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Abstract

Deep Neural Networks (DNNs) are susceptible to adversarial inputs, such as imperceptible
noise and naturally occurring challenging samples. This vulnerability likely arises from their
passive, one-shot processing approach. In contrast, neuroscience suggests that human vi-
sion robustly identifies salient object features by actively switching between multiple fixation
points (saccades) and processing surroundings with non-uniform resolution (foveation).
This information is processed via two pathways: the dorsal (where) and ventral (what)
streams, which identify relevant input portions and discard irrelevant details. Building on
this perspective, we outline a deep learning-based active dorsal-ventral vision system and
adapt two prior methods, FALcon and GFNet, within this framework to evaluate their
robustness. We conduct a comprehensive robustness analysis across three cate-
gories: adversarially crafted inputs evaluated under transfer attack scenarios,
natural adversarial images, and foreground-distorted images. By learning from
focused, downsampled glimpses at multiple distinct fixation points, these active methods
significantly enhance the robustness of passive networks, achieving a 2-21% increase in ac-
curacy. This improvement is demonstrated against state-of-the-art transferable black-box
attack. On ImageNet-A, a benchmark for naturally occurring hard samples, we show how
distinct predictions from multiple fixation points yield performance gains of 1.5-2 times
for both CNN and Transformer based networks. Lastly, we qualitatively demonstrate how
an active vision system aligns more closely with human perception for structurally distorted
images. This alignment leads to more stable and resilient predictions, with lesser catas-
trophic mispredictions. In contrast, passive methods, which rely on single-shot learning and
inference, often lack the necessary structural understanding.

1 Introduction

The human visual perception system is one of the most sophisticated and robust vision systems in the
animal kingdom (Ungerleider & Haxby, 1994; Goodale & Milner, 2004; Clark, 2013; Shao et al., 2024).It
relies on the active interplay of the eyes and two primary pathways: the dorsal (where/how) and ventral
(what) streams. According to the two-stream hypothesis, these pathways have distinct specialized functions
as depicted in the left column of Figure 1(a). The dorsal stream processes spatial information and guides
actions by determining the location and movement of objects, essential for interacting with the environment.
Conversely, the ventral stream handles object recognition and form representation, identifying objects based
on shape, color, and texture. Additionally, the eyes, equipped with inherent properties such as foveation and
saccades, enhance this system by serving as the primary input for the human perception system, particularly
in peripheral vision as shown in Figure 1(b). Saccades are rapid eye movements that shift the fovea’s focus
iteratively to different parts of the visual field, analyzing each area for relevant features. Foveation locks
these points to process high-resolution details, enabling object recognition (Eckstein, 2011). Integrating these
functionalities into the dual-stream model enhances the system into an active vision model (Curcio et al.,
1990; Land & Nilsson, 2012). Thus in an active vision system, the dorsal stream iteratively directs saccades
to spatially significant areas, separating the foreground from the background, which are then processed by
the ventral stream for detailed recognition.
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Figure 1: (1a) Illustrates the dual-stream hypothesis, highlighting the distinct dorsal ("where") and ventral
("what") pathways along with their key corresponding features. (1b) Depicts peripheral vision, emphasizing
the inherent mechanisms of saccades and foveation. Together, the peripheral vision and the two-stream model
form an active vision system. The corresponding DL-based active vision system is schematically shown in
(1c). The dorsal stream learns to localize objects by assessing foveated features around random
saccadic points and guides the ventral stream in object classification by removing background
clutter.

Humans, existing in a 3D environment, understand objects by identifying and examining the structure from
various viewpoints. Complex objects may require multiple views, unlike simpler ones, to provide a robust
understanding of their nature. This process is illustrated in the right column of Figure 1(c) with a deep
learning-based active vision system. Given an input image with three random saccades, the dorsal stream
(fD) analyzes the foveated glimpses for object features, discarding points without salient features. Relevant
features prompt foveation expansions to extract the foreground from the background, which is then passed
to the ventral stream for object recognition. The dorsal stream learns the concept of the object by viewing it
from different saccadic points, determining which views enhance understanding and which to discard. This
helps eliminate unnecessary noise, allowing the ventral stream (fV ) to focus solely on object features for
better recognition, even in the presence of background clutter.

Contrary to active vision systems, current deep learning (DL) methods for image classification process the
entire image in one shot, uniformly attending to each pixel. This approach is analogous to the ventral
stream analyzing the entire image for object recognition without the guidance of the dorsal stream, leading
to the inclusion of both foreground and background features, as shown in Figure 2 (1b). While this passive
analysis has achieved significant success with benign inputs (Krizhevsky et al., 2012; Ren et al., 2015; He
et al., 2017), it struggles with adversarial inputs that include imperceptible noise ignored by human eyes
(Szegedy et al., 2014; Goodfellow et al., 2015; Papernot et al., 2016). Depending on their generation process,
this imperceptible noise can spread across the image, affecting both the background and foreground, or be
tailored to harm only the foreground. Such malicious inputs have been detrimental to various vision-oriented
applications (Athalye et al., 2017; Hosseini & Poovendran, 2018; Joshi et al., 2019). Naturally occurring
adversarial samples can also reduce classification accuracy to zero, as shown in ImageNet-A (Hendrycks et al.,
2021), where objects may be occluded, have a smaller foreground-to-background ratio, or exhibit real-world
effects, underscoring the need for a non-passive analysis akin to human vision for complex images.

To address these challenges, various methods have been proposed from both algorithmic and human periph-
eral vision perspectives. Algorithmic approaches utilize deep learning principles such as Adversarial Training,
Randomised Smoothing, Data Augmentation, etc. (Madry et al., 2018; Cohen et al., 2019; Andriushchenko
& Flammarion, 2020; Yun et al., 2019; Li & Spratling, 2023; Moosavi-Dezfooli et al., 2018; Yue et al., 2023;
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Figure 2: The upper part of the figure illustrates that passive vision systems, mimicking the "what" path-
way alone, are more vulnerable to adversarial inputs due to uniform image processing. The bottom part
shows the active vision system’s enhanced robustness across three categories: adversarially crafted samples
(2a), naturally adversarial samples (2b), and foreground distorted images (2c). Active vision systems make
multiple correct predictions despite non-uniform noise, identify object-relevant features, and result in less
catastrophic mispredictions respectively.

Zhang et al., 2018). Inspired by human vision, some research focuses on non-uniform visual processing
to mitigate adversarial noise, exploring cortical fixations (Vuyyuru et al., 2020), peripheral blurring (Shah
et al., 2023), primal visual cortex processing (Dapello et al., 2020), and fovea-based texture transformation
(Gant et al., 2021). These methods, modeled on a single fixation point during training, primarily enhance
the ventral stream’s passive approach.

Building on the principles of active vision, this work goes beyond the traditional single-point inference
approach and advocates that the active vision system, due to the dorsal stream’s dynamic focus, that is
inherently more robust to various kinds of adversarial inputs. This idea is demonstrated in part (2) of Figure
2 for three different categories of adversarial inputs: crafted adversarial samples, naturally adversarial images,
and foreground object distortions. Carefully crafted adversarial noise often has a non-uniform distribution
across the entire input to match imperceptibility (PGD-like attacks) (Szegedy et al., 2014; Wang & He, 2021;
Dong et al., 2018) etc. or size (patch-based attacks) (Gao et al., 2020) constraints. 1 By processing inputs
through multiple saccades and foveated glimpses, active DL methods utilize the dorsal stream’s "where"
functionality to make distinct predictions under non-uniform adversarial noise, directing saccades to identify
significant areas and discard irrelevant ones. While one saccadic point might lead to a misprediction fooled
by the presence of adversarial noise, others often result in robust foveated glimpses, leading to correct
predictions as shown in the leftmost column (a). For naturally adversarial samples, which are inherently
challenging to classify, the dorsal stream’s ability to assess different portions of the image aids in identifying
the correct salient features. This capability often leads to correct predictions that would be difficult for a
passive, ventral-only approach, as shown in the middle column (b). In the third category, as presented in the
rightmost column (c), we further explore the concept of visible adversarial samples by structurally distorting

1Since this noise is imperceptible to the human eye, we use an adversarial sticker for illustration purposes to emphasize the
high concentration of adversarial noise in that region
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the foreground. This often leads to catastrophic mispredictions for passive methods. Although the active
system may not see the complete object, it can still identify meaningful features by separating parts from
the background, resulting in less confident correct predictions or less catastrophic mispredictions (e.g., parts
of a Golden Retriever being misclassified as a Saluki—both being dog breeds).

