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Abstract001

Automated fact-checking (AFC) systems typ-002
ically follow a sequential pipeline compris-003
ing four primary stages: (1) claim detection,004
(2) matching against previously fact-checked005
claims, (3) evidence retrieval, and (4) claim006
verification. While research has progressed sig-007
nificantly in the latter stages of the pipeline,008
claim detection remains a key bottleneck, of-009
ten relying on subjective heuristics and lacking010
integration with broader contextual understand-011
ing. We introduce Context-Driven Claim De-012
tection (ContextClaim), a novel paradigm that013
enhances verifiable claim detection by incor-014
porating context retrieval at the initial stage of015
the AFC pipeline. ContextClaim leverages a016
knowledge base, such as Wikipedia, to retrieve,017
aggregate, and filter information about entity018
mentions, then, generates supplemental con-019
text summaries using GPT-4o and Mistral to020
enrich the assessment process. Our two vari-021
ants of ContextClaim improve on the verifiable022
claim detection task over previous state-of-the-023
art models as well as over ablated versions of024
ContextClaim. Furthermore, we investigate the025
generalizability of the paradigm by applying026
it across both encoder-only and decoder-only027
language model architectures and in a cross-028
domain setting. Experimental results consis-029
tently show that ContextClaim enhances claim030
detection performance under most configura-031
tions, suggesting its potential for robust and032
domain-adaptive deployment in real-world mis-033
information detection systems.034

1 Introduction035

Automated Fact-Checking (AFC) systems support036

human efforts by alleviating the burden of man-037

ual verification and enhance scalability (Thorne038

et al., 2018; Zeng et al., 2021). AFC systems are039

generally composed of modular components, in-040

cluding (i) claim detection, (ii) claim matching041

against previously fact-checked content, and (iii)042

claim verification via evidence retrieval and assess- 043

ment. The design and implementation of these 044

components vary across different research frame- 045

works, but a typical AFC pipeline is illustrated in 046

Figure 1. The initial stages—claim detection and 047

claim matching—are intended to eliminate unveri- 048

fiable and already-verified claims, thereby stream- 049

lining subsequent verification efforts (Shaar et al., 050

2020). The verification module then focuses on 051

verifying the factual correctness of the remaining 052

claims. Existing approaches to claim detection of- 053

ten rely on subjective criteria such as perceived 054

significance, public interest (Micallef et al., 2022; 055

Das et al., 2023), potential social harm, or attention- 056

worthiness (Shaar et al., 2021; Nakov et al., 2022). 057

Many systems depend heavily on linguistic heuris- 058

tics and surface-level textual features (Dhar et al., 059

2019; Favano et al., 2019; Williams et al., 2020; 060

Wührl et al., 2024). Recent work has explored 061

the use of large language models (LLMs), employ- 062

ing in-context learning and fine-tuning to improve 063

claim detection (Sawiński et al., 2023; Li et al., 064

2024). However, these approaches operate solely 065

on the claim text, without incorporating any form 066

of external context knowledge, which can often be 067

limiting. 068

To address this limitation, we propose a 069

novel paradigm—Context-Driven Claim Detection 070

(ContextClaim)—which, to the best of our knowl- 071

edge, is the first to integrate context retrieval into 072

the initial claim detection stage. Rather than re- 073

trieving direct evidence for verification, Context- 074

Claim gathers supplementary context from trusted 075

sources, such as Wikipedia, to support the identifi- 076

cation of claims as verifiable or unverifiable. The 077

core assumption underlying this approach is that 078

verifiable claims are more likely to align with ac- 079

cessible contextual information, while unverifiable 080

ones exhibit weaker or no alignment. This strat- 081

egy not only enhances the performance of claim 082

detection but also streamlines downstream verifica- 083
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Figure 1: Typical AFC pipeline vs. ContextClaim AFC pipeline.

