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Abstract:

To perform outdoor autonomous visual navigation and search, a robot may lever-
age satellite imagery as a prior map. This can help inform high-level search and
exploration strategies, even when such images lack sufficient resolution to allow
for visual recognition of targets. However, there are limited training datasets of
satellite images with annotated targets that are not directly visible. Furthermore,
approaches which leverage large Vision Language Models (VLMs) for general-
ization may yield inaccurate outputs due to hallucination, leading to inefficient
search. To address these challenges, we introduce Search-TTA, a multimodal
test-time adaptation framework with a flexible plug-and-play interface compati-
ble with various input modalities (e.g. image, text, sound) and planning methods.
First, we pretrain a satellite image encoder to align with CLIP’s visual encoder to
output probability distributions of target presence used for visual search. Second,
our framework dynamically refines CLIP’s predictions during search using a test-
time adaptation mechanism. Through a novel feedback loop inspired by Spatial
Poisson Point Processes, uncertainty-weighted gradient updates are used to cor-
rect (potentially inaccurate) predictions and improve search performance. To train
and evaluate Search-TTA, we curate AVS-Bench, a visual search dataset based
on internet-scale ecological data that contains up to 380k training and 8k vali-
dation images (in- and out-domain). We find that Search-TTA improves planner
performance and score map distribution by up to 30.0% and 8.5% respectively,
particularly in cases with poor initial CLIP predictions due to limited training
data. It also achieves zero-shot generalization to unseen modalities. Finally, we
deploy Search-TTA on a real UAV via hardware-in-the-loop testing, by simulating
its operation within a large-scale simulation that provides onboard sensing.
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Figure 1: Visual search for bears by a simulated UAV over Yosemite Valley (2). (3) Utilizing a poor
probability map leads to suboptimal search performance. (4) Test-time adaptation refines the target probability
map by incorporating onboard measurements collected during search, guiding the UAV toward denser and less
populated vegetation where bears are more likely to be found [1] [2].
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1 Introduction

Recent advances in visual navigation have leveraged either purely vision-based approaches [3—6]
or vision—language foundation models (VLN) [7-9] to achieve strong performance and generaliza-
tion in real-world scenarios. VLN approaches are used in Object Navigation (ObjectNav) [10-12]
tasks, where robots search for specific household objects in indoor environments. More broadly,
Autonomous Visual Search (AVS) extends to outdoor settings, where robots actively explore natural
environments to locate targets of interest, with applications in environmental monitoring [13], and
search and rescue [14, 15]. Outdoor AVS can be particularly challenging due to limited battery life
and sensor field-of-view (FOV). There, one strategy is to extract useful visual cues from coarser
satellite images to direct the search process at a high level, even if the targets cannot be directly
seen in these images. Most AVS approaches comprise a vision module and a search module. The
vision module is responsible for processing visual semantics from satellite images and outputs use-
ful likelihood information (i.e., a prior), either in the form of probability distributions [16] or visual
embeddings [17]. The planner can then use these inputs to guide the agent towards areas with a
higher likelihood of seeing targets, by taking measurements using its (higher-resolution) sensor.

There are several challenges with generating useful visual priors to guide the search module. First,
there are limited in-the-wild datasets of satellite images with diverse annotated targets that are not
directly visible. Even if such training data were available, conventional vision models trained on
a narrow set of classes [16—18] may lack the capacity to reason beyond what is directly observ-
able [19]. Vision-language models (VLMs) [20-22], pretrained on a large corpus of internet-scale
data, provide a promising solution to this problem due to their advanced reasoning and general-
ization abilities [22-24]. Unlike conventional vision models, they can reason about correlations
between target and semantics of the environment. Nevertheless, even the best VLMs may generate
inaccurate visual outputs (or ’hallucinate’) due to insufficient/inaccurate training data [25] or when
encountering inputs (i.e. satellite images, taxonomies) that are out-of-domain [26]. Over time, these
inaccurate predictions persist as VLMs lack a mechanism to correct these errors during search [26].

To address these issues, we present Search-TTA, a multimodal test-time adaptation framework that
refines a VLM’s (potentially inaccurate) predictions online, using the agent’s measurements during
AVS. In this work, we use CLIP [20] as our lightweight VLM, and first align a satellite image
encoder to the same representation space [27-29] as a vision encoder through patch-level contrastive
learning. This enables the satellite image encoder to generate a score map by taking the cosine
similarity between its per-patch embeddings and the embeddings of other modalities (e.g., ground
image, text, sound). We then introduce a novel test-time adaptation feedback mechanism to refine
CLIP’s predictions based on new measurements. To achieve this, we take inspiration from Spatial
Poisson Point Processes [30] to perform gradient updates to the satellite image encoder based on past
measurements. We also enhance the loss function with an uncertainty-driven weighting scheme that
acts as a regularizer to ensure stable gradient updates. To train and evaluate Search-TTA, we curate
AVS-Bench, a visual search dataset based on internet-scale ecological data [31] comprising satellite
images, each with targets and their corresponding ground-level image and taxonomic label (some
with sound data). It contains up to 380k training and 8k validation images (in- and out-domain).

Search-TTA improves planner performance and score map distribution by up to 30.0% and 8.5%
respectively, particularly when CLIP predictions are poor due to limited training data and evaluation
on out-domain taxonomies. We also demonstrate zero-shot generalization to text and sound modality
without further fine-tuning the satellite image encoder with paired satellite image to text/sound data.

2 Related Works

Visual Navigation: There has been significant progress on visual navigation using purely vision [3—
6] or vision-language foundation models (VLN) [7-9] to achieve high performance and generaliza-
tion. VLNs are also used in the Object Navigation (ObjectNav) task, where a robot is required to
search for objects of interest in indoor household environments. Before the emergence of VLNs,



these search objects were limited to a closed set [10—12], but more recently, can extend to open
sets described via natural language [32-35]. However, outdoor visual search, despite its relevance
to tasks like path planning [36], exploration [37], or monitoring [38], remains relatively underex-
plored, with most prior works only working with closed-set targets [16—18]. While newer methods
leverage foundation models to achieve better results [15, 39], they tend to have end-to-end architec-
tures and require re-training when the vision backbone or planner changes. Instead, we focus on a
modular approach to connect pre-trained VLMs to off-the-shelf search planners in a flexible manner.

Multimodal Learning: Ever since the emergence of powerful VLMs [20-22], there has been
significant progress in training language foundation models with different modalities, such as au-
dio [40—42], point clouds [43, 44], and to output action commands [45, 46]. In the remote sensing
community, there has been significant interest in training language models with satellite images
for semantic segmentation [47, 48], visual question-answer [49, 50] and predictive environmental
monitoring [51, 52]. However, collecting aligned data across multiple modalities remains costly. In-
stead of training a single model, some works focus on chaining multiple models together to achieve
multi-modality [53, 54], but may experience domain mismatch due to their pretraining on different
datasets. Recent efforts align different modalities to a shared representation space [27-29] to achieve
zero-shot generalization between modalities not jointly present in the training set. Our work explores
this concept to achieve efficient visual search when prompted by inputs of varying modalities.

Online Adaptation: Online, or test-time adaptation (TTA), is essential for foundation models facing
out-of-domain distributions, and has roots in prior works on continual learning [55-57]. In robotics,
online adaptation is associated with meta-learning for few-shot learning [58, 59] and online adap-
tation to disturbances in robot dynamics [60]. Online adaptation is also related to replanning via
Chain-of-Thought prompting [61] applied to text [62, 63] or vision [64, 65], to generate intermedi-
ate step-by-step explanations before providing better text/action output. Other approaches involve
direct backpropagation to modify prompts [66—68], model weights [69, 70], and to handle dynamic
distribution shifts [26, 71]. However, online adaptation with foundation models on satellite images
is relatively underexplored. One example [72] uses a robot to navigate the scene using LLM-based
traversability estimates, and uses feedback to update its prompts during navigation. Conversely, our
work explores TTA for visual search using detection measurements to perform weight updates.

3 Problem Formulation

Environment: We adopt an outdoor variant of the ObjectNav formulation [10—12], where a robot is
tasked with searching for multiple targets over a given satellite image within a time budget. First, we
consider the search domain over a satellite map S as a grid map M composed of n X n uniform cells,
where M = {11, 5, ...} and 1 represents potential detection viewpoints corresponding to each cell
on the map. We model the target distribution as a subset of grids My, where M; C M. Each grid
may contain one or more targets, and these target locations are unknown to the robot a-priori.

