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Abstract

In this paper, we critically examine the prevalent practice of using additive mixtures of Matérn
kernels in single-output Gaussian process (GP) models and explore the properties of multiplica-
tive mixtures of Matérn kernels for multi-output GP models. For the single-output case, we
derive a series of theoretical results showing that the smoothness of a mixture of Matérn kernels
is determined by the least smooth component and that a GP with such a kernel is effectively
equivalent to the least smooth kernel component. Furthermore, we demonstrate that none of the
mixing weights or parameters within individual kernel components are identifiable. We then
turn our attention to multi-output GP models and analyze the identifiability of the covariance
matrix A in the multiplicative kernel K(x, y) = AK0(x, y), where K0 is a standard single
output kernel such as Matérn. We show that A is identifiable up to a multiplicative constant,
suggesting that multiplicative mixtures are well suited for multi-output tasks. Our findings
are supported by extensive simulations and real applications for both single- and multi-output
settings. This work provides insight into kernel selection and interpretation for GP models,
emphasizing the importance of choosing appropriate kernel structures for different tasks.

1 Introduction

Gaussian processes (GPs) have emerged as a powerful and popular tool in machine learning, spatial
statistics, functional data analysis, etc., due to their versatility, flexibility, and interpretability as a
nonparametric method (Rasmussen and Williams, 2006; Banerjee et al., 2014). GPs provide an
intuitive means of modeling uncertainty, allowing the generation of predictive distributions for unseen
data points without requiring explicit model specification. Consequently, GPs have found applications
in a variety of contexts.

The key to harnessing the power of GPs lies in the choice of kernel functions, also known as
covariance functions. Rather than specifying a model, the GP framework revolves around selecting an
appropriate kernel, transforming the problem into one of parameter estimation. Over time, researchers
have developed various kernels, each tailored to specific scenarios, such as spatial data, time series
data, and others (Genton, 2001). For instance, for spatiotemporal, a variety of kernels have been
developed to capture unique characteristics and patterns (Gneiting, 2002; Stein, 2005).

The Radial Basis Function (RBF) kernel and Matérn kernels serve as prime examples of the diversity
within the kernel family (Cressie and Wikle, 2015). The RBF kernel, renowned for its infinite
differentiability, yields smooth functions, while Matérn kernels control the degree of smoothness by
a kernel parameter, thereby accommodating both smooth and nonsmooth functions (Stein (1999)).
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With each kernel bearing its own set of advantages and disadvantages, kernel selection, as a nontrivial
task, often demands extensive domain knowledge.

Inspired by the potential of harnessing the strengths of multiple kernels concurrently, researchers
have ventured into methods that involve kernel combinations, such as spectral mixtures (Wilson
and Adams, 2013; Samo and Roberts, 2015; Remes et al., 2017), addition and/or multiplication of
kernels (Duvenaud et al., 2011) such as mixture of RBF (Duvenaud et al., 2013), mixture of RBF,
periodic (Per), linear (Lin), and rational quadratic (RQ) (Kronberger and Kommenda, 2013), mixture
of RBF, RQ, Matérn and Per (Cheng et al., 2019; Verma and Engelhardt, 2020), mixture of RBF,
Matérn 1/2, 3/2, 5/2, as well as more sophisticated methods like Neural Kernel Networks (NKN,Sun
et al. (2018) and Automatic Bayesian Covariance Discovery (ABCD, Lloyd et al. (2014). For
instance, within the realm of spectral mixtures, Remes et al. (2017) proposed the Generalized Spectral
Mixture (GSM) kernel, which is a product of three components all parametrized by GPs, representing
frequencies,length-scales and mixture weights. In the category of summation and/or multiplication,
Verma and Engelhardt (2020) utilized the sum of the RBF kernel and Matérn kernel with varying
smoothness as the final kernel in their t-distribution Gaussian process latent variable model (tGPLVM),
an extension to GPLVM (Lawrence, 2003; Lalchand et al., 2022), to characterize the latent features
in single-cell RNA sequencing data.