This work leverages the frameworks of Active Localization with Foveation and saccades (FALcon) (Ibrayev
et al., 2024b) and Glance and Focus Networks (GFNet) (Wang et al., 2020), analyzing them through the lens
of an active vision system framework. While FALcon is designed for Weakly-Supervised Object Localization
and GFNet for budgeted and anytime inference, both exhibit an underlying active dorsal-ventral structure.
However, their inherent adversarial robustness has not been studied prior to this work, making them ideal
DL-based active vision candidates for this robustness analysis. For evaluation, we employ a black-box transfer
attack setup, where adversarially crafted samples are generated from surrogate models and transferred to the
target active and passive vision models. Consistently, for the other two kinds of adversarial inputs, samples
are passed for inference. It is important to note that we are not proposing an adversarial defense
for a black-box scenario, nor do we claim robustness to query-based black-box attacks.

Hence, our contributions are highlighted as follows:

• We present a novel analysis of the inherent robustness of Active Vision systems across three
different categories of adversarial inputs.

• Our experiments demonstrate that active vision improves the ventral only passive vision’s perfor-
mance by 2-21% in accuracy against adversarial crafted inputs across various state-of-the-art
transfer attacks (4.2) on ImageNet (Deng et al., 2009) in a black-box transfer attack setup.

• Through both quantitative and qualitative analyses, we highlight the salient learning aspects con-
tributing to the inherent robustness of these methods, including glimpse-based focused learning
at downsampled resolutions (4.3) and inference from distinct saccadic points (4.4).

• We provide similar detailed analysis for the naturally adversarial ImageNet-A dataset, demon-
strating 1.5-2 times improvement over the passive ventral method. We provide qualitative results
for diverse set of samples within this category.

• We present qualitative results that highlight the benefits of implicit structured learning in ac-
tive systems for handling foreground object distortion, leading to more human-aligned and
interpretable predictions.

2 Related Work

Active Vision methods The methods discussed here explore the incorporation of active iterative strategies
for input processing. RANet (Mnih et al., 2014) incorporates a recurrent attention network to selectively
focus on different parts of the input sequence over multiple time steps excelling in sequential tasks. Saccader
(Elsayed et al., 2019) emulates saccadic eye movements to iteratively extract features from an image attending
to finer details while enhancing performance. Glance and Focus Networks (GFNet) (Wang et al., 2020)
constrained by computational budget, iteratively processes different glimpses in an image, refining predictions
until confidently identifying the object. Foveated Transformer (Jonnalagadda et al., 2022) uses pooling
regions and dynamic fixation allocation based on Transformer attention based on past and present fixations
for image classification. Recently, FABLE (Ibrayev et al., 2024a) proposed a localization framework that
models the ventral stream as a supervised feature extractor and the dorsal stream as a separate model
trained via reinforcement learning. Building on this, FALcon (Ibrayev et al., 2024b) enhances the approach
by incorporating foveation and saccades, enabling dynamic and active vision for improved object localization
and multi-object detection, even when trained on single-object images. In this study, we explore how the
iterative interplay of foveation and saccades in a dorsal-ventral system enhances the inherent adversarial
robustness of active methods across different adversarial inputs.

Towards bio-inspired mechanism for robustness The following methods address the adversarial inputs
by functionally treating human eyes as pre-processing/transformation stage. (Luo et al., 2015) demonstrates
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that applying CNNs to specific foveated regions reduces the impact of adversarial perturbations by leveraging
CNNs’ robustness to object scale and translation, along with non-linear responses in background regions. On
ImageNet, this approach achieves accuracy close to unperturbed levels, even when perturbations are crafted
with foveation in mind. R-Warp (Vuyyuru et al., 2020) advocates for biologically inspired mechanisms
such as cortical fixations and retinal fixations incorporated in DNNs lead to adversarial robustness for
small perturbations. VOneBlock (Dapello et al., 2020), illustrates that incorporating primary visual cortex
processing at the forefront of CNNs enhances their resilience against image perturbations. Harrington et
al. (Harrington & Deza, 2022) demonstrates that adversarially robust networks behave similarly to texture
peripheral vision models, thus promoting the latter’s plausibility for adversarial robustness. (Gant et al.,
2021) proposed a novel Foveated Texture Transform module in a VGG-11 to enhance adversarial robustness
without sacrificing standard accuracy. R-Blur (Shah et al., 2023) simulates peripheral vision using adaptive
Gaussian blurring and trains on these transformed input images, leading to improved adversarial robustness.
While these methods simulate human peripheral processing, they do not replicate the iterative active learning
process found in human vision. We provide a fresh perspective showing how mimicking human-like active
vision processing naturally enhances DNN robustness against adversarial inputs.

Transfer attacks (Szegedy et al., 2014) introduced the vulnerabilities of neural networks to adversarial
samples. (Papernot et al., 2016) introduced a novel approach that leverages substitute models to craft
transferable adversarial examples, emphasizing the need for robust defenses against such attacks. (Liu et al.,
2017) conducted an extensive investigation into the transferability of adversarial samples on large-scale
datasets like ImageNet (Deng et al., 2009). Recently, LGV (Gubri et al., 2022) exploited the weight space
geometry of surrogate models to find flatter adversarial samples creating stronger transfer attacks. Token
Gradient Regularization (TGR) (Zhang et al., 2023) introduces a method that enhances the transferability
of adversarial attacks on Vision Transformers (ViTs) by focusing on Token Gradient Regularization (TGR).
This approach manipulates token-level gradients to create perturbations that effectively fool different ViT
models, highlighting a significant vulnerability in these architectures. In this study, we examine active
vision methods under the lens of adversarial robustness in a black box transfer threat model and show the
human-inspired active way of processing inputs in DNNs leads to inherent robustness.

3 Active Vision systems

In this section, we provide a focused overview of the inference process and highlight key insights into the
inherent robustness of two active vision systems: FALcon (Ibrayev et al., 2024b) and Glance and Focus
Networks (GFNet) (Wang et al., 2020). These methods simulate foveation by cropping glimpses from the
image based on fixation (saccadic) points, without blurring the extracted glimpses. This approach can be
interpreted as foveation with an extreme cut-off. For detailed learning processes, readers are directed to
supplementary Sections 1.1 (FALcon) and 1.2 (GFNet). For the remainder of this manuscript, we will
refer to saccadic points as fixation points.

3.1 FALcon

Active Vision structure Both the dorsal fD and ventral fV streams are represneted by deep convolutional
neural networks. During training, only fD is trained to emulate the saccadic and foveated functions. For
fV , any pre-trained network can be selected.

Inference During inference, the input image X is divided into grid cells, as illustrated in the first image
at the bottom part of Figure 3. Each grid cell is considered as an initial fixation point (red dot). The
dorsal fD initiates from each point with a pre-defined glimpse size to inspect salient object features. In the
absence of salient features, the dorsal deems there is no potential object and hence switches to another
fixation point. If the dorsal encounters any relevant features and hence assumes the presence of a potential
object, it expands from the initial glimpse dimensions in four independent directions to generate a sequence
of foveated glimpses. Based on the expansion operations, each foveated glimpse is cropped from the input
image at a downsampled resolution of H ′ ×W ′. The sequence of expanding for a potential fixation point
continues until the final foveated glimpse captures the entire object learning the structure implicitly.
This process iterates for all potential points that could lead to various final foveated glimpses for the same
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Figure 3: The figure provides a high-level overview of FALcon. During Learning, the dorsal network (fD)
is trained to predict five distinct actions (four for expansion and one for switching), enabling it to learn the
importance of each fixation point illustrated by colored dots. Learning occurs in a downsampled resolution
of (H ′ × W ′). During Inference, fD starts from each pre-defined multiple fixation point (20 red dots).
If salient object features are present, fD performs the learned expansions to capture the object (4 colored
dashed boxes, colored dots). The most confident final foveated glimpse (red solid box) is cropped (H ′′ ×W ′′)
and presented to the ventral (fV ) for Top prediction. The system can produce distinct predictions referred
to as Any, which are beneficial for handling adversarial samples.

object. This is illustrated by the colored dots and dashed colored boxes in the second image. For object
localization, these final foveated glimpses undergo non-maximum suppression to yield the most confident
prediction indicated by the solid red bounding box in the third image. The region corresponding to the most
confident final foveated glimpse is cropped at standard dimensions H ′′ × W ′′, and then presented to the
ventral network fV for class prediction. In our evaluation, we refer this final class prediction label as Top.
The remaining potential fixation points, except the most confident one, serve as a map to understand the
effect of non-uniform adversarial noise injected into images. This is illustrated at the bottom part of the
figure under Any Predictions. In our experiments, we visually demonstrate how the noise affects some of
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Figure 4: (Learning & Inference) The figure provides an overview of GFNet’s operation. It begins by
downsampling the input image to a lower resolution for rapid prediction (p1), termed Glance at t = 1. If
the network lacks confidence (p1 < η1), it enters subsequent Focus steps until certainty is attained or till
(t = 4). Each focus step analyzes a patch (H ′ × W ′) cropped from the original input (H × W ) centered
around (ct) illustrated by colored dots. These co-ordinates are determined by the dorsal network fD. The
process is depicted for a sequence length of 4.

these fixation points (4.4), but not all, resulting in enhanced robustness, which we quantitatively refer to as
Any.

