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Abstract

Automated fact-checking (AFC) systems typ-
ically follow a sequential pipeline compris-
ing four primary stages: (1) claim detection,
(2) matching against previously fact-checked
claims, (3) evidence retrieval, and (4) claim
verification. While research has progressed sig-
nificantly in the latter stages of the pipeline,
claim detection remains a key bottleneck, of-
ten relying on subjective heuristics and lacking
integration with broader contextual understand-
ing. We introduce Context-Driven Claim De-
tection (ContextClaim), a novel paradigm that
enhances verifiable claim detection by incor-
porating context retrieval at the initial stage of
the AFC pipeline. ContextClaim leverages a
knowledge base, such as Wikipedia, to retrieve,
aggregate, and filter information about entity
mentions, then, generates supplemental con-
text summaries using GPT-40 and Mistral to
enrich the assessment process. Our two vari-
ants of ContextClaim improve on the verifiable
claim detection task over previous state-of-the-
art models as well as over ablated versions of
ContextClaim. Furthermore, we investigate the
generalizability of the paradigm by applying
it across both encoder-only and decoder-only
language model architectures and in a cross-
domain setting. Experimental results consis-
tently show that ContextClaim enhances claim
detection performance under most configura-
tions, suggesting its potential for robust and
domain-adaptive deployment in real-world mis-
information detection systems.

1 Introduction

Automated Fact-Checking (AFC) systems support
human efforts by alleviating the burden of man-
ual verification and enhance scalability (Thorne
et al., 2018; Zeng et al., 2021). AFC systems are
generally composed of modular components, in-
cluding (i) claim detection, (ii) claim matching
against previously fact-checked content, and (iii)

claim verification via evidence retrieval and assess-
ment. The design and implementation of these
components vary across different research frame-
works, but a typical AFC pipeline is illustrated in
Figure 1. The initial stages—claim detection and
claim matching—are intended to eliminate unveri-
fiable and already-verified claims, thereby stream-
lining subsequent verification efforts (Shaar et al.,
2020). The verification module then focuses on
verifying the factual correctness of the remaining
claims. Existing approaches to claim detection of-
ten rely on subjective criteria such as perceived
significance, public interest (Micallef et al., 2022;
Das et al., 2023), potential social harm, or attention-
worthiness (Shaar et al., 2021; Nakov et al., 2022).
Many systems depend heavily on linguistic heuris-
tics and surface-level textual features (Dhar et al.,
2019; Favano et al., 2019; Williams et al., 2020;
Wiihrl et al., 2024). Recent work has explored
the use of large language models (LLMs), employ-
ing in-context learning and fine-tuning to improve
claim detection (Sawinski et al., 2023; Li et al.,
2024). However, these approaches operate solely
on the claim text, without incorporating any form
of external context knowledge, which can often be
limiting.

To address this limitation, we propose a
novel paradigm—Context-Driven Claim Detection
(ContextClaim)—which, to the best of our knowl-
edge, is the first to integrate context retrieval into
the initial claim detection stage. Rather than re-
trieving direct evidence for verification, Context-
Claim gathers supplementary context from trusted
sources, such as Wikipedia, to support the identifi-
cation of claims as verifiable or unverifiable. The
core assumption underlying this approach is that
verifiable claims are more likely to align with ac-
cessible contextual information, while unverifiable
ones exhibit weaker or no alignment. This strat-
egy not only enhances the performance of claim
detection but also streamlines downstream verifica-
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Figure 2: Illustration of the ContextClaim paradigm applied to a specific tweet.

tion by supplying relevant background context in
advance.

The ContextClaim paradigm comprises four
components, namely entity extraction, context
retrieval, context summarization and verifiable
claim detection. The AFC pipeline based on
this paradigm is outlined in Figure 1, while Fig-
ure 2 provides a detailed example illustrating the
paradigm in practice.

To assess the efficacy of ContextClaim, we con-
duct experiments using the CheckThat! 2022
(Nakov et al., 2022) English dataset (hereafter
CT22). We evaluate the paradigm across multi-
ple model configurations, including encoder-only
and decoder-only architectures, and compare per-
formance across various language models. Our
contributions are summarized as follows:

* We develop ContextClaim, a context-driven
paradigm for claim detection in automated
fact-checking. The paradigm integrates re-
trieval and re-ranking mechanisms to collect
relevant contextual information for a given
claim, followed by the generation of a concise
summary to support verifiable claim detection.

* We evaluate the effectiveness of ContextClaim
through empirical comparison with baseline
models that utilize only the claim text. Our
model consistently improves over the baseline
models in two evaluation sets (dev_test and
test), demonstrating the effectiveness of our
proposed paradigm.

* We further demonstrate the generalizability of
ContextClaim through experiments using both
encoder-only and decoder-only language mod-



els, as well as in a cross-domain setting. Re-
sults consistently indicate that ContextClaim
yields improved performance across all con-
figurations.

