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Abstract
Applications that deal with sensitive information may have restrictions
placed on the data available to a machine learning (ML) model. For
example, in some applications a model may not have direct access to sensitive
attributes. This can affect the ability of an ML model to produce accurate
and fair decisions. This paper proposes a framework that models the tradeoff
between accuracy and fairness under four practical scenarios that dictate the
type of data available for analysis. In contrast to prior work that examines
the outputs of a scoring function, our framework directly analyzes the joint
distribution of the feature vector, class label, and sensitive attribute by
constructing a discrete approximation from a dataset. Through formulating
multiple convex optimization problems, we answer the question: How is the
accuracy of a Bayesian oracle affected in each situation when constrained to
be fair? Analysis is performed on a suite of fairness definitions that include
group and individual fairness. Experiments on three datasets demonstrate
the utility of the proposed framework as a tool for quantifying the tradeoffs
among different fairness notions and their distributional dependencies.

1 Introduction
A variety of studies have found bias to exist in machine learning (ML) models (Sweeney
(2013); Angwin et al. (2016); Larson et al. (2016); Buolamwini & Gebru (2018); Larson
et al. (2017)), raising concerns over their use in high-stakes applications. For example,
Angwin et al. (2016) and Larson et al. (2016) found that a tool used to calculate the risk of
criminal defendants repeating a crime was biased against African Americans. To address
these concerns, a variety of mathematical definitions have been constructed to quantify the
fairness of such models, the most prominent of which fall under two categories—group fairness
(Kamiran & Calders (2012); Hardt et al. (2016); Chouldechova (2017); Zafar et al. (2017);
Pleiss et al. (2017)) and individual fairness(Dwork et al. (2012); Petersen et al. (2021)). Group
fairness definitions aim to quantify biases that may exist among the results produced for two
or more demographic groups, while individual fairness focuses on ensuring the fair treatment
of similar individuals. However, multiple theorems have shown the impossibility of satisfying
multiple fairness definitions simultaneously. This motivates the following questions—To what
extent can a model simultaneously satisfy multiple definitions of fairness exactly or in some
relaxed form? If a model is capable of simultaneously satisfying multiple fairness definitions,
what cost must it pay in terms of accuracy?

We should also be aware that the answers to such questions depend on the information
to which a model has access. In the simplest case, a model is allowed to incorporate
sensitive attributes in the decision-making process. However, it is often the case in dealing
with applications that involve sensitive information that limitations are placed on the data
available to a model. For example, financial institutions are not allowed to ask applicants
their race when applying for loans, but must prove that their decisions are anti-discriminatory
with respect to any sensitive attribute listed by the Fair Housing Act and Equal Credit
Opportunity Act (Congress (1968; 1974-10)). Similarly, the Civil Rights Act of 1964 (Berg
(1964)) requires that higher education institutions do not discriminate against applicants
on the basis of a variety of sensitive attributes, including race, sex, and religion. However,
analyzing the equity of their decisions is not always directly possible since it is not mandatory
for applicants to provide such demographic information in their applications. Such situations
are captured by the definition of unawareness proposed by Kusner et al. (2017). In certain
situations, a model is only permitted to use features that have been decorrelated with

1



Under review as a conference paper at ICLR 2024

respect to the sensitive attribute to make decisions. Financial institutions, for example,
commonly form separate ML and compliance teams in the same institution. Compliance
teams oversee the handling of sensitive information and are responsible for ensuring that the
decisions produced by a company are non-discriminatory, and ML teams train models to
produce decisions for a company. While a compliance team is provided with all sensitive
attribute information, when available, an ML team is prohibited from accessing such sensitive
information and should not be able to deduce it from the data (de Castro et al. (2020)). In
other words, the features provided to the ML team must be decorrelated with respect to the
sensitive attribute, a notion introduced by Zemel et al. (2013).