Visual Priors: We generalize this formulation to accept search queries () of different modalities,
such as ground image @;, text (;, or sound Q. Pairs of input modalities (S, Q) are passed into a
vision model to generate visual priors p(T | S, @) to inform the search process. Such visual priors
can take the form of embeddings in end-to-end frameworks [17], or predicted target probability
distributions in frameworks where the vision and search modules are decoupled [16].

Target Search: Here, the robot is tasked to utilize the visual priors p(T | S, Q) to sequentially
explore these cells M in order to determine the target locations M;. We model our target detection
sensor to cover only the grid cell where the robot is currently located ¢),.. We define the trajectory
of viewpoints for the robot ¥ = (Y1, %2, ..., %Um), ¥; € M. This setup presents an optimization
problem where we seek an optimal trajectory ©* given all possible trajectories ¥, which maximizes
the number of targets found given the budget constraint B number of steps. We denote the distance
traveled by the robot as trajectory length L(+)), and utility U as the number of targets found.

P = ggg(U), s.t. L(y) < B (1)
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Figure 2: Visual search dataset The taxonomic targets cannot be directly seen on these satellite image [73],
thus prompting the need to rely on visual cues to achieve efficient search [31].

4 AVS-Bench Ecological Dataset

There are limited datasets of satellite images with annotated targets that are not directly visible. To
address this gap, we curate AVS-Bench, a visual search dataset based on internet-scale ecological
data. It comprises Sentinel-2 level 2A satellite images [73] with unseen taxonomic targets from the
iNat-2021 dataset [31], each tagged with ground-level image and taxonomic label (some with sound
data). One advantage of using ecological data is the hierarchical structure of taxonomic labels (seven
distinct tiers), which facilitates baseline evaluation across various levels of specificity. AVS-Bench
is diverse in geography and taxonomies (Appendix A.1 & A.2) to reflect in-the-wild scenarios.

Taxonomic Location Dataset: Our goal is to generate a dataset where each image contains multiple
target locations for the same taxonomy. We begin with the iSatNar dataset [29] with 2.7M satellite
images, each matching a ground-level image of a specific taxonomic label. We notice a significant
amount of overlaps between satellite images, since taxonomies are located at the center of each
image. Similar to [28], we apply a filter to obtain 441k non-overlapping images and store the
taxonomy-to-image mappings. Thereafter, we store a subset of images with > 3 distinct landmarks
(to focus on semantic-rich images) and within a range of 3-20 counts of the same taxonomy. We
then split the remaining taxonomies from these filtered images equally into two distinct categories:
in-domain and out-domain taxonomies. Using these new taxonomy categories, we further split the
images into the 80k training, 4k in-domain validation, and 4k out-domain validation datasets.

Taxonomic Score Maps: Existing VLMs are trained on large-scale datasets of natural images taken
from egocentric viewpoints, and require fine-tuning to perform well on satellite images. However,
there are limited remote sensing datasets that correlate segmentation masks with the likelihood of
targets. Although it would be ideal to pretrain our VLMs using the taxonomic location dataset, they
only include point locations, and conversion to segmentation masks with likelihood scores is non-
trivial. We detail our procedures to convert the 80k training dataset into score maps in Appendix A.3.

Training Dataset Usage: We finally train Search-TTA on 380k in-domain images, obtained from
the original 441k non-overlapping images after excluding images from the validation sets and keep-
ing only in-domain taxonomies. For our VLM baselines, we train them using our 80k score maps.

5 Search-TTA Framework

We introduce Search-TTA, a multimodal test-time adaptation framework for AVS (Fig. 3), capable
of generating and updating probability distributions while collecting measurements during the search
process. We provide visualization and the algorithmic flow in Appendix B.1 and B.2 respectively.

5.1 Multimodal Score Map Generation

To accept queries of different modalities (e.g. text, image), we need to align their encoder outputs to
the same representation space. We select the BioCLIP (ViT-B/16) [74] embedding space that is pre-
trained on the large-scale TreeOfLife dataset [74], which aligns taxonomy names to ground-level im-
ages. In addition, we train a satellite image encoder by fine-tuning a CLIP (ViT-L/14@336px) [20]
image encoder to align with BioCLIP’s embedding space. We achieve this alignment via the patch-
level contrastive loss objective introduced in [75], which is a modified version of the standard In-
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Figure 3: Search-TTA Framework. Given a satellite image, ground-level image, and inputs of other modali-
ties, a score map is generated to guide the planner towards areas of high probability. The score map (initially
poor) will be updated with SPPP gradient updates to the satellite patch encoder model during search.

foNCE loss [76] that performs alignment at image level. Intuitively, this objective aligns the features
of the ground images closer with the features of their corresponding patches on the satellite map.

Consider the pair of modalities (G, S), where G denotes the ground-level image and S denotes the
satellite image. Given a dataset containing numerous pairs of the two modalities, we organize them
into mini-batches {g;, s; };=1,...n for training, where g and s refer to the ground images and their
corresponding satellite patches respectively. We pass the inputs into their respective ground image
encoder f and satellite image encoder h , and obtain their normalized embeddings as z; = f(g;)
and y; = h(s;). Similar to [28], we remove the pooling layer prior to the final projection layer of
the CLIP model to output a per-patch feature vector z;[p] across the entire satellite image. We then
project z;[p] from the hidden dimension of 1024 to 512 to match the projection dimension of y;.
Subsequently, we compute the patch-level contrastive loss as such:

1 1 exp(z[p] - y;/7)
L = — — —lo 2

= Ny 2o TG0 2 T S e, explali 907 @
where Np is the total number of pairs in the mini-batch, G(¢) the set of ground images with the
same species category as that of the 7*" satellite image, and 7 the temperature parameter. Similarly,
we define the patch-level contrastive loss £s_,¢g, and take the average of Lg_,s and Ls_,¢g as the
final loss. Using AVS-Bench detailed in Sec. 4, we fine-tune the CLIP model with two NVIDIA
A6000 GPUs, which took 3.5 days before convergence. During training, we update the weights of
the satellite image encoder while keeping BioCLIP frozen. During inference, we generate the 24 x
24 probability distribution by taking the cosine distance between the query ground image features
with all satellite image patch features. Further training details can be found in Appendix B.3.

5.2 Search Planners

Search-TTA is designed to be adaptable to different types of search planners. This ranges from con-
ventional methods such as Information Surfing (IS) [77] to Deep Reinforcement Learning (RL) [78]
methods. In principle, the Search-TTA framework can be applied to other types of planners as long
as they can reasonably utilize the probability map from the vision model to inform their search
strategies. We detail the performance of Search-TTA with various search planners in Section 6.1.

5.3 Test-Time Adaptation Feedback Loop

One of the key features of Search-TTA is its ability to refine probability distribution outputs from the
vision model based on collected measurements. This process can be broken down into two stages.

K-means Clustering of CLIP Embeddings: Before the start of each search episode, we perform
k-means clustering of the per-patch satellite image features z; [p] to generate clusters of embeddings
that are semantically similar [79]. These clusters correspond to regions used in the modified Spatial



Table 1: Evaluating TTA on different planners (CLIP Vision Model), on Out-domain taxonomies
B = 256 B = 384
Planner Type Found (%) RMSE (%) Steps | Found (%) * RMSE (%) {  Steps |
All  Bot.5% Bot.2% First Mid Last (Firsttgt) A5 Bot. 5% Bot. 2% First Mid Last (Firsttgt)

RL (TTA) [78] 60.8 31.7 30.7 542 532 512 865 79.6 589 56.1 542 527 47.0 103.8
RL (no TTA) [78] 58.5 23.1 16.0 542 542 542 882 771 448 36.1 542 542 542 1075

IS (TTA) [77] 539 242 222 542 527 513 9277 740 46.1 40.6 542 527 472 1148
IS (no TTA) [77] 512  19.1 129 542 542 542 923 719 323 23.8 542 542 542 1156

Lawnmower [85] 41.7 - - - - - 1188 742 - - - - - 157.6

Poisson Point Process (SPPP) [30] loss function below. This avoids the need to rely on external
segmentation tools [80, 81]. In this work, we choose the best k by taking the average of the silhouette
score criterion [82] and the elbow criterion [83]. More details can be found in Appendix B.4.