2 Related Work

2.1 Claim Detection

Claim detection research has traditionally focused
on claim check-worthiness estimation (Kartal and
Kutlu, 2023), which classifies claims based on crite-
ria such as public importance or interest (Panchen-
drarajan and Zubiaga, 2024; Micallef et al., 2022;
Das et al., 2023). Over time, new prioritization
criteria emerged, including detecting harmful or
attention-worthy claims (Shaar et al., 2021; Nakov
et al., 2022). However, these approaches often rely
on subjective judgments, which vary by domain, au-
dience, and context. As a result, recent research has
shifted toward verifiable claim detection, defined
as an assertion about the world that is checkable
(Konstantinovskiy et al., 2021), thus attempting
to minimize bias stemming from subjective judg-
ment. This line of work includes efforts to identify
opinionated claims from Reddit (Chakrabarty et al.,
2019) and to classify statements as either subjec-
tive or objective—where objective statements are
better suited for verification tasks (Galassi et al.,
2023; Struf et al., 2024).

Early claim detection methods relied on feature
engineering and traditional machine learning. Sys-
tems like ClaimBuster (Hassan et al., 2017) and
ClaimRank (Jaradat et al., 2018) used linguistic and
structural features with machine learning and neu-
ral networks. The CNC system (Konstantinovskiy
et al., 2021) applied sentence embeddings from In-
ferSent (Conneau et al., 2017) along with POS and
NER features, feeding them into Logistic Regres-
sion or SVM classifiers. With advances in deep
learning, pretrained language models became cen-
tral. ULMFIT, fine-tuned on the IMHO dataset,
significantly improved domain adaptation for claim
detection (Chakrabarty et al., 2019). Early Check-
That! shared tasks used LSTM-based and feed-
forward models (Dhar et al., 2019; Hansen et al.,
2019; Favano et al., 2019), but transformer-based
models have dominated since 2020. For example,
a fine-tuned RoOBERTa model led to a first-place
finish in the English track (Williams et al., 2020).
More recently, large language models (LLMs) have
advanced the field. In 2023, top-performing sys-
tems employed GPT-3 in zero-shot and few-shot

settings (Sawinski et al., 2023; Alam et al., 2023).
In 2024, the winning system fine-tuned eight open-
source LLMs for claim detection (Li et al., 2024),
demonstrating the growing effectiveness of LLMs
in this domain.

2.2 Evidence Retrieval

Evidence retrieval is typically divided into two
steps: document retrieval and rationale or sentence
selection. This process, often part of the later stages
of fact-checking, identifies supporting evidence to
assess a claim’s veracity (Guo et al., 2022). The
FEVER benchmark (Thorne et al., 2018) was an
early effort to incorporate information extraction
into claim verification, followed by tasks like the
Evidence and Factuality track (Elsayed et al., 2019),
which focused on retrieving relevant content for
factuality assessment.

Initial studies integrating document retrieval into
their models showed performance gains (Soleimani
et al., 2020). Later work improved results by com-
bining traditional retrieval methods such as TF-IDF
(Ramos et al., 2003) and BM25 (Robertson et al.,
2009) with neural architectures (Hanselowski et al.,
2018). More recently, generative approaches like
GERE (Chen et al., 2022) introduced efficient ev-
idence retrieval to reduce computational cost and
select relevant evidence dynamically. RAV (Zheng
et al., 2024) proposed a hybrid approach, com-
bining retrieval with joint verification. With the
rise of Large Language Models (LLMs), retrieval-
augmented generation (RAG) has emerged as a
strategy to integrate external knowledge without re-
training, enabling models to generate text grounded
in retrieved content. RARG (Yue et al., 2024) ex-
tends this by assembling scientific evidence and
applying reinforcement learning from human feed-
back (RLHF) for response generation.

Our research draws inspiration from the role
of evidence retrieval in supporting claim verifi-
cation within these established frameworks. We
reframe this process as contextual information re-
trieval (context retrieval) to facilitate the filtering
of tweets containing verifiable claims. This ap-
proach seeks to enhance the efficacy and efficiency
of claim detection while potentially optimizing sub-
sequent claim verification processes by reducing
the volume of claims requiring verification.



3 Methodology

We introduce ContextClaim, a context-driven
paradigm designed to enhance claim detection by
leveraging contextual information from Wikipedia.
The paradigm operates through a sequence of com-
ponents: (1) entity extraction: Given an input tweet
x;, the paradigm first identifies a set of named en-
tities E; = {e1,e2,...,en}, then (2) context re-
trieval: For each extracted entity, the system re-
trieves relevant information from Wikipedia, select-
ing the most pertinent extracts a;. These extracts
are then aggregated and filtered to construct a com-
prehensive knowledge base K. (3) Context Sum-
marization: The knowledge base K; is combined
with the original tweet to generate a context sum-
mary c¢; as supplemental information in claim de-
tection. (4) Verifiable claim detection: Finally, both
the original tweet z; and the context summary c;
are input into a fine-tuned language model, which
classifies whether the tweet contains a verifiable
claim.

3.1 Entity Extraction

Entities in a text often carry the most important
information. By extracting these entities, we can
convert unstructured input into a more structured
form, facilitating the subsequent context retrieval.
Instead of relying on general keywords, we specifi-
cally use a BERT-based named entity recognition
(NER) model fine-tuned to identify entities with
four standard types (Devlin et al., 2018): Person
(PER), Location (LOC), Organization (ORG), and
Miscellaneous (MISC). To address the limitations
of standard NER models in recognizing COVID-
19-specific entities, we use a word cloud algorithm
(Mueller, 2014) to identify frequent and contextu-
ally relevant terms in the dataset. These insights
allow us to define additional popular topic-related
keywords manually, enhancing entity extraction
and improving the effectiveness of the retrieval
stage.