Motivated by these circumstances, the focus of this paper is to analyze the tradeoff in
accuracy that a baseline model incurs when it is required to satisfy multiple fairness notions
under different situations that limit the data available to a model. Fig. 1 provides an
overview that characterizes the main modules of our analysis. We aim to directly analyze
the joint distribution of the feature vector, sensitive attribute, and class label, (X,A, Y ), as
seen in Fig. 1a. In reality, we do not have access to this distribution, but rather a sampling
of it in the form of a dataset. A discrete approximation of this joint distribution can be
constructed by applying vector quantization (VQ) (Gersho & Gray (1991)) to a dataset and
accumulating the statistics within each VQ cell. Since the number of samples in a VQ cell
may be small, we densely sample a generator that has learned to latent structure of this
joint population distribution to faithfully construct a fine-grained discrete approximation to
it, (X̃, Ã, Ỹ ).

In our subsequent analysis, we derive an optimization formulation to model the behavior of
an idealized classifier, referred to as the Bayesian oracle, when it is constrained to satisfy a
various fairness definitions. The Bayesian oracle is designed to be stochastic, and is thus
modeled as a scoring function, S, that assigns scores to different feature vectors, reflecting
their probability of receiving a positive class label. All analyzed fairness definitions can be
directly encoded as constraints in our framework, allowing us to avoid proactively constructing
objective functions that indirectly satisfy them. While commonly analyzed in isolation, we
concurrently formulate constraints from individual and group fairness definitions to investigate
their relationship. Our analysis is performed under four data-restricting situations listed
in Fig. 1b., under which the sensitive attribute is (is not) available and the features used
for classification are (are not) required to be decorrelated from it. We elaborate on these
situations in Section 3. Experiments conducted on three public datasets reveal that our
framework captures the distributional dependence of the tensions that exist between different
fairness notions and suggest that coupling individual and group fairness prevents the Bayesian
oracle from arbitrarily penalizing individuals to satisfy group fairness. We also observe that
a fair Bayesian oracle is typically able to maintain its accuracy on feature vectors that have
been decorrelated from the sensitive attribute.

The remainder of this paper is organized as follows. Section 2 provides the definitions of
fairness that we analyze in our tradeoff analysis along with the restrictions place on the data
for each analysis scenario. In Section 3, we formulate a framework for analyzing the reduction
in accuracy incurred from forcing a Bayesian oracle to be fair under four scenarios that
contrain the information available to a Bayesian oracle. Experimental results are presented
in Section 4 to quantify the tradeoffs between accuracy and fairness under each of these
scenarios. Finally, we conclude the paper and provide discussion in Section 5.

Related Work: Multiple works have shown the impossibility of satisfying multiple definitions
of fairness (Chouldechova (2017); Kleinberg et al. (2016); Zhao & Gordon (2022)). For
example, Chouldechova (2017) showed that attempting to exactly satisfy three group fairness
definitions simultaneously is futile, while Kleinberg et al. (2016) showed that demographic
parity and equalized odds are in conflict when demographic groups have unequal class label
balance. This has motivated a number of studies to analyze the tradeoffs between the
accuracy and fairness of ML outcomes, the majority of which analyze a single fairness notion
using pre-processing (Calmon et al. (2017); Kamiran & Calders (2012); Luong et al. (2011)),
in-processing (Chen & Wu (2020); Jiang et al. (2020); Zafar et al. (2017)), or post-processing
(Menon & Williamson (2018); Petersen et al. (2021); Lohia et al. (2019)) methods. Other
studies have been conducted to analyze the tradeoff between accuracy and multiple fairness
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Figure 1: Outline of proposed framework for tradeoff analysis. (a) A discrete approximation of the
population distribution is constructed by using a generator to densely sample it and applying vector
quantization. (b) The accuracy-fairness tradeoff is analyzed under four data-restricting situations in
which the sensitive attribute is (is not) available and the features used for classification are (are
not) required to be decorrelated from it.