SPPP-based Online Adaptation: During search, the robot uses sensors to detect targets and collects
feedback to refine CLIP’s probability predictions. We adapt the Negative Log-Likelihood loss func-
tion from inhomogeneous SPPP to perform gradient updates for CLIP. SPPP is a statistical model
to describe the frequency of scattered points in space with state-dependent intensity functions .
While SPPP uses absolute A\ values, CLIP’s likelihood outputs can be approximated as normalized
A values across all regions. We can thus adapt SPPP’s update function and apply it to CLIP.

Note that the vanilla loss function [30] does not work as a test-time update mechanism, because it
was designed to regress SPPPs over a large batch of available data during training. In our case, the
robot begins with no prior knowledge of the targets’ locations and has to perform detection along
the search process. For scenarios with sparse targets, the modes of the CLIP probability distribution
may quickly collapse because the robot will collect many negative measurements before finding a
first target. To address this, we introduce an uncertainty-driven weighting scheme that acts as a

regularizer to the loss function, where p and n are the positive and negative measurements collected.
p n

L) = (0pos.i) og A(#i) = ) (0tneg ) A(z) d. 3)
i=1 j=1

Intuitively, we do not want to significantly reduce the I;robability of a semantic region after only a
few negative detections, since they may not accurately represent the overall distribution. Hence, we
scale negative measurements with the coefficient cy,eq,; based on how much of the corresponding
semantic region has been covered. Similar to the concept of focal loss [84], we introduce an expo-
nent v (=2 in practice) to give less weight to measurements in regions that are largely uncovered.
In practice, we use negj = min (8 (0, /L,)”, 1), where O, is the number of patches observed in
region 7 and L, is the number of patches in that region. For o s, we find that keeping it constant
(=4 in our case) works well in practice.

6 Experiments

The main objective of our experiments is to test Search-TTA’s ability to enhance AVS performance,
while providing a flexible plug-and-play interface compatible with various observation modalities
and planning methods. We run our experiments using the AVS-Bench validation datasets.

6.1 Effectiveness of TTA on Different Planners

We compare Search-TTA with an Attention-based RL planner [78] (pretrained on score maps from
Sec. 4) and a greedy IS planner [77], while using Lawnmower [85] as a baseline, detailed in Ap-
pendix C.1. In Table 1, we report the average percentage of targets found, Root Mean Squared Error
(RMSE) between CLIP predictions and ground truth score maps (from Sec. 4), and the steps taken to
reach the first target, all within 256 steps and averaged across all 4k out-domain validation images.
To further determine Search-TTA’s effectiveness, we recorded the targets found given poor CLIP
predictions, namely in the bottom 5% and 2% percentiles in terms of CLIP prediction quality. To do
so, we take the average scores of the pixels where the targets are located on the predicted score map
and deem a CLIP prediction to be poor if most targets are located in low-scoring regions. Fig. C.1



Table 2: Comparing vision models (Found %) 1 Figure 4: VLM inference time

.. In-domain Out-domain — [0 CLIP (Base)

Vision Models £ 9| [C__ICLIP(TTA)
B =256 B=384 B=256 B=2384 g [ LISA

CLIP (TTA) [74] 57.4 76.1 60.8 79.6 £ 1.5/ mmmLLM-see sa
CLIP (no TTA) [74] 56.6 75.5 58.5 77.1 g 1l E Qwen2+GSAM :
LISA [24] 57.1 76.9 58.4 778 5 I LLaVA+GSAM 191
LLM-Seg [86] 52.6 71.6 54.4 733 € o5l
Qwen2+GroundedSAM [81,87] 519 72.0 552 742 = s N B
LLaVA+GroundedSAM [22, 81] 517 71.6 54.6 735 o Lt % :

and Fig. C.2 reflect that TTA performance gain is most significant in the bottom percentiles across
all planners, indicating its ability to correct poor initial score maps in-the-wild.

Our results show a general improvement across all metrics with Search-TTA. We note the most
significant improvement of 20.0% in the bottom 2% scoring CLIP predictions using the RL planner
when B = 384. Furthermore, we observe a decreasing trend in RMSE of up to 7.2%, which indicates
that predicted score maps become increasingly accurate with TTA iterations. We note similar trends
when evaluated on in-domain taxonomies (Table D.2), with RMSE improvements up to 8.5%.

6.2 Comparison with Baselines

Varying Vision Model: We evaluate the effectiveness of Search-TTA’s CLIP vision backbone by
replacing it with different state-of-the-art VLMs. We modify LISA and LLM-Seg to improve their
performance for AVS, and fine-tune them with the score maps from Sec. 4. More details about these
VLMs, training setup, and hyper-parameters can be found in Appendix C.2.

We run all of these baseline VLMs with our RL planner, and record the targets found (Table 2) and
inference time (Fig. 4). Our results indicate that CLIP with TTA generally outperforms all baselines
across different budgets except for in-domain data when B = 384. In addition, we attribute LLM-
Seg’s poor performance to limitations in its training and output (training on binary masks only, and
discretizing scores in its output maps). We also note that the fully decoupled baselines perform
poorly, likely because Qwen-7B, LLaVA-13B, and GroundedSAM are not fine-tuned with remote
sensing data. Note that CLIP has the fastest inference time (we run TTA only once every 20 steps).

AVS Baselines: We evaluate the effectiveness Table 3: Comparing AVS frameworks (Found %)
of Search-TTA by comparing it against existing

Frameworks Charadriiformes (In) Columbiformes (Out)

AVS baselines (VAS and PSVAS) in the remote B=256 B=2384 B=256 B =384
sensing domain. While VAS utilizes end-to-end  cpipirL (TTA) 603 797 62.9 822
reinforcement learning, PSVAS decouples vi- CLIP+RL o TTA)  58.6 77.5 61.0 78.4

. o . PSVAS [16] 53.0 68.5 60.3 75.0
sion and search models while introducing test-  yag[17] 495 66.2 557 733
time adaptation (Appendix C.3). Lawnmower [85] 414 720 38.1 74.5

We evaluate our approach and the baselines using images with two different sub-classes of birds
(Animalia Chordata Aves) as search targets, namely Charadriiformes and Columbiformes, which are
more likely to be found along shorelines and on urban areas respectively. As seen in Table 3, CLIP
with TTA and without TTA both significantly outperform the AVS baselines by up to 13.5% and
11.3% respectively. We note similar trends when evaluated on Animalia Chordata Reptilia Squa-
mata (Appendix D.2). Although Lawnmower outperforms VAS and PSVAS when B =384, VAS
and PSVAS can find the first target more quickly by performing a more targeted search (Table D.3).

6.3 Multimodal Inputs

We evaluate the generalization ability of Search-TTA to previously unseen input modalities. To
achieve this, we input the full taxonomic name into the CLIP text encoder, obtaining query text
embeddings that are used in a manner similar to the ground image embeddings. We run these
experiments over our in-domain validation images (Table 4), and note the performance gap of at
most 0.9%. Separately, we fine-tune and evaluate a sound encoder [88] using the quad-modal split
of AVS-Bench, achieving a performance gap of at most 2.4%. This indicates successful zero-shot
generalization to text/sound modality although we did not fine-tune the satellite image encoder with
text/sound data. More details on how we curated the sound dataset can be found in Appendix A.4.



Table 4: Zero-shot generalization (Found %) Figure 5: Dataset Scaling (Bot. 5%)

Input Dataset B = 256 B =384 % 30 —4— Val In-Domain (256 Steps)

Modality Size TTA  NoTTA TTA  NoTTA & e O ot S
© 20 —8— Val Out-Domain (384 Steps)

Image 4k 574 56.6 76.1 75.5 g

Text 4k 56.7 55.9 75.2 74.7 E —eo
=]

Image 460 56.2 55.0 75.1 74.5 5

Text 460 56.9 55.7 76.5 74.7 <

Sound 460 545 54.0 751 732 E ol | ‘

80k 200k 380k
Dataset Size

6.4 Ablation Studies

Scaling of Training Dataset: We analyze the impact of training dataset size for our satellite image
encoder on TTA performance improvement. In Fig. 5, we observe that models trained on smaller
datasets tend to benefit more from TTA. In Table C.2, we report up to a 30.0% increase in targets
found with the 80k dataset, highlighting its strong correction abilities under limited training data.

SPPP Loss Coefficient: We investigate the effects of the vanilla log-likelihood loss function and
hyperparameter tuning in Appendix B.5. When we remove the negative weighting coefficient (y =
0) or the relative weighting factor (5 = 1), we observe poorer performance of up to 8.1%.

Varying TTA methodology: We explore the effectiveness of our TTA methodology compared to
prompt learning [68] and text-based TTA [64] in Appendix D.1. We notice that our SPPP-based
formulation outperforms prompt learning in terms of targets found (Table C.3), and outperforms
text-based TTA in terms of consistency in score map improvements during search (Table D.1).