In addition, methodological advances have facilitated the efficient discovery of optimal kernel
mixtures. For example, NKN is reported to be more efficient than the Automatic Statistician, a
gradient-based method. Simpson et al. (2021) utilized a transformer-based framework to generate
mixture kernel recommendations. These studies underscore the advantages of employing mixed
kernels in GP modeling, showcasing improved model fitting and more accurate predictions. By
combining multiple kernels, the strengths of individual kernels can be leveraged to capture complex
data patterns and relationships, potentially exceeding the capabilities of single kernels. Furthermore,
the automatic selection of kernels optimizes model performance, reducing the reliance on extensive
prior knowledge.

Another essential benefit of using mixture kernels in GP modeling lies in the improved interpretability.
In contrast to complex, data-driven kernels, mixture kernels allow the decomposition of intricate
patterns into simpler, distinct base kernels that are more readily interpretable. This technique, often
termed decomposition, enables a more comprehensive understanding of the underlying data structure
by simplifying complex patterns into their constitutive components. An illustrative example of
this approach is the work of Duvenaud et al. (2013), who applied this decomposition technique
for structure discovery in time series data. Their proposed mixture kernel comprised several base
kernels, including RBF, periodic, linear, and rational quadratic kernels, enabling the dissection of
time-series data patterns into components such as long-term trends, annual periodicity, and medium-
term deviations. In a similar vein, the ABCD approach also employed decomposition, albeit with a
different set of base kernels.

The identifiability of parameters within a single Matérn kernel has previously been explored, with
the microergodic parameter uniquely identified as the only identifiable parameter, as outlined in
Stein (1999). Tang et al. (2022) examined the identifiablity of parameters within a single Matérn
kernel with nuggets. Despite the prevalent use and interpretation of mixture kernels, their theoretical
properties including identifiability and interpretability of parameters within kernel components, to
the best of our knowledge, remain underexplored. A related critical question pertains to the common
practice of using kernels with varying degrees of smoothness for enhanced flexibility. In this work,
we turn our attention to the additive kernel in univariate GPs and multiplicative (separable) kernel in
multivariate GPs, specifically focusing on the mixture of the widely-used Matérn kernel. We highlight
the following novel findings:

• The smoothness of an additive mixture kernel is completely determined by the least smooth
component.

• For additive mixture of Matérn kernels, the identifiability is confined only to a single parameter, also
known as the microergodic parameter that is associated with the least smooth kernel component.

• For multivariate GPs with multiplicative separable kernels, the multiplicative matrix that controls
the correlation structure among the response variables is identifiable up to a multiplicative constant.

• Our conclusions extend beyond the specific case of Matérn kernels, demonstrating applicability to
a wider range of mixture kernels.
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Our study aims to deepen the understanding of mixture kernel identifiability and interpretability, as
well as to clarify the practical benefits of using kernels with varying degrees of smoothness. Our
theoretical assertions are supported by both simulations and real-world applications. Details regarding
the proofs of our theories and numerical experiments can be found in the supplementary material.

2 Gaussian process, kernels and parameter inference

This section serves to define key terms and outline the parameter inference algorithm integral to the
forthcoming theory and simulation sections.

A GP is a random function where any finite set of its realizations follows a multivariate normal
distribution, characterized by a mean function µ and a covariance function K (Rasmussen and
Williams, 2006).
Definition 1. f is said to follow a Gaussian process in domain Ω with a mean function µ : Ω → R
and a covariance function K : Ω× Ω → R if for any x1, . . . , xn ∈ Ω,

[f(x1), . . . , f(xn)]
⊤ ∼ N(v,Σ), where v = [µ(x1), . . . , µ(xn)]

⊤, Σij = K(xi, xj).

For the purpose of this study, we assume µ = 0, adhering to common practice and for the sake of
simplicity. If the mean is not zero, a data transformation can be applied to achieve this. This approach
is often adopted in machine learning and statistical analysis to simplify calculations and comply with
certain algorithmic requirements (Rasmussen and Williams, 2006; Murphy, 2012).