Formally, let X = {x1,x9,...,2,} be a set
of input texts. For each text x;, named en-
tity recognition (NER) identifies a set of enti-
ties By = {ei1,€2,...,€im,}. where each en-
tity e;; is a tuple (wj;,t;;). Here, w;; is
the entity token and ¢;; € T is its type, with
T = {PER,LOC, ORG, MISC, TOPIC} denoting
the set of possible entity types.

3.2 Context Retrieval

For each extracted entity e; j, we use the Medi-
aWiki Action API' to retrieve the top five relevant
article extracts:

Aij={aij1,aij2,. .., aij5}

To rank these extracts by usefulness, we com-
pute a relevance score that combines two factors:
(1) how closely the extract matches the original in-
put text x;, and (2) how well the Wikipedia article
title aligns with the entity w; ;. Both are measured
using cosine similarity between sentence embed-
dings produced by a sentence transformer (Wang
et al., 2020). The final score is a weighted sum:

score(a; jk, Ti) = a-f(aq j i, i)+0-f(titley, w; ;)

where o = 0.8 and 8 = 0.2 are weights tuned on
the dev_test set, and f denotes cosine similarity.

We select the extract with the highest score as
the most relevant context for the entity:

a; ; =arg max

score(a; j k, Ti)
" ai,j, k€A o

Repeating this for all entities in x;, we obtain a
set of top-ranked extracts:

* * * *
fqi‘_'{aalaaLQv"'7aLnu}

We then apply a filtering step to remove
low-quality entity-extract pairs.  Specifically,
we retain entities classified under Ty,q =
{PER, LOC, ORG}, which consistently yield high-
quality extracts, while discarding low-relevance
extracts associated with entities from the broader
TOPIC category. The remaining extracts define the
contextual knowledge base K; for the input:

A; = {a}; € A} | score(a; j, i) > ONt; ; € Tvaria}

Ki = U azj
a;*’ j EAi
This filtered set K; provides the contextual
knowledge base used in the next processing stage.
3.3 Context Summarization

Using the contextual knowledge base K; from the
previous step, we generate a context summary c;
for each input tweet x; via a generation function g:

ci = g(K;)

]https://www.mediawiki.org/wiki/API:Main_page
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Summarization Prompt

You are a helpful assistant. Provide a factual
summarization under 150 words.

Tweet: "{clean_tweet}"

Relevant Context: {all_extracts}

Generate a concise, objective summary to the
provided tweet based ONLY on the provided context.

Table 1: Prompt for context summarization.

We adopt a prompt-based summarization ap-
proach, with predefined instructions (shown in Ta-
ble 1) guiding the models to generate contextually
relevant summaries. To compare model perfor-
mance, we evaluate two language models: GPT-40
(Achiam et al., 2023), a state-of-the-art instruction-
following model from OpenAl, and Mistral-7B-
Instruct-v0.2 (Jiang et al., 2023), a lightweight,
open-source alternative. Both models are prompted
to generate factual summaries under 150 words,
using only the content in K, to ensure faithfulness
and avoid hallucinations. We refer to their out-
puts as ContextClaim-G4o and ContextClaim-M,
abbreviated as CC-G4o0 and CC-M, respectively,
throughout the remainder of this paper.

3.4 Verifiable Claim Detection

In the final step of the ContextClaim paradigm,
we assess the verifiability of each claim using the
generated context. Given the original input x; and
its corresponding context summary c;, we feed the
pair into a language model that predicts whether
the claim can be verified:

vV = h(xi, Cz‘)

Here, v; € {0,1} is a binary label, where v; = 1
indicates that the claim is verifiable based on the
context, and v; = 0O indicates that it is unverifi-
able due to insufficient or ambiguous contextual
information.

The classifier can be implemented using various
architectures (see Section 4.2). This step completes
the ContextClaim workflow, linking entity extrac-
tion, evidence retrieval, and summarization to a
final, context-based verifiability decision.

4 Experiment

4.1 Dataset

Our experiments utilize the CT22 dataset, which
contains 4793 English-language COVID-19 tweets
annotated as either verifiable (1) or unverifiable (0)
claims. The dataset is divided into four subsets:

train, dev, dev_test, and test. For all experi-
ments, we employ the train and dev sets for train-
ing and validation, while utilizing the dev_test and
test sets as independent evaluation datasets. After
preprocessing—which includes removing URLs,
user mention and hashtag symbols, converting emo-
jis, and removing stopwords, along with lemmatiza-
tion using NLTK—these tweets average around 20
words in length, with tweet lengths ranging from 0
to 73 words.

4.2 Models

To assess the effectiveness of the ContextClaim
paradigm, we evaluate both encoder-only and
decoder-only models. For encoder-only models, we
use BERT-base (Devlin et al., 2018) and RoBERTa-
large (Liu et al., 2019). For decoder-only mod-
els, we test two recent open-source LLMs: Llama-
3-8B-Instruct (Al@Meta, 2024) and Mistral-7B-
Instruct-v0.2 (Jiang et al., 2023), chosen for their
strong performance across language tasks. This
setup enables a direct comparison between encoder-
only and decoder-only architectures for the verifi-
able claim detection task.

