96.4 ± 2.8 88.5 ± 13.0
extreme clicking 96.7 ± 2.4 88.9 ± 11.4

MIDeepSeg (Luo et al., 2021) scribble 96.3 ± 2.9 87.9 ± 9.2
bounding box 96.6 ± 2.8 88.1 ± 9.0
extreme clicking 97.1 ± 2.3 88.5 ± 8.8

VMN (ours) scribble †96.9 ± 1.9 88.2 ± 7.5
bounding box †97.0 ± 2.1 †88.4 ± 7.5
extreme clicking 97.0 ± 1.7 †89.1 ± 7.4
• MSD (Simpson et al., 2019) is a large-scale dataset with a total
of 2633 3D volumetric images. They are grouped into ten subsets
according to the anatomy of interest (e.g., liver, lung, hippocam-
pus, colon). In our experiments, we study the most challenging
two subsets: lung (64∕32 for train/test) and colon (126∕64 for
train/test).

• KiTS19 (Heller et al., 2019) contains 300 arterial phase abdominal
CT scans with annotations of kidney and tumor. We use the
released 210 scans in the experiments, which are split into 168
for train and 42 for test.

• CVC-ClinicDB (Bernal et al., 2015) consists of 29 colonoscopy
sequences. We follow (Fan et al., 2020; Jha et al., 2020) to divide
them into 23, 3 and 3 for train, val and test, respectively.
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4.1.2. Baseline model
For comparison, we build a baseline model, named Interactive 3D

nnU-Net, by adapting nnU-Net (Isensee et al., 2018) into the setting
of interactive segmentation. In particular, we first leverage the 2D
interaction network 𝑓IN (Section 3.2) to produce a segmentation for the
interactive slice. Then, the segmentation mask is concatenated with the
volume to form the input of 3D nnU-Net. The quality-aware iterative
refinement is also applied. In addition, we compare our approach
against three interactive segmentation methods, i.e., DeepIGeoS (Wang
et al., 2018b), UGIR (Wang et al., 2020), and MIDeepSeg (Luo et al.,
2021). We also report the performance of several famous automated
(i.e., non-interactive) alternatives for reference.

https://decathlon-10.grand-challenge.org/evaluation/challenge/leaderboard/
https://decathlon-10.grand-challenge.org/evaluation/challenge/leaderboard/
https://kits21.kits-challenge.org/results
https://kits21.kits-challenge.org/results
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Table 3
Quantitative results on CVC-ClinicDB (Bernal et al., 2015) test in terms of mIoU (%) and DSC (%). Automatic (non-interactive)
approaches are shown in gray. † indicates statistically significant results (𝑝-value < 0.05) in comparison with Interactive 3D nnU-Net.
See Section 4.4.3 for details.
Approach Interaction mIoU (%) DSC (%)

SFA (Fang et al., 2019) No N/A 70.0
U-Net++ (Zhou et al., 2018) No 72.9 79.4
U-Net (Ronneberger et al., 2015) No 75.5 82.3
ResUNet++ (Jha et al., 2019) No 79.6 79.6
PraNet (Fan et al., 2020) No 84.9 89.9
TransFuse-S (Zhang et al., 2021a) No 86.8 91.8
DoubleUNet (Jha et al., 2020) No 86.1 92.4

Interactive 3D nnU-Net (Isensee et al., 2018) bounding box 88.1 ± 4.5 93.2 ± 6.5
extreme clicking 88.3 ± 4.1 93.3 ± 6.0

VMN (ours) bounding box †90.4 ± 3.1 †94.6 ± 4.7
extreme clicking †90.7 ± 2.8 †94.9 ± 4.2
Fig. 2. Qualitative results of our approach vs. Interactive 3D nnU-Net on representative samples in the colon set of MSD (Simpson et al., 2019) test. From top to bottom:
scribble, bounding box and extreme clicking. From left to right: interactive slices, segmentation results of interactive slices by the interaction network, segmentation
results of other three slices by VMN. Note that VMN and Interactive 3D nnU-Net share a same 2D interaction network, thus only one contour is depicted in the second column.
Fig. 3. Qualitative results of our approach vs. Interactive 3D nnU-Net on representative samples of kidney tumor segmentation in KiTS19 (Heller et al., 2019) test. From top
to bottom: scribble, bounding box and extreme clicking. From left to right: interactive slices, segmentation results of interactive slices by the interaction network,
segmentation results of other three slices by VMN. Note that VMN and Interactive 3D nnU-Net share a same 2D interaction network, thus only one contour is depicted in the
second column.
6
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Fig. 4. Qualitative results of quality assessment on the lung (top) and colon (bottom)
sets of MSD test. For each segmentation, we report the predicted quality score as
well as corresponding IOU score computed between the segmentation prediction and
ground-truth.