3.2 Glance and Focus Networks

Active Vision structure GFNet potrays a slightly more complex framework as DL based active vision
system. Both the dorsal fD and ventral fV streams are represented as deep recurrent neural networks to
aggregate information from previous steps. For processing image features, both streams employ convolutional
deep neural network based feature encoder backbones fG/L. In the training phase, all networks are trained.

Inference GFNet performs inference in two distinct steps – a glance step and subsequent multiple focus
steps (Figure 4). In the glance step, the full-resolution image (H × W ) is first downsampled to a much
lower resolution (H ′ × W ′). It is then passed through the global encoder fG and ventral network fV

pathway to make a swift prediction based on the global features. If the confidence pt exceeds the threshold
ηt, where η is a pre-defined threshold (Huang et al., 2018; Yang et al., 2020), the process halts. Concurrently,
the dorsal network fD evaluates these features to predict the fixation point for the subsequent focus step.
Each foveated glimpse is generated based on the most salient features of the object centered around the
fixation point, denoted by the orange dot in the second glimpse. This H ′ × W ′ glimpse is cropped from the
image and inputted into the local encoder fL ventral network fV pathway for prediction in the second step.
Simultaneously coordinates for the next focus step are produced by the dorsal network. The iterative process
persists until the network gains sufficient confidence in its prediction, or reaches the end of the sequential
process t = T . To understand the robustness aspect through inference on transferred adversarial samples,
we keep the early termination inactive, allowing inference to continue until t = T . This allows the ventral
network to process glimpses cropped around distinct fixation points generated by the dorsal network, at
each step assessing the input in the presence of adversarial noise and background clutter. Both fG and fL
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process low dimensional inputs of H ′ × W ′ with the former fine-tuned on these dimensional inputs for
global step predictions. Exploiting this in our experiments, we demonstrate how learning in a downsampled
resolution contributes to the robustness properties of such systems 4.3.

4 Adversarial crafted images

Adversarial transfer attack setup The section aims to illustrate that active vision networks GFNet
(Wang et al., 2020) and FALcon (Ibrayev et al., 2024b) exhibit higher levels of robustness against transferred
adversarial images than base passive classifiers (He et al., 2015). We follow the protocol for a black box
transfer attack threat model as outlined in (Liu et al., 2017; Mahmood et al., 2021). Following this protocol,
we define non-targeted transferability. Given a surrogate Classifier Si, we generate an adversarial sample
for an image/label pair (x, y) which is denoted as xadv. This is with respect to the surrogate Classifier Si

and attack pair ASi . The adversarial sample, xadv, is said to transfer to another target Classifier Ti if the
adversarial sample is mispredicted. This is formalized as the following:

xadv = ASi
(x, y) | Si(xadv) ̸= y; Ti(xadv) ̸= y (1)

Metrics We measure the non-targeted transferability by computing the percentage of adversarial examples
generated using model Si, but still correctly classified by the model Ti (not transferred). We refer to this
percentage as accuracy. A higher accuracy means less susceptibility to transferred adversarial samples and
hence higher robustness under this setup. For a test set with N samples, the accuracy is defined as:

Accs→t = 1
N

N∑
j=1

1{Ti(xadvj
) = yj} (2)

Remark In this study, we focus solely on empirically showcasing the inherent robustness of active vision
methods. We do not propose any adversarial defense for a black-box attack scenario or analyze the trans-
ferability trends between surrogates and target samples. Therefore, we opt for standard accuracy
(Accs→t) under transfer, where we denote s → t as surrogate to target.

Section (4.2) empirically demonstrates this via quantitative results. Sections (4.3) and (4.4) then focus on
explaining the salient features that provides this inherent robustness, by analysing the internal mechanics of
GFNet and FALcon, respectively, in the presence of transferred adversarial inputs.

4.1 Implementation details

We perform our extensive robustness analysis on Imagenet (Deng et al., 2009), a standard benchmark for
image classification. We utilize ImageNet pre-trained weights for GFNet and FALcon without
any additional fine-tuning. Following the active vision structures highlighted in Section 3, we employ
GFNets with Res-Net50 as both global fG and local fL encoders. These encoders provide relevant image
features to the dorsal and ventral streams which are recurrent neural networks, as illustrated in Figure 4.
Both encoders are trained on downsampled resolution images of (96, 96) pixels. For FALcon we employ
VGG16 (Simonyan & Zisserman, 2015) as the dorsal fD stream, and ResNet50 as ventral fV .
Please note that, unlike GFNet, the fV of FALcon is not involved during training. Instead, only the dorsal
is trained on the downsampled images, while a pre-trained ResNet50 is employed as fV during inference on
image resolutions of (224,224) as indicated by H” × W” in Figure 3.This approach provides the flexibility to
select various ventral streams and demonstrate how the FALcon framework can enhance the performance of
the underlying passive ventral networks. We utilize Torchattacks (Kim, 2020), an integrated library for
generating adversarial attacks (Ravikumar et al., 2022) with PyTorch, to generate adversarial samples.
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Table 1: Inherent Robustness of Active Vision Methods

ResNet50 CutMix FALcon-Top Adv-T⋆ GFNet
Clean

76.15 78.60 72.97 47.91 75.88

Surrogate Target Attack
PGD MIM VMI-FGSM P-IFGSM TI-FGSM

ResNet34

ResNet50 31.46 20.20 11.61 31.62 28.08
FALcon-Top 49.83 37.01 29.40 40.46 35.20
FALcon-Any 53.76 41.28 33.74 44.72 39.08

CutMix 43.47 30.92 21.32 41.34 38.78
FALcon-CutMix-Top 52.48 39.88 31.97 44.21 42.04
FALcon-CutMix-Any 55.86 43.95 36.25 48.07 45.96

Adv-T⋆ 47.63 47.37 47.16 46.85 46.43
GFNet 57.82 48.60 41.17 46.93 41.42

ResNet50

ResNet50 0.00 0.00 0.00 0.00 0.00
FALcon-Top 31.73 19.96 12.07 27.37 14.63
FALcon-Any 37.54 25.60 16.64 32.37 19.14

GFNet 51.85 42.16 32.33 43.33 34.30

Attack Source GFNet FALcon-
Top

FALcon-
Any

Source FALcon-
Top

FALcon-
Any

AutoPGD ResNet50 56.54 31.00 37.80 VGG16 52.98 57.11

Table 2: AutoPGD attacks transferred from ventral and dorsal architectures of Active Vision System

4.2 Inherent robustness in the Black-box transfer attack setup

In this section, we demonstrate the superior performance of active vision systems (e.g., FALcon and GFNet)
over passive ventral ones (e.g., supervised ResNet) in a black-box transfer attack setup. Adversarial samples
generated from surrogate models are transferred to the unknown target models. For GFNet, we use the
output from the final prediction step as described in Section 3.2. For FALcon, we evaluate two types of
predictions: Top, where the most confident prediction is matched with the ground truth, and Any, where
any correct prediction from multiple outputs is considered. This is enabled by inference from multiple
distinct fixation points. The Any prediction strategy highlights the full potential of active systems, detailed
in Section 3.1.