As a consequence, the behavior of a GP is primarily determined by its kernel function. In this study,
we assume the domain Ω = Rp and our focus is on the selection of kernels that are widely recognized
and commonly used in machine learning.
Definition 2. The RBF kernel, also known as the squared exponential kernel of Gaussian kernel is
given by:

K(x, x′) = σ2 exp(−α ∥x− x′∥2).

The parameter σ2 is called the spatial variance or partial sill that controls the point-wise variance,
while α is called the (length) scale, range, or decay that controls the spatial dependency. A key
characteristic of RBF is its smoothness, defined as follows:
Definition 3. A Gaussian process f is said to be mean-square continuous (MSC) if E(f(x +

h) − f(x))2
h→0−−−→ 0 for any x ∈ Rp. f is said to be mean-square differentiable (MSD) if

limh→0
f(x+h)−f(x)

h exists in the mean-square topology, and the limiting process is called the
derivative process of f , denoted by f ′. Similarly, the d-times mean-square differentiable (d-MSD)
GPs can be defined inductively.

In particular, the above-defined RBF kernel is infinitely differentiable. However, oversmoothing can
be problematic in prediction (Stein, 1999), leading to the popularity of the following flexible family
of kernels that allow for varying smoothness:
Definition 4. The Matérn kernel is given by

K(x, x′) =
σ22

(
α
2 ∥x− x′∥

)ν
Γ(ν)

Kν(α ∥x− x′∥)

where Kν is the modified Bessel function of the second kind. When ν = 1/2, the Matérn kernel
becomes the exponential kernel:

K(x, x′) = σ2 exp(−α ∥x− x′∥)

The additional parameter ν is called the smoothness, since the smoothness of a Matérn GP is exactly
⌈ν⌉ − 1. Inferring ν is known to be a particularly challenging problem, both from the theoretical and
empirical perspectives (Zhang, 2004). In practice, ν is usually set to 1/2, 3/2, 5/2, · · · due to the
simplified analytic form of the modified Bessel function.

The most straightforward estimator of the parameters σ2 and α is the maximum likelihood estimator
(MLE). In practice, optimizers such as Adam (Kingma and Ba, 2015) or stochastic gradient descent
(SGD) are used to maximize the log-likelihood.

3



3 Univariate GP: additive kernels

In this section, we investigate the smoothness of mixture kernels and the identifiability of parameters
in the additive mixture of Matérn kernels in the context of a univariate response variable. We note
here that all the theorems presented are framed in an asymptotic context.

Consider K1, · · · ,KL as L kernels with dl-MSD. Define K =
∑L

l=1 wlKl where
∑L

l=1 wl = 1 and
wl ≥ 0.
Theorem 1. K is d := minl{dl}-times MSD, but not d+ 1-times MSD, so the smoothness of K is
determined by the least smooth component.

Beyond smoothness, we discuss the identifiability of the parameters in the mixture kernel, which
relies on the notion of equivalence of measures.
Definition 5. Two measures P1 and P2 are said to be equivalent, i.e., P1 ≡ P2, if they are absolutely
continuous with respect to each other, i.e., P1(B) = 0 ⇐⇒ P2(B) = 0. Two GPs are equivalent if
the corresponding Gaussian random measures are equivalent.

As a consequence, two equivalent GPs cannot be distinguished by any finite number of realiza-
tions (Stein, 1999). Specifically, given a family of GPs parametrized by θ, if Pθ1 ⇐⇒ Pθ2 with
θ1 ̸= θ2, then θ is not identifiable since we cannot distinguish between θ1 and θ2. As a corollary,
there does not exist any consistent estimator for θ.

Now we can study the identifiability of the mixture Matérn kernel K =
∑L

l=1 wlKl, where Kl is the
Matérn kernel with parameters (σ2

l , αl, νl), given known νl’s in ascending order ν1 < ν2 · · · < νL
with νl − νl−1 ≥ 1 for different smoothness.