4.1.3. Evaluation protocol
To assess the performance of our approach, we employ the com-

mon Dice Similarity coefficient (DSC) as the main metric. It measures
the similarity between the predicted volumetric segmentation 𝑌 and
corresponding ground-truth 𝑌 :

𝐷𝑆𝐶 =
2|𝑌 ∩ 𝑌 |
|𝑌 | + |𝑌 |

, (10)

where | ⋅ | represents the operation of cardinality computation, that
returns the number of elements in a binary mask.

4.2. Interaction simulation

Our approach can support various types of user interactions, which
facilitates diverse uses in clinical routine. In our experiments, we
study three common interactions, i.e., scribble, bounding box and
extreme clicking. Scribble provides sparse labels to describe
the targets and rough extent, bounding box outlines the sizes and
locations of targets, whereas extreme clicking (Maninis et al.,
2018) outlines a more compact area of a target by labeling its leftmost,
rightmost, top, bottom pixels. To simulate scribbles, we manually label
the data in MSD and KiTS19, resulting in 3,585 slices. We will make
the annotations public available. Bounding boxes and extreme clicks
can be easily simulated from ground-truths. To mimic real users’ be-
haviors that may not provide precise annotations, we randomly jitter
the position of each extreme click up to 10 pixels. This also applies
to corners of bounding boxes. Given user’s annotation, we employ
geodesic distance transformation in DeepIGeoS (Wang et al., 2018b)
to encode the input into a cue map 𝑀 , which serves as the input of
𝑓IN (Section 3.2). Only axial slices are employed for interaction in our
experiments. To maximize the performance, we train an independent
𝑓IN for each interaction type.

4.3. Implementation details

Training. Our engine is implemented in PyTorch and trained using
four Geforce RTX 2080Ti GPUs, each with a 11 GB memory. For 𝑓IN
(Section 3.2), we follow the setting in Zhang et al. (2020) for training. It
is trained for a total of 100 epochs with batch size 10 and learning rate
1e-6. The volumetric memory network 𝑓VMN (Section 3.3) is trained
using Adam with learning rate 1e-5 and batch size 8 for 120 epochs. To
create a training example, we randomly sample 5 ordered slices from
a 3D image. During training, the memory is dynamically updated by
adding the slice and mask of the previous step to the memory as support
for the next slice. All these training settings are determined via 5-fold
cross-validation on KiTS19 train, and subsequently applied to other
datasets (i.e., MSD and CVC-ClinicDB).

Testing. During inference, simulated user hints are provided to 𝑓IN
for an initial segmentation of the interactive slice. Then, for each query
7

Table 4
Quantitative comparison of generalization ability of VMN across different datasets. DSC
(%) is used as the metric. See Section 4.4.4.

Train set Test set scribble bounding
box

extreme
clicking

KiTS19 MSD (Lung) 77.8 78.2 78.6
MSD (Colon) 77.2 77.5 77.9

MSD KiTS19 (Organ) 89.6 90.3 90.7
KiTS19 (Tumor) 86.1 86.4 86.5

slice, we put this interactive slice and the previous slice with corre-
sponding segmentation masks into the memory as the most important
reference information. In addition, we save a new memory item every
𝑆 slices for each segmentation direction independently, where 𝑆 is
empirically set to 5. We do not add all slices and corresponding masks
into memory to avoid large storage and computational costs. In this
way, our memory network achieves the effect of online learning and
adaption without additional training.