Iterative attacks We generate adversarial samples from surrogate classifiers Si using iterative adversarial
attacks such as PGD (Madry et al., 2018), MIM (Dong et al., 2018), VMI-FGSM (Wang & He, 2021),
Patchwise-IFGSM (Gao et al., 2020) and TI-FGSM (Dong et al., 2019). In the first setup, ResNet34 is
used for Si, and in the second setup, ResNet50 is used matching the ventral stream in the active vision
networks. For GFNet, ResNet50-based samples attack both dorsal and ventral streams simultaneously.
FALcon, however, offers more control over which stream is targeted, as detailed in Auto-PGD 2. We can
also substitute FALcon’s ventral stream; for instance, FALcon-CutMix-Any uses the default VGG16 fD

stream but replaces the fV with a ResNet50 trained using CutMix loss (Yun et al., 2019). The performance
is then evaluated based on any correct prediction matched with the ground truth. We conduct L∞ attacks
with 10 iterative steps, α = 2/255, and ϵ = 8/255 for all six iterative attacks including Auto-PGD (Croce
& Hein, 2020). Adversarial samples are generated using the entire 50,000-sample ImageNet test set. The
corresponding clean accuracy is presented at the top of Table 1.

Quantitative analysis Table (1) demonstrate that active vision systems consistently improve upon the
underlying passive approach across all surrogate architectures and attacks. For instance, FALcon with

9



Under review as submission to TMLR

a Supervised-ResNet50 and a CutMix-ResNet50 ventral stream shows steady performance improvements
of approximately 11%-23% and 7%-15% in accuracy, respectively, over the corresponding passive ven-
tral backbones, proportional to the attack strengths. Specifically, for a supervised-ResNet50, FALcon-Top
improves performance by nearly 18% for PGD, while for CutMix, FALcon-Any achieves close to a 15% im-
provement for VMI. CutMix (Yun et al., 2019) has robustness properties stemming from its strong regularized
feature representations as indicated by the higher baselines than supervised-ResNet50. Additionally, we
consider an adversarially trained ResNet50 Madry et al. (2018), which serves as an Oracle
method denoted as Adv-T⋆. Trained specifically for adversarial defense, this method offers
the best-case performance on transferred samples on average. In the second setup, we notice
that FALcon and GFNet provide an additional shield, even when the attack is generated using the ventral
backbone and shared feature encoder respectively. While GFNet employs a more complex framework with
recurrent dorsal and ventral streams sharing a convolutional backbone, FALcon-Top offers a clear measure
of quantitative improvement due to its active processing mechanism. As shown in Table 2, the non-zero
results demonstrate robustness benefits even when generating Auto-PGD-based adversarial samples using
each active vision system’s crucial networks. This table indicates that generating samples based on FALcon’s
ventral stream is more effective than using its dorsal stream. This is pictorially explained in Section
A.1.3.

Transfer attacks with Large Geometric Vicinity (LGV) The plot on Figure 5 presents results based
on a geometric space attack (Gubri et al., 2022). The intuition behind this attack is provided in in Appendix
A.1.4. We follow a similar experimental setup as outlined in the paper (Gubri et al., 2022), combining LGV
with PGD and BIM (Kurakin et al., 2018) on 1000 randomly sampled images from the ImageNet validation
set. We report accuracy (Accs→t), and the results indicate a consistent trend similar to the iterative attacks
for supervised-ResNet50 and CutMix-ResNet50. For instance, as depicted in the plot, FALcon-CutMix-
Any improves upon Top by 3-4%, which in turn improves upon the baseline by 24-28% for BIM (orange)
and PGD (blue), respectively. Conversely, when FALcon is paired with an adversarially trained
ResNet50 (Madry et al., 2018), we observe close to a 2% improvement on clean samples
(notably low accuracy for adversarially trained models) but no significant improvement for
adversarial samples. This is expected, as networks already trained on worst-case perturbed
samples benefit less from active predictions based on distinct fixation points.

Transfer attacks with Token-Gradient Regularization (TGR) Setup We follow the experimental
setup outlined in the original paper (Zhang et al., 2023) and present results on a test set of
1,000 randomly selected images from the ImageNet validation set (Deng et al., 2009). The
equation and the intuition behind this attack are provided in Equation (3) in Appendix A.1.5.
The TGR transferable attack plot in Figure 5 shows the accuracy (Accs→t) of different target
networks on adversarial samples transferred from various surrogate architectures, including
Vision Transformers (ViT-B/16) (Dosovitskiy et al., 2021), and their variants PiT-B, and
CaiT-S/24 (Touvron et al., 2021; Heo et al., 2021). In addition to the baseline methods previously
studied, we employ several notable vision transformer architectures for image classification, such as Swin
V2 Transformer (Liu et al., 2022), Focal Modulation Networks (Yang et al., 2022), and Robust Vision
Transformer (Mao et al., 2021), as ventral methods combined with FALcon’s default VGG16
dorsal stream. The vision transformers examined are their corresponding tiny versions, with a parameter
count close to 25 million parameters, comparable to the CNN baselines studied.

Results For FALcon-SwinV2-Tiny and FALcon-RVT-plus-Tiny, active systems demonstrate significant im-
provements on adversarial samples transferred from ViT-B/16 and CaiT-S/24, with gains of 16% and
14%, respectively. For Focal Modulation networks, we see the active vision method shows significant gains
mostly for CaiT-S/24 based samples. This highlights the effectiveness of a CNN-Transformer-based
dorsal-ventral active system in handling such token based transferable samples. For PiT-B-based
adversarial samples, improvements across all architectures range between 2-6%. Although CNN-based base-
lines also show steady gains, they are less pronounced compared to those with transformer-based ventral
backbones.

Key takeaway Across various transferred adversarial samples, an active vision system consistently improves
upon the underlying passive ventral stream for both CNN and Transformer based architectures. However,
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Figure 5: (a) The scatter-line plot on the left shows accuracy improvements in LGV-based transfer attacks
using a ResNet50 surrogate, with active models significantly outperforming passive ones, except for the
adversarially trained ventral. The bar plots on the right (b) and bottom (c) illustrate the effect of Token
Gradient Regularization on various ventral streams. While CNN-based streams show modest gains (b),
significant improvements are seen in CNN (dorsal)-ViT (ventral) configurations (c).

this approach shows limitations when applied to adversarially trained ventral streams (FALcon-AdvT) as
indicated by Figure 5 (a), highlighting the need for further research into adversarially trained active dorsal
networks. In Appendix A.1.2, we provide an additional discussion on adversarially trained
models.

In the following sections, we present the primary factors contributing to this enhanced robustness: processing
inputs in a down-sampled resolution (Section 4.3) and performing inference from different fixation points
(Section 4.4).

4.3 Effects of glimpse-based downsampling (case study: GFNet)

In this section, we use GFNet to explore how learning image representations based on glimpses at a down-
sampled resolution contributes to the inherent robustness. Downsampling inherently causes reduction in
features. Adversarial imperceptible noise is crafted based on the image in its original resolution (e.g. 224 ×
224). Hence downsampling the image, distorts the noise along with it, thereby reducing its overall impact
on predictions. As a result, it is probable to think that an inherent robustness offered by models processing
an image via downsampled resolution stems from the distortions on the non-uniform adversarial noise. To
analyse this factor we organize experiments in this section into 3 settings:

• Setting 1 Effect of processing downsampled clean images - Images from the test set are used for
evaluation without any adversarial attack. The images are downsampled to (96, 96) and (128, 128)
and inference is performed.

• Setting 2 Reduction of efficacy of adversarial noise post downsampling - Adversarial images are first
generated from full resolution images of (224, 224) and then downsampled to (96, 96) and (128, 128),
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Table 3: Effect of glimpse-based learning on downsampled resolutions.

Setting Surrogate Target
PGD MIFGSM

Resolution
(96,96) (128, 128) (96,96) (128,128)

ResNet50 52.42 64.42 52.42 64.42
1 Clean

GFNet 75.88 76.70 75.88 76.70

2
ResNet34 ResNet50 46.03 54.10 41.05 45.73

GFNet 57.82 55.46 48.60 44.72

ResNet50 ResNet50 46.00 51.41 41.07 42.31
GFNet 51.85 45.98 42.16 34.76

3
ResNet34 ResNet50 13.24 19.64 8.17 12.33

GFNet 34.40 36.24 24.30 24.95

ResNet50 ResNet50 0.30 0.13 0.35 0.16
GFNet 17.96 12.12 10.63 6.80

separately, for inference. for an active vision method such as the GFNet, this is an inherent step of
their learning and inference pipeline. However, for passive vision methods, we resize the adversarial
inputs to match the resolutions separately.

• Setting 3 Generating adversarial attacks on downsampled images - The images are
downsampled to lower resolutions first and then adversarial inputs are generated. These
adversarial downsampled inputs are then passed for inference on both passive and
active target models. Since downsampling is performed first, the adversarial effect is
not downgraded.