definitions (Kim et al. (2020); Liu & Vicente (2022); Hsu et al. (2022); Celis et al. (2019)).
Kim et al. (2020) analyzed the tradeoffs between accuracy and fairness by constructing
primarily linear constraints from the joint distribution between the class label and sensitive
attribute of a dataset, though they do not consider how correlations with the features affects
this tradeoff. Liu & Vicente (2022) propose an in-processing method for analyzing the
tradeoff between accuracy and multiple fairness definitions, though they are required to
use proxy fairness constraints to avoid solving a non-convex optimization problem. Hsu
et al. (2022) analyze the tradeoff between accuracy and multiple fairness definitions through
post-processing the scores produced by a model. However, such an approach may provide
less flexible analysis since the transformation from the space of feature vectors to the space
of scores is many-to-one, which could force many non-similar feature vectors to be treated
similarly. Overall, none of these works incorporate both individual and group fairness notions
into their analysis, nor do they directly analyze how the limitations on the information
available to a model may affect their analyses.

2 Preliminaries for Tradeoff Analysis
The following setup is used to explicitly formulate each definition analyzed in our framework.
Let X,A, and Y represent the random feature vector and sensitive attribute and class
label random variables respectively associated with the sample spaces X ,A, and Y. For
simplicity, assume that X = Rk, A = {a, b}, and Y = {0, 1}, though our formulations
may be generalized to non-binary sensitive attributes through combinatorial extension. Let
S : X → [0, 1] be a randomized scoring function whose output represents the conditional
probability with which we assign a feature vector a label of 1, which we refer to as a score.
Its associated randomized estimator is:

Ŷ (x) =

{
1 , w.p. S(x)

0 , w.p. 1− S(x)
.

Fairness Defintions Different fairness definitions proposed in the literature provide tools
for ensuring that ML models uphold various societal values. In our framework, we analyze
the following suite of fairness definitions: Demographic Parity (DP), Equal Accuracy (EA),
Equal Opportunity (EOp), Predictive Equality (PE), Equalized Odds (EOd), and Local
Individual Fairness (Ind) (see Appendix B for a list of their explicit definitions).

Data-Restricting Definitions A model’s ability to balance accuracy and fairness depends
on the data available to it. We provide two practical definitions that dictate the data available
to a model, which we use to create the four scenarios under which we perform our analyses.
Definition 1. Unawareness of Sensitive Attribute (Kusner et al. (2017)) The sensitive
attribute is not a feature in the space of feature vectors.
Definition 2. Decorrelation with the Sensitive Attribute (Zemel et al. (2013)) The space of
feature vectors satisfies the following property: P (X|A = a) = P (X|A = b).
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3 Framework for Analysis
In this section, we present the framework used to analyze the tradeoffs between accuracy and
fairness under four scenarios. An illustration of the first stage of our framework is provided
in Fig.1a. We construct a discrete approximation, (X̃, Ã, Ỹ ), of (X,A, Y ) by first using a
generator, G, that has learned the latent structure of (X,A, Y ) from a dataset to densely
sample this distribution. We then partition the feature space into Nc non-intersecting cells
{Ci}Nc

1 that cover X using vector quantization (VQ) from data compression and signal
processing (Linde et al. (1980); Lloyd (1982)). The support of X̃ is given by {xc

i |xc
i ∈ X}Nc

i=1,
where xc

i represent the centroid of Ci. We infer the population statistics of a given cell from the
samples inside of it. By densely sampling G, we ensure that (X ∈ Cj , A, Y ) ≈ (X̃ = xc

j , Ã, Ỹ )

(see Appendix A for details). For notational simplicity, we use (X,A, Y ) in place of (X̃, Ã, Ỹ )
in the remainder of this paper.

An illustration of the different scenarios under which we analyze the fairness-accuracy tradeoff
is provided in Fig.1b. The first situation is the unconstrained situation in which we may
make direct use of the sensitive attribute to separately assign scores to the feature vectors of
different groups (see Appendix F for this formulation). The second situation is formulated
in Section 3.1, under which the sensitive attribute is unavailable, meaning that the Bayesian
oracle must assign the same score to individuals from different groups with the same feature
vectors. When the sensitive attribute is required to be decorrelated with the feature vectors
used for classification, an added layer of processing is required to decorrelate the feature
vectors from the sensitive attribute prior to providing them to the Bayesian oracle. In the
third situation, access to the sensitive attribute allows us to construct two separate mappings,
Ta and Tb, that redistribute the feature vectors associated with each group to achieve this
goal (see Appendix G for this formulation). In the fourth situation, the sensitive attribute
is unavailable, meaning that a single mapping, T, must be applied to the features of both
groups to achieve this goal. This situation is formulated in Section 3.2.