4.2.1 Baseline Models

Models that take only the tweet text as input serve
as our baselines: BLggrT, BLRoBERT2s BLLlama3»
and BLyistra1. For BERT and RoBERTa baselines,
we use standard tokenization with ‘[CLS]‘ and
‘[SEP]‘ tokens, and the ‘[CLS]‘ representation is
used for classification. Inputs are padded or trun-
cated to 128 tokens. We add a learnable attention
layer on top of the final hidden states to help the
model focus on key parts of the tweet. These mod-
els are fine-tuned for verifiability detection. For
Llama3 and Mistral, we use the default tokeniza-
tion from their Hugging Face implementations. In-
puts are formatted as baseline prompts (see Ta-
ble 2), and no special tokens are manually inserted,
as the models handle formatting internally.

Baseline Prompt

### Instruction:

Determine if this tweet contains verifiable claims.
If it contains claims that can be verified,

respond "Yes". Otherwise, respond "No".

Note: When in doubt, choose "Yes". In the

end, respond only with "Yes’ for verifiable claims
or ’No’ for unverifiable claims.

### Input tweet: {tweet_text}

### Response: {Yes/No}

Table 2: Baseline prompt for verifiable claim detection.



4.2.2 ContextClaim Models

Models that utilize both the tweet and its con-
textual information implement the full Context-
Claim, denoted as CCggrT, CCroBERT2> CClLlama3»
and CCpystral- Depending on the context generator,
we label these as CC-G4o (using GPT-40) or CC-
M (using Mistral). For CCggrr and CCRroBERT2»
we use the same tokenization as in the baselines.
The tweet and context are first encoded separately,
then integrated using a multi-head cross-attention
mechanism—where the tweet acts as the query and
the context as the key and value. This allows the
model to focus on context elements most relevant
to the claim. Outputs are then fused for final classi-
fication. For CCy jama3 and CCyistral, We extend the
baseline prompt format to include the tweet and its
context, forming a dual-prompt input (see Table 3).

ContextClaim Prompt

### Instruction:

Determine if this tweet contains verifiable claims.
Primary analysis:

- Analyze the tweet text first. If it clearly contains
verifiable factual claims, respond "Yes".

- If it clearly contains only opinions or

unverifiable statements, respond "No".

Secondary analysis (only if primary analysis is unclear):
- Reference the additional information to help clarify
the nature of the claims in the tweet.

Note: When in doubt, choose "Yes". In the end,
respond only with *Yes’ for verifiable claims

or 'No’ for unverifiable claims.

### Input tweet: {tweet_text}

### Additional information: {contextual information }
### Response: {Yes/No}

Table 3: ContextClaim prompt for verifiable claim de-
tection.

4.3 Experimental Settings

All experiments are conducted on an NVIDIA
A100 80GB PCle GPU, using 12 CPU cores with
7.5 GB memory each. The software environment
includes CUDA 11.8, PyTorch 2.6.0, and Hug-
ging Face Transformers 4.49.0. To ensure stabil-
ity and reproducibility, we initialize random states
using multiple seeds [42, 123,456, 789, 1024] for
Python, NumPy, PyTorch, and CUDA. A consis-
tent preprocessing pipeline is applied to all tweets,
including the removal of special characters (e.g.,
URLs), normalization of Twitter-specific symbols
(like ‘@°* and ‘#°), whitespace standardization, and
emoji-to-text conversion.

Due to the differing nature of encoder-only and
decoder-only architectures, we adopt tailored fine-

tuning strategies. Encoder-only models use a
custom training loop with gradient accumulation
for better training control. Decoder-only mod-
els (LLMs) are fine-tuned using HuggingFace’s
‘SFTTrainer*, with 4-bit quantization via ‘BitsAnd-
BytesConfig* for memory efficiency, and LoRA-
based parameter-efficient fine-tuning (PEFT) to re-
duce training overhead while maintaining perfor-
mance. Hyperparameters for both model types are
tuned separately (see Appendix B).

To evaluate performance, we use F1-score as
the primary metric, supported by accuracy, pre-
cision, and recall. All metrics are reported on
both the ‘dev_test‘ and ‘test* sets to evaluate in-
distribution performance and generalization.

5 Results and Discussion

Our experiments evaluate the performance of base-
line models using only tweets as input against our
proposed ContextClaim paradigm, which incorpo-
rates context summaries generated through two dif-
ferent approaches: CC-G4o and CC-M as men-
tioned in the Section 3.3. We maintain a clear dis-
tinction between the original claim and its contex-
tual information. Table 4 presents comprehensive
results across models on both dev_test and test
sets. Results show that incorporating contextual in-
formation through our ContextClaim paradigm gen-
erally improves performance over baseline models
across most language model configurations, though
the degree of improvement varies by model and
contextual information source.

5.1 Model Performance Across Architectures
and Evaluation Sets

Our analysis reveals consistent trends in model
performance across both evaluation sets and archi-
tectural types. In general, models exhibit a perfor-
mance drop when moving from the dev_test set
to the more challenging test set, with F1 scores
typically declining by 2-8%. This distribution shift
suggests that the test set contains more complex or
diverse claims. Among the models, CCpjama3-G40
is the most robust, with only a 2.5% drop, whereas
CCpggrr-M sees a larger decrease of 8.6%. Notably,
recall remains more stable across datasets than pre-
cision, indicating models are generally more reli-
able in detecting verifiable claims than in classify-
ing them precisely.