For the passive target baseline, we use a ResNet50 pre-trained on ImageNet at resolutions of 224 × 224.
For GFNets, we infer with two separate models trained on 96 × 96 and 128 × 128 resolutions. Notably, we
maintain consistency by evaluating GFNets on images of matching resolutions. To illustrate downsampling
effects, passive baselines are tested on downsampled images of 96 and 128 resolutions (see Table 3). For
simplicity, we further refer to GFNets trained on 96 × 96 dimensions as "GFNet-96".

Results Table 3 presents quantitative results, focusing on Accs→t. The best performing models are high-
lighted in bold. For Setting 1, a passive model trained on a higher resolution suffers a drop in performance
when evaluated at downsampled input, unlike GFNets trained for downsampled resolutions. Setting 2 shows
that simply downsampling adversarial images to lower resolutions is beneficial. This indicates along with the
image resolution, the imperceptible adversarial noise also probably gets downsampled thereby reducing its
effect on model predictions even when Ti is same as Si. Furthermore, under this setting, GFNet-96 exhibits
greater inherent robustness than GFNet-128 when compared to their corresponding passive baselines. For
Setting 3, it is evident that all target models suffer a drop in performances indicating that
generating adversarial inputs at resolutions corresponding to target models leads to more po-
tent attacks. Remarkably, GFNet-96 and GFNet-128 demonstrate performance improvements
close to 3× and 2×, respectively for ResNet34 as Si, compared to their corresponding passive
baselines on downsampled adversarial samples. This further emphasizes the effectiveness of
learning in a downsampled regime even under the presence of adversarial attacks.

4.4 Effect of distinct fixation points (case study: FALcon)

In this section, we use FALcon to demonstrate the effect of processing an image from distinct fixation points
on the robustness of active vision methods. The capability of FALcon to consider various fixation points is
used to extract interpretable visualization results. Moreover, since the ventral model is not fine-tuned during
training, it allows for a fair comparison with passive baseline network.
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Figure 7: Figure illustrates Initial Fixation Point Maps (IFPM) to show the efficacy of performing inference
from multiple fixation points. An IFPM is a visual representation that depicts the spatial locations of the
initial starting positions of FALcon. (b) illustrates all initial fixations points via gridding for both clean
and adversarial inputs. (c & d) show the potential and evaluated initial fixation points for a clean sample.
Similarly, (e & f) show the same for an adversarial sample. An evaluated IFPM can consist of both correct
and incorrect points as denoted by 2f. Adversarial noise spreads non-uniformly across an image and affects
different initial points differently. This is indicated by the reduced number of potential (c to e) and correct
points (d to f) from a clean to an adversarial sample. Still, the presence of a positive number of correct
points (f) underscores the inherent robustness of an active method.

4.4.1 Initial Fixation Point Map

Figure 6: Precision of predictions: The number
of potential and correct prediction points de-
creases as attack strength increases, reflecting
the quantitative results presented in Table 1.

In order to understand the impact of adversarial
noise on regions of the image that influence model
predictions, we define an Initial Fixation Point Map
(IFPM). IFPM displays the distribution of initial
fixation points based on how each of them affects
the decision-making of FALcon throughout the in-
ference process. Figure 7 shows IFPMs generated
for both clean and adversarial images. As described
in Section 3.1, FALcon processes every input from
multiple initial fixation points. Red dots indicate
all initial fixation points, equally distributed over
the image dimensions. Each point is then presented
to the dorsal, which retains only those, indicated by
blue dots, that potentially resulted in the capture of
an object through the series of expanding foveated
glimpses.

The ventral processes the final foveated glimpses
that resulted from potential points to determine the
class label of an object. As a result, various fixation
points result in FALcon making correct or incorrect
output predictions, indicated by green and magenta
dots, respectively. By obtaining IFPM for clean and adversarial versions of the same image, we illustrate
how the adversarial noise impacts FALcon in terms of its capacity to make correct predictions from various
fixation points.

Results IFPMs illustrated in Figure 7 show that despite the addition of adversarial noise, multiple initial
fixation points result in correct final predictions (d & f). IFPM clearly indicates the reduced number of
potential and correct points for an adversarial sample compared to the corresponding clean sample (c to e)
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Figure 8: The figure illustrates vulnerabilities of passive methods to adversarial samples. For passive methods
(b,c,e,f), occlusion maps are provided, highlighting areas responsible for model predictions. For FALcon
(d,g), the final foveated glimpses along with the corresponding initial fixation points are presented. Even
though adversarial noise affects an image non-uniformly, passive methods struggle to evade the noise as they
process the entire image with equal importance. Contrary, the final foveated glimpse highlights the effect of
adversarial noise, guided by the corresponding fixation point.

and (d to f). Due to its non-uniformity and imperceptible criteria, the adversarial noise does not affect each
point equally. Hence, multiple fixation points lead to correct class predictions. This visually explains the
reason for the improved performance of an active method over a passive one, supporting the quantitative
results presented in the previous sections. Although noise affects the method, its inherent processing from
multiple fixations makes it less susceptible (f). In the second sample (2f), we can notice of a magenta fixation
point far away from the object. This is not present for the clean sample and is a false positive due to the
addition of the noise. Yet, around the object, we can see multiple green points indicating correct prediction.
This validates the hypothesis presented in the first column in Figure (2) (a).

In addition to accuracy (Accs→t), the ratio of correct/potential points serves as another metric for evaluating
enhanced robustness. Here, potential points are defined as the sum of true positives (green) and false positives
(magenta) as illustrated by an Initial Fixation Point Map (IFPM). For this analysis, we generated attacks
on 1,000 images using ResNet34 as the surrogate model. As shown in Figure 6, the high ratio observed for
clean samples decreases for adversarial samples, depending on the strength of the attack. Despite this, the
persistence of a high number of true positives quantitatively justifies FALcon’s improved performance on
adversarial samples. This trend is consistent with the results presented in Table 1 for iterative attacks.

4.4.2 Explaining adversarial vulnerability of passive methods

Setup As mentioned earlier, the probable cause of adversarial vulnerability of the passive vision methods
is that they process an input in one-shot with uniform resolution, where every input pixel is treated with
the same importance. This is visually demonstrated in this section via occlusion maps. Figure 8 illustrates
occlusion maps for passive methods (b,c,e,f) and the final foveated glimpse for FALcon (d,g). An occlusion
map is a visual heatmap indicating key regions of an image when occluded, affect the model performance.

14



Under review as submission to TMLR

Figure 9: The figure illustrates how the final foveated glimpse changes with different fixation points in the
presence of adversarial noise. In sample (1), most predictions are correct (indicated by the solid green box),
whereas in sample (2), the opposite is observed (indicated by the solid red box). This variation occurs due
to the relative position of the initial fixation point and the regions most influenced by adversarial noise, as
shown in the occlusion maps for ResNet50. Final foveated glimpses with a larger background-to-foreground
ratio, especially when capturing adversarial noise, typically result in mispredictions by the ventral stream.

The darker the region, the higher contribution it has on the final prediction. Occlusion maps are generated
based on prediction labels. We first generate the adversarial sample and then generate the occlusion map
based on the predicted adversarial label. We use ResNet34 as the surrogate model and PGD as the candidate
adversarial attack. The occlusion maps under ResNet50 (f) are based on the transferred adversarial samples
from ResNet34. Similarly, for FALcon, we present the final foveated glimpse and the initial fixation point
based on the transferred adversarial samples (g). Green solid boxes refer to correct predictions.

Results For the clean samples, FALcon correctly predicts all three instances (d). The dark region (1c)
aligns with the body of the correct class (tench), resulting in a correct classification for ResNet50. But as
indicated in (1f), the dark region shifts and does not align with the body of the object after the injection
of adversarial noise leading to an incorrect prediction. For FALcon, although the final foveated glimpse
captures the corresponding dark region, the initial fixation point is directed towards the head of the object
(Figure 1g). This indicates that FALcon was initially guided by more salient features of the object before
encountering the probable adversarial patch later. Additionally, downsampling likely mitigates the impact
of the adversarial patch on the dorsal stream. The final foveated glimpse captures the entire object, with
the foreground occupying the majority of the glimpse, thereby minimizing the effect of the adversarial spot
in the background and resulting in a confident, correct prediction for the ventral stream. For (3g), FALcon
similarly to ResNet50 focuses on the dark region (3f) makes an incorrect prediction highlighted by the red
box not capturing the goldfish at all. This suggests that although less vulnerable, there is still room for
further improvement for these active vision methods.