Consolidating Notation. To ease notation, we introduce matrix–vector notation that
will be used in the ensuing sections for modeling purposes. Bold face capital letters represent
matrices, e.g. X, where the value of the ith row and jth column is given by X[i, j]. Bold
face lower case letters represent column vectors, e.g. x, where the ith element is given by
x[i]. Since A = {a, b} and Y = {0, 1}, subscripts (subscripts) containing letters (numbers)
refer to joint (conditional) distributions with the sensitive attribute (class label). p is used
to capture a joint distribution with X and other variables, while q is used to capture a
distribution conditioned on X. The following examples illustrate this notation. The ith

element of the vectors pa, p0,p
a
0 , and q0

a is equal to P (X = xc
i |A = a), P (X = xc

i |Y =
0), P (X = xc

i , A = a|Y = 0), and P (Y = 0|X = xc
i , A = a), respectively. We use 1k and

0k to represent column vectors of length k, containing all 1s and all 0s, respectively. IM
represents an M ×M identity matrix. Finally, OM,N and 1M,N represent matrices of all
zeros and ones with row and column dimensions given by M and N , respectively. A table
containing all notation introduced in this paper is provided in Appendix M.

3.1 Fairness-Accuracy Tradeoff

Given access to the joint distribution (X,Y ), the Bayesian oracle takes the majority vote
over the support of X and produces the most accurate solution. This solution is given by
sB , where

sB [i] = argmax
y

py[i],∀i. (1)

This solution is a special case of a randomized classifier where the outputs are all binary,
and thus deterministic. Its accuracy in terms of the probability of correct prediction is
given by Accb =

∑Nc

i=1 p
sB [i][i]. Let N1 represent the number of cells classified as 1 by the

Bayesian classifier and assume, without loss of generality, that these correspond with the
first N1 elements of sB. That is, sB = [1T

N1
0T
Nc−N1

]T . Then, our goal becomes finding a
classifier, sF , with maximal accuracy that satisfies a set of fairness constraints by minimizing
its deviate from sB. Towards formalizing a minimization problem, let this deviation be
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represented by a vector m, given by:[∣∣sB [1]− sF [1]
∣∣ , ..., ∣∣sB [N1]− sF [N1]

∣∣ ,− ∣∣sB [N1 + 1]− sF [N1 + 1]
∣∣ , ...,− ∣∣sB [Nc]− sF [Nc]

∣∣]T
.

(2)

Then, the reduction in accuracy incurred by deviating sF ’s scores from sB ’s scores is given by
(p1 − p0)Tm. Since satisfying a particular notion of fairness exactly may be too strict for a
variety of applications, we formulate all fairness constraints as inequalities and provide limits
on the degree to which the fair classifier may deviate from exactly satisfying a particular
notion of fairness. The list of constraints for each group fairness notion is provided below.

|(pa − pb)
T (sB −m)| ≤ ϵDP (DP )

|(pa,0 − pb,0)
T (sB −m)| ≤ ϵEOp (PE)

|(pa,1 − pb,1)
T (sB −m)| ≤ ϵPE (EOp)

ϵEOp = ϵPE (EOd)

|(p0
a − p0

b)
T (1Nc

− sB +m)

+(p1
a − p1

b)
T (sB −m)| ≤ ϵEA (EA)

(3)

The set of local individual fairness constraints can be formulated as follows:

|W(sB −m)| ≤ ϵIF1Nc
, (Ind.) (4)

where W ∈ [0, 1]Nnbr×Nc is a matrix in which the number of rows, Nnbr, is equal to the
total number of feature vector pairs on the support of X within an η-neighborhood of
each other. In particular, the kth row of W contains non-zero entries, e−θd2