Performance also varies by model architecture.
Encoder-only models like BERT and RoBERTa



Model ‘ dev_test ‘ test
| Acc. Prec. Rec. F1 | Acc. Prec. Rec. F1

BLEgErT 0.7908 0.7970 0.8969 0.8438 | 0.6964 0.6960 0.8658 0.7706
CCggrr-G4o 0.7996 0.8048 0.9003 0.8499 | 0.6948 0.7025 0.8443 0.7667
CCggrr-M 0.8031 0.8117 0.8951 0.8514 | 0.6956 0.7064 0.8362 0.7655
BLRoBERT2 0.8083 0.8039 0.9225 0.8586 | 0.6964 0.6891 0.8953 0.7774
CCroBerTa-G40 | 0.8114 0.8084 0.9202 0.8602 | 0.7243 0.7108 0.9034 0.7955
CCroBERTa-M 0.8182 0.8187 009143 0.8637 | 0.7163 0.7117 0.8792 (.7864
BLLjama3 0.5529 0.8460 0.3558 0.4997 | 0.5323 0.7896 0.2819 0.4122
CCliama3-G40 0.6484 0.6485 0.9652 0.7757 | 0.6255 0.6190 0.9597 0.7526
CCLiama3-M 0.6773 0.6747 09419 0.7862 | 0.6627 0.6564 0.9060 0.7613
BLwistrar 0.7964 0.8031 0.8973 0.8475 | 0.6891 0.6861 0.8725 0.7678
CChuistrai-G40 0.7900 0.8118 0.8682 0.8389 | 0.7490 0.7876 0.7919 0.7893
CChuistra-M 0.7746  0.7874 0.8804 0.8310 | 0.7264 0.7490 0.8121 0.7783

Table 4: Performance comparison of verifiable claim detection models. CC = ContextClaim.

tend to outperform decoder-only models such as
Llama3 and Mistral, likely due to their bidirectional
attention mechanisms. However, decoder mod-
els, especially Mistral when paired with CC-G4o,
show competitive results on the test set. Llama3,
in particular, demonstrates strong improvements
from contextual input: recall increases by approxi-
mately 60% and F1 scores by 30%, highlighting its
ability to utilize additional contextual information.
In contrast, models with stronger baselines (e.g.,
RoBERTa, Mistral) exhibit more modest gains, sug-
gesting that the benefit of added context diminishes
as base performance improves.

5.2 The Impact of Context Quality

Our experiments demonstrate that enriching tweets
with contextual information significantly improves
performance in verifiable claim detection. Further,
an investigation into ablated versions of Context-
Claim which do not use context or use context
only without the claim, as shown in Appendix C.1,
demonstrates the overall better performance of the
full paradigm. By incorporating context summaries
generated by large language models (LLMs) based
on Wikipedia content, the task shifts from relying
solely on the tweet’s linguistic features to leverag-
ing additional context that supports or challenges
the verifiability of a claim. To quantify the informa-
tional value of these summaries, we employ a Nat-
ural Language Inference (NLI) model 2 (Williams
et al., 2017) to compute entailment, neutral, and
contradiction scores between each tweet and its
associated context, using CC-G4o0 and CC-M, re-
spectively.

2https://huggingface.co/FacebookAI/
roberta-large-mnli

The entailment score measures how well the
context aligns with the original tweet, the neutral
score reflects additional information introduced,
and the contradiction score indicates semantic con-
flict. As shown in Figure 3, CC-G4o produces a
higher average entailment score (0.53) than CC-M
(0.36), indicating that it more faithfully preserves
the tweet’s content. CC-G4o also displays a bi-
modal distribution in entailment, suggesting that
its contexts are either highly aligned or largely un-
related, while CC-M concentrates around lower
scores, implying more frequent addition of loosely
related information. In contrast, CC-M shows
higher neutral scores, pointing to broader contex-
tual enrichment. Both context types maintain low
contradiction scores, demonstrating strong factual
consistency. These characteristics reveal a trade-
off between precision and coverage: CC-G4o of-
fers more focused, fact-dense context that enhances
precision, whereas CC-M provides a wider range
of information, which can improve recall. This
trade-off is reflected in model performance. On the
dev_test set, encoder-based models (e.g., BERT
and RoBERTa2) perform slightly better with CC-M
due to its broader coverage. However, on the test
set, CC-G4o consistently enables better general-
ization. For example, CCpyistrai-G40 achieves an
F1-score improvement of approximately 1.1% over
CCuiistrai-M. GPT-40-generated contexts also lead
to notable precision gains, particularly for decoder-
based models; CCygistra-G40 shows a 10% increase
in precision compared to its baseline. Meanwhile,
both context types significantly boost recall. No-
tably’ CCLlama3‘G40 and CCLlama3'M improve re-
call from 0.2819 to 0.9597 and 0.9060, respec-
tively, and CCgroperra-G40 achieves the highest
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Figure 3: Information gain distribution in CC-G40 and CC-M.

recall score (0.9034) across its variants.

Overall, these results confirm that contextual
summaries—especially those with high factual pre-
cision from GPT-40—improve model performance
both in terms of precision and recall depending on
the context’s characteristics.