Figure 2: Illustration of the ContextClaim paradigm applied to a specific tweet.

tion by supplying relevant background context in084

advance.085

The ContextClaim paradigm comprises four086

components, namely entity extraction, context087

retrieval, context summarization and verifiable088

claim detection. The AFC pipeline based on089

this paradigm is outlined in Figure 1, while Fig-090

ure 2 provides a detailed example illustrating the091

paradigm in practice.092

To assess the efficacy of ContextClaim, we con-093

duct experiments using the CheckThat! 2022094

(Nakov et al., 2022) English dataset (hereafter095

CT22). We evaluate the paradigm across multi-096

ple model configurations, including encoder-only097

and decoder-only architectures, and compare per-098

formance across various language models. Our099

contributions are summarized as follows:100

• We develop ContextClaim, a context-driven 101

paradigm for claim detection in automated 102

fact-checking. The paradigm integrates re- 103

trieval and re-ranking mechanisms to collect 104

relevant contextual information for a given 105

claim, followed by the generation of a concise 106

summary to support verifiable claim detection. 107

• We evaluate the effectiveness of ContextClaim 108

through empirical comparison with baseline 109

models that utilize only the claim text. Our 110

model consistently improves over the baseline 111

models in two evaluation sets (dev_test and 112

test), demonstrating the effectiveness of our 113

proposed paradigm. 114

• We further demonstrate the generalizability of 115

ContextClaim through experiments using both 116

encoder-only and decoder-only language mod- 117
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els, as well as in a cross-domain setting. Re-118