X (xc
i ,x

c
j) and

−e−θd2
X (xc

i ,x
c
j) in only two indices, i and j, respectively, for which dX (xc

i ,x
c
j) ≤ η. This

provides us with the final ingredient required to construct an optimization problem to analyze
the fairness-accuracy tradeoff:

min
m

(p1 − p0)Tm, s.t.
(3) and (4) are satisfied
0 ≤ m[i] ≤ 1, 0 ≤ i ≤ N1

−1 ≤ m[i] ≤ 0, N1 ≤ i ≤ Nc

(5)

Observing that each of the constraints in this minimization problem can be made linear in m,
this optimization problem is convex and can be efficiently solved using linear programming
(Dantzig (1963)). Thus, sF = sB −m and the reduction in accuracy is given by Accf =
Accb − (p1 − p0)Tm. See Appendix C for the explicit derivation of problem (5).

3.2 Transfer Fairness to Decorrelated Domain

Definition 2 measures differences in the distribution of the feature vectors for different groups.
Unless the original space of feature vectors is decorrelated with respect to the sensitive
attribute, a transformation must be applied to X to satisfy this definition. Specifically, given
(X,A, Y ), a mapping T : X → X must be constructed to ensure that P (T (X)|A = a) =
P (T (X)|A = b). Moreover, we require such a transformation to produce feature vectors
which our original fair Bayesian oracle will still fairly classify. That is, sF must still be
fair with respect to the joint distribution (T (X), A, Y ). Since (X,A, Y ) is discrete in our
framework, this transformation comes in the form of a mixing matrix, T, designed to merge
different areas over the support of X without adding or losing information. As a result,
we require that T ∈ PNc×Nc , where PNc×Nc represents the set of Nc ×Nc matrices whose
columns are probability mass functions. Hence, T is a stochastic matrix, the ith column
of which determines how the information in the ith VQ cell is disbursed in the transform
space. A constraint on decorrelation can be easily constructed by minimizing the value of
∥T(pa − pb)∥1. Hence, the following optimization problem is used to achieve our goal.

min
T∈PNc×Nc

− λ (sFTTp1 + (1Nc
− sF )TTp0)︸ ︷︷ ︸

Accd

+β ∥T(pa − pb)∥1︸ ︷︷ ︸
Ld

s.t. |f(T)| ≤ f (Fairness) (6)

Accd preserves the accuracy of scores produced from applying the fair Bayesian classifier to
the transformed space of feature vectors. Ld encourages the transformation to decorrelate
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the feature vectors from the sensitive attribute. It can take on a value between 0 (complete
decorrelation) and 2 (complete correlation). The Fairness constraint directly ensures that
the fairness constraints from equations (3) and (4) are preserved after the space of feature
vectors has been transformed. f(T) ∈ R(NNbr+4)×1 is given by the following equation:

f(T) =


pa − pb 0Nc

pa1 − pb1 0Nc

0Nc pa0 − pb0

p1
a − p1

b p0
a − p0

b
W ONNbr,Nc


︸ ︷︷ ︸

P

[
T ONc,Nc

ONc,Nc
T

]
︸ ︷︷ ︸

T̃

[
sF

(1Nc − sF )

]
︸ ︷︷ ︸

s̃F

, (7)

where T̃ can be directly written as a function of T:

T̃ =

[
1Nc×Nc

ONc×Nc

ONc×Nc
1Nc×Nc

]
︸ ︷︷ ︸

M

◦

([
INc

INc

]
︸ ︷︷ ︸

Ĩ

T [INc INc ]︸ ︷︷ ︸
ĨT

)
. (8)

The first four elements of |f(T)| capture the degree to which a particular group fairness
notion is violated in the transformed space, while the remaining elements capture the
degree to which a pair of neighboring feature vectors from the input space violate local
individual fairness when transformed (see Appendix D for derivation). Thus, setting f =
[ϵDP , ϵPE , ϵEOp, ϵEOd, 1T

Nnbr
ϵIF ]

T preserves the group and individual fairness constraints
(3) and (4).

