
LEANN: A Low-Storage Vector Index for Personal Devices

Yichuan Wang 1 Shu Liu 1 Zhifei Li 1 Yongji Wu 1 Ziming Mao 1 Yilong Zhao 1 Xiao Yan 2 Zhiying Xu 3

Yang Zhou 1 Ion Stoica 1 Sewon Min 1 Matei Zaharia 1 Joseph Gonzalez 1

Abstract
Embedding-based search is widely used in ap-
plications such as recommendation and retrieval-
augmented generation (RAG). Recently, there has
been a growing demand to support these capa-
bilities over personal data stored locally on de-
vices. However, maintaining the necessary data
structure associated with the embedding search
is often infeasible due to its high storage over-
head. For example, indexing 100 GB of raw
data requires 150 to 700 GB of storage, mak-
ing local deployment impractical. Reducing this
overhead while maintaining search quality and la-
tency becomes a critical challenge. In this paper,
we present LEANN, a storage-efficient approxi-
mate nearest neighbor (ANN) search index opti-
mized for resource-constrained personal devices.
LEANN combines a compact graph-based struc-
ture with an efficient on-the-fly recomputation
strategy to enable fast and accurate retrieval with
minimal storage overhead. Our evaluation shows
that LEANN reduces index size to under 5% of
the original raw data – up to 50× smaller than
standard indexes – while achieving 90% top-3
recall in under 2 seconds on real-world question-
answering benchmarks.

1. Introduction
With the recent advances in AI (Lin et al., 2022; Izac-
ard et al., 2021), embedding-based search now signifi-
cantly outperforms traditional keyword-based search meth-
ods (Karpukhin et al., 2020; Zamani et al., 2023) across
many domains such as question answering, recommenda-
tion, and large-scale web applications such as search en-
gines (Craswell et al., 2020; Zhang et al., 2018). These
systems rely on dense vector representations to capture se-
mantic similarity and use approximate nearest neighbor
(ANN) search to retrieve relevant results efficiently. Re-
cently, there has been growing interest in enabling such
capabilities on edge devices like laptops or phones, enabling

1UC Berkeley 2CUHK 3AWS. Correspondence to:
<yichuan wang@berkeley.edu,wuyongji317@gmail.com>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

applications like personalized search, on-device assistants,
and privacy-preserving retrieval over local data (Wang &
Chau, 2024; Lee et al., 2024; Yin et al., 2024).

However, ANN data structures introduce substantial stor-
age overheads, often 1.5 to 7× the size of the original raw
data (Shao et al., 2024). While such overheads are accept-
able in large-scale web application deployments, they pose
a significant bottleneck when deploying ANN search on
personal devices or when using large datasets. For example,
a 2× storage overhead on a personal laptop is impractical.
To make ANN search viable in these settings, we seek to
reduce storage overhead to under 5% of the original data
size. At the same time, any such reduction must preserve
high search accuracy while maintaining reasonable search
latency to ensure responsive, real-time search experiences.

Existing solutions, however, fall short of this goal. Most
ANN indices store full embeddings and index metadata
on disk (Wang et al., 2021), requiring terabytes of storage
to index hundreds of gigabytes of documents, far exceed-
ing the capacity of edge devices. While compression tech-
niques such as product quantization (PQ) (Jégou et al.,
2011) can reduce storage, they often come at the cost of de-
graded search accuracy or require increased search latency
to achieve comparable results.

In this paper, we tackle the challenge of reducing ANN
storage overhead and present LEANN, a novel graph-
based vector index designed for storage-constrained environ-
ments. Built on top of Hierarchical Navigable Small World
(HNSW) (Malkov & Yashunin, 2018), a widely adopted,
state-of-the-art graph-based ANN index, LEANN intro-
duces system and algorithm optimizations that reduce total
index storage to under 5% of the original data size, while
preserving low query latency and high retrieval accuracy.
At its core, LEANN is driven by two key insights.

The first insight is that in graph-based indexes like HNSW,
a single query typically explores only a small subset of the
embedding vectors to identify its nearest neighbors. As
such, instead of storing these embeddings on disk, we can
recompute them on-the-fly at search time. However, naive
recomputation can still incur a high latency overhead. To ad-
dress this challenge, LEANN introduces a two-level traver-
sal algorithm that interleaves an approximate and an exact
distance queue, while prioritizing the most promising can-
didates in the search process, thus reducing the number of

1

LEANN: A Low-Storage Vector Index for Personal Devices

recomputations. Additionally, LEANN also incorporates a
dynamic batching mechanism that aggregates embedding
computations across search hops, improving GPU utiliza-
tion and thus minimizing recomputation latency.

However, even without storing embeddings, the index meta-
data (e.g., graph structure) itself can lead to non-trivial stor-
age overhead relative to the original data size. For example,
a typical HNSW index uses a node degree of 64, meaning
each node stores 64 neighbor links. With 4 bytes per link,
this results in 256 bytes of metadata per node, which nor-
mally accounts for more than 25% storage overhead of a
common 256-token document chunk (Shao et al., 2024).

The second insight is that much of the graph index metadata
is redundant: not all nodes and edges contribute equally
to search accuracy. Based on this observation, LEANN
introduces a high-degree preserving graph pruning strat-
egy that removes low-utility edges while preserving high-
degree “hub” nodes that are essential for maintaining effec-
tive search paths. By retaining only structurally important
components of the graph, LEANN significantly reduces
the size of the index without sacrificing the quality of the
retrieval.

We implement LEANN on top of FAISS (Douze et al.,
2025) and evaluate it on four popular information retrieval
(IR) benchmarks: NQ (Kwiatkowski et al., 2019), Hot-
potQA (Yang et al., 2018), TriviaQA (Joshi et al., 2017),
and GPQA (Rein et al., 2024). These benchmarks have
been widely used in evaluations of information retrieval sys-
tems. Our experiments span both an NVIDIA A10 worksta-
tion (NVIDIA, 2025) and an M1-based Mac (AWS, 2025b).
The results show that LEANN reduces storage consump-
tion by more than 50× compared to state-of-the-art indexes
while achieving competitive latency to achieve high accu-
racy. In summary, we make the following contributions:

• We conduct the first study on enabling low-latency, high-
accuracy vector search with minimal storage overhead.

• We present LEANN, a compact graph-based ANN index
that prunes redundant graph metadata by prioritizing pre-
serving high-degree nodes, and avoids storing embeddings
by recomputing them on the fly. To minimize recomputa-
tion latency, LEANN also introduces a two-level search
strategy with dynamic batching.

• We show that LEANN can deliver 90% top-3 recall using
less than 5% storage overhead relative to the raw data size,
while the end-to-end search time is still less than 2 seconds
on four benchmarks and various hardware platforms.

2. Background and Motivation
In this section, we provide background on approximate
nearest neighbor (ANN) search indexes, with a focus on

graph-based approaches, and outline the requirements for
deploying vector index on consumer devices.

2.1. ANN Search

Vector search systems use high-dimensional embeddings to
support semantic search over unstructured data. The core
task is top-k nearest neighbor (NN) search: given a dataset
X = {x1, . . . , xn} ⊂ Rm and a query q ∈ Rm, the goal is
to retrieve the k closest vectors in X to q under a distance
metric Dist(·, ·). Formally, this amounts to selecting S =
Topk(Dist(x, q)) for x ∈ X .

Exact NN search is often too slow at scale, so approxi-
mate nearest neighbor (ANN) methods (Malkov & Yashunin,
2018; Lempitsky, 2012) are used to trade off accuracy for
speed. Effectiveness is typically measured by Recall@k,
defined as Recall@k = |S ∩ S ′|/k ≥ RTarget, where S ′ is
the set returned by the ANN algorithm. Many applications
such as retrieval-augmented generation (RAG) require high
recall (e.g., ≥ 0.9) to preserve quality (Shen et al., 2024).

To accelerate ANN search, vector indexes organize em-
beddings using data structures that reduce the number of
comparisons required. Generally, a vector index consists of
two primary components: (1) the stored embedding vectors
themselves, representing the data, and (2) the index struc-
ture (such as graph connections or cluster assignments) built
upon these vectors to expedite the search. Two common
classes of ANN indices are:

Cluster-based Index. (e.g., IVF (Lempitsky, 2012)) parti-
tions the dataset into clusters (cells) using algorithms such
as K-means (Choo et al., 2020). Each cluster stores vec-
tors that are semantically similar. At query time, only the
most relevant clusters are searched. While efficient, these
methods often incur high recomputation costs to traverse all
relevant dense clusters.