4.4. Main results

4.4.1. Segmentation performance on MSD
Table 1 provides segmentation results of lung cancer and colon

cancer on MSD test. For interactive models, we report scores at
the 6-th round which well balances segmentation accuracy and model
efficiency. First, we find that segmentation of lung cancer and colon
cancer is highly challenging. The best-performed automatic model, i.e.,
Swin UNETR, only produces DSC scores of 77.0% for lung cancer and
59.0% for colon cancer, respectively. The performance cannot meet the
requirements of clinical practice. Second, our VMN, working in an in-
teractive manner, significantly improves the segmentation performance
against automatic models. With extreme clicking, VMN outper-
forms Swin UNETR by 15% for lung cancer and 21.4% for colon cancer.
Third, we observe a significant improvement of VMN against the four
interactive competitors, i.e., Interactive 3D nnU-Net (Isensee et al.,
2018), DeepIGeoS (Wang et al., 2018b), UGIR (Wang et al., 2020), and
MIDeepSeg (Luo et al., 2021), which is consistent across interaction
types (i.e., scribble, bounding box and extreme clicking).
In particular, VMN outperforms Interactive 3D nnU-Net (Isensee et al.,
2018) by large margins, i.e., more than 7% for lung cancer and 10%
for colon cancer on average. In comparison with the second best
MIDeepSeg (Luo et al., 2021), VMN also establishes promising gains of
more than 2% and 4% for Lung Cancer and Colon Cancer, respectively.
Last, for the three interaction types, i.e., scribble, bounding box
and extreme clicking, VMN delivers very similar segmentation
performance, demonstrating its high robustness to user inputs.

4.4.2. Segmentation performance on KiTS19
Table 2 presents performance comparisons on KiTS19 test for

kindey organ and tumor segmentation. As seen, the best-performed
automatic model (Isensee and Maier-Hein, 2019) has already demon-
strated compelling performance for segmentation of kidney organ,
even better than interactive models. However, automatic models still
encounter difficulties in kidney tumor segmentation. Moreover, all the
five interactive segmentation models deliver more precise segmentation
of kidney tumor than (Isensee and Maier-Hein, 2019). Among them, our
VMN yields the best overall performance, with the smallest standard
deviations across three interactive types.

4.4.3. Segmentation performance on CVC-ClinicDB
We now assess the performance of VMN against eight automatic

and one interactive competitors on CVC-ClinicDB test. Following
the protocol of the dataset, we evaluate the approaches in terms of
both mIoU and DSC scores. As summarized in Table 3, our VMN with
extreme clicking yields the best performance. It outperforms the
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Table 5
Ablation study on memory size in terms of DSC (%). See Section 4.5.1 for details.
Memory size Lung cancer Colon cancer

scribble bounding box extreme clicking scribble bounding box extreme clicking

0 58.2 59.3 58.9 54.7 54.7 54.8
1 76.2 75.6 77.0 67.3 67.1 68.0
5 79.6 79.8 80.9 72.9 73.1 73.9
10 80.9 81.4 81.8 75.2 75.3 75.8
15 81.0 81.5 82.1 78.7 79.2 80.4
20 80.9 81.5 82.0 79.7 79.3 80.4
Table 6
Ablation study on 2D interaction network 𝑓IN in terms of DSC (%). See Section 4.5.2 for details.
2D Interaction network Lung cancer Colon cancer

scribble bounding box extreme clicking scribble bounding box extreme clicking

shared 80.5 81.2 81.4 79.3 78.8 79.8
not shared 80.9 81.5 82.0 79.7 79.3 80.4
t
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Table 7
Ablation study of the quality assessment module in terms of DSC (%).
See Section 4.5.3 for details.
Variant Lung cancer Colon cancer

oracle 81.4 80.4
random 80.1 77.5
quality assessment 81.3 79.7

Table 8
Quantitative comparison of the quality assessment module against the loss prediction
module in Yoo and Kweon (2019) on MSD test. DSC (%) is used as the metric.
ection 4.5.3 for details.
Uncertainty
technique

Lung cancer Colon cancer

scrib. bound.
box

extreme
click

scrib. bound.
box

extreme
click

(Yoo and Kweon, 2019) 79.8 80.1 80.8 78.4 78.3 79.0
Ours 80.9 81.5 82.0 79.7 79.3 80.4

Table 9
Performance comparison between VMN and automatic 3D nnU-Net in low-data regime,
in terms of DSC (%). See Section 4.5.5.