6.5 Evaluation on Hardware

We carried out hardware-in-the-loop experiments to val-
idate Search-TTA’s performance in locating black bears
in Yosemite Valley (Fig. 6). We deploy a Crazyflie 2.1
drone operating within a 4m x 4m mockup arena (17 x 17
grids) with external localization. Concurrently, we launch
a ROS2 drone simulator [89] within a Yosemite Valley 3D
model [90] in Gazebo, from which we obtain onboard mea-
surements from the simulated drone’s downward-facing
camera, and use YOLO11x [91] for bear detection.

We conducted one experiment each for scenarios with and
without TTA (B = 300s), using a NAIP [1] satellite image
of the operating area and an image of a bear sighting from
iNaturalist [2] as inputs. From Fig. 1, we note that 5 targets
were found with TTA, compared to 3 targets found without
TTA. With TTA, the detection of the first bear significantly
corrected this initial distribution, guiding the robot to ex- B
plore the dense forested areas and thus find more targets. Figure 6: AVS with Crazyflie drone
More experimental details can be found in Appendix D.2.  (perception simulated in Gazebo).

7 Conclusion

This paper addresses the challenges of autonomous outdoor visual search where targets cannot be
seen directly from satellite images. We introduce Search-TTA, a test-time adaptation framework
that enhances potentially inaccurate CLIP predictions. Our contributions include curating AVS-
Bench, an internet-scale dataset with unseen taxonomic targets, enabling multimodal query through
alignment to a common representation space, and proposing a novel TTA mechanism inspired by
Spatial Poisson Point Processes. Search-TTA significantly improves planner performance and score
map distribution by up to 30.0% and 8.5% respectively. We also demonstrate zero-shot general-
ization to text and sound modality without additional fine-tuning. We hope that our research will
inspire future work in visual search and ecological conservation.
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8 Limitations and Future Work

Experimental Realism: There are a very limited number of existing works dealing with AVS over
satellite images. In order to fairly compare with [16, 17], we decided to remain consistent with their
problem statement, and naturally inherit some of the limitations in their formulation:

* We assume that our sensor model has very narrow field of view. As a result, search performance
can be highly stochastic, making performance improvements quite marginal (especially when
averaged over a large validation set), as robots can easily miss targets by a small margin.

* We assume that our sensor model is perfect and binary. This does not account for detection un-
certainty or false positive/negative measurements, which would require robots to re-visit specific
areas to confirm their beliefs. Future work will look at extending our TTA method to handle more
complex and realistic search formulations.

* We assume that our sensor model is capable of detecting targets which may be hidden in areas
occluded from direct satellite imagery (e.g. dense forest, water surfaces etc.). Future work will
consider other sensor modalities (e.g. thermal camera, camera traps etc.) or other types of robots
(e.g. unmanned ground/underwater vehicles) to model realistic detection constraints.

Beyond Visual Semantics: Search-TTA is effective in drawing connections between target taxon-
omy and visual semantics, but does not currently consider other essential factors when determining
the likelihood of their whereabouts, such as relationships between the different landmarks, interac-
tions between different species, sources of food/danger, etc. Future work will extend the reasoning
of our VLM to allow for such deeper, multi-faceted reasoning.

Multi-Target Search: Adapting Search-TTA to simultaneously search for multiple target types
presents significant challenges related to catastrophic forgetting [92] during gradient updates when
different target types are encountered sequentially. Future work will focus on developing continual
learning methodologies (e.g. batch normalization or importance sampling [26]) that enable our
framework to maintain performance across previously learned targets while adapting to new ones.
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Appendix: Supplementary Material

A AVS-Bench Dataset Details

g

Figure A.1: Examples of satellite images [73] in the full 380k dataset (each with different tax-
onomies [31]), used for CLIP fine-tuning.

e
¥
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Figure A.2: Examples of satellite images [73] in the 80k training and 4k validation datasets (each
with same taxonomies [31]), used for AVS validation and score maps generation.

In this section, we provide more details about our AVS-Bench dataset composition and generation
process, in addition to the information provided in Sec. 4. Our tri-modal dataset split contains
Sentinel-2 level 2A satellite images [73] covers approximately 2.56km x2.56km of land mass, each
with targets that are paired with their taxonomic names, locations, and ground images.

1. CLIP training dataset: 380k satellite images with different taxonomic targets (Fig. A.1).
2. AVS training dataset: 80k satellite images with same taxonomic targets (Fig. A.2).

3. AVS validation datasets: 4k satellite images with same taxonomic targets that are in-
domain, and 4k satellite images with same taxonomic targets that are out-domain (Fig. A.2).

A.1 Geographical Coverage

We visualize the spatial distribution of our dataset in Fig. A.3, where the color intensity reflects the
taxonomy counts in each cell (1° latitude x 1° longitude). Despite filtering our dataset to cater to
our AVS task, the 80k training and 4Kk in-domain validation datasets appear visually representative
of the original 380k dataset distribution (4k out-domain validation dataset has a similar distribution).

380k full training dataset 80Kk train (Red) & 4k validation (Blue) datasets

Figure A.3: Geographic coverage of datasets used in training and validation.
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Figure A.4: Histogram counts for 80k train (Red) & 4k out-domain validation (Blue) datasets

Table A.1: Taxonomy distribution across training and validation datasets

Ta . Train (380k) Train (80k) Val In-Domain (4k) Val Out-Domain (4k)
Targets (%)  Images (%)  Targets (%) Images (%)  Targets (%) Images (%)  Targets (%) Images (%)

Plants 43.8 - 453 45.8 51.1 50.9 39.7 40.1
Insects 30.1 - 29.8 29.5 16.9 17.1 1.1 1.2
Birds 12.7 - 11.5 11.5 17.4 17.3 18.7 19.8
Fungi 35 - 2.7 2.9 2.5 2.6 1.9 2.1
Reptiles 3.8 - 35 34 42 4.2 0.7 0.6
Mammals 0.8 - 1.1 1.1 0.9 1.0 8.4 8.3
Fishes 1.0 - 1.7 1.5 1.8 1.9 3.7 3.7
Amphibians 2.1 - 2.4 2.3 1.8 1.9 0.0 0.0
Mollusks 0.2 - 0.5 0.4 0.6 0.6 14.9 14.2
Arachnids 1.6 - 1.0 1.1 1.1 1.1 0.5 0.5
Animalia 0.4 - 0.5 0.5 1.6 1.7 10.3 9.6
Total 2,601,787 379,962 365,292 80,535 13,334 4000 17,188 4000

A.2 Taxonomy Statistics

We visualize the distribution of the taxonomy counts for the training and validation datasets in
Fig. A.4. We note a natural decreasing trend in the number of same-taxonomy targets within the
2.56kmx2.56km of land mass covered by each image. The average number of taxonomic counts
per image for our 80k training datset is 4.5+2.6, 4k in-domain validation dataset is 3.340.7, and 4k
out-domain validation dataset is 4.3£2.3. This results in a very sparse target distribution per image,
making our AVS task challenging given a budget constraint.

In addition, we visualized the breakdown of the taxonomy categories for all of our datasets in Table
A.l. These distributions, except for the out-domain validation dataset, are similar to the dataset
distribution from the iNaturalist 2021 challenge where these datasets originate from [31].

A.3 Score Map Generation

We generate our 80k training score masks using a custom process because our AVS dataset only
includes point locations, and conversion to segmentation masks with likelihood scores is non-trivial.
This is done in two stages. First, we use GSNet [47], an open-vocabulary semantic segmenta-
tion model, to obtain label maps of the low-resolution Sentinel-2 images based on broad landmark
names (i.e. Urban, Water, Vegetation, Barren). Since GSNet has been pretrained on a diverse set
of satellite images with varying spatial resolution, we fine-tune it with the FLAIR semantic seg-
mentation dataset [93] to enhance its segmentation abilities specifically for low-resolution images.
However, despite the high-quality segmentation masks, mislabeling commonly occurs. Hence, we
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USER: “Can you help me locate where the Capybara
- (Hydrochoerus hydrochaeris) might be found in this image?”

GPT: “The satellite image reveals a landscape comprising vegetation, water
o6 bodies, and barren areas. The Capybara, known as the world's largest rodent,
thrives in environments abundant with both water and vegetation, as these

areas provide ample food supply and habitat. The species is typically found

near water bodies such as rivers, lakes, and marshes, where they can readily

graze and evade predators. Water areas and adjacent vegetative regions are

optimal for hosting Capybaras, while barren lands are unlikely to be suitable
4 due to the lack of water and vegetation.”