Graph-based Index. (Indyk & Motwani, 1998) constructs
a proximity graph by connecting each vector to its near-
est neighbors. These indexes are among the most effective
for vector search, requiring traversal of significantly fewer
embeddings to achieve the target recall compared to alterna-
tives such as IVF (Malkov & Yashunin, 2018). We refer to
the search procedure as the best-first search (BFS) algorithm
for handling ANN queries, which we detail in Section 2.2.

2.2. Best-first Search (BFS) in Graph-based index

In Algorithm 1, we illustrate how BFS operates on a graph-
based index. The search begins by placing the entry node
p into a min-priority queue C, referred to as the candidate
queue, which prioritizes nodes closer to the query vector
xq . In each iteration (Lines 4 to 9), the algorithm selects the
closest node c from C and explores its neighbors. For each
unvisited neighbor n, we extract its embedding, compute its

2

LEANN: A Low-Storage Vector Index for Personal Devices

7

11

3

10

5

2

6
0

1

8
Query

Entry Point

Figure 1. Best-First Search in graph-based index

distance to the query xq , and insert n into the visited set V ,
the candidate queue C, and the result set R.

The search terminates when the candidate queue C becomes
empty or when the closest node in C is farther from the
query than the farthest node in the result set R, indicating
that further exploration is unlikely to improve the outcome.
The parameter ef controls how many candidates the search
algorithm considers internally before returning the top-K
results. ef serves as a quality knob: increasing ef enables
the algorithm to explore more candidates, thereby improving
recall at the cost of higher latency. An illustrative example
of this traversal process is shown in Figure 1.

2.3. Deploying vector index on Consumer Devices

Local Vector Index System Requirement. Consumer de-
vices, such as smart home appliances and personal worksta-
tions (Wang & Chau, 2024; Lee et al., 2024; Seemakhupt
et al., 2024; Yu et al., 2025), face strict storage con-
straints (Xue et al., 2024; ObjectBox Ltd., 2024; Totino,
2025a). Yet, many generative AI tasks rely on similarity
search over dense embeddings, which can be up to 7×
larger than the original data (Zilliz AI FAQ, 2025; Mi-
crosoft Learn, 2025; Shao et al., 2024). Unlike datacen-
ter servers with abundant memory (Castro, 2024; Douze,
2020), edge devices must share limited storage with apps
and media (Totino, 2025b), making it impractical to store
large-scale, uncompressed indexes.

At the same time, these devices often serve user-facing tasks
like large-scale document retrieval (Lee et al., 2024; Wang
& Chau, 2024) or offline semantic recall (Cai et al., 2024),
where latencies under 10 seconds are acceptable. Only
delays beyond 10 seconds start to impact usability.

This combination of tight storage budgets (e.g., using less
than 5% of the original raw data size) and relatively relaxed
latency requirements motivates a distinct design space for
on-device vector search: a highly storage-efficient VDB
that leverages on-device compute (e.g., GPU) to achieve
acceptable time-to-accuracy (on the order of seconds).

Existing System Limitations on Consumer Devices. Most
vector search indexes like HNSW and IVF are designed
with an exclusive focus on retrieval time to accuracy, but not
on minimizing storage footprint. While these approaches
enable fast and accurate search, it become infeasible on
consumer devices, where storage resources are limited.

Original ANN Index

High Degree Preserving
Graph Pruning (§5)

Graph

Embedding

Offline
Storage

Embedding
Cache

Embedding
Server

User Query

Two Level Search (§4.1)
Approximate

Exact
Search Queues

Pruned Graph

Batch Scheduler (§4.2)
Batch 1
Batch 2

Dynamic Batching

Dynamic Caching

Figure 2. LEANN system architecture and workflow.

Quantization-based methods, such as PQ (Jégou et al.,
2011), are the main approach for reducing storage by ap-
proximating embeddings using compact codebooks. While
these techniques can shrink the embedding size dramatically,
the inherent information loss from this lossy compression
often degrades retrieval accuracy. This degradation means
that critical vector distinctions can be permanently lost dur-
ing quantization, making it impossible to achieve high target
recall using only the compressed data, a limitation we experi-
mentally demonstrate in Section 6 and which is documented
in the literature (Subramanya et al., 2019).

To our knowledge, there is no prior system for vector index
that has explicitly targeted consumer devices where storage
footprint is a first-class objective. Our goal in this work is
to design a vector search system that significantly reduces
storage overhead, both for embeddings and index structures,
while meeting the latency and recall requirements.

3. Overview
In this section, we give an overview of the core techniques
and show how LEANN incorporates these techniques.

Graph-based Recomputation. In the HNSW structure that
LEANN relies on, each query only requires recomputing
a small number of nodes, i.e., those in the candidate set C
defined in Algorithm 1. This observation motivate LEANN
to recompute a subset of embeddings on-the-fly instead of
pre-storing all of them. Concretely, instead of loading pre-
computed embeddings as in Line 9, we modify the system to
recompute them during query execution without changing
any algorithm.

Main Techniques. There are two challenges associated
with this paradigm. First, graph-based recomputation offers
storage savings by not storing all embeddings on disk, naive
recomputation of embeddings at query time still results in
high search latency. Second, while LEANN eliminates the
need to store dense embeddings by recomputing them on-
the-fly, the remaining graph metadata, particularly node
connectivity information, can still contribute significantly
to overall storage usage (e.g., >10%).

LEANN offers two main techniques to address the chal-
lenges mentioned before. First, LEANN uses a two-level
graph traversal algorithm and a dynamic batching mecha-
nism to reduce recomputation latency (Section 4). Second,

3

LEANN: A Low-Storage Vector Index for Personal Devices

LEANN deploys a high degree preserving graph pruning
technique to greatly reduce the storage needed for graph
metadata (Section 5).

System Workflow. The end-to-end workflow incorporat-
ing the optimizations discussed above is shown in Figure 2.
Given a dataset of items, LEANN first computes the em-
beddings of all items to build a vector index for the dataset
using an off-shelf graph-based index.

After the index is built, LEANN discards the embeddings
(dense vectors) of the items, while pruning the graph for of-
fline storage with our high degree preserving graph pruning
algorithm (Section 5). The pruning algorithm aims to pre-
serve important high degree nodes, as we observe that node
access patterns are highly skewed in practice: a small subset
of nodes, often “hub” nodes of high degree, are frequently
visited, while many others contribute little to search quality.
To serve a user query at runtime, LEANN applies a two-
level search algorithm (described in Section 4.1) to traverse
the pruned graph, identifying and prioritizing promising
nodes for efficient exploration. These selected nodes are
then sent to the embedding server (an on-device component
utilizing the original embedding model for recomputation,
as illustrated in Figure 2) to obtain their corresponding em-
beddings. To further improve GPU utilization and reduce
latency, LEANN employs a dynamic batching strategy to
schedule embedding computation tasks on the GPU (Sec-
tion 4.2). Furthermore, when additional disk space is avail-
able, LEANN leverages it to cache ”hub” nodes. At runtime,
LEANN computes embeddings only for nodes not present
in the disk cache, while loading cached nodes directly from
disk.

4. Efficient Graph-based Recomputation
4.1. Two-Level Search with Hybrid Distance

Since the primary bottleneck in graph-based recomputation
is the number of recomputations, a natural optimization
strategy is to approximate the search path in order to reduce
the recomputation overhead. The Two-Level Search intro-
duces a multi-fidelity framework for distance computation,
guiding the search process by strategically varying com-
putational intensity across different stages. This approach
balances efficiency and accuracy by employing lightweight
approximate calculations for initial candidate filtering, fol-
lowed by exact computations only for the most promising
candidates.

Algorithm 2 illustrates our approach. During each expan-
sion step, we first apply a lightweight method to compute
approximate distances for all neighboring nodes at Line 12.
We maintain an approximate queue (AQ), a priority queue
that stores approximate distances for all encountered nodes.

Rather than computing exact distances for every neighbor
of the expansion node, we selectively refine only the top-
ranking candidates in AQ at Line 14. Since higher-ranked
nodes in AQ are more likely to lead toward the top-k targets,
this strategy reduces computation while maintaining search
quality. To implement this strategy, we define a re-ranking
ratio a and compute exact distances for the top a% of nodes
in AQ, filtering out nodes already in EQ (Exact Queue) to
avoid redundant computations.

In the final step of each iteration, we transfer nodes with
computed exact distances from set M to the EQ, which
serves as the candidate pool for subsequent expansions. This
selective computation in Line 14 strategy significantly re-
duces overall processing requirements while maintaining
high search quality.

The insight behind this approach is that re-ranking vectors
with top approximate distances is sufficient to achieve high
recall while effectively pruning nodes in opposite searching
directions. Notably, approximate distance computation can
be several orders of magnitude cheaper than recomputing
exact embeddings. In our evaluation, we use PQ to perform
approximate distance calculations, achieving an extremely
efficient compression ratio (compressing 200GB of embed-
dings to just 2GB) while still providing reasonable accuracy
to guide the search. This efficiency is possible because we
still employ exact embedding calculations to compensate
for any accuracy loss.