sults consistently indicate that ContextClaim119

yields improved performance across all con-120

figurations.121

2 Related Work122

2.1 Claim Detection123

Claim detection research has traditionally focused124

on claim check-worthiness estimation (Kartal and125

Kutlu, 2023), which classifies claims based on crite-126

ria such as public importance or interest (Panchen-127

drarajan and Zubiaga, 2024; Micallef et al., 2022;128

Das et al., 2023). Over time, new prioritization129

criteria emerged, including detecting harmful or130

attention-worthy claims (Shaar et al., 2021; Nakov131

et al., 2022). However, these approaches often rely132

on subjective judgments, which vary by domain, au-133

dience, and context. As a result, recent research has134

shifted toward verifiable claim detection, defined135

as an assertion about the world that is checkable136

(Konstantinovskiy et al., 2021), thus attempting137

to minimize bias stemming from subjective judg-138

ment. This line of work includes efforts to identify139

opinionated claims from Reddit (Chakrabarty et al.,140

2019) and to classify statements as either subjec-141

tive or objective—where objective statements are142

better suited for verification tasks (Galassi et al.,143

2023; Struß et al., 2024).144

Early claim detection methods relied on feature145

engineering and traditional machine learning. Sys-146

tems like ClaimBuster (Hassan et al., 2017) and147

ClaimRank (Jaradat et al., 2018) used linguistic and148

structural features with machine learning and neu-149

ral networks. The CNC system (Konstantinovskiy150

et al., 2021) applied sentence embeddings from In-151

ferSent (Conneau et al., 2017) along with POS and152

NER features, feeding them into Logistic Regres-153

sion or SVM classifiers. With advances in deep154

learning, pretrained language models became cen-155

tral. ULMFiT, fine-tuned on the IMHO dataset,156

significantly improved domain adaptation for claim157

detection (Chakrabarty et al., 2019). Early Check-158

That! shared tasks used LSTM-based and feed-159

forward models (Dhar et al., 2019; Hansen et al.,160

2019; Favano et al., 2019), but transformer-based161

models have dominated since 2020. For example,162

a fine-tuned RoBERTa model led to a first-place163

finish in the English track (Williams et al., 2020).164

More recently, large language models (LLMs) have165

advanced the field. In 2023, top-performing sys-166

tems employed GPT-3 in zero-shot and few-shot167

settings (Sawiński et al., 2023; Alam et al., 2023). 168

In 2024, the winning system fine-tuned eight open- 169

source LLMs for claim detection (Li et al., 2024), 170

demonstrating the growing effectiveness of LLMs 171

in this domain. 172

2.2 Evidence Retrieval 173

Evidence retrieval is typically divided into two 174

steps: document retrieval and rationale or sentence 175

selection. This process, often part of the later stages 176

of fact-checking, identifies supporting evidence to 177

assess a claim’s veracity (Guo et al., 2022). The 178

FEVER benchmark (Thorne et al., 2018) was an 179

early effort to incorporate information extraction 180

into claim verification, followed by tasks like the 181

Evidence and Factuality track (Elsayed et al., 2019), 182

which focused on retrieving relevant content for 183

factuality assessment. 184

Initial studies integrating document retrieval into 185

their models showed performance gains (Soleimani 186

et al., 2020). Later work improved results by com- 187

bining traditional retrieval methods such as TF-IDF 188

(Ramos et al., 2003) and BM25 (Robertson et al., 189

2009) with neural architectures (Hanselowski et al., 190

2018). More recently, generative approaches like 191

GERE (Chen et al., 2022) introduced efficient ev- 192

idence retrieval to reduce computational cost and 193

select relevant evidence dynamically. RAV (Zheng 194

et al., 2024) proposed a hybrid approach, com- 195

bining retrieval with joint verification. With the 196

rise of Large Language Models (LLMs), retrieval- 197

augmented generation (RAG) has emerged as a 198

strategy to integrate external knowledge without re- 199

training, enabling models to generate text grounded 200

in retrieved content. RARG (Yue et al., 2024) ex- 201

tends this by assembling scientific evidence and 202

applying reinforcement learning from human feed- 203

back (RLHF) for response generation. 204

Our research draws inspiration from the role 205

of evidence retrieval in supporting claim verifi- 206

cation within these established frameworks. We 207

reframe this process as contextual information re- 208

trieval (context retrieval) to facilitate the filtering 209

of tweets containing verifiable claims. This ap- 210

proach seeks to enhance the efficacy and efficiency 211