02

00

Figure A.5: (1) Satellite map [73] where Capybaras can be found [31]. (2) Score map of where
Capybaras are likely to be found, used for fine-tuning VLM baselines and training RL policy. (3-4)
Question and answer pair, used to fine-tune VLMs such as LISA [24].

Figure A.6: (1) Ground image of a Marmot. (2) Satellite image where marmots can be found. (3)
Initial probability output. (4) TTA enables regulated decrease in probability values in regions where
marmots are not detected. (5) TTA significantly increases probability values in region where the first
Marmot is found. (6) Improved priors leads to efficient search. (7) Inefficient search without TTA.

use GPT4o [23], augmented with human-labeled examples, to rectify the wrong labels. We then
use GPT4o again to score the masks based on the likelihood of finding the specified taxonomies
per image. It concurrently generates a conversation that explains the rationale for why certain land-
marks are more suitable for the specified taxonomies, and less so for others. After filtering erroneous
GPT4o generations, we end up with 80k score maps for each taxonomic-image pair. An example can
be seen in Fig. A.5 (prompts used for relabeling and scoring by GPT4o are shown in Appendix E.1).

A.4 Sound Dataset Generation

We further fine-tune a sound encoder in order to evaluate the generalization ability of Search-TTA
to previously unseen input modalities (Sec. 6.3). We follow a similar process as in Sec. 4 to generate
our quad-modal training and validation datasets. We begin with the iSoundNat dataset [29] with
74.9k satellite images, each matching a ground-level image, a taxonomic label, and a sound record-
ing. We keep only the in-domain taxonomies defined in Sec. 4, and end up with 68.8k data points
used for fine-tuning the CLAP sound encoder [88]. To validate the its performance, we curate a new
validation dataset by keeping data from the 4k in-domain validation datasets that contain targets
with sound data. By the end of this process, we have an in-domain validation dataset with 480 data
points containing all modalities including sound. Training details can be found in Appendix B.3.

B Additional Search-TTA Details

In this section, we provide more details of the Search-TTA framework, to supplement the informa-
tion in Sec. 5. We elaborate on how Search-TTA generates and periodically updates the probability
distribution outputs that serve as a strong prior to the RL search planner.

B.1 Qualitative Analysis

We provide snapshots of AVS with the RL planner to provide a better understanding of how it
works. In Fig. A.6, the RL planner begins with an initial prior generated by the satellite image
CLIP encoder, which represents the probability distribution of where Marmots (Mammalia Roden-
tia Sciuridae Marmota) can be found. Within the first phase, TTA enables a regulated decrease in
probability values within the regions where marmots are not detected. Thereafter, Search-TTA sig-
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nificantly improves the probability distribution outputs in the associated region where the first and
subsequent targets are found. This steers the RL planner to exploit the high probability region to
locate all of the targets within 181 steps. Without TTA, the probability distribution is static and the
RL planner takes 242 steps before locating all marmots.

B.2 Algorithm

We provide the pseudo-code to illustrate the Search-TTA framework (algorithm 1).
Algorithm 1: The Search-TTA Framework (with RL Search Policy)

Input: Satellite-image encoder fy; Ground-image encoder h,; Search policy 74,
Satellite image s, Ground image g, Budget B
Initialize: 6 < Opasc, step ¢ = 0, measurements O = [0, ..., 0], grid map M = (n X n), pos,;; = 4
// --- Generate Probability Distribution ---
z 4 fo(s),y < hy(g):
P + cosineSim(z, y);
r < kmeans(z);
while ¢t < B do
// --- Generate Action ---
at ~ 7T¢(' \ 0t7P)§
se41 ~ T(ot,at);
// --- Collect Measurements ---
d < Observe(o¢+1);
O + Update(O, d);
// --- Perform TTA ---
for every k steps do
0« gbase;
Y “— “Ymin + (t/nQ) : (’Ymax - ’Ymin);
Qneg,j + min (B (O /L))", 1);
L(A) = 22021 pos,i - log Awi) —
0«0+~ -VoL(N);

> 7= Qneg,j - A(z5) dw, where P =2 \;

B.3 Training Details for Satellite Image and Sound Encoders

We fine-tune our satellite image CLIP encoder [20] with the hyperparameters in Table B.1. This was
performed using two NVIDIA A6000 GPUs, which took 3 epochs (3.5 days) before convergence
(lowest CLIP validation score). In addition, we fine-tune our CLAP sound encoder [88] with similar
hyperparameters. This was performed using four NVIDIA A5000 GPUs, which took 19 epochs (11
hours). While fine-tuning both encoders, we keep our BioCLIP [74] model frozen.

Table B.1: Training hyperparameters (query encoder)

Hyperparameter Value

Batch Size 32

Learning Rate le-4

Learning Rate Schedule min le-6 (Cosine Annealing)
Temperature (7) 0.07

Optimizer AdamW

Optimizer (0.9, 0.98)

Optimizer € le-6

Accumulate Grad batches 64

Projection Dimension 512

Ground Image Encoder
Satellite Image Encoder
Sound Encoder

BioCLIP [74] (VIT-B/16)
CLIP [20] (ViT-L/14@336px)
CLAP [88]

B.4 Kmeans Clustering

We rely on Kmeans clustering of the satellite image encoder output to obtain clusters of embed-
dings that are deemed semantically similar by CLIP [79]. We determine the best k by taking the
average of the silhouette score criterion [82] and the elbow criterion [83]. The silhouette score
measures clustering quality by contrasting each satellite patch feature’s average distance to its
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Table B.2: Effect of SPPP weighting coefficient on targets found (%) 1

In-domain Out-domain
Parameters B = 256 B = 384 B = 256 B = 384
B ~ ANl Bot.5% Bot2% All Bot 5% Bot.2% All Bot. 5% Bot. 2% All Bot. 5% Bot. 2%
% 2 574 280 273 761 530 519 608 317 307 796 589  56.1
% 1 570 276 219 752 513 519 603 296 257 788 549 514
% 0 571 269 239 757 503 488 597 277 226 786 535 502
I 2 563 270 258 750 505 479 600 302 275 784 559 518

- - 56.6  26.6 273 755 499 514 585 231 16.0  77.1 44.8 36.1

own cluster with the closest alternative cluster. On the other hand, the elbow method charts the
within-cluster sum-of-squares across candidate k values and pinpoints where additional clusters
yield only marginal variance reduction. Combining both methods balances the silhouette score’s
tendency to favor fewer clusters with the elbow method’s subjectivity based on a ’knee’ point. In
practice, we set the max averaged k to be 4 based on the approximate number of possible broad
semantic landmarks, should the elbow method overestimate & too significantly.

B.5 Varying SPPP-based Online Adaptation Hyperparameters

We perform grid search to determine the optimal hyperparameters for our negative weighting coef-
ficient apegj = min (3 (0, /L,)”, 1), where O, is the number of patches observed in region r and
L, is the number of patches in that region. [ balances the relative weightage between positive and
negative measurements in the loss function, while ~y scales the weightage of negative measurements
given the same amount of region explored. We summarize our results in Table B.2. When we re-
move the negative weighting coefficient (7 = 0), we observe poor performance. This is because
all negative samples are weighted equally heavily even at the start of AVS, causing premature col-
lapsing of probability distribution modes. Hence, this highlights the importance of our uncertainty
weighting scheme. In addition, if we remove the relative weighting factor (5 = 1), we note one of
the worst performances possibly due to over-penalizing negative measurements.

In order to achieve stable updates to the output probability distribution, we reset the satellite encoder
weights back to the base weights before running TTA updates. During TTA updates, we use the
Adam optimizer, and employ a learning rate schedule that increases our learning rate from le-6 to
le-5 depending on how much of the search space has been covered. This learning rate schedule
allows the model to learn more effectively when more measurements are collected [94].

C Additional Baseline Details

In this section, we provide additional information on how we set up our baselines for fair compari-
son, on top of the details provided in Sec. 6.