Theorem 2. Let K =
∑

l wlKl and K̃ =
∑

l w̃lK̃l be two kernels represented as linear combina-
tions of Matérn kernels Kl’s and K̃l with parameters (σ2

l , αl, νl) and (σ̃2
l , α̃l, νl).

(i) When p = 1, 2, 3, Then K ≡ K̃ if w1σ
2
1α

2ν1
1 = w̃1σ̃

2
1α̃

2ν1
1 .

(ii) When p ≥ 5, Then K ≡ K̃ if

w1σ
2
1α

2ν1
1 = w̃1σ̃

2
1α̃

2ν1
1 , w2σ

2
2α

2ν2
2 − ν1w1σ

2
1α

2(ν1+1)
1 = w̃2σ̃

2
2α̃

2ν2
2 − ν1w̃1σ̃

2
1α̃

2(ν1+1)
1 .

Consequently, no single parameter is identifiable. The only identifiable parameter when p ≤ 3 is
w1σ

2
1α

2ν1
1 , known as the microergodic parameter (Stein, 1999).

Interestingly, the case of p = 4 is missing here. We hypothesize that it aligns with the case of
p ≥ 5. However, providing a proof remains challenging. It is also worth noting that the issue of
identifiability persists even for a single Matérn kernel, as highlighted in the existing literature (Zhang,
2004; Anderes, 2010; Li et al., 2023).
Corollary 1. The mixture kernel K is equivalent to K1, that is, the mixture kernel is equivalent to its
least smooth component. Furthermore, the mean squared error (MSE) of the mixture kernel K is
asymptotically equal to the MSE of K1.

Theorem 2 implies that interpreting wl as the weight of each component is often misleading due to
its nonidentifiability. Furthermore, Corollary 1 suggests the use of a single Matérn kernel in lieu of
the linear mixture kernel. Both assertions are supported by the simulation study in Section 5 and the
real-world application in Section 6.

An alternative strategy is to assume the same smoothness across mixing components, i.e., ν1 =
ν2, · · · , νL. In this case, we prove that no single parameter is identifiable. The complete theorem,
proof, and simulation are in the Supplement.

When considering real-world data, it is often the case that the observed outcomes are noisy, which
is frequently modeled as an i.i.d. Gaussian with variance denoted by τ2, commonly referred as
the "nugget". The inclusion of such a noise term is essential to capture the inherent variability
in the data. Equivalently, the model can be formulated as noiseless by adjusting the kernel to be
K(x, x′) + τ21{x=x′}. The following corollary shows that the noise, or nugget, does not impact the
identifiability and interpretability of the mixture of Matérn kernels as shown in Theorem 2.
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Corollary 2. Let τ2 and τ̃2 be the noise variance of K and K̃. If τ2 ̸= τ̃2, then K ̸≡ K̃. If τ2 = τ̃2,
the previous results in Theorem 2 hold.

In essence, while the presence of noise or "nugget" captures real-world data variability, it does not
obscure or alter the fundamental characteristics of the mixture of Matérn kernels as established in our
theorems.

4 Multivariate GP: multiplicative kernels

In this section, we shift our focus to multivariate GPs, also known as multi-output or multi-task GPs,
which are applicable to datasets with multiple response variables.
Definition 6. f : Ω → Rm is said to follow a m-variate GP in domain Ω with zero mean and
cross-covariance function K : Ω× Ω → PD(m), where PD(m) is the space of all m by m positive
definite matrices, if for any x1, · · · , xn:

[f(x1), · · · , f(xn)]
⊤ ∼ MN(0,Σ),

where MN represents matrix Gaussian distribution and Σ consists of m×m blocks Σij = K(xi, xj).

The construction of valid cross-covariance kernels is a pivotal yet challenging aspect of multivariate
GPs (Gneiting, 2002; Apanasovich and Genton, 2010; Genton and Kleiber, 2015). A popular kernel
that is widely used due to its simplicity and seemingly interpretability is the multiplicative kernel,
also known as a separable kernel. This kernel admits the form K(x, y) = AK0(x, y) where K0 is a
standard kernel for univariate GP like Matérn while A ∈ PD(m) is a positive definite matrix reflecting
the correlation between response variables. The following theorem investigates the identifiability of
the multiplicative cross-covariance kernel.