4.2. Dynamic Batching to Fully Utilize GPU

During the search process, GPU resources are often under-
utilized because each expansion step only triggers recom-
putation for a small number of nodes, typically equal to
the degree of the current node v. This problem is further
exacerbated when using the Two Level Search algorithm
(see Line 16), where the candidate set is even more selective,
resulting in smaller batch sizes. As a result, naive graph-
based recomputation fails to meet the minimum batch size
required to saturate GPU throughput, leading to inefficient
use of hardware resources at runtime.

To address this, LEANN introduces a dynamic batching
strategy that slightly relaxes the strict data dependency in
best-first search in Algorithm 1. While this introduces minor
staleness in the expansion order, it significantly increases
the batch size for the embedding model, thereby reducing
the end-to-end latency per query.

Specifically, LEANN breaks the strict data dependency in
best-first search, where the current node to be expanded
depends on the immediate results of the previous expansion,
by dynamically collecting a group of the closest candidates
from the priority queue. The algorithm accumulates their
neighbors (i.e., the nodes requiring recomputation) until a

4

LEANN: A Low-Storage Vector Index for Personal Devices

0-4 5-9 10-14 15-19 20-24 25-29 30-34 35-39 40-44 45-49 50-54 55-59

Node Degree

0

1

2

3

4

5
V

is
it

P
ro

ba
bi

lit
y

(×
1
0−

6
)

Figure 3. Node access probability per query

target batch size is reached, such as 64 for the A10 GPU.
This batch size can be easily determined through lightweight
offline profiling. This dynamic batching mechanism also
integrates naturally with the Two-Level Search described in
Section 4.1, where we simply accumulate the size of |M |
until it meets the predefined batch threshold.

5. Storage-optimized Graph Structure
With two-level search and dynamic batching to reduce re-
computation latency, we now examine how LEANN min-
imizes graph metadata overhead through high-degree pre-
serving pruning. As noted in Section 3, even when embed-
dings are recomputed on demand, the graph structure used
for search can still introduce substantial storage cost. For
example, in the datastore analyzed by (Severo et al., 2025),
the index accounts for over 30% of total storage.

To address this, LEANN introduces a user-defined disk
budget C. If the graph metadata exceeds this threshold,
LEANN triggers a pruning algorithm that reduces edge
count while preserving retrieval accuracy.

Our key insight is that preserving hub nodes is sufficient
to retain search performance, inspired by the skewed node
access pattern observed in Figure 3. These high-degree
nodes serve as the backbone of the graph’s connectivity,
and maintaining their edges ensures navigability even under
aggressive pruning. We formalize this in Algorithm 3.

On the one hand, we apply differentiated degree thresh-
olds to nodes based on their importance. We impose stricter
connectivity constraints on most nodes by reducing the num-
ber of connections to m (Line 10), while allowing a small
fraction (i.e., a%) of high degree nodes to retain higher con-
nectivity with a threshold of M (Line 8). Given a storage
budget C, LEANN automatically tunes the values of m and
M through offline profiling across multiple datasets. Fol-
lowing insights from (Ren et al., 2020; Munyampirwa et al.,
2024), we identify these high-influence nodes based on de-
gree ordering, as shown in Line 4. Empirically, we find that
setting a% to 2%, preserving only 2% of the highest-degree
nodes, is sufficient to maintain high retrieval accuracy.

On the other hand, while we restrict the number of outgo-
ing connections during node insertion, all nodes may still
receive incoming connections up to the maximum threshold
M (as shown in Line 13, not m). This design ensures that

each node can form bidirectional edges with high-degree
hub nodes, preserving graph navigability with minimal im-
pact on search quality.

6. Evaluation

Workloads We construct a datastore for retrieval based
on the RPJ-Wiki dataset (Computer, 2023), a widely used
corpus containing 76 GB of raw Wikipedia text. Following
prior work (Shao et al., 2024), we segment the text into 256-
token passages and generate one embedding per passage
using Contriever (Izacard et al., 2021), resulting in 768-
dimensional vectors. In total, we process 60 million chunks,
producing 171 GB of embedding data.

Besides retrieval itself, we also consider the predominant
downstream task of RAG. We adopt the widely deployed
LLaMA model family for generation and report downstream
task accuracy with the Llama-3.2-1B-Instruct model . For
evaluation, we adopt four standard benchmarks widely used
in RAG and open-domain retrieval: NQ (Kwiatkowski et al.,
2019), TriviaQA (Joshi et al., 2017), GPQA (Rein et al.,
2024), and HotpotQA (Yang et al., 2018).

Testbed. We evaluate our system and baselines on two
hardware platforms. The first is an NVIDIA A10 server
hosted on an AWS g5.48xlarge instance (AWS, 2025a),
equipped with a 96-core CPU and an NVIDIA A10G GPU.
The second is a Mac environment, provided via an AWS
EC2 M1 Mac instance (AWS, 2025b), featuring an Apple
M1 Ultra processor (Arm64).

Metrics. We compare LEANN against alternative baselines
in three main dimensions: storage, latency, and accuracy.
For accuracy, we evaluate both the search (retrieval) accu-
racy and downstream task accuracy.

To evaluate retrieval accuracy, we report Recall@k as de-
fined in Section 2. In open-domain settings, ground-truth
labels for retrieved passages are typically unavailable. Fol-
lowing standard practice (Jégou et al., 2011; Schuhmann
et al., 2021; Zhu et al., 2024), we use the results from exhaus-
tive search as a proxy for ground truth. In our experiments,
we set k = 3 following prior work standard setup (Shao
et al., 2024; Asai et al., 2023), and report Recall@3.

To evaluate downstream RAG accuracy, we use Exact Match
(EM) and F1 score. EM measures the fraction of predictions
that exactly match the ground-truth answers, while F1 cap-
tures the harmonic mean of precision and recall, awarding
partial credit for token-level overlap between predicted and
ground-truth answers.

Baselines. We compare LEANN against the fol-
lowing: HNSW (in-memory) (Malkov & Yashunin,

5

LEANN: A Low-Storage Vector Index for Personal Devices

10−1 100 101 102 103 104

Latency (s)

100%

200%

300%
P

ro
po

rt
io

na
lS

iz
e

Ours

NQ

Bette
r

10−1 100 101 102 103 104

Latency (s)

Ours

TriviaQA

Bette
r

10−1 100 101 102 103 104

Latency (s)

Ours

GPQA

Bette
r

10−1 100 101 102 103 104

Latency (s)

Ours

HotpotQA

Bette
r

BM25 DiskANN HNSW IVF IVF-Disk IVF-Recompute (EdgeRAG) Our

Target Recall=85% Target Recall=90% Target Recall=95%Target Recall=85% Target Recall=90% Target Recall=95%

BM25 DiskANN HNSW IVF IVF-Disk IVF-Recompute (EdgeRAG) Our

(a) A10

10−1 100 101 102 103 104

Latency (s)

100%

200%

300%

P
ro

po
rt

io
na

lS
iz

e

Ours

NQ

Bette
r

10−1 100 101 102 103 104

Latency (s)

Ours

TriviaQA

Bette
r

10−1 100 101 102 103 104

Latency (s)

Ours

GPQA

Bette
r

10−1 100 101 102 103 104

Latency (s)

Ours

HotpotQA

Bette
r

(b) Mac

Figure 4. [Main Result]: Latency–storage trade-offs in RAG applications across four datasets and two hardware configurations. The
y-axis indicates the storage overhead, defined as the size of the ANN index relative to the raw data size (76 GB of uncompressed text in
our setup). We vary the target recall to evaluate latency under different retrieval accuracy levels. Since recall is not applicable to BM25,
it appears as a single data point in each figure. Additionally, we omit the PQ-compressed method, as it fails to reach the target recall
threshold despite being a vector-based approach. As shown in Figure 5, both BM25 and PQ result in poor downstream accuracy.