Note that the (Fairness) constraint can be reformulated as an equality constraint, as given
by max(f̃(T)− f̃ ,02(NNbr+4)) = 02(NNbr+4), where

f̃(T) =

[
−P
P

]
T̃s̃F and f̃ =

[
f
f

]
. (9)

Thus, the question becomes: Given that we must satisfy individual and group fairness
constraints associated with the original fair Bayesian oracles’s decision map, sF , how well
can we accurately decorrelate the space of feature vectors from the sensitive attribute? To
solve this problem, we form the Augmented Lagrangian:
max
ρ

min
T∈PNc×Nc

− λ(sFTTp1 + (1Nc − sF )TTp0) + β∥T(pa − pb)∥1

+ ⟨ρ,max(f̃(T)− f̃ ,02(NNbr+4))⟩+
τ

2
∥max(f̃(T)− f̃ ,02(NNbr+4))∥22. (10)

Solving this minimization problem is equivalent to solving minimization problem (6). Thus,
if minimization problem (10) is convex, then we can exactly solve, providing us with the
solution to minimization problem (6). Thus, we state the following claim before providing a
solution to this problem.
Claim 1. Minimization problem (10) is convex.

Proof. See Appendix E.

Let L(T,ρ) represent the objective function in minimization problem (10). Since this
problem is convex, we are able to solve for T by applying the method of multipliers (Boyd &
Vandenberghe (2004)) with the following updates until convergence.

Tk+1 = argmin
T∈PNc×Nc

L(T,ρk) and ρk+1 = ρk + τ max(f̃(Tk+1)− f̃ ,02(NNbr+4))

(11)

Optimizing for Tk in each iteration can be done using a projected subgradient method, where
the projection of T onto PNc×Nc is performed by projecting each column of T onto the unit
simplex (Duchi et al. (2008)). This problem can be generalized to the situation in which
the sensitive attribute is allowed to be used to perform the transformation prior to being
redacted for classification. In this scenario, we solve for two transformation matrices—one
for each group. This problem is still convex and can be solved using the alternating direction
method of multipliers algorithm (Boyd & Vandenberghe (2004)) (See Appendix G)
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Figure 2: Pareto frontiers capturing the accuracy-fairness tradeoff for three datesets under awareness
and unawareness of the sensitive attribute. Each plot provides curves for different pairings of fairness
constraints; namely, DP, EA, PE, EOd, and Ind.

4 Experimental Results
In this section we experimentally investigate the different modules described in the analysis
of this paper on the Adult (Kohavi et al. (1996)), Law (Wightman (1998)), and Dutch Census
(Van der Laan (2001)) datasets. Our goals are to analyze the tradeoff between fairness
and accuracy when decorrelation is and is not a requirement. Each situation is explored
under awareness and unawareness of the sensitive attribute. For more details related to
our experimental setups, see Appendix H. For details on how we construct the discrete
approximations of the population distribution, see Appendix J. For details on the time
complexities associated with our experiments, see Appendix L

4.1 Accuracy-Fairness Tradeoff

In this section, we analyze the fairness-accuracy tradeoff when feature vector decorrelation
from the sensitive attribute is not required. We particularly explore various configurations of
minimization problem (5) under both awareness and unawareness of the sensitive attribute.