Theorem 3. (i) When K0 is Matérn with parameters (σ2, α, ν) where ν is given, then K ≡ K̃ if
σ2α2νA = σ̃2α̃2νÃ. That is, the identifiable parameter is σ2α2νA. Hence A is identifiable up
to a multiplicative constant and the correlation structure is identifiable.

(ii) Let K0 be an arbitrary kernel with spectral density ρ0 satisfying:

∃γ ∈ W[−b,b]m , 0 < b < ∞, c1, c2 > 0, s.t., c1γ(ω)
2 ≤ ρ0(ω) ≤ c2γ(ω)

2,

where W[−b,b]d is the space of Fourier transforms of L2(Rp) functions with compact support
[−b, b]d (see the Supplement for more details). If θ is a mircroergodic parameter of K0, such

that
∫
Rp

1
γ4(ω)

(
ρ(ω)
θ − ρ̃(ω)

θ̃

)2

dω < 0 if θ = θ̃, then K ≡ K̃ if θA = θ̃Ã. That is, the
identifiable parameter is θA, hence A is identifiable up to a multiplicative constant and the
correlation structure is identifiable.

Note that (i) is a special case of (ii), as the Matérn kernel satisfies the additional assumptions in (ii).
This theorem positively supports the utilization of the multiplicative kernel and the interpretation that
Aij measures the correlation between the i-th response variable and the j-th response variable.

5 Simulation

In this section, we will validate the proposed theories by conducting three simulation studies. The
first simulation demonstrates Theorem 1 using a mixture of Matérn kernels, highlighting that the
smoothness of the sample path (e.g., a realization of the GP) is determined by the least smooth
component. The second simulation supports Theorem 2 using a mixture kernel of Matérn kernels
with varying smoothness. It shows that none of the single parameters are identifiable, and only the
proposed microergodic parameter can be identified. Finally, the third simulation showcases Theorem
3, suggesting that the multiplicative matrix is identifiable up to a multiplicative constant.

5.1 Simulation 1 - Univariate GP: Smoothness

In the first simulation, we show that the smoothness of the sample path is determined by the
smoothness of the least smooth kernel. We generate 200 samples as an equidistant sequence ranging
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from 0− 10. We consider the following mixture kernel: K =
∑3

l=1 wlKl, where Kl is the Matérn
kernel with smoothness parameter νl being 2l−1

2 and
∑L

l=1 wl = 1, wl ≥ 0. We randomly sample
Y from multivariate normal distribution with kernel function as the mixture kernel, Matérn with
ν = 1/2, 3/2, 5/2. The resulting sample paths are summarized in Figure 1.

Figure 1: Smoothness of Matérn kernels. Sample path of (A) Mixture kernel (B) Matérn 1/2 (C)
Matérn 3/2 (D) Matérn 5/2. (E) Numerical examination of Theorem 1.

Our results clearly indicate that the Matérn kernel with ν = 1/2 exhibits the least degree of
smoothness (continuous but not differentiable), and the smoothness increases with ν. The smoothness
of the mixture kernel is predominantly influenced by the Matérn kernel with ν = 1/2. When
comparing the sample path of the mixture kernel to those of the Matérn kernels with ν = 3/2 and
ν = 5/2, it is evident that the mixture kernel demonstrates a degree of smoothness similar to the
Matérn kernels with ν = 1/2.

To better demonstrate the smoothness of the mixture kernel and its least component, we further
examine the continuity and MSD of the mixture kernel and its mixing components empirically.
For a fixed x0 = 0, let xi = 1/i for i = 1, 2, . . . , and we generate yli from the GP, where
l = 1, . . . , T denotes the index of replicates. This allows us to approximate limx→0 E(f(x)− f(0))2

by βi =
1
T

∑T
l=1(y

l
i−yl0)

2. As per Definition 3, the GP is continuous if and only if βi → 0. Similarly,

we can approximate limx→0 E
(

f(x)−f(0)
x

)2

by γi =
1
T

∑T
l=1

(
yl
i−yl

0

xi

)2

. The GP is mean-square
differentiable if and only if limi→∞ γi exists. Specifically, for the mixture of Matérn 1/2 and 3/2 and
Matérn 1/2, while βi → 0, γi does not converge (Figure 1 first two columns), which indicates that
both the mixture kernel and Matérn 1/2 are continuous but not differentiable. However, for Matérn
3/2 (Figure 1 third column), βi → 0 and γi converges, implying that Matérn 3/2 is continuous and
differentiable.