of claim detection while potentially optimizing sub- 212

sequent claim verification processes by reducing 213

the volume of claims requiring verification. 214

3



3 Methodology215

We introduce ContextClaim, a context-driven216

paradigm designed to enhance claim detection by217

leveraging contextual information from Wikipedia.218

The paradigm operates through a sequence of com-219

ponents: (1) entity extraction: Given an input tweet220

xi, the paradigm first identifies a set of named en-221

tities Ei = {e1, e2, ..., em}, then (2) context re-222

trieval: For each extracted entity, the system re-223

trieves relevant information from Wikipedia, select-224

ing the most pertinent extracts ai. These extracts225

are then aggregated and filtered to construct a com-226

prehensive knowledge base Ki. (3) Context Sum-227

marization: The knowledge base Ki is combined228

with the original tweet to generate a context sum-229

mary ci as supplemental information in claim de-230

tection. (4) Verifiable claim detection: Finally, both231

the original tweet xi and the context summary ci232

are input into a fine-tuned language model, which233

classifies whether the tweet contains a verifiable234

claim.235

3.1 Entity Extraction236

Entities in a text often carry the most important237

information. By extracting these entities, we can238

convert unstructured input into a more structured239

form, facilitating the subsequent context retrieval.240

Instead of relying on general keywords, we specifi-241

cally use a BERT-based named entity recognition242

(NER) model fine-tuned to identify entities with243

four standard types (Devlin et al., 2018): Person244

(PER), Location (LOC), Organization (ORG), and245

Miscellaneous (MISC). To address the limitations246

of standard NER models in recognizing COVID-247

19-specific entities, we use a word cloud algorithm248

(Mueller, 2014) to identify frequent and contextu-249

ally relevant terms in the dataset. These insights250

allow us to define additional popular topic-related251

keywords manually, enhancing entity extraction252

and improving the effectiveness of the retrieval253

stage.254

Formally, let X = {x1, x2, . . . , xn} be a set255

of input texts. For each text xi, named en-256

tity recognition (NER) identifies a set of enti-257

ties Ei = {ei,1, ei,2, . . . , ei,mi}, where each en-258

tity ei,j is a tuple (wi,j , ti,j). Here, wi,j is259

the entity token and ti,j ∈ T is its type, with260

T = {PER,LOC,ORG,MISC,TOPIC} denoting261

the set of possible entity types.262

3.2 Context Retrieval 263

For each extracted entity ei,j , we use the Medi- 264

aWiki Action API1 to retrieve the top five relevant 265

article extracts: 266

Ai,j = {ai,j,1, ai,j,2, . . . , ai,j,5} 267

To rank these extracts by usefulness, we com- 268

pute a relevance score that combines two factors: 269

(1) how closely the extract matches the original in- 270

put text xi, and (2) how well the Wikipedia article 271

title aligns with the entity wi,j . Both are measured 272

using cosine similarity between sentence embed- 273

dings produced by a sentence transformer (Wang 274

et al., 2020). The final score is a weighted sum: 275

score(ai,j,k, xi) = α·f(ai,j,k, xi)+β·f(titlek, wi,j) 276

where α = 0.8 and β = 0.2 are weights tuned on 277

the dev_test set, and f denotes cosine similarity. 278

We select the extract with the highest score as 279

the most relevant context for the entity: 280

a∗i,j = arg max
ai,j,k∈Ai,j

score(ai,j,k, xi) 281

Repeating this for all entities in xi, we obtain a 282

set of top-ranked extracts: 283

A∗
i = {a∗i,1, a∗i,2, . . . , a∗i,mi

} 284

We then apply a filtering step to remove 285

low-quality entity-extract pairs. Specifically, 286

we retain entities classified under Tvalid = 287

{PER,LOC,ORG}, which consistently yield high- 288

quality extracts, while discarding low-relevance 289

extracts associated with entities from the broader 290

TOPIC category. The remaining extracts define the 291

contextual knowledge base Ki for the input: 292

Âi = {a∗i,j ∈ A∗
i | score(a∗i,j , xi) ≥ θ∧ti,j ∈ Tvalid} 293

294
Ki =

⋃
a∗i,j∈Âi

a∗i,j 295

This filtered set Ki provides the contextual 296

knowledge base used in the next processing stage. 297

3.3 Context Summarization 298

Using the contextual knowledge base Ki from the 299

previous step, we generate a context summary ci 300

for each input tweet xi via a generation function g: 301

ci = g(Ki) 302

1https://www.mediawiki.org/wiki/API:Main_page
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Summarization Prompt

You are a helpful assistant. Provide a factual
summarization under 150 words.
Tweet: "{clean_tweet}"
Relevant Context: {all_extracts}
Generate a concise, objective summary to the
provided tweet based ONLY on the provided context.

Table 1: Prompt for context summarization.