6 Error Analysis

To better understand the limitations of our Context-
Claim paradigm, we conducted a detailed error
analysis of the CCroprrra-G40 model using five
different random initialization seeds. This multi-
seed approach helps us distinguish between consis-
tent model weaknesses and performance variations
due to randomness in initialization.

dev test set test set

0.8

0.6

True Label
True Label

0.4

0.2

o 1
Predicted Label

o 1
Predicted Label

Figure 4: Confusion matrix of CCrepgrra-G40

Our analysis highlights two major issues: (1)
a persistent struggle with identifying unverifiable
claims, and (2) failures in how the model incor-
porates contextual information for certain exam-
ples. As shown in Figure 4, the model consistently
struggles more with unverifiable claims (label 0)
compared to verifiable ones. On the dev_test set,
35% of unverifiable claims are misclassified, 52%
on the test set. In contrast, verifiable claims are
correctly classified 91% of the time. This imbal-
ance suggests the model has trouble learning what
makes a claim unverifiable. Interestingly, the low
false negative rate (9%) indicates that when the

model does label a claim as unverifiable, it’s usu-
ally right—suggesting it has selected on some reli-
able patterns, but not all. Additionally, the same 89
examples in the dev_test set and 42 in the test set
were misclassified across all five seeds, pointing to
specific cases that consistently challenge the model,
rather than errors caused by random variation. We
summarize representative failure cases and the cor-
responding reasoning behind the model’s misclassi-
fications in Appendix C.2. The examples highlight
difficulties such as confusion between factual and
opinion-based claims, misinterpretation of rhetor-
ical language, and poor handling of references to
inaccessible or private information.

7 Conclusion

We present Context-Driven Claim Detection
(ContextClaim), a novel paradigm for identifying
verifiable claims. To the best of our knowledge,
ContextClaim is the first method to incorporate con-
textual information retrieval from trusted sources to
construct a dynamic knowledge base. This knowl-
edge base is subsequently distilled into a concise
contextual summary to support the detection of
verifiable claims. For context summarization, we
employ two large language models—GPT-40 and
Mistral—resulting in two variants: CC-G4o and
CC-M, respectively. CC-G4o generally demon-
strates superior factual precision and denser sum-
marization, attributed to its improved preservation
of the original content, such as tweet-specific se-
mantics. Experimental results show that integrating
ContextClaim with existing claim detection mod-
els leads to substantial performance improvements.
Additionally, both encoder-only and decoder-only
language models, when augmented with Context-
Claim, consistently outperform baseline models
that utilize only the raw claim text as input.



Limitations

While ContextClaim shows promise for verifiable
claim detection, several limitations remain. First,
we do not examine its effectiveness in out-of-
domain settings, particularly when test domains
differ substantially from COVID-19-related con-
tent, which may restrict the method’s applicability
in more diverse real-world scenarios. Second, the
paradigm assumes access to trustworthy knowledge
sources; however, in cases where source reliability
is uncertain (e.g., when retrieving content via gen-
eral search engines like Google), the accuracy and
consistency of the contextual summaries may be
compromised. Lastly, due to practical constraints,
including resource limitations and the scope of
this study, we have not conducted human evalu-
ations on quality and utility of the generated con-
text. These limitations motivate us to plan to ex-
plore a more generalized and domain-adaptive solu-
tion supported by a more comprehensive evaluation
framework for context-driven claim detection.
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A More Details and Analysis of
ContextClaim

A.1 ContextClaim Paradigm

Figure 5 shows the complete workflow of the
ContextClaim paradigm discussed in Section 3.

A.2 Statistics of CT22 and Retrieved
Contextual Information

Table 5 presents the statistics of CT22 English
dataset. To study the impact of contextual infor-
mation in the claim detection task, we enhance
the CT22 dataset by attaching retrieved context to
each tweet. This is done by applying the first three
components of our paradigm—entity extraction,
context retrieval, and generation—to build an ex-
tended version of the dataset. This format allows
us to explicitly incorporate contextual information
alongside the original tweets for use in the claim
detection task. Some tweets do not receive con-
textual information because they lack identifiable
entities or have no relevant matches in Wikipedia.
Table 6 shows how contextual data is distributed
across the four subsets.

Figure 6 shows that the word-length distributions
of CT22 across all subsets are generally similar,
while Figure 7 highlights that the test and dev
sets contain slightly longer tweets and exhibit more
variation in length than the train and dev_test sets.
Although the dev_test and test sets show similar
overall word-length distributions, their maximum
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tweet lengths differ: 63 tokens for dev_test versus
33 for test. These differences are considered when
interpreting performance metrics across evaluation
sets.

Subset Verifiable  Unverifiable  Total
train 2,122 1,202 3,324
dev 195 112 307
dev_test 574 337 911
test 149 102 251

Table 5: Statistics of CT22 English dataset.

Subset Verifiable  Unverifiable  Total
train 2,069 1,125 3,194
dev 191 103 294
dev_test 565 326 891
test 141 90 231

Table 6: Statistics of retrieved contextual information
on the CT22 dataset.