C.1 Planner Baselines

We compare Search-TTA with an Attention-based Reinforcement Learning (RL) planner [78] and a
greedy Information Surfing (IS) planner [77]. The RL planner is non-myopic in nature as it learns de-
pendencies at multiple spatial scales across the entire search domain. This allows agents to balance
trade-offs between short-term exploitation and long-term exploration given the probability distribu-
tion map. On the other hand, the IS planner drives agents in the direction of the derivative of the
information map to maximize short-term gains. Such an approach tends to be greedy in nature and
may suffer from overexploitation of local maxima. By design, the RL planner allows movement to
all eight neighboring cells, while the IS planner is limited to the four cardinal directions. Note that
we do not intend to compare the performance between RL and IS, but rather how test-time adaptation
improves each of the planners independently. Lastly, we use a lawnmower planner [85] as a weak
baseline for comparison. Starting from the top-left grid, the lawnmower planner moves in a zigzag
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Impact of TTA across 5% Percentile Bins on Out-Domain Taxonomies (256 steps)

RL Planner
8 x IS Planner
RL Trendline

----- IS Trendline

Targets Found [With TTA - Without TTA] (%)
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Percentile (%)

Figure C.1: Performance difference (due to TTA) for RL (blue) and IS (red) planners at 256 steps.

Impact of TTA across 5% Percentile Bins on Out-Domain Taxonomies (384 steps)
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Figure C.2: Performance difference (due to TTA) for RL (blue) and IS (red) planners at 384 steps.

manner across each row before moving down to the next row when the current row is completely
covered. This approach, while not using any probability distribution to direct the coverage process,
provides an upper bound to the number of cells that can be covered given a specified budget.

RL Policy Training: We train our RL planner’s attention-based neural network using the soft actor-
critic (SAC) algorithm [95], which learns a policy by maximizing return while maximizing entropy.

T

Tt = argmax]E(ohat)[Z v (ry + aH (7 (-]or)))], (C.1)

t=0

where H denotes entropy, 7* the optimal policy, v the discount factor, and « the adaptive tempera-
ture term. We utilize a subset of the score maps of varying probability distributions from Sec. 4 to
pre-train our RL policy. Similar to [37, 78], we define the viewpoints %) in the search domain M as
graph vertices, each connected via edges to its adjacent (< 8) neighbors. In addition to positional
information, each of these nodes are augmented with the agent’s visitation history and scores from
Search-TTA’s output probability distribution. This graph can then be used as the RL agent’s observa-
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Table C.1: Scaling up dataset size for fine-tuning LISA VLM [24] - targets found (%) *

VLM In-Domain Out-Domain
B = 256 B =384 B = 256 B =384
LISA (80k) 574 76.9 60.8 77.8
LISA (55k) 57.0 76.8 59.0 78.1
LISA (24k) 55.2 75.9 56.6 76.8
LISA (no fine-tune) 54.0 72.6 57.9 75.1

tion to output a stochastic policy 7 (at|ot). Our reward function penalizes distance travelled while
incentivizes agents to to travel to high probability regions. We find that adding rewards for targets
found causes the planner to generate inefficient routes, possibly due to the sparse target distributions
that may provide confusing reward signals. We train our policy using an AMD Ryzen threadripper
3970x and four NVIDIA A5000 GPUs, which took 20k episodes (80 hours) to converge.

Bottom Percentile Comparison: To determine Search-TTA’s effectiveness given poor CLIP pre-
dictions, we break down the percentage of targets found into the bottom 5% and 2% percentiles.
We measure the quality of CLIP predictions by taking the average scores of the pixels where the
targets are located on the predicted score map, and deem a CLIP prediction to be poor if most tar-
gets are located in the lowest-scoring regions. We then plot the performance gains (due to TTA) for
both RL and IS planners for both 256 (Fig. C.1) and 384 steps (Fig. C.2), given bins of 5-percentile
increments. Note that the logarithmic trendlines fit the datapoints well, indicating that the perfor-
mance difference is most significant at the bottom percentiles. This illustrates how Search-TTA is
particularly effective given poor score maps in the low percentile range.

C.2 VLM Baselines

We evaluate the effectiveness of Search-TTA’s CLIP vision backbone by replacing it with differ-
ent state-of-the-art VLMs. Most of these VLMs comprise a reasoning module (e.g. LLaVA [22]
or Qwen2-VL [87]) that processes image and text inputs to output reasoning embeddings. These
embeddings are then passed into segmentation modules such as SAM [80] to generate the appropri-
ate masks. LISA [24] (we use LISA-7B) connects and fine-tunes LLaVA and SAM modules in an
end-to-end manner. Unlike the original setup where LISA is trained on binary masks, we directly
fine-tune LISA with the 80k score maps (with text-based question-answer) from our custom training
dataset. In addition, we remove the final threshold layer in the SAM module to output continuous
score distributions. On the other hand, LLM-Seg [86] (which uses LLaVA-7B) decouples the mod-
ules by initially assigning SAM the task of producing mask proposals, which are then evaluated and
chosen by LLaVA. Unlike LISA, since there are no straightforward methods to fine-tune LLM-Seg
with continuous score maps directly, we apply a binary threshold to our score maps for training
(without text-based question-answer). We also incorporate the scores generated by LLM-Seg into
all binary mask proposals to output a score map. Lastly, we introduce two fully decoupled base-
lines that output landmark names and scores from LLaVA-13B and Qwen2-VL-7B. These landmark
names are then fed as input into GroundedSAM [81] to generate segmentation masks, which are
then aggregated with the VLM’s per-region scores to obtain score masks. All of these score maps
are passed into the RL policy for path planning [96]. Note that unlike LISA and LLM-Seg, we do
not fine-tune LLaVA and Qwen2-VL. The prompts used are shown in Appendix E.2.

Scaling Up VLM Training Dataset: To justify the score map dataset size of 80k, we experi-
ment with varying the amount of training data used to fine-tune our strongest vision model baseline
(LISA-7B) . As seen from Table C.1, scaling up the dataset generally improves search performance.
However, the performance gain becomes more marginal when we scale our dataset from 55k to 80k.
This indicates generating additional data may not yield further performance gain. Hence, it is a
reasonable choice to stop at a dataset size of 80k (also due to the cost of running GPT40).

Scaling Up CLIP Dataset: We measure the performance of our satellite image CLIP encoder fine-
tuned with data sets of different sizes in Table C.2, to justify why we choose to use the full data set
of 380k images. In particular, we fine-tune CLIP with images from the full 380k dataset, from the

22



Table C.2: Scaling up dataset size for fine-tuning CLIP [74] - targets found (%) 1

In-domain Out-domain
Dataset B = 256 B = 384 B = 256 B = 384
Size TTA All Bot. 5% Bot.2% All Bot. 5% Bot.2% All Bot. 5% Bot.2% All Bot. 5% Bot. 2%
380k Y 574 280 273 761 530 519 608 317 307 796 589  56.1
380k N 566 266 273 755 500 514 585 231 160 771 448  36.1
200k Y 565 260 224 750 496 464 598 277 251 790 570 552
200k N 556 217 152 743 425 326 561 203 132 761 426 372
80k Y 537 330 306 737 598 581 587 362 344 781 640 621
80k N 528 217 156 721 419 383 557 199 182 749 387 315
NoFine-tune Y 494 209 160 684 477 396 506 187 186 740 539 507
NoFine-tune N 481 196 170 678 365 335 491 163 118 692 342 277

Table C.3: Comparing against prompt learning - targets found (%) *

Method LR In.ference In-Domain Out-Domain
Time (s)
B =256 B =384 B =256 B =384
Weights (Ours) (le-6, le-5) 0.15 574 76.1 60.8 79.6
Prompt [68] (le-3, le-2) 0.05 57.1 753 59.7 78.5
No TTA - - 56.6 75.5 58.5 77.1

200k dataset downsampled from the full dataset, and from the 80k AVS dataset (used to generate
score maps for VLM fine-tuning). In addition, we conduct a study in which we do not fine-tune the
CLIP model at all. We note an increasing trend in search performance as we scale the dataset. We
use a larger training dataset for our CLIP baselines compared to our VLM baselines as these VLMs
already have the added advantages of using CLIP as a foundation and being pretrained on much
larger datasets. We observe a general increase in TTA performance gain when trained on less data.
In particular, we achieve a TTA performance gain of up to 30.0% when trained on the 80k dataset
(B = 384, bot. 2%). This indicates Search-TTA’s ability to significantly improve score maps when
using models trained on less data.