We adopt a prompt-based summarization ap-303

proach, with predefined instructions (shown in Ta-304

ble 1) guiding the models to generate contextually305

relevant summaries. To compare model perfor-306

mance, we evaluate two language models: GPT-4o307

(Achiam et al., 2023), a state-of-the-art instruction-308

following model from OpenAI, and Mistral-7B-309

Instruct-v0.2 (Jiang et al., 2023), a lightweight,310

open-source alternative. Both models are prompted311

to generate factual summaries under 150 words,312

using only the content in Ki, to ensure faithfulness313

and avoid hallucinations. We refer to their out-314

puts as ContextClaim-G4o and ContextClaim-M,315

abbreviated as CC-G4o and CC-M, respectively,316

throughout the remainder of this paper.317

3.4 Verifiable Claim Detection318

In the final step of the ContextClaim paradigm,319

we assess the verifiability of each claim using the320

generated context. Given the original input xi and321

its corresponding context summary ci, we feed the322

pair into a language model that predicts whether323

the claim can be verified:324

vi = h(xi, ci)325

Here, vi ∈ {0, 1} is a binary label, where vi = 1326

indicates that the claim is verifiable based on the327

context, and vi = 0 indicates that it is unverifi-328

able due to insufficient or ambiguous contextual329

information.330

The classifier can be implemented using various331

architectures (see Section 4.2). This step completes332

the ContextClaim workflow, linking entity extrac-333

tion, evidence retrieval, and summarization to a334

final, context-based verifiability decision.335

4 Experiment336

4.1 Dataset337

Our experiments utilize the CT22 dataset, which338

contains 4793 English-language COVID-19 tweets339

annotated as either verifiable (1) or unverifiable (0)340

claims. The dataset is divided into four subsets:341

train, dev, dev_test, and test. For all experi- 342

ments, we employ the train and dev sets for train- 343

ing and validation, while utilizing the dev_test and 344

test sets as independent evaluation datasets. After 345

preprocessing—which includes removing URLs, 346

user mention and hashtag symbols, converting emo- 347

jis, and removing stopwords, along with lemmatiza- 348

tion using NLTK—these tweets average around 20 349

words in length, with tweet lengths ranging from 0 350

to 73 words. 351

4.2 Models 352

To assess the effectiveness of the ContextClaim 353

paradigm, we evaluate both encoder-only and 354

decoder-only models. For encoder-only models, we 355

use BERT-base (Devlin et al., 2018) and RoBERTa- 356

large (Liu et al., 2019). For decoder-only mod- 357

els, we test two recent open-source LLMs: Llama- 358

3-8B-Instruct (AI@Meta, 2024) and Mistral-7B- 359

Instruct-v0.2 (Jiang et al., 2023), chosen for their 360

strong performance across language tasks. This 361

setup enables a direct comparison between encoder- 362

only and decoder-only architectures for the verifi- 363

able claim detection task. 364

4.2.1 Baseline Models 365

Models that take only the tweet text as input serve 366

as our baselines: BLBERT, BLRoBERTa, BLLlama3, 367

and BLMistral. For BERT and RoBERTa baselines, 368

we use standard tokenization with ‘[CLS]‘ and 369

‘[SEP]‘ tokens, and the ‘[CLS]‘ representation is 370

used for classification. Inputs are padded or trun- 371

cated to 128 tokens. We add a learnable attention 372

layer on top of the final hidden states to help the 373

model focus on key parts of the tweet. These mod- 374

els are fine-tuned for verifiability detection. For 375

Llama3 and Mistral, we use the default tokeniza- 376

tion from their Hugging Face implementations. In- 377

puts are formatted as baseline prompts (see Ta- 378

ble 2), and no special tokens are manually inserted, 379

as the models handle formatting internally. 380

Baseline Prompt

### Instruction:
Determine if this tweet contains verifiable claims.
If it contains claims that can be verified,
respond "Yes". Otherwise, respond "No".
Note: When in doubt, choose "Yes". In the
end, respond only with ’Yes’ for verifiable claims
or ’No’ for unverifiable claims.
### Input tweet: {tweet_text}
### Response: {Yes/No}

Table 2: Baseline prompt for verifiable claim detection.
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4.2.2 ContextClaim Models381

Models that utilize both the tweet and its con-382

textual information implement the full Context-383

Claim, denoted as CCBERT, CCRoBERTa, CCLlama3,384

and CCMistral. Depending on the context generator,385

we label these as CC-G4o (using GPT-4o) or CC-386

M (using Mistral). For CCBERT and CCRoBERTa,387

we use the same tokenization as in the baselines.388

The tweet and context are first encoded separately,389

then integrated using a multi-head cross-attention390

mechanism—where the tweet acts as the query and391

the context as the key and value. This allows the392

model to focus on context elements most relevant393

to the claim. Outputs are then fused for final classi-394

fication. For CCLlama3 and CCMistral, we extend the395

baseline prompt format to include the tweet and its396

context, forming a dual-prompt input (see Table 3).397

ContextClaim Prompt

### Instruction:
Determine if this tweet contains verifiable claims.
Primary analysis:
- Analyze the tweet text first. If it clearly contains
verifiable factual claims, respond "Yes".
- If it clearly contains only opinions or
unverifiable statements, respond "No".
Secondary analysis (only if primary analysis is unclear):
- Reference the additional information to help clarify
the nature of the claims in the tweet.
Note: When in doubt, choose "Yes". In the end,
respond only with ’Yes’ for verifiable claims
or ’No’ for unverifiable claims.
### Input tweet: {tweet_text}
### Additional information: {contextual information}
### Response: {Yes/No}

Table 3: ContextClaim prompt for verifiable claim de-
tection.