Model Lung cancer Colon cancer

10% 20% 50% 10% 20% 50%

3D nnU-Net 25.8 41.6 64.0 30.7 45.3 54.5
VMN (Ours) 69.7 74.5 81.1 63.2 71.9 80.0

best automatic model DoubleUNet (Jha et al., 2020) by 4.6% and 2.5%
in terms of mIoU and DSC, respectively. In addition, VMN performs
consistently better than the Interactive 3D nnU-Net. Note that since we
only provide scribble annotations for MSD and KiTS19, we do not
evaluate scribble-guided segmentation on CVC-ClinicDB.

4.4.4. Cross-dataset validation
Next, we investigate the generalization ability of VMN across differ-

ent datasets. As presented in Table 4, we train the model on KiTS19 (or
MSD) and test the performance of the model on MSD (or KiTS19). In
comparison with results in Tables 1 and 2, our VMN suffers a minor
performance decrease in this cross-dataset study. This suggests the
strong generalization capability of our model.

4.4.5. Qualitative results
Figs. 2 and 3 depict visual results of our approach against Interactive

3D nnU-Net on representative examples from MSD and KITS19 test,
under different types of interactions, i.e., scribble, bounding box
and extreme clicking. As we can see, our approach produces more
accurate segmentation results than the competitor over all the three
forms of interactions.
8

4.5. Diagnostic experiment

To gain more insights into our model, we investigate the influence
of essential components in VMN on MSD test.

4.5.1. Memory size
First, we study the impact of memory size to our model. Table 5

lists the DSC segmentation scores for lung cancer and colon cancer.
Here, the size ‘0’ indicates that we use the VMN without an external
memory, which means that we only use a ResNet-50 for slice-by-slice
segmentation. We see that the baseline yields poor results across all the
three interaction types. With memory size ‘1’, we see sharp performance
improvements across all the settings. For instance, for colon cancer with
extreme clicking, the DSC score improves by 13.2%, i.e., from
54.8% to 68.0%. Moreover, it can be seen that the model performance
progressively improves when further increasing the memory size, and
the gain becomes marginal around the values of ‘15’ and ‘20’. Hence,
we use a default value of ‘20’ in all our experiments.

4.5.2. Interaction network
By default, we train different 2D interaction networks for different

types of interactions (i.e., scribble, bounding box and extreme
clicking). In this manner, each interaction network can better ac-
count for unique features of the corresponding interaction type, and
can be expected to yield superior performance. However, this strategy is
practically inflexible in model training or deployment. To address this,
we further design a ‘universal’, shared interaction network which is
trained by a combination of all training samples with different interac-
tion types. As reported in Table 6, the shared interaction network only
encounters minor performance degradation (i.e., 0.4%∼0.6%) against
he non-shared ones. These results clearly demonstrate the high flex-
bility of our engine, which facilitates users to use different types of
nteraction tools in different rounds to better correct segmentation
rrors.

.5.3. Quality assessment module
The quality assessment module endows our VMN to automatically

ind informative slices for further corrections. To prove its effectiveness,
e design two baseline models: ‘oracle’ selects the worst segmented

lice by comparing the masks with corresponding ground-truths, while
random’ selects each slice randomly at each round. As presented in
able 7, our quality assessment module performs consistently better
han ‘random’ across the two sets on MSD test, and is comparable to
oracle’. Fig. 4 presents some visual results of the module on two exam-
les of MSD test. We can see that our predicted quality scores are very

close with the true IoU produced by ‘oracle’. These results are remark-

able since our module is automatic and lightweight, thereby showing
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Table 10
Quantitative comparison of different encoding techniques, in terms of DSC (%). See Section 4.5.6 for details.
Encoding
technique

Lung cancer Colon cancer

scribble bounding
box

extreme
clicking

scribble bounding
box

extreme
clicking

Gaussian 80.5 81.6 81.8 79.5 79.5 80.1
Geodesic 80.9 81.5 82.0 79.7 79.3 80.4
Exp. Geodesic 80.8 81.7 81.9 79.7 79.4 80.2
Table 11
Investigation of model robustness with respect to jittering degree when simulating
bounding box and extreme clicking annotations. DSC (%) is used as the metric. See
Section 4.5.7 for details.