Fixation point variations The FALcon framework allows us to select initial fixation points to begin
the inference process. In the first row, second column of Figure 9, the occlusion map reveals a dark spot
representing adversarial noise shown earlier. Since this noise is contained in a small portion of the background,
multiple fixation points on the body of the tench lead to correct predictions. However, in the second image,
the uneven distribution of noise results in multiple incorrect final foveated predictions by the ventral stream.
The glimpses suggest that the dorsal stream is misled, capturing both foreground and background, and
consequently fails to effectively guide the ventral stream.
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Figure 10: Figure illustrates three categories of catastrophic predictions made by passive vision systems on
ImageNet-A. The correct prediction label with the final foveated glimpse is shown in green, while mispre-
diction labels are presented at the bottom of each image. In the first row, living entities are misclassified as
non-living entities. The second row shows passive systems getting confused by backgrounds, and the third
row highlights fatal consequences caused by catastrophic mispredictions.

5 Natural adversarial images

Active Vision for hard samples In this section, we provide insights into the enhanced adversarial robust-
ness of active vision systems when applied to naturally occurring images from the benchmark ImageNet-A
dataset (Hendrycks et al., 2021). Unlike adversarially crafted samples, this dataset contains naturally occur-
ring, unmodified images that are difficult for standard passive classifiers to classify correctly, often reducing
their accuracy on this challenging set to near zero. The high variability in these images arises from factors
such as occlusions, unusual poses, backgrounds that confuse classifiers, or complex scenes with multiple
objects where the primary object is not centrally located or is partially obscured. When humans encounter
complex scenes, we assess the scene multiple times, iterating from various viewpoints to evaluate each detail
before predicting its contents. This iterative and detailed evaluation process, emulated by active vision
systems, allows for better handling of the complexity and variability in ImageNet-A, a principle not shared
by current passive classification networks. Hence, we empirically show the need for active vision in handling
hard samples.

Catastrophic mispredictions by passive classifiers This is qualitatively explained in Figure 10, which
shows the catastrophic nature of mispredictions made by passive classifiers on this set as opposed to FALcon.
We visually categorize the nature of these mispredictions in three separate rows. The final foveated glimpse
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includes the initial fixation point prediction on the image, the correct active prediction in green (FALcon)
at the top, and the incorrect passive prediction in red at the bottom.

In the first row, we show samples where passive methods classify living entities as non-living entities, poten-
tially leading to grave accidents in autonomous perception systems. The second row features samples where
backgrounds have confused passive classifiers. In the third row, we present mispredictions that could be fatal
for users. For example, in the second image of the third row, a passive vision system incorrectly classifying
a garter snake as a harmless object could prove fatal for an individual relying on the system for navigation.

Figure 11: Plot demonstrating the efficacy of Active Vision on
ImageNet-A. The X-axis represents the architecture and training con-
figuration of the ventral streams, while the Y-axis indicates accuracy
across configurations. Active models with Supervised and Cut-
Mix pre-trained ventral streams outperform those with Adv-
T pre-trained ventral streams.

Quantitative performance on
ImageNet-A In this section,
we provide quantitative results
supporting the advocacy of ac-
tive vision for ImageNet-A.
Figure 11 illustrates this effect.
On the extreme left, a passive
ResNet50 shows an accuracy of
almost zero on this set. How-
ever, using the same ResNet50
as the ventral stream, FAL-
con improves performance to
5.32% (Top) and 7.47% (Any).
For GFNet, this performance
is 3.34%. GFNet’s slightly
lower performance is due to
its operation in a downsam-
pled image regime, where im-
ages with a low object-to-
background ratio experience
significant feature shear.

Previously, we observed that a
strong ventral stream comple-
ments the dorsal stream for en-
hanced robustness against ad-
versarially crafted samples. A
similar phenomenon is again
seen here. For CutMix-
ResNet50 (Yun et al., 2019),
Adv-T ResNet50 (Madry et al., 2018), and Robust Vision Transformer-Tiny (Mao et al.,
2021), FALcon improves performance from 7.00%, 1.88%, 14.12% to 10.37%, 3.79%, 17.16%
(Top) and 13.72%, 5.04%, 21.76% (Any) respectively, improving the performance of all passive
networks by 1.5x. The efficacy of the "Any" predictions highlights the approach’s strength for
hard samples with complex scenes. Figure 16 in Appendix Section A.2 provides a qualitative
intuition that aligns with the quantitative results.

Key takeaway Natural adversarial samples pose a significant challenge to passive classifiers. Active vision
systems, with their ability to infer objects from various fixation points and make distinct multiple predic-
tions, significantly improve the performance of underlying passive CNN and Transformer baselines. For
ImageNet-A, we observe performance improvements even with Adv-T, unlike with adversarial
samples, as adversarial training has less impact on naturally challenging samples compared to
adversarially crafted ones. Notably, both ResNet50-Sup and ResNet50-CutMix show greater
performance gains than ResNet50-Adv-T.
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Figure 12: The figure illustrates two methods of creating foreground distortions and their effects on the
predictions of active and passive vision systems. In (a) Image Shuffling, the image is divided into patches
and then randomly permuted. In (b) Composite Images, the foreground is extracted from the original images,
dissociated into parts, and then pasted onto random backgrounds. Across these two sets of distortions, active
vision systems exhibit more stable, interpretable predictions and fewer catastrophic mispredictions compared
to passive vision systems.

6 Foreground distorted images

Human aligned active vision for foreground distortions In this section, we qualitatively analyze the
impact of foreground object distortions on the predictions of both active and passive vision systems. Unlike
imperceptible adversarial noise that spreads non-uniformly across the image or naturally adversarial samples
with varying degrees of adversity, these distortions visibly alter the structure of the foreground object.

Humans rely heavily on the structural configuration of objects to understand and identify them from various
viewpoints. A visible deformation or distortion can significantly affect our confidence in recognizing an
object. For instance, referring to each image in Figure 12, we may still be able to identify a golden retriever
despite its parts being dispersed across the scene, though our confidence might waver. A clean image of a
golden retriever might prompt a confident identification, whereas a distorted image might lead us to say, "I
can see a golden retriever, but in parts dispersed across the scene." It is interesting to observe how DL-based
systems predict these distorted adversarial images.
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This section examines the response of these systems to such distortions and compares the performance of
passive versus active processing. Our objective is to assess how well these systems align with human vision
in handling visible structural distortions and to demonstrate how the human-aligned perception of an active
vision system leads to more stable and interpretable predictions.

Setup The upper part of Figure 12 illustrates two methods for generating foreground-distorted images:
(a) Image Shuffling and (b) Composite Images. For image shuffling, we divide an image into equal-sized
patches and randomly shuffle them. If the foreground-to-background ratio is high, this process structurally
distorts the object. For composite images, we use the Grab-cut algorithm (Rother et al., 2004) to extract
the foreground, disassociate these parts, and paste them onto random backgrounds.

For evaluation, we use a passive ResNet50 and select FALcon as our candidate active vision model. Unlike
GFNet, which predicts based on salient object parts, FALcon captures the entire object by gradually foveating
on salient features and implicitly learning the structure, stopping when no further improvement is possible.
This makes FALcon ideal for analyzing whether its predictions remain human-aligned despite foreground
distortions. To comprehensively assess this, we conduct two-fold paired experiments: image shuffling and
composite images. By concurrently applying these distortions, we aim to observe and compare the prediction
trends of the two systems, thereby determining the robustness and human-alignment of their predictions.

Qualitative analysis For the undistorted sample of a golden retriever, both FALcon and ResNet50 make
correct predictions with confidences of 75.39% and 41.56%, respectively. After image shuffling, FALcon
makes multiple distinct predictions based on each localized part, each with lower confidence than the whole
object. The face, being the most distinctive part, has the highest confidence among the parts. Low-confidence
predictions (< 50%) can be thresholded, as shown in Figure 12 (c). In contrast, the passive classifier’s
confidence abnormally increases, a phenomenon supported by literature (Chowdhury et al., 2024). This
likely occurs because standard classifiers, trained on various image crops during data augmentation, rely on
specific object parts for correct prediction rather than the overall structure. Thus, even when the image is
shuffled and the structure is distorted, the discriminative parts still lead to strong predictions.

A similar instance is shown with a white wolf sample. For the second permutation of the image, the active
method makes a categorical misprediction based on the localized facial part, identifying it as a "Russian
wolfhound," which is still a "wolf-looking" dog breed. This misprediction is interpretable and less catastrophic,
as evidenced by the provided sample of an actual Russian wolfhound. Image shuffling, the first of the two
fold experiment indicates that passive methods rely mostly on parts for discrimination and lack structural
understanding. In contrast, active methods, while affected by distortions, make lower-confident correct
predictions or interpretable, less catastrophic mispredictions.