B Hyperparameters

B.1 Hyperparameter Optimization

For encoder-only models, we conduct systematic
hyperparameter optimization across them to ensure
optimal performance and fair comparison between
baselines and our proposed approach. For this pur-
pose, we employ the Optuna framework (Akiba
et al., 2019), utilizing Bayesian optimization with
the Tree-structured Parzen Estimator (TPE) sam-
pler. Each model conducts 20 independent trials
with a MedianPruner strategy implemented to ter-
minate underperforming trials early, thus conserv-
ing computational resources. Given the imbalanced
nature of our dataset and the specific requirements
of claim verification systems, we design a multi-
objective optimization approach. While maximiz-
ing the F1 score on the dev set served as our pri-
mary metric due to its balance of precision and
recall, we also prioritize individual precision and
recall metrics. This approach reflects our goal of
filtering out as many unverifiable claims as possi-
ble to reduce the workload for subsequent claim
verification stage, while still maintaining high re-
call for verifiable claims. Specifically, we employ a
weighted combination of these metrics (0.6 for F1
score, 0.2 for precision, and 0.2 for recall) to select
the optimal configuration. The best-performing
hyperparameter configuration for each model is
determined by the highest combined score across
all trials, ensuring that each model was optimized
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Figure 5: Proposed ContextClaim paradigm.

Figure 6: Word length distribution across datasets in
CT22.

to its full potential for fair comparison. The hy-
perparameter search space and the final selected
configurations for BERT and RoBERTa models
corresponding to each dataset are detailed in Table
7, showing the optimized parameters used in our
experiments.

B.2 Hyperparameter Configurations

Table 8 presents the fine-tuning configurations for
decoder-only models, selected through empirical
tuning to balance computational efficiency and per-
formance.

C Further Detailed Analysis
C.1 Ablation Studies

As discussed in Section 3, the ContextClaim
paradigm was introduced to improve verifiable
claim detection by combining the original claim
with additional context summaries. We compared
this approach to a baseline that uses only the claim
(Baseline), and also explored the impact of using
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Figure 7: Word length distribution by class in CT22.

two different types of contextual information—CC-
G40 and CC-M—within the paradigm. In this sec-
tion, we conduct an ablation study to further un-
derstand the role of each input component. Specifi-
cally, we examine model performance when only
the generated context is used, and compare it
against the Baseline and full ContextClaim setups.

Table 9 shows F1 scores for different models
and input settings on both the dev_test and test
sets. We find that using only contextual infor-
mation (Context-G4o or Context-M) achieves re-
sults that are often close to those of the Base-
line. For example, on the dev_test set, Context-
G4o reaches 97.4% of Baseline performance for
RoBERTa (0.8314 vs. 0.8586) and 96.6% for
BERT (0.8222 vs. 0.8438). This suggests that
the generated context alone can provide strong sig-
nals for classification—sometimes nearly as infor-
mative as the original claim. We also observe a
consistent trend: GPT-40-generated contexts tend
to perform better than those from Mistral when
used alone, with the exception of Llama3. For this



BERT Models

RoBERTa Models

Hyperparameter Search Space

Baseline CC-G4o CC-M Baseline CC-G4o CC-M
Epochs S5to 15 8 5 8 12 20 20
Batch Size {8, 12, 16, 20} 8 20 20 15 5 12
Dropout Rate 0.1to0 0.35 - 0.24 0.19 - 0.24 0.25
Warmup Ratio 0.1t00.2 0.18 0.1 0.14 0.2 0.1 0.18
Learning Rate 5.00E-06 to 5.00E-05 5.00E-05 4.00E-05 2.50E-05 8.10E-06 2.00E-05 7.10E-06

Table 7: Hyperparameter configurations for encoder-only models.

Parameter Llama3 Mistral
Epochs 3 3

Batch size 16 8
Warmup ratio 0.1 0.05
Learning rate 1.00E-5 3.00E-4
Optimizer adamw paged_adamw?®
Grad. accum. 2 4
LoRA r/a 64/16 64/16
LoRA dropout 0.1 0.1
Target modules q,v,0 q,v

88-bit quantization; q,v,0: q_proj, v_proj, o_proj; Weight decay:
0.001; Max grad. norm: 1.0; Scheduler: cosine w/ restarts

Table 8: Decoder-only model hyperparameters.

model, Context-M outperforms Context-G4o by a
large margin, with the F1 score for Context-G4o
about 30% lower. In most other cases, Context-
G4o has a 2-4% performance edge over Context-
M, which supports the idea that GPT-40’s context
captures more of the original claim’s content. Im-
portantly, when we combine both the claim and the
context (ContextClaim), we generally see improve-
ments over using either input alone. For instance,
on the test set, ContextClaim-G4o with RoBERTa
achieves an F1 score of 0.7955—about a 1.6% in-
crease over the better of the Baseline (0.7774) and
Context-G4o (0.7829). While the gain is modest, it
is consistent across different models, showing that
the combination of both inputs provides comple-
mentary information that improves model perfor-
mance.

Looking across both evaluation sets, we find
the improvements from using context remain sta-
ble despite changes in data distribution. Context-
only models, in particular, show strong general-
ization for Llama3, suggesting that the generated
context may contain more domain-invariant fea-
tures that help the model remain robust across dif-
ferent sets. In summary, while using context alone
already provides strong classification signals, com-
bining it with the original claim in the Context-
Claim paradigm leads to the best overall perfor-
mance by effectively leveraging the strengths of
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both input types.

E’ | Model | F1 Score

M | | BERT RoBERTa Llama3 Mistral
Baseline | 0.8438 0.8586 0.4997 0.8475

% CC-G4o | 0.8499 0.8602 0.7757 0.8389

:I CC-M 0.8514 0.8637 0.7862 0.8310

2 | C-G4o 0.8222 0.8314 0.3333 0.8189
C-M 0.8141 0.8061 0.6172 0.7875
Baseline | 0.7706 0.7774 0.4122 0.7678

- CC-G4o | 0.7667 0.7955 0.7526 0.7893

§ CC-M 0.7655 0.7864 0.7613 0.7783
C-G4o 0.7584 0.7829 0.3198 0.7518
C-M 0.7564 0.7488 0.6292 0.7452

Table 9: F1 scores for different paradigms across base
models. CC = ContextClaim; C = Context only.