These empirical observations strongly support the claims made in Theorem 1, which suggests that
the inclusion of smoother kernel components in the mixture does not inherently enhance the overall
smoothness of the mixture kernel.

5.2 Simulation 2 - Univariate GP: Components with different smoothness

In the second simulation, our aim is to assess parameter identifiability in a GP with a mixture
kernel consisting of Matérn kernels with distinct smoothness. The mixture kernel is denoted as
K =

∑3
l=1 wlKl, where Kl is a Matérn kernel with parameters (σ2

l , αl, νl). For this simulation,
we set ν1 = 1/2, ν2 = 3/2, ν3 = 5/2. Theorem 2 indicates that the only identifiable parameter is
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wlσ
2
l αl, while all other parameters remain unidentifiable. In this scenario, the identifiable parameter,

also known as the microergodic parameter, is associated with the least smooth component, i.e., the
Matérn 1/2 kernel. We will assess parameter inference by comparing estimated values to their true
values across different training sample sizes. For this experiment, we generate n samples, ranging
from 20, 50, 100, 500. For each sample size, we replicate the simulation 100 times.

Figure 2: Parameter estimation. (A) Only the microergodic parameter w1σ
2
1α1 is identifiable. (B-F)

other parameters are not identifiable. The red line indicates the true value.

The results provide persuasive support for Theorem 2 that, in the context of additive mixture of
Matérn kernels with distinct smoothness, only the MLE of the microergodic parameter w1σ

2
1α1 for

the least smooth component converges to the true value. The MLEs for all other parameters do not
converge to their respective true values, highlighting the unique identifiability of the parameters in
the least smooth component within the additive mixture kernel framework. Such results are robust
in terms of optimizer choice and consistent as the sample size increases to 3000 (details in the
Supplement).

5.3 Simulation 3 - Multivariate GP

Next, we turn our attention to multivariate GPs with a separable kernel. We define the separable
kernel as K = AK0. Here, we select Matérn 1/2 as K0, characterized by the parameters (σ2, α).
Our Theorem 3 suggests that only Aα2νσ2 is identifiable. To verify this, we adopt a bivariate
setup where A is a 2× 2 positive definite matrix. In this simulation, the sample size n varies from
50, 100, 200, 400. For each sample size, we replicate the simulation 100 times.

The parameter estimates are summarized in Figure 3. Evidently, only the MLE of the microergodic
parameter Aσ2α2ν converges to its true value. These findings reinforce the identifiability and
interpretability of the separable kernel. This understanding is critical for the interpretation and
application of separable kernels in real-world situations.

6 Application

Motivated by the findings in our theoretical and simulation studies, we proceed to compare the
performance of the mixture kernel with varying smoothness and the least smooth component within
that mixture only, in real-world data applications. In this section, we will revisit several applications in
previous studies (Rasmussen and Williams (2006), Wilson et al. (2014), Sun et al. (2018)), illustrating
that the mixture kernel achieves prediction performance comparable to the least smooth kernel
component within the mixture.
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Figure 3: Parameter estimation. (A-C) Only the microergodic parameter Aσ2α2ν is identifiable (D-E)
All other parameters are not identifiable. The red dotted line indicates the true value.

6.1 Application 1 - Image prediction

For our first real-data application, we delve into the domain of image analysis. GP has been widely
used to predict missing image (Wilson et al. (2014), Sun et al. (2018)). This task of image prediction
is an exemplary context for assessing kernel performance in discerning local correlation patterns,
providing a visually intuitive framework for comparative analysis.