Exact Match F1

20

25

30

35

A
cc

ur
ac

y
(%

)

19.2
20.8

26.5
27.7

29.1

36.1

NQ

BM25 PQ Compressed Ours

Exact Match F1

40

45

50

55

60

65

40.6
42.2

53.3

47.4
49.5

60.4

TriviaQA

Exact Match F1
0

2

4

6

8

10

2.0 2.0 2.0

4.5 4.5 4.5

GPQA

Exact Match F1

15

20

25

30

16.2
14.8

18.2

23.9

21.9

27.3

HotpotQA

Figure 5. [Main Result]: Comparison of Exact Match and F1
scores for downstream RAG tasks across three methods: keyword
search (BM25), PQ-compressed vector search, and our proposed
vector search system. Our method is configured to achieve a target
recall of 90%, while the PQ baseline is given extended search time
to reach its highest possible recall. Here we use Llama-3.2-1B as
the generation model.
2018) uses faiss.IndexHNSWFlat with M=30,
efConstruction=128; IVF (in-memory) uses
faiss.IndexIVFFlat with nlist=

√
N=8192 for a

N = 60M datastore (Research, 2025); DiskANN (Sub-
ramanya et al., 2019) is a graph-based system with
M=60, efConstruction=128, keeping only PQ tables
in memory; IVF-Disk uses memory-mapped IVF via
faiss.contrib.ondisk; IVF-based recomputa-
tion (Seemakhupt et al., 2024) omits embedding storage
by recomputing them online using IVF; PQ Compres-
sion (Jégou et al., 2011) applies Product Quantization to
compress embeddings while retaining graph structure;
BM25 (Craswell et al., 2021; Rekabsaz et al., 2021) is a
classical lexical ranking baseline.

6.1. Main Results - Storage and Latency

Figure 4 presents the storage consumption and end-to-end
RAG query latency across all baseline systems and LEANN.

The results show that LEANN is the only system that re-
duces storage to less than 5% of the original raw text size
while maintaining reasonable latency, which we discussed
in Section 2.3, such as achieving 90% recall on GPQA in
under 2 seconds.

We report storage consumption as a proportion of the raw
text size (76GB), referred to as proportional size in Figure 4.
Since all methods operate on the same fixed datastore, based
on a given dataset (RPJ-Wiki), the storage consumption for
each method remains constant across different hardware
platforms and query datasets. The figure shows that HNSW
stores all dense embeddings along with a graph structure,
resulting in substantial storage overhead. DiskANN incurs
even higher storage overhead due to its sector-aligned de-
sign: the data of each node, including its embedding (768×4
bytes) and edge list (degree 60, stored as 60× 4 bytes), is
padded to a 4 KB SSD sector, resulting in the highest stor-
age footprint among all methods. On the other hand, IVF
and IVF-Disk have similar storage overhead, dominated by
the embedding file. The additional metadata (e.g., centroids)
associated with the IVF index is relatively small and scales
with

√
N , making its overhead negligible. For BM25, stor-

age is determined by the vocabulary size and the associated
posting lists. In our setting, the BM25 index size is com-
parable to that of the original corpus. In contrast, LEANN
stores only a compact graph structure, resulting in less than
5% additional storage. Among the baselines, Edge-RAG
achieves the lowest storage footprint, as it only stores the
IVF centroids on disk, which adds negligible overhead.

For latency evaluation, we measure per-query latency un-
der different target recall levels across all combinations of

6

LEANN: A Low-Storage Vector Index for Personal Devices

query datasets and hardware platforms. For BM25, we re-
port a single number for its latency value using the default
keyword search configuration. Unlike embedding-based
search methods, BM25 is a lexical search technique and
does not operate over dense embeddings. As a result, recall
is not applicable for evaluating its effectiveness because it
is defined based on approximate nearest neighbor retrieval.
We omit results for HNSW and IVF on the Mac platform,
as both methods require loading the full dense embedding
matrix into memory, which leads to out-of-memory (OOM)
errors. Specifically, the Mac system has 128GB of RAM,
while the index size exceeds 170GB. We also exclude the
PQ-compressed baseline, as it fails to achieve the target
recall even with an arbitrarily long search time.

Figure 4 shows that LEANN consistently outperforms Edge-
RAG, an IVF-based recomputation method, achieving sig-
nificantly lower latency, ranging from 21.17× to 200.60×,
across all the datasets and hardware platforms. This advan-
tage is partly due to the asymptotic difference in recom-
putation complexity: the number of recomputed chunks in
LEANN grows polylogarithmically with N , while it grows
as
√
N in Edge-RAG(Wang et al., 2021). Graph-based

baselines such as HNSW and DiskANN represent upper
bounds on latency performance, as they store all embed-
dings in RAM or on disk. While LEANN trades some
latency for substantial storage savings, its performance re-
mains well within an acceptable range. This latency degra-
dation is acceptable for two main reasons as we discussed
in Section 2.3: (1) second-level latency is acceptable for
large-scale local document or image retrieval tasks, and
(2) many downstream tasks on local devices, such as im-
age or text generation, typically take over tens of seconds
to complete (Contributors, 2025; Li et al., 2024), making
the additional latency introduced by LEANN reasonable in
practice.

6.2. Main Result - Accuracy for Downstream RAG Task

We evaluate the downstream accuracy across four query
datasets, as shown in Figure 5. Although the PQ-
compressed method fails to meet the target recall defined
in Section 6.1, it still achieves approximately 20% recall
on all datasets. We evaluate downstream accuracy using
these low-quality retrieved results. For our method, we
set the target recall level to 90% for retrieving the top-3
relevant documents and use BM25 with its default configu-
ration for keyword matching. As illustrated in Figure 5, our
method consistently achieves higher downstream accuracy
across datasets except GPQA. This is because GPQA is at-
tributed to the datastore being somewhat out-of-distribution
(OOD) for GPQA, which primarily consists of graduate-
level questions that are not well-supported by the retrieved
documents. Additionally, the accuracy improvement on Hot-
potQA is smaller compared to the first two datasets. This is

NQ TriviaQA GPQA HotpotQA
0.5

1.0

1.5

2.0

S
pe

ed
up

1.00

1.64
1.86

1.00

1.42
1.57

1.00

1.35
1.59

1.00
1.19

2.02

Base Base + Two-level Base + Two-level + Batch

Figure 6. [Ablation Study]: Speedup achieved by different opti-
mization techniques described in Section 4 when evaluated on four
datasets to reach the same recall level on the A10 GPU. Two-level
refers to the optimization in Section 4.1, while Batch corresponds
to Section 4.2.

90% 92% 94% 96%
Recall Target

1

2

3

4

N
od

es
to

R
ec

om
pu

te
(×

1
0

4
)

Original HNSW (Avg Degree: 18)
Our Pruning Method (Avg Degree: 9)

Random Prune (Avg Degree: 9)
Small M (Avg Degree: 9)

5.76x

1.81x

Figure 7. [Ablation Study]: Comparison of pruned graph quality
against two heuristic methods and the upper bound. We vary the
target recall and measure the number of nodes each method needs
to recompute. The dashed gray line represents the original HNSW
graph, which serves as the upper bound, with twice the storage
(i.e., average degree) of the others.

because HotpotQA requires multi-hop reasoning, whereas
our current setup only performs single-hop retrieval, which
provides limited benefit to downstream accuracy.

6.3. Ablation Study

Ablation study on latency optimization technique. To
evaluate LEANN’s latency optimization techniques, we in-
crementally enable the components introduced in Section 4,
using a fixed target recall across multiple datasets. The
evaluation begins with a naive graph-based recomputation
baseline. Incorporating the two-level hybrid distance com-
putation strategy from Section 4.1 yields an average speedup
of 1.40×, as it reduces the number of nodes requiring re-
computation and allows for lightweight distance estimation
without invoking the embedding server. Adding the dy-
namic batching technique further improves GPU utilization
during recomputation, increasing the overall speedup to
1.76×. Among the datasets, HotpotQA benefits most from
batching due to its need for a longer search queue to achieve
the target recall, which enables more effective grouping of
multi-hop requests.

Comparison with Alternative Graph Pruning Methods.
We compare our graph pruning algorithm with two heuris-
tic baselines and evaluate graph quality by measuring the

7

LEANN: A Low-Storage Vector Index for Personal Devices

number of embeddings that must be fetched to achieve a
given recall target, as shown in Figure 7. In our setting,
the end-to-end latency scales linearly with the number of
embeddings that require recomputation, making this met-
ric a strong proxy for retrieval latency. The two heuristic
baselines are as follows: (1) Random Prune, which ran-
domly removes 50% of the existing edges from the original
graph; and (2) Small M, which directly constrains the maxi-
mum out-degree during graph construction, resulting in an
average degree that is half that of the original graph.

We evaluate performance on the NQ dataset by varying
the search queue length ef to determine the number of
embeddings fetched at different recall targets. As shown
in Figure 7, our pruning method introduced in Section 5
achieves performance comparable to the original unpruned
graph, despite using only half the edges. It outperforms the
Random Prune baseline by up to 1.18× and the Small M
baseline by up to 5.76×. We omit the Small M data points at
94% and 96% recall targets due to their poor performance.

Degree Distribution in Pruned Graphs. To better under-
stand the effectiveness of our pruning method, we analyze
the out-degree distribution of the original graph, our method,
Random Prune, and Small M. As discussed in Section 5, our
design explicitly aims to preserve high degree ”hub” nodes
in the graph. As shown in Figure 8, our method successfully
retains a substantial number of high degree nodes, whereas
the other two baselines fail to do so. This underscores the
critical role of hub nodes in supporting efficient graph-based
vector search, a finding that aligns with insights from prior
work (Ren et al., 2020; Munyampirwa et al., 2024; Manohar
et al., 2024).