C.2 Detailed Error Analysis

Table 10 presents six representative error cases.
The first three are unverifiable claims wrongly pre-
dicted as verifiable; the last three are the opposite.
The “number of error” column shows how consis-
tently each was misclassified across the seeds. In
Example 1, a tweet speculates on Aaron Rodgers’
vaccine motivations. Although the context pro-
vides accurate background, it reinforces the error
by emphasizing connections to real-world entities
without addressing the unverifiability of the stated
motivation. This pattern reflects a broader diffi-
culty the model has in separating factual content
from unverifiable speculation. Another issue is
the confusion between facts and opinions. For ex-
ample, Example 3 contains a subjective statement
about the NFL, which the model incorrectly la-
bels as verifiable, even though the context confirms
it’s an opinion. On the other hand, Example 5
is a fact-based claim about voting deadlines, yet
it’s misclassified as unverifiable—possibly due to
the presence of both factual and opinion elements,
which the model fails to identify. The model also
struggles with non-literal language. Examples 2
and 4 show how satire, hyperbole, or rhetorical lan-
guage can lead to misclassification, as the model



fails to recognize exaggeration or irony as cues
for unverifiability or misunderstands rhetorical el-
ements in factual claims. Finally, in Example 6,
the claim refers to a confidential Pfizer agreement.
Though potentially verifiable, the model misclas-
sifies it, suggesting difficulty in assessing claims
that reference private or inaccessible information
without directly presenting supporting information.

These examples highlight several areas where
the model could be improved: better integration
and interpretation of context, improved ability to
distinguish between factual and opinion content,
stronger handling of rhetorical language, and more
nuanced reasoning about claims involving non-
public information.
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Tweet text

Contextual information

| Classlabel | #Error

Rodgers heard the vaccine could help protect
his family and he wanted no part of it

The tweet references Aaron Rodgers’ reported stance on
vaccines, implying he wanted no involvement with them
despite hearing they could protect his family. Rodgers, an
accomplished quarterback currently with the New York
Jets, has been a public figure in discussions about vaccine
hesitancy, a term describing the reluctance or refusal to
vaccinate despite available services and strong supporting
evidence of vaccine safety and effectiveness.

0

5

My cousin got the vaccine and it turned him
into a llama and he fell into a river and had
to hitch a ride with a village leader back to
his castle, just saying do your own research

Vaccines are biological preparations that provide immu-
nity against diseases. They have been extensively studied
and verified for safety and effectiveness, typically contain-
ing agents that mimic a disease-causing organism.

Good thing the NFL is really focused on vac-
cines for some of the fittest people in the
world and not the systemic abuse so preva-
lent with so many of its active and former
players.

The tweet criticizes the NFL for its emphasis on vacci-
nations among players, who are considered some of the
fittest individuals, rather than addressing issues of sys-
temic abuse involving active and former players.

Guys Joe Rogan is NOT a scientist! Don’t
take what he says seriously. Coming up next,
the Jonas brothers and big bird reminding
you to get your vaccine!

Joseph James Rogan is an American podcaster known
for hosting "The Joe Rogan Experience," a widely in-
fluential podcast where he discusses a variety of topics
including science. Despite this influence, Rogan is not
a trained scientist. The tweet humorously contrasts Ro-
gan’s non-expert status with other celebrities, such as the
Jonas Brothers and Big Bird, promoting COVID-19 vac-
cinations, emphasizing that while entertaining, celebrity
opinions on scientific matters should be considered cau-
tiously.

CALIFORNIANS: My friend needs your sup-
port to stop the Republican recall. Vote no
and return your ballot by tomorrow, 9/14
at 8PM. Vaccines, climate change, immi-
grant rights, minimum wage, reproductive
rights, gun safety and more are on the ballot.
VoteNoOnRecall

The tweet urges Californians to support Governor Gavin
Newsom by voting against the Republican-led recall effort.
It emphasizes the importance of returning ballots by the
deadline to protect policies on issues like vaccines, climate
change, immigrant rights, minimum wage, reproductive
rights, and gun safety. Newsom, a Democrat, has been
California’s governor since 2019.

PFIZERLEAK: EXPOSING THE PFIZER
MANUFACTURING AND  SUPPLY
AGREEMENT. (thread) Background: Pfizer
has been extremely aggressive in trying
to protect the details of their international
COVIDI19 vaccine agreements. Luckily, I've
managed to get one. PfizerLeak Pfizer

A tweet claims to have exposed a manufacturing and sup-
ply agreement related to Pfizer’s COVID-19 vaccine. The
tweet suggests that Pfizer has been actively trying to keep
the details of its international vaccine agreements confi-
dential. The individual behind the tweet, using the hash-
tag #PfizerLeak, asserts they have obtained one of these
agreements. Pfizer, a well-established American pharma-
ceutical company founded in 1849, has been a key player
in developing COVID-19 vaccines during the pandemic.

Table 10: Error examples of false positive and false negative on the test set.
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