Jitter degree Lung cancer Colon cancer

bounding
box

extreme
clicking

bounding
box

extreme
clicking

0 81.8 82.4 79.5 80.9
5 81.7 82.2 79.3 80.7
10 81.5 82.0 79.3 80.4
20 81.2 81.5 78.7 79.8
30 81.1 81.3 78.6 79.5
40 79.5 79.6 76.9 77.3

Fig. 5. The effect of multi-round segmentation (Section 3.4) on MSD test. Left: Lung
Cancer; Right: Colon Cancer. See Section 4.5.4 for details.

great potential to facilitate effortless human-in-the-loop segmentation
in practice.

Furthermore, we compare our quality assessment module with the
loss prediction module in Yoo and Kweon (2019). As shown in Ta-
ble 8, our module consistently outperforms the module in Yoo and
Kweon (2019) across all the metrics on MSD test, demonstrating its
superiority.

4.5.4. Multi-round interactive segmentation
Furthermore, we investigate the multi-round segmentation mecha-

nism presented in Section 3.4. Fig. 5 shows DSC results with growing
number of interactions (from 1 to 16) on lung and colon subsets of MSD
test. Clearly, as the number of interaction rounds increase, segmenta-
tion accuracy becomes better and better, confirming the effectiveness of
multi-round refinement. To gain a good trade-off between accuracy and
efficiency, we run our VMN by six rounds by default in all experiments.

4.5.5. Comparison with automatic methods in low-data regime
We further analyze the influence of the number of training data

to our interactive model on MSD, and compare it with automatic 3D
nnU-Net. We design three sets of experiments for each target (Lung
Cancer or Colon Cancer), in which 10%, 20%, 50% of training data
are randomly sampled for model training, respectively. As shown in
Table 9, automatic 3D nnU-Net is more ‘‘data-hungry’’, encountering
serious degradation with the reduction of training data. Our interactive
approach, even with 10% of training data, notably outperforms 3D
9

nnU-Net using 50% of training data.
4.5.6. Robustness to interaction encoding techniques
By default, our method utilizes geodesic distance transform intro-

duced in DeepIGeoS (Wang et al., 2018b) for interaction encoding. We
compare it with other two techniques, i.e., Gaussian distance transform
and exponentialized geodesic distance transform (Luo et al., 2021).
For all transformations, we directly use the implementations in Luo
et al. (2021). Though exponentialized geodesic distance transform is
demonstrated to be more effective than the other two techniques in Luo
et al. (2021), Table 10 shows that our model is robust to all of them.
This is because our 2D interaction network, as a further encoding
procedure, reduces the differences of initial cue maps generated by
these techniques.

4.5.7. Robustness to user variance of interactions
We next examine the robustness of our VMN to annotation qual-

ity. More precisely, we evaluate the impacts of jittering degree (see
Section 4.2) in the forms of bounding box and extreme clicking. The
results are reported in Table 11. As seen, our model demonstrates high
robustness to annotation disturbations when the degree is smaller than
30, and only degrades with severe annotation noises, i.e., a jittering
degree of 40. By default, a degree of 10 is used in all our experiments.

4.5.8. Runtime analysis
Our VMN has no expensive operations like 3D convolutional layers,

thus is highly efficient. For a 3D volume with size 512×512×100, our
VMN needs 5.13 s on average for one-round segmentation on a NVIDIA
RTX2080Ti GPU, whereas it costs more than 50 s for Interactive 3D
nnU-Net. Hence our engine enables a significant increase in inference
speed.

5. Conclusion

This work presents a novel interactive segmentation engine for 3D
medical data. It consists of two essential networks, i.e., a 2D interactive
segmentation network that accepts users’ hints in a specified slice and
gives an initial segmentation prediction, as well as a volumetric mem-
ory network (VMN) to propagate the initial mask into other slices. The
VMN exploits an external memory to store relevant information, which
are retrieved to support the segmentation of each incoming slice. VMN
avoids computationally expensive operations like 3D convolutions, thus
is more efficient than 3D networks; it takes into account volumetric
structural prior, thus is able to deliver more accurate segmentation
than 2D counterparts. Moreover, the VMN is equipped with a quality
assessment module that endows the model to automatically select infor-
mative slices for user feedback, which we believe is an important added
value of the engine, and will greatly benefit the usage of the engine
in clinical practice. Extensive experiments on three public datasets
demonstrate that our engine is capable of producing superior results
with a reasonable number of user interactions.
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