Fig. 2 provides a panel of Pareto frontiers that summarize the accuracy-fairness tradeoff for
different pairings of fairness definitions (see Appendix K for more analyzed combinations).
The plots in each row correspond to one of the three datasets. The first three columns
provide results under awareness of the sensitive attribute, while the results in the final
column are under unawareness of the sensitive attribute. Along the x-axis we relax a group
fairness constraint (or pair of constraints). The Individual fairness relaxation budget is scaled
differently and shown at the top of each plot along the x-axis. The y-axis of each plot shows
the resulting accuracy of the Bayesian oracle operating under the corresponding fairness
relaxation budget. Each curve in a plot corresponds to a different constraint setting. For
example, a group fairness relaxation of 0.3 for a DP+EA curve means that ϵDP = ϵEA = 0.3,
while group fairness relaxation of 0.10 and individual fairness relaxation of 0.12 for a DP+Ind
curve means that ϵDP = 0.10 and ϵInd = 0.12. Typically, most group fairness notions can be
satisfied exactly in isolation with little accuracy dropoff, as evidenced by the first column of
Pareto frontiers. This tends to change when two fairness constraints are paired together. The
second column couples DP with each of the other fairness notions, while the third column
couples EA with each of the other fairness notions. For the Law and Adult datasets, a
tension can be observed in pairings with EA, while pairings with DP are more easily satisfied.
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However, the converse is true for the Dutch Census dataset, suggesting that the tension
between different group fairness notions is distributionally dependent. The Pareto frontiers
in the fourth column of plots are under unawareness of the sensitive attribute. Compared
to the situation of awareness, there is a clear deterioration in performance in the Bayesian
oracles’s accuracy, but the extent of the accuracy dropoff is also distributionally dependent.
For example, strictly satisfying EA+PE causes an accuracy reduction of 3% between the
awareness and unawareness situations for the Adult dataset. However, for the Law dataset
strictly satisfying EA+PE leads to an accuracy dropoff of 10% between the awareness and
unawareness situations.
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EA+Ind.EA
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w

Figure 3: Dimensionality reduction of
feature vectors.

Fig. 2 also shows that pairing individual fairness with
just one group fairness constraint has the potential to
considerably reduce the Bayesian oracles’s ability to
make fair and accurate decisions, particularly in the
case of unawareness. Fig. 3 provides insight into this
phenomenon. In this figure, we produce dimensional-
ity reduction plots using factor analysis of mixed data
(FAMD), to reduce the dimensions of each VQ cell
centroid to three (Pagès (2014)). Each 3D point is
color coded according to its score, with points in close
proximity representing neighboring VQ cells. The left
column of plots displays the results for which EA is
exactly satisfied, but without any restrictions on indi-
vidual fairness. The right column of plots also satisfy
EA, but with an imposed individual fairness budget
of η = 0.15. In each of the plots in the left column,
collections of red and blue points in close proximity
to each other can be observed, indicating that VQ
cells in close proximity to each other are receiving
drastically different scores. The right column of plots
displays a smoother transition of scores, prohibiting
the Bayesian oracle from arbitrarily penalizing different VQ cells to satisfy group fairness.

4.2 Transfer Fairness to Decorrelated Domain

Table 1: Results for transferring fairness to decorrelated domain for Adult dataset.

Awareness Unawareness
Fairness Measure Acc. Reduction Ld Acc. Reduction Ld

DP+EA 0.005 (0.008) 0.000 (0.000) 0.007 (0.008) 0.000 (0.000)
DP+EOd 0.008 (0.007) 0.000 (0.000) 0.010 (0.007) 0.000 (0.000)
EA+EOd 0.010 (0.012) 0.061 (0.084) 0.012 (0.005) 0.050 (0.080)
DP+Ind. 0.014 (0.008) 0.000 (0.000) 0.003 (0.002) 0.000 (0.000)
EA+Ind. 0.021 (0.006) 0.026 (0.044) 0.003 (0.000) 0.000 (0.000)
EOd+Ind. 0.015 (0.004) 0.000 (0.000) 0.003 (0.002) 0.002 (0.003)

In this section, we analyze the extent to which the space of feature vectors can be decorrelated
with respect to the sensitive attribute while preserving the fairness of the Bayesian oracles’s
decisions. In our experiments, we set the hyperparameters in minimization problem (10) to
λ = 15 and β = 25. Table 1 displays the results obtained from our decorrelation analysis
under the preservation of different combinations of fairness definitions for the Adult dataset
(see Appendix I for results from Law and Dutch Census datasets).