C.3 AVS Framework Baselines

We evaluate the effectiveness of the Search-TTA framework by comparing its performance with ex-
isting AVS baselines in the remote sensing domain. Similar to our setup, VAS [17] and PSVAS [16]
model an AVS problem where an agent, guided by aerial imagery and operating under a fixed query
budget, aims to maximize the number of targets found. VAS utilizes end-to-end reinforcement learn-
ing to co-train a feature extraction network and a policy network. The detection results gathered
during the search process are then piped back into the feature extraction network for prediction up-
dates. On the other hand, PSVAS decouples its prediction module from its policy network. PSVAS
pretrains its prediction module using supervised learning and jointly optimizes both modules using
reinforcement learning. During test time, it uses detection results from the search process to directly
update the weights of their prediction module. Note that their vision backbones (ResNet [97]) are
not foundation models and must be trained on specific classes. In addition, both methods do not
perform realistic path planning, but instead allow for querying of non-adjacent cells (i.e. teleport-
ing). For fair comparison. we retain their ability to choose where it wants to query, but also perform
Dijkstra path planning to consider the cells on route to their query locations. We weigh our Dijkstra
cost function with a combination of factors, which aims to minimize distance, maximize traveling
along paths of high probability (output from their vision module), and avoiding visited cells.

D Additional Experiments and Analysis

In this section, we provide information on additional experiments and ablation studies conducted, to
supplement the information in Sec. 6. Unless mentioned otherwise, we discretize the search space
to 24x24 grids, randomize start positions that is consistent across different validation runs, and
perform TTA updates every 20 steps or whenever targets are found.
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Figure D.1: (1) Ground image of a Monitor Lizard. (2) Satellite image where Monitor Lizards can
be found. (3) Initial CLIP probability output. (4) TTA increases probability values in urban region
where the two lizards were found. (5) Improved priors leads to efficient search. (6) Inefficient search
without TTA. (7) LISA [24] output probability distribution with higher scores for the forest region,
but is unable to perform online adaptation when no targets were found for a prolonged period.

Table D.1: Comparing against text-based TTA (384 Steps) - RMSE (%) |
Aves Charadriiformes (Shorebirds)

Method TTA Type
First (0%) Quartile Mid (50%) Quartile Last (100%)
(25%) (75%)

SPPP 58.7 579 56.5 52.4 49.0
CLIP - 58.7 58.7 58.7 58.7 58.7
Qwen2+GroundedSAM Text 62.4 62.6 60.2 61.6 60.9
[81, 87] - 62.4 62.4 62.4 62.4 62.4
LLaVA+GroundedSAM Text 59.8 59.8 60.2 58.6 62.0
[22, 81] - 59.8 59.8 59.8 59.8 59.8

D.1 Varying TTA Methodologies

Prompt Learning: We compare our approach to prompt learning [68], where we perform gradient
updates on our satellite image prompt instead of our model weights. From Table C.3, we noticed
that a different learning rate range works better for prompt learning, likely due to the number of
parameters that are updated during backpropagation as observed in [98]. For fair comparison, we
use the same hardware (1x NVIDIA A5000 GPU) to log the inference time. From our results, we
observe that weights fine-tuning achieves better averaged performance but has a slower inference
time. While the number of parameters updated for prompt learning is significantly less, we only
observe three times faster in inference speed, likely due to overheads with PyTorch’s computational
graphs. We leave comparison with other fine-tuning methods such as LoRA [99] to future works.

Text-based TTA: We study the effect of an alternative text-based TTA strategy [64] aside from our
SPPP-based strategy. Instead of integrating the VLMs into our Search-TTA framework which may
be time-consuming to test, we design a simple experiment using the region-based statistics logged
during our Search-TTA’s search process (for Aves Charadriiformes | Shorebirds). For each region
defined by kmeans clustering, we logged the number of targets found and the ratio of the number
of patches explored, at the 25%, 50%, 75%, and 100% search checkpoints. We pass these statistics,
along with their initial landmark and score predictions (at 0% checkpoint), into the VLM and prompt
them to reconsider their predictions. From Table D.1, we note the inconsistency in RMSE values
throughout the different checkpoints, in contrast to the consistent improvements made with our
SPPP-based strategy. This highlights the importance of a principled approach to TTA to achieve
consistent results. We share the prompt design in Appendix E.2.

D.2 Additional Baseline Comparisons

Search-TTA (In-Domain Taxonomies): In addition to the experimental results presented in
Sec. 6.1 (where B = 256), we present results for B = 384 in Table D.2. Similarly, our results show
a general improvement in percentage targets found (especially in the bottom percentile), speed of
locating the first target, and quality of score maps generated (as measurements are collected during
the search process). This highlights Search-TTA’s consistency in improving search performance.

Varying Vision Model: We provide more insights to the data presented in Sec. 6.2 (Ta-
ble 2). We note the significantly longer inference speed for the Qwen2-VL+GroundedSAM and
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Table D.2: Evaluating TTA on different planners (CLIP vision model), on In-domain taxonomies
B = 256 B =384

Planner Type Found (%) 1 RMSE (%) | Steps | Found (%) 1 RMSE (%) | Steps |

All  Bot. 5% Bot.2% First Mid Last (Firsttg) Al Bot. 5% Bot. 2% First Mid Last (Firsttgt)

RL (TTA) [78] 574  28.0 273 544 537 51.0 85.1 76.1  53.0 51.9 544 530 459 1019
RL (no TTA) [78] 56.6  26.6 273 544 544 544 848 755 499 514 544 544 544 1027

IS (TTA) [77] 52.1  28.1 22.1 544 534 513 905 71.0 45.0 40.8 544 529 46.2 109.6
IS (no TTA) [77] 512 218 149 544 544 544 908 702 397 353 544 544 544 1112

Lawnmower [85] 41.8 - - - - - 1129 715 - - - - - 148.3

Table D.3: Comparing AVS frameworks (Animalia Chordata Reptilia Squamata)

B =256 B =384

Frameworks

Found Explored Steps Found Explored Steps
(%) (%) (First tgt) (%) (%) (First tgt)

CLIP+RL (TTA) 60.3 44.3 86.9 80.5 65.6 91.3
CLIP+RL (no TTA) 55.9 44.3 78.7 76.9 65.6 95.7
PSVAS [16] 473 43.1 83.7 70.0 62.1 109.0
VAS [17] 46.8 44.1 75.5 68.5 64.6 89.3
Lawnmower [85] 43.5 444 116.0 714 66.7 149.1

LLaVA+GroundedSAM baselines. This is because, unlike the other VLMs, Qwen2-VL and LLaVA
are required to output landmark names and scores in text, which involves significantly more token
generation compared to the custom [SEG] token used in LISA and LLM-Seg. LLaVA is slower com-
pared to Qwen2-VL because we use a LLaVA-13B model compared to the Qwen2-VL-7B model.
Note that we take all inference speed measurements on a single NVIDIA A5000 GPU.

In addition, we provide snapshots of Search-TTA and LISA to compare their performance when
searching for Monitor Lizards (reptilia Aquamata Varanidae). From Figure D.1, we can see that
Search-TTA increases probability values in the urban region after collecting positive samples there.
This online adaptation results in a more efficient search (6 targets found). In contrast, LISA over-
exploits its initial belief where Monitor Lizards are more likely to be found in the forest region, and
is unable to correct its probability distribution despite many negative measurements (only 1 target
found). Note that our approach without TTA results in only 4 targets found.

AVS Baseline: In addition to the experimental results presented in Sec. 6.3 (Animalia Chordata
Aves Charadriiformes), we present results for the same AVS framework baselines when searching
for Animalia Chordata Reptilia Squamata in Table D.3. Likewise, we notice the same trend where
Search-TTA outperforms almost all baselines in terms of percentage targets found. This highlights
Search-TTA’s versatility, given that it is able to outperform AVS baselines (pretrained on specific
taxonomies) with just a single model. Although Lawnmower outperforms VAS and PSVAS when
B = 384, VAS and PSVAS find the first target more quickly by performing a more targeted search.

Experimental Validation: In addition to the details for our AVS hardware-in-the-loop experiments
described in Sec. 6.5, we also rescale our Yosemite Valley simulated environment from 865m X
865m to 280m x 280m. This is due to the crazyflie’s limited flight time of 5 minutes, which is not
indicative of larger drones that often have longer battery life. The simulated drone flies at an altitude
of 30m and is equipped with a 90° FOV camera mounted on a gimbal (tilted at 30° to achieve
better bear detection rates). We conduct both experiments, with and without TTA, using B = 300s
(traveled 2058 m and 2062m respectively). We execute TTA every 5 iterations when it is enabled.
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E Prompt Engineering

E.1 Score Map Generation Prompts

GPT4o0 Relabelling Prom

You are an AI visual assistant that can analyze a single satellite image that is very zoomed out
(covering around 2 km over the width and 2 km over the height of the image). You are given the
bounding box of the segmentaions of different regions, represented as (x1, yl, x2, y2) with floating
numbers ranging from O to 1. These values correspond to the top-left x, top-left y, bottom-right x,
and bottom-right y. These values correspond to the x and y coordinates. x-coordinates increase from
left to right, and y-coordinates increase from top to bottom. The closer the instance is to the top
edge, the smaller the y-coordinate. Assume that pointl [0, O] is at the upper left, and point2 [1, 1]
is at the bottom right.