Relaxing disk constraint. As discussed in Section 3, when
disk storage constraints are relaxed, LEANN can materialize
embeddings of high degree nodes to reduce recomputation
overhead. For instance, as shown in Figure 9, storing only
10% of the original embeddings results in a 1.47× speedup,
with a cache hit rate of up to 41.9%. This high cache hit rate
arises from the skewed access pattern characteristic of graph-
based traversal . However, the observed speedup does not
fully align with the hit rate due to the non-negligible loading
overhead introduced by SSDs with limited bandwidth.
7. Related Work
General Vector Search. Vector search typically relies on
IVF (Lempitsky, 2012), which clusters vectors and probes
selected subsets, or proximity graphs (Malkov & Yashunin,
2018), which link similar vectors for traversal. Graph-
based methods such as HNSW (Malkov & Yashunin, 2018),
NSG (Fu et al., 2019), Vamana (Subramanya et al., 2019),
and others (Chen et al., 2021; Fu et al., 2021; Munoz et al.,
2019) generally achieve better accuracy-efficiency trade-
offs. Some work reduces graph size via learned neighbor

selection (Zhang et al., 2020; Baranchuk & Babenko, 2019),
though it is often impractical due to training overhead.

Resource-Constrained Vector Search. Reducing the mem-
ory footprint of vector search has attracted significant at-
tention. Disk-based systems like DiskANN (Subramanya
et al., 2019) store both vectors and graph structures on
disk, using in-memory compressed codes for navigation.
Starling (Wang et al., 2024) improves I/O for disk-resident
graphs, while FusionANNS (Tian et al., 2025) leverages
SSD, CPU, and GPU for cost-effective search. AiSAQ (Tat-
suno et al., 2024) further reduces DRAM usage by keeping
compressed codes on disk. EdgeRAG (Seemakhupt et al.,
2024) avoids storing embeddings via online generation with
an IVF index but suffers from large cluster storage and high
recomputation cost at scale. Compression techniques like
PQ (Jégou et al., 2011) and RabitQ (Gao & Long, 2024) re-
duce storage but often degrade accuracy under tight budgets.
In contrast, LEANN combines on-the-fly recomputation
with a graph index, using degree-aware pruning and opti-
mized traversal for edge devices.

Vector Search Applications on Edge Devices. On-device
vector search enables privacy-preserving, low-latency, and
offline capabilities across various applications. On-device
RAG systems ground language models in personal doc-
ument collections while maintaining data privacy (Ryan
et al., 2024; Wang & Chau, 2024; Lee et al., 2024; Zer-
houdi & Granitzer, 2024). Personalized recommendation
systems (Yin et al., 2024) match user profiles against item
embeddings locally, while content-based search within im-
age and video libraries leverages efficient on-device vision
models (Ren et al., 2023). These applications motivate the
design of LEANN to enable efficient and low storage over-
head vector search on edge devices.

8. Conclusion
Similarity search over high-dimensional embeddings un-
derpins many generative AI applications such as retrieval-
augmented generation (RAG). However, enabling such capa-
bilities on personal devices remains challenging due to the
substantial storage required for storing embeddings and rich
vector index metadata. In this paper, we present LEANN,
a storage-efficient neural retrieval system that leverages
graph-based recomputation. By combining a two-level
search algorithm with batch execution, LEANN achieves ef-
ficient query processing without storing the full embedding
set. Furthermore, we introduce a high degree preserving
pruning strategy to reduce graph storage overhead while
maintaining accuracy. Together, these techniques enable
LEANN to operate with less than 5% of the original data
size – achieving a 50× storage reduction compared to exist-
ing methods – while maintaining fast and accurate retrieval.

8

LEANN: A Low-Storage Vector Index for Personal Devices

References
Asai, A., Wu, Z., Wang, Y., Sil, A., and Hajishirzi, H. Self-

rag: Learning to retrieve, generate, and critique through
self-reflection. In The Twelfth International Conference
on Learning Representations, 2023.

AWS. Amazon EC2 G5 instance. https://aws.
amazon.com/ec2/instance-types/g5, 2025a.

AWS. Amazon EC2 G5 instance. https://aws.
amazon.com/ec2/instance-types/mac/,
2025b.

Baranchuk, D. and Babenko, A. Towards similarity graphs
constructed by deep reinforcement learning. arXiv
preprint arXiv:1911.12122, 2019.

Cai, D., Wang, S., Peng, C., et al. Recall: Empowering mul-
timodal embedding for edge devices. arXiv:2409.15342,
2024.

Castro, P. Announcing cost-effective rag
at scale with azure ai search. https:
//techcommunity.microsoft.com/
blog/azure-ai-services-blog/
announcing-cost-effective-rag-at-scale-with-azure-ai-search/
4104961, 2024.

Chen, Q., Zhao, B., Wang, H., Li, M., Liu, C., Li, Z., Yang,
M., and Wang, J. Spann: Highly-efficient billion-scale ap-
proximate nearest neighbor search. In 35th Conference on
Neural Information Processing Systems (NeurIPS 2021),
2021.

Choo, D., Grunau, C., Portmann, J., and Rozhon, V. k-
means++: few more steps yield constant approximation.
In International Conference on Machine Learning, pp.
1909–1917. PMLR, 2020.

Computer, T. RedPajama: An open source recipe to re-
produce LLaMA training dataset. https://github.
com/togethercomputer/RedPajama-Data,
2023. Accessed: May 10, 2025.

Contributors, K. Ktransformers: A flexible frame-
work for experiencing cutting-edge llm inference opti-
mizations. https://github.com/kvcache-ai/
ktransformers, 2025. Accessed: 2025-05-14.

Craswell, N., Mitra, B., Yilmaz, E., Campos, D., and
Voorhees, E. M. Overview of the trec 2019 deep learning
track. arXiv preprint arXiv:2003.07820, 2020.

Craswell, N., Mitra, B., Yilmaz, E., Campos, D., and Lin,
J. Ms marco: Benchmarking ranking models in the large-
data regime. In proceedings of the 44th International
ACM SIGIR conference on research and development in
information retrieval, pp. 1566–1576, 2021.

Douze, M. Indexing 1t vectors. https:
//github.com/facebookresearch/faiss/
wiki/Indexing-1T-vectors, 2020.

Douze, M., Sablayrolles, A., and Jégou, H. Link and code:
Fast indexing with graphs and compact regression codes.
In Proceedings of the IEEE conference on computer vi-
sion and pattern recognition, pp. 3646–3654, 2018.

Douze, M., Guzhva, A., Deng, C., Johnson, J., Szilvasy, G.,
Mazaré, P.-E., Lomeli, M., Hosseini, L., and Jégou, H.
The faiss library, 2025. URL https://arxiv.org/
abs/2401.08281.

Fu, C., Xiang, C., Wang, C., and Cai, D. Fast approximate
nearest neighbor search with the navigating spreading-
out graph. Proc. VLDB Endow., 12(5):461–474, Jan-
uary 2019. ISSN 2150-8097. doi: 10.14778/3303753.
3303754. URL https://doi.org/10.14778/
3303753.3303754.

Fu, C., Wang, C., and Cai, D. High dimensional similarity
search with satellite system graph: Efficiency, scalability,
and unindexed query compatibility, 2021. URL https:
//arxiv.org/abs/1907.06146.

Gao, J. and Long, C. High-dimensional approximate near-
est neighbor search: with reliable and efficient distance
comparison operations. Proc. ACM Manag. Data, 1
(2), June 2023. doi: 10.1145/3589282. URL https:
//doi.org/10.1145/3589282.

Gao, J. and Long, C. RabitQ: Quantizing high-dimensional
vectors with a theoretical error bound for approximate
nearest neighbor search. In Proceedings of the ACM on
Management of Data (SIGMOD ’24), volume 2, 2024.

Indyk, P. and Motwani, R. Approximate nearest neigh-
bors: towards removing the curse of dimensionality. In
Proceedings of the Thirtieth Annual ACM Symposium on
Theory of Computing, STOC ’98, pp. 604–613, New York,
NY, USA, 1998. Association for Computing Machinery.
ISBN 0897919629. doi: 10.1145/276698.276876. URL
https://doi.org/10.1145/276698.276876.

Izacard, G., Caron, M., Hosseini, L., Riedel, S., Bojanowski,
P., Joulin, A., and Grave, E. Unsupervised dense infor-
mation retrieval with contrastive learning. arXiv preprint
arXiv:2112.09118, 2021.