In composite images, the same foreground is extracted, dissociated into parts, and then pasted onto random
backgrounds, which are likely unfamiliar for passive classifiers to associate with the foreground. As seen
in both samples, passive classifiers fail miserably, making predictions that are not remotely correlated with
the actual foreground. On the other hand, active vision systems make lower-confidence correct predictions
or interpretable, less catastrophic mispredictions based on the part localized by the dorsal stream. These
predictions are also human-aligned; without seeing the original full image of a white wolf, humans might
similarly infer that the parts belong to a wolf or a similar-looking dog breed like a Siberian husky or an
Eskimo dog. For the corresponding composite image as well, the localized part resemble the body of a polar
bear. Conversely, passive classifiers might make nonsensical predictions, such as identifying a polar bear’s
body part as a schooner, a type of sailing vessel, which is clearly a catastrophic error.

Key takeaway Thus, predictions indicate that across two different sets of foreground distortions, active sys-
tems showcase more resilient, stable, and human-aligned predictions. In contrast, passive systems, with their
non-structured learning, and one shot way of inference, produce confident, erratic, and often catastrophic
mispredictions.

7 Conclusions

In this work, we outline a deep learning-based active vision framework and advocate for its inherent ro-
bustness. Specifically, we adapt two existing approaches—FALcon Ibrayev et al. (2024b) and GFNet Wang
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et al. (2020)—into the active dorsal-ventral framework, demonstrating their robustness against three cate-
gories: adversarially crafted samples, naturally adversarial samples, and foreground-distorted images. In a
black-box transfer attack setup, we attribute the enhanced robustness to two key factors: (1) glimpse-based
processing at downsampled resolutions and (2) inference from multiple fixation points. Using GFNet, we
show how downsampling mitigates the impact of adversarial noise. With FALcon, we demonstrate how
multiple fixation points help avoid mispredictions due to the non-uniformity of adversarial noise. Employ-
ing various state-of-the-art adversarial transfer attacks, we observe consistent performance improvements
of 2-21% over passive methods, except when using non-adversarially trained ventral networks. We extend
this understanding to natural adversarial samples, which model real-world challenges like object occlusions,
unusual poses, and complex backgrounds that confuse passive classifiers. FALcon’s flexible framework allows
swapping different ventral streams, leading to a performance enhancement of 1.5x, even with an adversar-
ially trained ventral stream. We further investigate the robustness of image classifiers against foreground
distortions, using FALcon as our active vision model due to its capability to capture entire objects in undis-
turbed images. Through a two-fold experiment, we visually demonstrate how the predictions of an active
vision model are stable, resilient, and more human-aligned compared to the catastrophic mispredictions of
passive classifiers. A potential future direction will be to explore optimized white-box attacks and
defense mechanisms tailored to active vision systems. This exploration could lead to a deeper
understanding of how to enhance these inherently robust systems, further strengthening their
adversarial robustness.
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A Appendix

A.1 Adversarially crafted samples

A.1.1 DesNet121 as surrogate model

We provide additional results in this section with DenseNet121 (Huang et al., 2017) as the
surrogate model. Accs→t is provided as the metrics for comparison.

Table 4, presents results using adversarial samples transferred from DenseNet121 (Huang
et al., 2017), an architecture distinct from the ResNet family. These results, evaluated across
all 50,000 test samples of ImageNet with various iterative Linf norm attacks, demonstrate
consistent improvements, further supporting our findings.
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Table 4: Transferability results with DenseNet121 as Surrogate Model

Surrogate Target PGD VMI PIFGSM
DenseNet121 ResNet50 30.91 12.33 30.45

FALcon-ResNet50-Top 43.19 20.0 35.70
FALcon-ResNet50-Any 47.30 23.80 39.56

A.1.2 Discussion with adversarially trained model

In this section, we briefly examine the role of an adversarially trained model (Madry et al.,
2018) as a baseline in our analysis, alongside the robustness properties observed in an active
vision system. We present results for both adversarially crafted samples (Section 4) and
naturally adversarial samples (Section 5), summarizing key insights across various types of
adversarial inputs.

• Accuracy on non-perturbed clean samples - The clean accuracy of an adversarially
trained (Adv-T) model is lower than that of a standard classifier, a known trade-off
resulting from adversarial training. This effect is evident in the clean accuracy results
in Table 1.

• Black box transfer attack setup - In Table 1, we present Adv-T⋆ as an oracle method,
trained to defend against worst-case perturbed samples within the L-∞ norm ball. The
model shows minimal performance drop, even as the potency of adversarial attacks
varies, with negligible decline compared to its nominal accuracy. Therefore, a black-
box transfer attack setup is not the most effective approach for testing such a robust
model.

• Comparison with active vision systems - In Table 1, we can see For attacks like PGD and
MIM, GFNet outperforms Adv-T⋆, while FALcon-CutMix shows stronger performance
on PGD and PI-FGSM attacks. However, active vision systems with non-robust ventral
methods, such as CutMix ResNet50 and supervised ResNet50, as well as these passive
ventral methods alone, experience a noticeable performance drop compared to clean
accuracy, with results varying based on the attack’s strength. This approach effectively
highlights key performance trends for analysis.

• Active vision system with Adv-T as ventral method - In Figure 5 (a), for transferred
attacks from LGV, we observe no noticeable improvements when adversarial samples
are transferred from a surrogate supervised ResNet50, as highlighted in Section 4.
However, for clean samples, there is a slight improvement.

• Natural Adversarial samples - In Section 5, we show that for naturally hard samples, a
passive adversarially robust ResNet50 performs worse than a passive CutMix ResNet50.
When integrated into an active setup, the framework improves performance on these
samples; however, the gain is smaller than that achieved with CutMix or supervised
ResNet50 in the same setup. This reflects the limitations adversarially trained models
face with naturally occurring samples, a drawback not shared by inherently robust
active vision systems.

This discussion highlights that while an adversarially robust model serves as a strong baseline
for adversarially crafted scenarios, it has drawbacks when applied to clean and naturally hard
samples, as it is optimized for worst-case perturbations. In contrast, the bio-inspired active
vision system demonstrates inherent robustness across diverse adversarially crafted and natu-
rally hard samples, showing substantial gains by improving upon the underlying passive ventral
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Figure 13: The figure illustrates the impact of generating adversarial samples using surrogate models with
architectures matching either the dorsal or ventral networks. The adversarial sticker on each sample high-
lights the concentration of adversarial noise, depending on whether the dorsal or ventral network was used
as the surrogate. "Dorsal-to-Active" (a) indicates an adversarial sample generated using the dorsal surrogate
model and then transferred to attack the active vision system, with a similar setup applied for the ventral
model (b). Only one transfer attack is generated each time. The distinct predictions reveal the variation in
responses due to the different adversarial samples.

stream. These two approaches are orthogonal: the adversarially robust model provides best-
case performance on specific optimized inputs, while the active vision system delivers gains
across a broader range of input types without being optimized for any particular kind.

A.1.3 Transfer attacks illustration

This section details the setup outlined in Table 2, under Section 4. In a black-box transfer
attack setup, the specific configuration of the underlying model remains unknown. How-
ever, to evaluate the efficacy of the active vision system, we generate adversarial samples by
transferring attacks using surrogate dorsal (fD) and ventral (fV ) streams. For FALcon, fD

is represented by VGG16, and fV by ResNet50, as described in Section 4.2. This approach
allows us to assess which stream serves as a more effective surrogate for adversarial sample
generation. The lower section of Table 1 presents results when samples are crafted based on
the ventral stream, ResNet50. Similarly, for Large Geometric Vicinity (LGV) (Gubri et al.,
2022), transferred samples are generated using the surrogate ventral stream (ResNet50), with
results illustrated in Figure 5 (a).

A.1.4 Transferability from Large Geometric Vicinity (LGV)

The paper introduces a technique called Transferability from Large Geometric Vicinity (LGV)
(Gubri et al., 2022) to enhance the transferability of adversarial attacks in black box transfer
setup. This is illustrated in Figure 1 of (Gubri et al., 2022). The method starts with an initial
pretrained surrogate model and gathers multiple weight sets for a few additional training
epochs with a constant and high learning rate. This is done to enhance the geometric diversity
of the surrogate models within a wide weight optimum. A wide weight optimum refers to a
region in the weight space of a neural network where many configurations of weights result
in similar, low loss values. In this region, the loss landscape is flatter or broader, meaning
that small changes in the weights do not drastically increase the loss. Wide optima are often
preferred because they represent solutions that are more likely to capture general patterns in
the data rather than overfitting to specific instances. This increases the likelihood of finding
adversarial examples that are transferable to different models. Thus this approach leverages
two geometric properties related to transferability:
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• Wider Weight Optima: Models situated within a broader weight optimum serve as
more effective surrogates.