The image contains different regions defined by bounding boxes. In the input data the regions are
numbered from O to 3. The region names are: "Urban Area", "Barren", "Water", "Vegetation". Your task
is to verify if the region inside the bounding box seems correct as seen in the image. Generate a
conversation between yourself (the AI assistant) and a user asking about the photo. Verify the region

names for each region given
the image. When a region is
Your responses should be in

When using all the provided
are directly looking at the

You must return your respons
"conversation": [

"from": "human",

in the input data and tell me if it's name matches visually as seen from
incorrect then also remap the region name to the correct landmark name.
the tone of an AI that is "seeing" the image and answering accordingly.

information, directly generate the conversation. Always answer as if you
image.

Mapping:

{
"Region 0": "Urban Area",
"Region 1": "Barren",
"Region 2": "Water",
"Region 3": "Vegetation"

}

e in the JSON format:

"sat_key": sat_key,

"taxonomy": taxonomy,
Bo
{
"from": "gpt",
"landmarks": {
"Region i": "Correct/Incorrect",
"Region j": "Correct/Incorrect",
"Region k": "Correct/Incorrect",
Dy
"corrected_landmarks": {
"Region i": {
"name": "Urban Area/Barren/Water/Vegetation",
i
"Region j": {
"name": "Urban Area/Barren/Water/Vegetation",
Do
"Region k": {
"name": "Urban Area/Barren/Water/Vegetation",
Do
}
}
]
}
{Examples}

{Input_Data}

Double check if the region names are correct. In the answer if the region name seems incorrect then
remap it to the correct landmark name, else leave it as it is. Once again, please output your
response in the JSON format only.
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GP

oring Prompt

You are an AI visual assistant that can analyze a single satellite image that is very zoomed out
(covering around 2 km over the width and 2 km over the height of the image). A specific animal/plant
location within the image is given, along with detailed coordinates. The locations are in the form of
coordinates, represented as (x,y) with floating numbers ranging from O to 1. These values correspond
to the x and y coordinates. x-coordinates increase from left to right, and y-coordinates increase
from top to bottom. The closer the instance is to the top edge, the smaller the y-coordinate. Assume
that pointl [0, 0] is at the upper left, and point2 [1, 1] is at the bottom right.

You are also given the name of the animal/plant as taxonomy. Along with the exact coordinates in the
image, you are also given the bounding box of the area where the animal/plant was found, represented
as (x1, y1, x2, y2) with floating numbers ranging from O to 1. These values correspond to the
top-left x, top-left y, bottom-right x, and bottom-right y. The values follow the same format as the
coordinates.

The image contains different landmarks defined by bounding boxes. If a coordinate lies inside a
particular bounding box and that bounding box belongs to a specific landmark, that means the
animal/plant was found in that landmark. Your task is to generate a conversation between yourself
(the AI assistant) and a user asking about the photo. Your responses should be in the tone of an AI
that is "seeing" the image and answering accordingly. Using the image, taxonomy, coordinates, and
bounding box information, provide a score for each landmark and a detailed explanation of where the
animal/plant could be found among those landmarks based on the landmark semantics from the image. Add
a simple question in the conversation, asking about where to find the particular animal/plant in the
image (use common name as well as taxonomy for question).

Given the explanation, evaluate a score based on the likelihood of finding the queried animal/plant
in each landmark. The length of the 'landmarks' list must match the length of the 'score' list.
Probability scores must range between 0.0 and 1.0. It is acceptable for multiple consecutive
landmarks to have the same scores. For example, a frog may have the same score for both water and
land-type landmarks. Scores can be any value between 0.0 and 1.0, such as 0.1, 0.3, 0.5, 0.7, or 0.9.
You must be more conservative, where if you are not sure, you should assign a lower score. If the
animals cannot exist inside this landmark, please assign a score of 0.0. For example, a land animal
or a non-aquatic plant cannot live inside the water body.

The scoring system is defined as follows:

: Almost guaranteed to find the animal in the landmark

: Very likely to find the animal in the landmark

: Likely to find the animal in the landmark

: Unlikely to find the animal in the landmark

: Very unlikely to find the animal in the landmark
Almost impossible to find the animal in the landmark

O OO0 OoOR
O N OO

You must answer with an explanation, landmarks, and scores for each region. Score the area of a
particular region not only based on the number of targets actually present but also using the
semantic information of the region. Provide a detailed explanation for your scoring, describing the
relationship between the region's semantics and the animal/plant.

When using all the provided information, directly generate the conversation. Always answer as if you
are directly looking at the image. Do not mention bounding box or region numbers explicitly, instead
use the assigned landmark names. Only output the landmark name, not the landmark coordinates. Your
answer may include multiple landmark types. It is acceptable for multiple consecutive landmarks to
have the same scores.

You must return your response in the JSON format:

{
"conversation": [

{
"from": "human",
"sat_key": sat_key,
"taxonomy": taxonomy,
""common_name": common_name,
"question": question using taxonomy,

},

{

"from": "gpt",

"explanation": answer,

"landmarks": {
"landmarkl": {

"score": score,

3},

"landmark2": {
"score": score,

},

"landmark3": {
"score": score,
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}
{Examples}
{Input_Data}

Once again, please output your response in the JSON format.

- J

E.2 VLM Baselines Prompts

Llava Inference Prompt (LLaVA+GroundedSAM Baseline)

Using the image as a reference, where can {animal} be found? Give me 1-2word high-level landmark
names where it can be found in the image. Your response will be a json object where the landmark
names are the keys and the probability of it being found in the landmark as values e.g
{{"barren_land": 0.6}}. Return just between 3 to 5 landmarks. Your response must be a single json
object enclosed in double quotes without additional text.

Llava TTA Prompt (LLaVA+GroundedSAM Baseline)

You are provided with a heat map of the satellite image earlier, region statistics showing the
percentage of the region in the satellite image that has been explored and number of {animal} found
in these regions. Region Statistics:\n{explore_info}\n Use these information to update the
probabilities of {animal} being found in the landmarks generated previously: {orig_response}. Do not
associate the region Rn with any of the landmarks, they are not related in any way. Return your
answer as a JSON object in this format: {new_dict}, where the keys are enclosed with double quotes.
Begin your answer with explanation and reasoning steps for calculating the new probability values for
{landmark_names}, then return the JSON object. You must enclose the JSON object within " json tag.
e.g '''json{{"<landmark>": <new value>}} .

- J

Qwen Inference Prompt (Qwen2+GroundedSAM Baseline)

Using the image as a reference, where can {animal} be found? Give me 1-2word high-level landmark
names where it can be found in the image. Your response will be a json object where the landmark
names are the keys and the probability of it being found in the landmark as values e.g
{{"barren_land": 0.8}}. Return just between 3 to 5 landmarks. The key should be landmark names, not
any other animals or food. Your response must be a single json object enclosed in double quotes
without additional text, and do not return the examples given as a result.

Qwen TTA Prompt (Qwen2+GroundedSAM Baseline)

You are provided with a satellite image,a heat map of the satellite image and region statistics and
tasked to use these information to come up with pairs of landmark:probabilities, where probabilites
denotes the chances of finding {animal} in the landmark. The heat map, together with region
statistics shows the percentage of the region in the satellite image that has been explored, as well
as the number of {animal} found in it. Region Statistics:\n{explore_info}\nSuppose the original
response {orig_response}, you need to use the heat map and region statistics information to come up
with the new probabilities associated with the given landmark, using the satellite image as a
reference. Do not associate regions Rn with {landmark_names}, they are not related to one another.
Return your answer in this format: {new_dict} with new probability values (between O and 1) you
calculated from the region statistics. Begin your response with explanation and reasoning steps for
calculating new values for {landmark_names}, and return a single JSON object in {new_dict} format
with the new probability values, enclosed in double quotes for the key and values. Enclose the json
object within the ~~json tag. e.g ~~~json{new_dict} ~~. The JSON key should be enclosed by double
quotes.
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