Joshi, M., Choi, E., Weld, D. S., and Zettlemoyer, L.
Triviaqa: A large scale distantly supervised challenge
dataset for reading comprehension. arXiv preprint
arXiv:1705.03551, 2017.

Jégou, H., Douze, M., and Schmid, C. Product quantization
for nearest neighbor search. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, 33(1):117–128,
2011. doi: 10.1109/TPAMI.2010.57.

9

https://aws.amazon.com/ec2/instance-types/g5
https://aws.amazon.com/ec2/instance-types/g5
https://aws.amazon.com/ec2/instance-types/mac/
https://aws.amazon.com/ec2/instance-types/mac/
https://techcommunity.microsoft.com/blog/azure-ai-services-blog/announcing-cost-effective-rag-at-scale-with-azure-ai-search/4104961
https://techcommunity.microsoft.com/blog/azure-ai-services-blog/announcing-cost-effective-rag-at-scale-with-azure-ai-search/4104961
https://techcommunity.microsoft.com/blog/azure-ai-services-blog/announcing-cost-effective-rag-at-scale-with-azure-ai-search/4104961
https://techcommunity.microsoft.com/blog/azure-ai-services-blog/announcing-cost-effective-rag-at-scale-with-azure-ai-search/4104961
https://techcommunity.microsoft.com/blog/azure-ai-services-blog/announcing-cost-effective-rag-at-scale-with-azure-ai-search/4104961
https://github.com/togethercomputer/RedPajama-Data
https://github.com/togethercomputer/RedPajama-Data
https://github.com/kvcache-ai/ktransformers
https://github.com/kvcache-ai/ktransformers
https://github.com/facebookresearch/faiss/wiki/Indexing-1T-vectors
https://github.com/facebookresearch/faiss/wiki/Indexing-1T-vectors
https://github.com/facebookresearch/faiss/wiki/Indexing-1T-vectors
https://arxiv.org/abs/2401.08281
https://arxiv.org/abs/2401.08281
https://doi.org/10.14778/3303753.3303754
https://doi.org/10.14778/3303753.3303754
https://arxiv.org/abs/1907.06146
https://arxiv.org/abs/1907.06146
https://doi.org/10.1145/3589282
https://doi.org/10.1145/3589282
https://doi.org/10.1145/276698.276876

LEANN: A Low-Storage Vector Index for Personal Devices

Karpukhin, V., Oguz, B., Min, S., Lewis, P. S., Wu, L.,
Edunov, S., Chen, D., and Yih, W.-t. Dense passage
retrieval for open-domain question answering. In EMNLP
(1), pp. 6769–6781, 2020.

Kwiatkowski, T., Palomaki, J., Redfield, O., Collins, M.,
Parikh, A., Alberti, C., Epstein, D., Polosukhin, I., De-
vlin, J., Lee, K., Toutanova, K., Jones, L., Kelcey, M.,
Chang, M.-W., Dai, A. M., Uszkoreit, J., Le, Q., and
Petrov, S. Natural questions: A benchmark for question
answering research. Transactions of the Association for
Computational Linguistics, 7:452–466, 2019. doi: 10.
1162/tacl a 00276. URL https://aclanthology.
org/Q19-1026/.

Langley, P. Crafting papers on machine learning. In Langley,
P. (ed.), Proceedings of the 17th International Conference
on Machine Learning (ICML 2000), pp. 1207–1216, Stan-
ford, CA, 2000. Morgan Kaufmann.

Lee, C., Prahlad, D., Kim, D., and Kim, H. Work-in-
progress: On-device retrieval augmented generation with
knowledge graphs for personalized large language mod-
els. In 2024 International Conference on Embedded
Software (EMSOFT), pp. 1–1, 2024. doi: 10.1109/
EMSOFT60242.2024.00006.

Lempitsky, V. The inverted multi-index. In Proceed-
ings of the 2012 IEEE Conference on Computer Vi-
sion and Pattern Recognition (CVPR), CVPR ’12, pp.
3069–3076, USA, 2012. IEEE Computer Society. ISBN
9781467312264.

Li, M., Lin, Y., Zhang, Z., Cai, T., Li, X., Guo, J., Xie, E.,
Meng, C., Zhu, J.-Y., and Han, S. Svdqunat: Absorb-
ing outliers by low-rank components for 4-bit diffusion
models. arXiv preprint arXiv:2411.05007, 2024.

Li, W., Zhang, Y., Sun, Y., Wang, W., Li, M., Zhang, W.,
and Lin, X. Approximate nearest neighbor search on
high dimensional data—experiments, analyses, and im-
provement. IEEE Transactions on Knowledge and Data
Engineering, 32(8):1475–1488, 2019.

Li, Z., Zhang, X., Zhang, Y., Long, D., Xie, P., and Zhang,
M. Towards general text embeddings with multi-stage
contrastive learning. arXiv preprint arXiv:2308.03281,
2023.

Lin, J., Nogueira, R., and Yates, A. Pretrained transformers
for text ranking: Bert and beyond. Springer Nature, 2022.

Malkov, Y. A. and Yashunin, D. A. Efficient and robust
approximate nearest neighbor search using hierarchical
navigable small world graphs. IEEE transactions on
pattern analysis and machine intelligence, 42(4):824–
836, 2018.

Manohar, M. D., Shen, Z., Blelloch, G., Dhulipala, L., Gu,
Y., Simhadri, H. V., and Sun, Y. Parlayann: Scalable and
deterministic parallel graph-based approximate nearest
neighbor search algorithms. In Proceedings of the 29th
ACM SIGPLAN Annual Symposium on Principles and
Practice of Parallel Programming, pp. 270–285, 2024.

Microsoft Learn. Vector index size and staying
under limits, 2025. URL https://learn.
microsoft.com/en-us/azure/search/
vector-search-index-size?utm_source=
chatgpt.com&tabs=portal-vector-quota.

Munoz, J. V., Gonçalves, M. A., Dias, Z., and Torres, R. d. S.
Hierarchical clustering-based graphs for large scale ap-
proximate nearest neighbor search. Pattern Recognition,
96:106970, 2019.

Munyampirwa, B., Lakshman, V., and Coleman, B. Down
with the hierarchy: The’h’in hnsw stands for” hubs”.
arXiv preprint arXiv:2412.01940, 2024.

NVIDIA. NVIDIA A10 Tensor Core GPU. https:
//www.nvidia.com/en-us/data-center/
products/a10-gpu/, 2025.

ObjectBox Ltd. Edge AI: The era of on-
device ai. https://objectbox.io/
on-device-vector-databases-and-edge-ai/,
2024. Accessed May 2025.

Rein, D., Hou, B. L., Stickland, A. C., Petty, J., Pang, R. Y.,
Dirani, J., Michael, J., and Bowman, S. R. Gpqa: A
graduate-level google-proof q&a benchmark. In First
Conference on Language Modeling, 2024.

Rekabsaz, N., Lesota, O., Schedl, M., Brassey, J., and Eick-
hoff, C. Tripclick: the log files of a large health web
search engine. In Proceedings of the 44th International
ACM SIGIR Conference on Research and Development
in Information Retrieval, pp. 2507–2513, 2021.

Ren, J., Zhang, M., and Li, D. Hm-ann: efficient billion-
point nearest neighbor search on heterogeneous memory.
In Proceedings of the 34th International Conference on
Neural Information Processing Systems, NIPS ’20, Red
Hook, NY, USA, 2020. Curran Associates Inc. ISBN
9781713829546.

Ren, J., Tulyakov, S., Peng, K.-C., Wang, Z., and Shi,
H. Efficient neural networks: From algorithm design
to practical mobile deployments. CVPR 2023 Tutorial,
2023. https://snap-research.github.io/
efficient-nn-tutorial/.