We employ a handwritten zero image from the MNIST dataset (LeCun et al. (1998)) for this analysis;
we extract a 20×20 section from the center of the original 100×100 image to serve as our test image.
This results in a training dataset of 9600 pixels and a testing dataset with 400 pixels (Figure 4A). The
input for this analysis comprises the 2-D pixel locations, with the corresponding pixel intensities
serving as the response. To reconstruct the missing area, we train GP regression models with both
the mixture kernel with varying smoothness and a single Matérn 1/2 kernel on the training dataset,
and subsequently make predictions on the testing dataset. Specifically, we employ a mixture of three
Matérn kernels of smoothness 1/2, 3/2, 5/2. Our analysis seeks to demonstrate the similarities in
performance between the mixture kernel and the least smooth component within that mixture, i.e.,
Matérn 1/2, in terms of prediction in the missing image area.

Figure 4: Texture exploration in diamond plate. (A) Training image. (B) Prediction of the mixture
kernel. The area in the pink box represents the testing image area. (C) Predication of the Matérn 1/2
kernel.

The predictions generated by both the mixture kernel and the Matérn 1/2 kernel demonstrate a
remarkable similarity, as shown in Figure 4. This observation suggests that the mixture kernel
and a single Matérn 1/2 kernel have comparable performance. The close alignment between their
predictions implies that using the mixture kernel does not yield significant advantages over the least
smooth kernel component in this specific application, further reinforcing our theoretical findings
(Theorem 2) regarding the dominance of the least smooth kernel component in the mixture kernel.
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6.2 Application 2 - Manua Loa CO2

In this section, we extend our comparative analysis to the widely recognized Moana Loa CO2 dataset
from the Global Monitoring Laboratory’s Repository as our benchmark for regression analysis (Tans
and Keeling (2023)). Rasmussen and Williams (2006) employed this dataset to demonstrate that
constructing a complex covariance function by combining several different types of simple covariance
functions could yield an excellent fit to complex data. Consequently, we consider it to be a suitable
choice for testing our theorem.

Specifically, we used the decimal date from 1960 to 2020 as our input and the monthly average CO2

as our response. In this context, we compare the performance of Matérn mixture 1/2 + 3/2, 1/2 +
3/2 + 5/2, 3/2 + 5/2 and three single Matérn kernels (1/2, 3/2, 5/2). The dataset consists of 720
records. We undertook an extensive assessment, varying the training sample size from 5% to 95%
and keeping the test sample size as the remaining data. For each training sample size, we conducted
10 simulations using different random splits of the dataset as replications. This strategy allows for a
robust and thorough evaluation of the prediction accuracy of both the mixture kernel and the single
kernel component in the context of a regression problem with varying training sample sizes. We use
the MSE to quantify the prediction accuracy (Figure 5).

Figure 5: Manua Loa CO2 prediction MSE in test dataset with 20%, 50% and 75% training dataset.
Boxplot are colored by different Matérn kernels.

The Matérn mixture kernel 1/2 + 3/2 + 5/2 aligned closely with 1/2 + 3/2 across all experiments.
Furthermore, these three Matérn mixture kernels (1/2 + 3/2 + 5/2, 1/2 + 3/2, 1/2) converge when
the training sample size ratio reaches 50%. This empirical finding supports the theoretical equivalence
of these three GPs as posited in Theorem 2. Similarly, the Matérn mixture 3/2 + 5/2 kernel and the
standalone Matérn 3/2 kernel converge from a 65% sample size, lending empirical weight to their
theoretical equivalence and their equivalence in MSE as stated in Corollary 1.

Matérn 3/2 kernel has exceptional performance across all experiments. However, its influential
performance is diluted when coupled with the less smooth component, Matérn 1/2. On the contrary,
when mixed with the smoother Matérn 5/2 component, the worse performance of the latter is
overshadowed by Matérn 3/2. These behaviors lend empirical weight to our Theorem 2, suggesting
that in the asymptotic sense, the mixture kernel is dominated by its least smooth component.