For all combinations involving individual fairness, we hold ϵInd = 0.05, meaning that the
deviation in the probability of neighboring feature vectors being assigned a positive class
label by the Bayesian oracle should be no more than approximately 5%. All group fairness
constraints are tested for relaxations of 0.0, 0.5, and 0.10. Thus, we report the average
over three values in each of the cells of this table along with their standard deviation in
parentheses. Prior to applying the decorrelation mapping, the values of Ld under awareness
and unawareness were 2 and 0.92, respectively. The results in this table suggest that it is
possible to decorrelate the space of feature vectors with little accuracy drop-off in situations in
which the sensitive attribute is and is not available for constructing the decorrelation mapping.
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That is, in most cases, the accuracy of the fair Bayesian classifier on the decorrelated feature
vectors falls by less than 2% on average, with Ld dropping close to 0 in all cases except for
the EA+EOd pairing. These results are consistent in the Law and Dutch Census datasets,
though these datasets struggle much more to achieve decorrelation for the EA+EOd pairing.

P(X|A=White) vs P(X|A=Non-White)

Figure 4: Visualization of non-decorrelated (top)
and decorrelated (bottom) feature vectors when
the sensitive attribute is (left) and is not (right)
used for decorrelation.

We illustrate the effect of these decorrelation
mappings under awareness and unawareness
of the sensitive attribute in Fig. 4, plot-
ting the conditional distributions P (X|A =
White) and P (X|A = Non-White) over all
VQ cells for the Law dataset. The left and
right columns of plots provide results under
the assumptions of awareness and unaware-
ness of the sensitive attribute, respectively.
Under awareness, the number of cells along
the x-axis doubles compared to unawareness
since access to the sensitive attribute allows
the Bayesian oracle to separate each cell into
two decision regions. Nevertheless, in both
cases, the Ld constraint requires all subre-
gions of the space of feature vectors to be
decorrelated with respect to the sensitive attribute. These plots demonstrate the effectiveness
of the decorrelation mappings with the density of feature vectors in each VQ cell perfectly
overlapped in the awareness and unawareness plots in the bottom row. This suggests that
the accuracy drop-off of a fair classifier is less dependent on how correlated the features are
with the sensitive attribute and more dependent on the strictness of the fairness enforcement.

5 Conclusion, Broader Impact, and Limitations

This paper explores the tradeoff between fairness and accuracy under four practical scenarios
that limit the data available for classification. We investigate the behavior of a fair Bayesian
oracle by approximating the joint distribution of the feature vector, sensitive attribute, and
class label. Our exploration encompasses situations in which the sensitive attribute may or
may not be available and correlations between feature vectors and the sensitive attribute
may or may not be eliminated. Our results also suggest that the pursuit of individual
fairness through the enforcement of local scoring consistency may clash with notions of group
fairness, particularly when the sensitive attribute is unavailable to a model. Additionally, we
demonstrate that it is often feasible to reduce the correlation between the space of feature
vectors and the sensitive attribute while preserving the accuracy of a fair model.

Broader Impact Fairness in machine learning is a problem of increasing relevance in
today’s society given the huge increase in applications that use such technology for decision-
making. Feasibility studies like ours, which analyze the fairness of such models for real world
application scenarios, thus become critical for developing ethical technology. Our study can
help developers of fair ML models save time and resources by providing them with a useful
tool to understand the extent to which it is even possible for them to produce such models.

Limitations We would like to mention two limitations with regards to our approach. First,
a sizeable enough dataset for training the generator is needed to model the population
distribution of the feature vector, sensitive attribute, and class label. This is, however, not
a problem unique to our approach, but relevent to all machine learning applications that
rely on the substance of the data used for training. Our experimentation has shown that
a dataset of approximately 20,000 samples suffices to model this distribution effectively.
Second, quantifying the similarity among individuals introduces subjectivity. The choice
of distance metric and the specific parameters used in the metric inherently imply certain
assumptions about the similarity between two individuals. Thus, adjusting the distance
metric and parameters may produce different results. Noteably, this issue is not particular to
our framework, but rather a broader challenge inherent in the analysis of individual fairness.
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