Research, F. A. Guidelines to choose an index. https:
//github.com/facebookresearch/faiss/
wiki/Guidelines-to-choose-an-index/

10

https://aclanthology.org/Q19-1026/
https://aclanthology.org/Q19-1026/
https://learn.microsoft.com/en-us/azure/search/vector-search-index-size?utm_source=chatgpt.com&tabs=portal-vector-quota
https://learn.microsoft.com/en-us/azure/search/vector-search-index-size?utm_source=chatgpt.com&tabs=portal-vector-quota
https://learn.microsoft.com/en-us/azure/search/vector-search-index-size?utm_source=chatgpt.com&tabs=portal-vector-quota
https://learn.microsoft.com/en-us/azure/search/vector-search-index-size?utm_source=chatgpt.com&tabs=portal-vector-quota
https://www.nvidia.com/en-us/data-center/products/a10-gpu/
https://www.nvidia.com/en-us/data-center/products/a10-gpu/
https://www.nvidia.com/en-us/data-center/products/a10-gpu/
https://objectbox.io/on-device-vector-databases-and-edge-ai/
https://objectbox.io/on-device-vector-databases-and-edge-ai/
https://snap-research.github.io/efficient-nn-tutorial/
https://snap-research.github.io/efficient-nn-tutorial/
https://github.com/facebookresearch/faiss/wiki/Guidelines-to-choose-an-index/28074dc0ddc733f84b06fa4d99b3f6e2ef65613d#if-below-1m-vectors-ivfx
https://github.com/facebookresearch/faiss/wiki/Guidelines-to-choose-an-index/28074dc0ddc733f84b06fa4d99b3f6e2ef65613d#if-below-1m-vectors-ivfx
https://github.com/facebookresearch/faiss/wiki/Guidelines-to-choose-an-index/28074dc0ddc733f84b06fa4d99b3f6e2ef65613d#if-below-1m-vectors-ivfx
https://github.com/facebookresearch/faiss/wiki/Guidelines-to-choose-an-index/28074dc0ddc733f84b06fa4d99b3f6e2ef65613d#if-below-1m-vectors-ivfx

LEANN: A Low-Storage Vector Index for Personal Devices

28074dc0ddc733f84b06fa4d99b3f6e2ef65613d#
if-below-1m-vectors-ivfx, 2025. Accessed:
2025-05-10.

Ryan, M. J., Xu, D., Nivera, C., and Campos, D. En-
ronQA: Towards personalized RAG over private docu-
ments. arXiv preprint arXiv:2505.00263, 2024.

Schuhmann, C., Vencu, R., Beaumont, R., Kaczmarczyk,
R., Mullis, C., Katta, A., Coombes, T., Jitsev, J., and
Komatsuzaki, A. Laion-400m: Open dataset of clip-
filtered 400 million image-text pairs. arXiv preprint
arXiv:2111.02114, 2021.

Seemakhupt, K., Liu, S., and Khan, S. Edgerag:
Online-indexed rag for edge devices. arXiv preprint
arXiv:2412.21023, 2024.

Severo, D., Ottaviano, G., Muckley, M., Ullrich, K., and
Douze, M. Lossless compression of vector ids for
approximate nearest neighbor search. arXiv preprint
arXiv:2501.10479, 2025.

Shao, R., He, J., Asai, A., Shi, W., Dettmers, T., Min, S.,
Zettlemoyer, L., and Koh, P. W. W. Scaling retrieval-
based language models with a trillion-token datastore.
Advances in Neural Information Processing Systems, 37:
91260–91299, 2024.

Shen, M., Umar, M., Maeng, K., Suh, G. E., and Gupta, U.
Towards understanding systems trade-offs in retrieval-
augmented generation model inference, 2024. URL
https://arxiv.org/abs/2412.11854.

Subramanya, S. J., Devvrit, Kadekodi, R., Krishaswamy,
R., and Simhadri, H. V. DiskANN: fast accurate billion-
point nearest neighbor search on a single node. Curran
Associates Inc., Red Hook, NY, USA, 2019.

Tatsuno, K., Miyashita, D., Ikeda, T., Ishiyama, K.,
Sumiyoshi, K., and Deguchi, J. AiSAQ: all-in-storage
ANNS with product quantization for DRAM-free infor-
mation retrieval. arXiv preprint arXiv:2404.06004, 2024.
URL https://arxiv.org/abs/2404.06004.

Tian, B., Liu, H., Tang, Y., Xiao, S., Duan, Z., Liao, X.,
Jin, H., Zhang, X., Zhu, J., and Zhang, Y. Towards high-
throughput and low-latency billion-scale vector search
via CPU/GPU collaborative filtering and re-ranking. In
23rd USENIX Conference on File and Storage Technolo-
gies (FAST 25), pp. 171–185, Santa Clara, CA, February
2025. USENIX Association. ISBN 978-1-939133-45-8.
URL https://www.usenix.org/conference/
fast25/presentation/tian-bing.

Totino, V. Phone storage: How much do
you really need?, 2025a. URL https:
//www.optimum.com/articles/mobile/
choosing-phone-storage-amount-needs-guide.

Totino, V. Phone storage: How much do
you really need?, 2025b. URL https:
//www.optimum.com/articles/mobile/
choosing-phone-storage-amount-needs-guide.
Accessed May 15, 2025.

Wang, M., Xu, W., Yi, X., Wu, S., Peng, Z., Ke, X., Gao,
Y., Xu, X., Guo, R., and Xie, C. Starling: An i/o-
efficient disk-resident graph index framework for high-
dimensional vector similarity search on data segment.
In Proceedings of the ACM on Management of Data
(SIGMOD ’24), volume 2, 2024. doi: 10.1145/3639269.
3652200.

Wang, P., Wang, C., Lin, X., Zhang, W., and He, Q. A
comprehensive survey and experimental comparison of
graph-based approximate nearest neighbor search. Proc.
VLDB Endow., 14(11):1964–1978, 2021. doi: 10.14778/
3476249.3476258.

Wang, Z. J. and Chau, D. H. Mememo: On-device retrieval
augmentation for private and personalized text generation.
In Proceedings of the 47th International ACM SIGIR
Conference on Research and Development in Information
Retrieval, pp. 2765–2770, 2024.

Xue, Z., Song, Y., et al. Powerinfer-2: Fast large lan-
guage model inference on a smartphone. arXiv preprint
arXiv:2406.06282, 2024.

Yang, Z., Qi, P., Zhang, S., Bengio, Y., Cohen, W. W.,
Salakhutdinov, R., and Manning, C. D. Hotpotqa: A
dataset for diverse, explainable multi-hop question an-
swering. arXiv preprint arXiv:1809.09600, 2018.

Yin, H., Chen, T., Qu, L., and Cui, B. On-device recom-
mender systems: A comprehensive survey. arXiv preprint
arXiv:2401.11441, 2024.

Yu, W., Liao, N., Luo, S., and Liu, J. Ragdoll: Efficient
offloading-based online rag system on a single gpu. arXiv
preprint arXiv:2504.15302, 2025.

Zamani, H., Trippas, J. R., Dalton, J., Radlinski, F.,
et al. Conversational information seeking. Foundations
and Trends® in Information Retrieval, 17(3-4):244–456,
2023.

Zerhoudi, S. and Granitzer, M. Personarag: Enhancing
retrieval-augmented generation systems with user-centric
agents. arXiv preprint arXiv:2407.09394, 2024.

Zhang, M., Wang, W., and He, Y. Learning to anneal
and prune proximity graphs for similarity search. In
International Conference on Learning Representations
(ICLR), 2020. Available at https://openreview.
net/forum?id=HJlXC3EtwB.

11

https://github.com/facebookresearch/faiss/wiki/Guidelines-to-choose-an-index/28074dc0ddc733f84b06fa4d99b3f6e2ef65613d#if-below-1m-vectors-ivfx
https://github.com/facebookresearch/faiss/wiki/Guidelines-to-choose-an-index/28074dc0ddc733f84b06fa4d99b3f6e2ef65613d#if-below-1m-vectors-ivfx
https://arxiv.org/abs/2412.11854
https://arxiv.org/abs/2404.06004
https://www.usenix.org/conference/fast25/presentation/tian-bing
https://www.usenix.org/conference/fast25/presentation/tian-bing
https://www.optimum.com/articles/mobile/choosing-phone-storage-amount-needs-guide
https://www.optimum.com/articles/mobile/choosing-phone-storage-amount-needs-guide
https://www.optimum.com/articles/mobile/choosing-phone-storage-amount-needs-guide
https://www.optimum.com/articles/mobile/choosing-phone-storage-amount-needs-guide
https://www.optimum.com/articles/mobile/choosing-phone-storage-amount-needs-guide
https://www.optimum.com/articles/mobile/choosing-phone-storage-amount-needs-guide
https://openreview.net/forum?id=HJlXC3EtwB
https://openreview.net/forum?id=HJlXC3EtwB

LEANN: A Low-Storage Vector Index for Personal Devices

Zhang, Y., Pan, P., Zheng, Y., Zhao, K., Zhang, Y., Ren,
X., and Jin, R. Visual search at alibaba. In Proceedings
of the 24th ACM SIGKDD international conference on
knowledge discovery & data mining, pp. 993–1001, 2018.

Zhu, J., Patel, L., Zaharia, M., and Popa, R. A. Compass:
Encrypted semantic search with high accuracy. Cryp-
tology ePrint Archive, Paper 2024/1255, 2024. URL
https://eprint.iacr.org/2024/1255.

Zilliz AI FAQ. How much memory overhead is typically
introduced by indexes like hnsw or ivf?, 2025. Accessed
May 2025.