• Effective Surrogate Ensemble Subspace: Identifying a subspace within this wider opti-
mum facilitates the creation of an effective surrogate ensemble.

In our experimental setup in 4, we use ResNet50 as the surrogate model, matching the ventral
stream of FALcon. Additionally, ResNet50 aligns with the feature encoders of GFNet, serving
as feature extractors for both the ventral and dorsal streams. The results are presented in 5

A.1.5 Token Gradient Regularization (TGR)

The TGR method, introduced in (Zhang et al., 2023) provides a gradient based transfer
attack algorithm for Vision Transformers (ViT) (Dosovitskiy et al., 2021) and its variants such
as Class-Attention in Image Transformers (CaiT) (Touvron et al., 2021) and Pooling based
Vision Transformer (PiT) (Heo et al., 2021). This algorithm, represented as TGR(·) removes
tokens with extreme values and reduces variance in back-propagated gradients. It utilizes
token gradient information from both the Attention and Query-Key-Value components within
an attention block, as well as from the MLP component within the MLP block, to generate
adversarial samples Gradadv. This is illustrated in Figure 1 of (Zhang et al., 2023). The TGR
function combines gradient information as follows:

Gradadv = TGR(GradQKV , GradAtt, GradMLP , k, s)
xadv

t+1 = xadv
t + α · sgn(Gradadv) (3)

Here, k denotes the top-k or bottom-k input gradients with highest and lowest values re-
spectively which denote the extreme tokens. The scaling factor for gradients is s and α is a
hyper-parameter to control the step size. This method is effective against CNN models as well.
And hence forms a strong transfer attack for both CNN and Transformer based backbones.

A.1.6 Surrogate models for Token Gradient Regularization (TGR)

We follow the experimental setup of the original Token Gradient Regularization paper (Zhang
et al., 2023) for selecting surrogate architectures. This paper demonstrated that transferable
attacks, leveraging back-propagated gradients through attention blocks in specific surrogate
vision transformers, are highly effective against other target vision transformer models. Ad-
ditionally, it showed that transformer-based adversarial samples can successfully transfer to
CNNs, making this approach effective for attacking CNN models as well. Following their
setup, we chose a Vision Transformer (ViT) (Dosovitskiy et al., 2021) and its variants, in-
cluding the Pooling-based Vision Transformer (PiT) (Heo et al., 2021) and Class-Attention
in Image Transformers (CaiT) (Touvron et al., 2021), as surrogate models. We provide some
intuition regarding the surrogate models.

• ViT - The Vision Transformer (ViT) architecture splits an image into fixed-size patches,
treats each patch as a token, and applies a standard transformer model to these tokens,
enabling direct application of transformer layers to image data without convolutional
processing. In ViT-B/16, "B" stands for the Base model size, indicating a standard
configuration with 12 transformer layers, and "16" refers to the patch size (16x16 pixels)
into which the image is divided before processing.

• PiT - The Pooling-based Vision Transformer (PiT) modifies the Vision Transformer
architecture by adding pooling layers between transformer blocks, which gradually
reduce the spatial dimensions, similar to CNNs. This pooling improves efficiency and
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Figure 14: The figure illustrates the effects of adversarial noise from the TGR attack using the surrogate
CaiT-S/24 transformer architecture. The target models include a passive, ventral-only Swin V2 transformer
and an active vision model with FALcon’s VGG16 dorsal and the same Swin V2 transformer ventral. Similar
to Figure 8, this figure shows visualizations where the passive model is consistently misled, focusing on
darker background regions rather than the intended foreground, as seen in occlusion maps under column
(d). Although the active system is impacted by the adversarial noise as evident from the differing bounding
box predictions compared to the benign inputs in column (c), it still guides the ventral stream to the correct
classification in column (e).

generalization. In PiT-B, the "B" stands for Base model size, indicating a standard
configuration with a specific number of layers and attention heads.

• CaiT - The Class-Attention in Image Transformers (CaiT) enhances the standard Vi-
sion Transformer by introducing class-attention layers at the end of the network, which
focus on aggregating global information for classification, and LayerScale mechanisms
within each transformer block, which help stabilize deeper models by scaling the out-
puts of layers for better training. In CaiT-S/24, "S" stands for Small model size,
indicating a smaller configuration with fewer parameters, and "24" specifies the num-
ber of transformer layers in the network. This setup enables CaiT to go deeper while
remaining stable and efficient.

While ViT-B uses 12 layers, CaiT-S/24 uses 24 layers, which makes CaiT-S/24 a deeper model
despite being labeled as "Small" (S) due to its efficient configuration.

A.1.7 Target models for Token Gradient Regularization (TGR)

In this subsection, we provide some intuition regarding the transformer based target models
for the TGR setup Figure 5 (c). For transformer based target ventral models, we use Swin
Transformer V2 (Liu et al., 2022), Robust Vision Transformer (Mao et al., 2021), and Focal
Modulation Networks (Yang et al., 2022). And as mentioned in Section 4, we use the tiny
versions of these transformers for evaluation.
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Figure 15: The figure highlights failure modes of a dual-stream active vision system. In both columns,
the top row shows correct predictions on benign inputs, while the second row visualizes mispredictions.
On the left, mispredictions occur when the ventral stream is impacted by adversarial noise, despite correct
localization by the dorsal stream. On the right, adversarial noise affects the dorsal stream, shifting its focus
to the background, leading the ventral stream to misclassify based on features from this misdirected region.

• Swin V2 - The Swin Transformer V2 is an updated version of the Swin Transformer that
processes images in shifted windows, enabling efficient hierarchical feature extraction.
This design enhances image classification by effectively capturing both local and global
features within the image.

• RVT - Robust Vision Transformer identified weaknesses in transformer models for ad-
versarial robustness and introduced novel techniques, such as position-aware attention
scaling and patch-wise augmentation, to enhance robustness across various shifts. These
innovations make RVT a more resilient vision transformer, especially under adversarial
and distributional shifts.

• Focal Mod - Focal Modulation Networks introduce a focal modulation mechanism that
replaces the conventional self-attention approach, aligning more closely with human-
like feature-based attention instead of spatial attention. This approach enhances the
model’s ability to learn aligned features, resulting in a stronger learned representation
for various vision-based tasks.

For target ventral architectures in a transformer-based transfer attack, such as TGR, we
selected an improved standard Vision Transformer in Swin V2, a robust vision transformer
in RVT, and the Focal Modulation Network, which is inspired by neuroscience for enhanced
feature representation. For each ventral model, we added FALcon’s learned VGG16-based
dorsal stream (fD) to create active vision counterparts. FALcon-SwinV2-Tiny refers to a
dual stream active vision system, with a SwinV2-Tiny ventral stream fV and FALcon’s VGG-
16 based fD dorsal stream. Figure 5 (c) illustrates these improvements, showing consistent
trends similar to those observed with CNN-based transfer attacks and ventral backbones.

A.1.8 TGR visualizations

We have included additional visualizations using TGR with CaiT-S/24 as the surrogate ar-
chitecture. The target model comprises a passive Swin Transformer V2 Liu et al. (2022) and
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Figure 16: The dorsal stream captures the object in all cases, and a better ventral stream improves upon the
predictions. The ResNet50-CutMix ventral stream rectifies mispredictions made by a ResNet50-Sup ventral
stream. The quantification of this effect is shown in the bar plot on in Section 5.

an active vision model combining FALcon’s VGG16 dorsal stream with the same Swin V2 as
the ventral stream. Figure 14 presents occlusion map visualizations similar to those in Figure
8, while Figure 15 illustrates failure modes critical to understanding active system behavior.
Figure 14 demonstrates a generalization of the visualizations from CNN-based iterative at-
tacks on CNN targets to a similar transformer-based scenario, showing consistent effects in
this setup.

A.2 Natural adversarial Images

The figure 16 shows qualitative results, with ventral stream training configurations and passive incorrect
predictions displayed at the bottom of each image. CutMix, being a more robust ventral stream than a
standard ResNet50, improves predictions, with the stable dorsal stream correctly localizing objects in all
cases.
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