A noteworthy trend is the inequivalance of the Matérn mixture kernel and its least component with
a limited training sample (training sample size < 50%). We consider such scenario as the "finite"
sample scenario in contrast to our focus on the infinite sample scenario, i.e. asymptotic theory.
Theoretically, while the Matérn mixture kernels 1/2 + 3/2 + 5/2, 1/2 + 3/2, and the standalone
Matérn 1/2 kernel are deemed equivalent, and the Matérn mixture kernel 3/2 + 5/2 is akin to
the Matérn 3/2 kernel, their practical agreement points, i.e. 50% and 65%, differed with limited
training samples. Although securing a conclusive theoretical support for the finite sample regime is
challenging, we managed to provide some insights to interpret our findings. To do so, we have to
delve further into the proof of Stein (1993)’s Theorem 1, which guides us to Theorem 3.1 in Stein
(1990). The proof suggests that the relative difference between the MSEs rests on the tail of the series.
This difference is influenced by both the sample size (denoted as N in Stein (1990)) and by bjk and
µj , as defined on the same page. For a fixed sample size, smaller values of (bjk + µjµk)

2 result in a
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smaller relative difference between MSEs. By the definition of bjk and µj , the more "different" the
two kernels are, in other words, the more "significant" the additional smoother components become
— the greater the difference between the MSEs will be.

7 Discussion and future work

In this study, we delved into the identifiability and interpretability of parameters in GPs with various
mixture kernels in the asymptotic scenario and fixed domain, including the additive kernel and
separable kernels. We formulated a series of theorems clarifying the identifiable parameters in these
kernel structures, and further corroborated our theorems through multiple simulations and real-data
applications. Our simulation results convincingly demonstrated that in GPs with mixture kernels,
the only identifiable parameter, known as the microergodic parameter, is associated with the least
smooth kernel component. This discovery has profound implications for parameter interpretation in
the context of GPs with mixture kernels. Empirical evidence from image data analysis and Manua
Loa CO2 regression studies further reinforce these discoveries. Despite the inclusion of kernels with
varying smoothness in the mixture kernel, the performance of the mixture kernel closely paralleled
that of the least smooth kernel component within it when the sample size is large enough, regardless
of its performance. This observation suggests that the inclusion of kernels with different smoothness
does not necessarily improve the prediction accuracy. In fact, due to various real world factors
including limited training samples, optimization and more, determining a clear winner in performance
between Matérn mixture kernel and single Matérn kernel proves to be a challenging task. Lastly, in
the case of multivariate GPs with separable kernels, our theoretical and simulation results show that
the correlation structure is identifiable up to a multiplicative constant. This result underlines that the
interpretability of separable kernels mainly resides in the relative correlation structure, rather than
individual parameters.

Although our study has provided substantial insight on the identifiability and interpretability of
parameters in GPs with various mixture kernel types, it also opens several exciting avenues for future
research. First, our analysis primarily focuses on Matérn kernels, and it would be intriguing to extend
this framework to other families of kernels, such as the periodic kernel. Such an extension would
provide a more comprehensive understanding of parameter identifiability and predictive performance
across a broader spectrum of kernel types. Second, our work has so far considered the cases where
p ≤ 3 or p ≥ 5. However, extending this to p = 4 presents a substantial challenge due to the lack of
mathematical tools to determine whether two Gaussian random measures are equivalent or not. Third,
our observations in the Mauna Loa CO2 example underscore the need for further exploration in the
finite sample scenario. Potential avenues for future research include investigating the convergence
rates of both the Matérn mixture kernel and the single Matérn kernel. Lastly, while we have identified
the microergodic parameters that are theoretically identifiable in mixture kernels, an important
direction for future work involves finding consistent estimators for these kernel parameters. This
would entail developing novel estimation techniques or adapting existing ones to reliably estimate
the parameters in practice, thereby enhancing the practical utility of our theoretical findings. These
endeavors will not only extend the theoretical foundations of GPs with mixture kernels, but will also
broaden their applicability across various real-world scenarios.
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