12

https://eprint.iacr.org/2024/1255

LEANN: A Low-Storage Vector Index for Personal Devices

A. Appendix
A.1. Best-First Search

Algorithm 1 Best-First Search on Graph-based Index

1: Input: Graph G with entry node p, query xq , result size k, queue size ef (k ≤ ef)
2: Output: Top-k approximate neighbors R
3: Initialize C ← {p}, R← {p}, V ← {p}
4: while C ̸= ∅ and min(C.dist) ≤ max(R.dist) do
5: c← node in C with smallest distance to xq

6: Remove c from C
7: for each neighbor n of c do
8: if n /∈ V then
9: Extract Embedding xn

10: Compute d = Dist(xq, xn)
11: Add n to V , add n to C and R with distance d

12: if |R| > ef then
13: Keep only the ef closest nodes in R

14: return top k closest nodes in R

Graph-based indexes converge quickly to the nearest neighbors for two main reasons: (1) Graph structures connect vectors to
their approximate neighbors (identified during construction). These connections typically link semantically similar vectors,
creating pathways that allow the search to navigate towards relevant regions efficiently. Consequently, neighbors of a vector
similar to the query are also likely to be similar. (2) The graph implicitly yields a much finer-grained partitioning of the
vector space compared to IVF, enabling the search to examine significantly fewer candidates from the entire database (Gao
& Long, 2023; Li et al., 2019; Malkov & Yashunin, 2018; Indyk & Motwani, 1998).

A.2. Two-Level-Search

Algorithm 2 Two-Level Search

1: Input: query q, entry point p, re-ranking ratio a, result size k, search queue length ef
2: Output: k closest neighbors to q
3: visited← {p}; AQ← ∅; EQ← {p}; R← {p}
4: while EQ ̸= ∅ do
5: v ← extract closest element from EQ to q
6: f ← get furthest element from R to q
7: if distance(v, q) > distance(f, q) then
8: break
9: for each n ∈ neighbors(v) do

10: if n /∈ visited then
11: visited← visited ∪ {n}
12: Calculate approximate distance dapprox(n, q)
13: AQ← AQ ∪ {n}
14: M ← extract top a% from AQ that are not in EQ
15: for each m ∈M do
16: Compute exact distance dexact(m, q)
17: EQ← EQ ∪ {m}; R← R ∪ {m}
18: if |R| > ef then
19: Remove furthest element from R to q

20: return top k elements from R

13

LEANN: A Low-Storage Vector Index for Personal Devices

Regarding the generalizability of this method, our approach can readily incorporate alternative lightweight approximation
techniques beyond quantization. Methods such as distillation models or link and code representations (Douze et al., 2018)
can be substituted, provided they maintain computational efficiency even at the cost of some accuracy. This flexibility makes
our approach adaptable to various computational constraints and application scenarios while preserving the core two-level
search paradigm.

A.3. High Degree Preserving Graph Pruning

Algorithm 3 High Degree Preserving Graph Pruning

1: Input: Original graph G with the set of vertices V , candidate list size ef , connection number threshold M for high
degree nodes and m for other nodes, where m < M , percentage of high degree nodes a

2: Output: Pruned graph G1

3: ∀v ∈ V : D[v]← degree of v of G, G1 ← empty graph
4: V ∗ ← nodes with the top a% highest (out) degree in D
5: for v ∈ V do
6: W ← search(v, ef) ▷ Refer to Algorithm 1
7: if v ∈ V ∗ then
8: M0 ←M
9: else

10: M0 ← m

11: Select M0 neighbors from W using the original heuristic
12: Add bidirectional edges between v and its neighbors to G1

13: Shrink edges if ∃q ∈ neighbor and Dout(q) > M

Note that this algorithm does not require knowledge about the query distribution. Hence, it can scale efficiently to large
datasets, providing a simple yet effective mechanism to balance index size and search performance.

A.4. Comparison of Degree Distributions Across Pruning Methods

0 20 40 60
105

106

107

N
um

be
ro

fN
od

es

Avg Degree: 18

Original HNSW

0 20 40 60

Avg Degree: 9

Our Pruning Method

0 20 40 60
105

106

107

N
um

be
ro

fN
od

es

Avg Degree: 9

Small M

0 20 40 60

Avg Degree: 9

Random Prune

Node Degree

Figure 8. [Ablation Study]: Comparison of (out-)degree distributions between the original graph, our pruning method, and two heuristic
baselines. Similar to Figure 7, the gray curve represents the original HNSW graph, which has twice the size of the others. Only our
pruning method successfully preserves the high-degree nodes.

14

LEANN: A Low-Storage Vector Index for Personal Devices

A.5. Latency and Cache Behavior under Storage Constraints

4.2G
(0%)

8.7G
(2.5%)

13.2G
(5%)

18.6G
(8%)

22.2G
(10%)

0.0

2.0

4.0

6.0

La
te

nc
y

(s
)

NQ

4.62
4.13

3.83
3.51 3.32

4.2G
(0%)

8.7G
(2.5%)

13.2G
(5%)

18.6G
(8%)

22.2G
(10%)

0

2

4

6

8

TriviaQA

5.78
4.98 4.55 4.14 3.92

4.2G
(0%)

8.7G
(2.5%)

13.2G
(5%)

18.6G
(8%)

22.2G
(10%)

0.0

1.0

2.0

La
te

nc
y

(s
)

GPQA

1.73
1.59

1.47
1.34 1.26

4.2G
(0%)

8.7G
(2.5%)

13.2G
(5%)

18.6G
(8%)

22.2G
(10%)

0

10

20

Hotpot

15.52
13.48 12.38 11.22 10.61

0

10

20

30

40

14.8

23.4

32.0
36.7

0

10

20

30

40

C
ac

he
H

it
(%

)

18.6

28.0

37.1
41.9

0

10

20

30

40

11.0

20.3

29.7
35.0

0

10

20

30

40

C
ac

he
H

it
(%

)

17.5

26.9

36.2
41.1

Latency Cache Hit Rate

Figure 9. [Ablation Study]: Latency and cache hit rate comparison under varying storage constraints across four datasets. The x-axis
indicates total storage size (graph size plus cached embeddings) and the corresponding percentage of cached embeddings.

A.6. Graph-based recomputation breakdown.

0 20 40 60 80 100

Time (ms)

8.0ms 16.2ms 76.5ms

IO: Text + PQ Lookup
(8.0ms, 8.0%)
CPU: Tokenize + Distance Compute
(16.2ms, 16.1%)
GPU: Embedding Recompute
(76.5ms, 76.0%)

Figure 10. [Ablation Study]: Latency breakdown of a batch of requests in graph-based recomputation.

Figure 10 breaks down the time cost of a single batch in graph-based recomputation into three stages, categorized by the
primary system resource used. Each batch aggregates multiple hops of recomputation, as described in Section 4.2. First,
LEANN performs PQ lookups to select promising nodes, then retrieves and tokenizes the corresponding raw text. The
tokenized inputs are sent to the embedding server. Finally, LEANN performs embedding recomputation and distance
calculation. Although embedding recomputation is the primary bottleneck in LEANN, the three stages, spanning I/O, CPU,
and GPU resources, can potentially be overlapped to improve overall efficiency. We leave this optimization to future work.

15

LEANN: A Low-Storage Vector Index for Personal Devices

A.7. Using different embedding model sizes.

Exact Match F1
0

10

20

30

A
cc

ur
ac

y
(%

)

18.4
20.6

26.2
28.4

NQ

Exact Match F1
0

20

40
40.2 38.2

47.0 45.5

TriviaQA

gte-small (33M) contriever-msmarco (110M)

(a) Accuracy

Latency
0

1

2

3

La
te

nc
y

(s
)

1.14

2.63

NQ

Latency
0

1

2

3

1.17

2.68

TriviaQA

gte-small (33M) contriever-msmarco (110M)

(b) Latency

Figure 11. [Ablation Study]: Latency on the A10 GPU and accuracy of a smaller embedding model evaluated on a 2M-chunk datastore,
using a fixed search queue length of ef=50. The smaller embedding model significantly reduces latency without causing a substantial
drop in downstream accuracy.

Since the primary bottleneck of our system lies in the recomputation process, as shown in Figure 10, we further explore the
potential for latency reduction by adopting a smaller embedding model. Specifically, we replace the original contriever
model (110M parameters) used in Section 6.1 with the lightweight GTE-small model (Li et al., 2023), which has only 34M
parameters. We evaluate performance on a smaller 2M document datastore using a fixed search queue length of ef=50, as
shown in Figure 11. The results show that GTE-small achieves a 2.3× speedup while maintaining competitive downstream
task accuracy, within 2% of the contriever baseline. This demonstrates the potential of LEANN to further reduce search
latency via graph-based recomputation, while preserving the near-zero storage overhead characteristic of semantic search on
edge devices.

16