4.3 Experimental Settings398

All experiments are conducted on an NVIDIA399

A100 80GB PCIe GPU, using 12 CPU cores with400

7.5 GB memory each. The software environment401

includes CUDA 11.8, PyTorch 2.6.0, and Hug-402

ging Face Transformers 4.49.0. To ensure stabil-403

ity and reproducibility, we initialize random states404

using multiple seeds [42, 123, 456, 789, 1024] for405

Python, NumPy, PyTorch, and CUDA. A consis-406

tent preprocessing pipeline is applied to all tweets,407

including the removal of special characters (e.g.,408

URLs), normalization of Twitter-specific symbols409

(like ‘@‘ and ‘#‘), whitespace standardization, and410

emoji-to-text conversion.411

Due to the differing nature of encoder-only and412

decoder-only architectures, we adopt tailored fine-413

tuning strategies. Encoder-only models use a 414

custom training loop with gradient accumulation 415

for better training control. Decoder-only mod- 416

els (LLMs) are fine-tuned using HuggingFace’s 417

‘SFTTrainer‘, with 4-bit quantization via ‘BitsAnd- 418

BytesConfig‘ for memory efficiency, and LoRA- 419

based parameter-efficient fine-tuning (PEFT) to re- 420

duce training overhead while maintaining perfor- 421

mance. Hyperparameters for both model types are 422

tuned separately (see Appendix B). 423

To evaluate performance, we use F1-score as 424

the primary metric, supported by accuracy, pre- 425

cision, and recall. All metrics are reported on 426

both the ‘dev_test‘ and ‘test‘ sets to evaluate in- 427

distribution performance and generalization. 428

5 Results and Discussion 429

Our experiments evaluate the performance of base- 430

line models using only tweets as input against our 431

proposed ContextClaim paradigm, which incorpo- 432

rates context summaries generated through two dif- 433

ferent approaches: CC-G4o and CC-M as men- 434

tioned in the Section 3.3. We maintain a clear dis- 435

tinction between the original claim and its contex- 436

tual information. Table 4 presents comprehensive 437

results across models on both dev_test and test 438

sets. Results show that incorporating contextual in- 439

formation through our ContextClaim paradigm gen- 440

erally improves performance over baseline models 441

across most language model configurations, though 442

the degree of improvement varies by model and 443

contextual information source. 444

5.1 Model Performance Across Architectures 445

and Evaluation Sets 446

Our analysis reveals consistent trends in model 447

performance across both evaluation sets and archi- 448

tectural types. In general, models exhibit a perfor- 449

mance drop when moving from the dev_test set 450

to the more challenging test set, with F1 scores 451

typically declining by 2–8%. This distribution shift 452

suggests that the test set contains more complex or 453

diverse claims. Among the models, CCLlama3-G4o 454

is the most robust, with only a 2.5% drop, whereas 455

CCBERT-M sees a larger decrease of 8.6%. Notably, 456

recall remains more stable across datasets than pre- 457

cision, indicating models are generally more reli- 458

able in detecting verifiable claims than in classify- 459

ing them precisely. 460

Performance also varies by model architecture. 461

Encoder-only models like BERT and RoBERTa 462
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Model dev_test test

Acc. Prec. Rec. F1 Acc. Prec. Rec. F1

BLBERT 0.7908 0.7970 0.8969 0.8438 0.6964 0.6960 0.8658 0.7706
CCBERT-G4o 0.7996 0.8048 0.9003 0.8499 0.6948 0.7025 0.8443 0.7667
CCBERT-M 0.8031 0.8117 0.8951 0.8514 0.6956 0.7064 0.8362 0.7655

BLRoBERTa 0.8083 0.8039 0.9225 0.8586 0.6964 0.6891 0.8953 0.7774
CCRoBERTa-G4o 0.8114 0.8084 0.9202 0.8602 0.7243 0.7108 0.9034 0.7955
CCRoBERTa-M 0.8182 0.8187 0.9143 0.8637 0.7163 0.7117 0.8792 0.7864

BLLlama3 0.5529 0.8460 0.3558 0.4997 0.5323 0.7896 0.2819 0.4122
CCLlama3-G4o 0.6484 0.6485 0.9652 0.7757 0.6255 0.6190 0.9597 0.7526
CCLlama3-M 0.6773 0.6747 0.9419 0.7862 0.6627 0.6564 0.9060 0.7613

BLMistral 0.7964 0.8031 0.8973 0.8475 0.6891 0.6861 0.8725 0.7678
CCMistral-G4o 0.7900 0.8118 0.8682 0.8389 0.7490 0.7876 0.7919 0.7893
CCMistral-M 0.7746 0.7874 0.8804 0.8310 0.7264 0.7490 0.8121 0.7783

Table 4: Performance comparison of verifiable claim detection models. CC = ContextClaim.

tend to outperform decoder-only models such as463

Llama3 and Mistral, likely due to their bidirectional464

attention mechanisms. However, decoder mod-465

els, especially Mistral when paired with CC-G4o,466

show competitive results on the test set. Llama3,467

in particular, demonstrates strong improvements468

from contextual input: recall increases by approxi-469

mately 60% and F1 scores by 30%, highlighting its470

ability to utilize additional contextual information.471

In contrast, models with stronger baselines (e.g.,472

RoBERTa, Mistral) exhibit more modest gains, sug-473

gesting that the benefit of added context diminishes474

as base performance improves.475

5.2 The Impact of Context Quality476

Our experiments demonstrate that enriching tweets477

with contextual information significantly improves478

performance in verifiable claim detection. Further,479

an investigation into ablated versions of Context-480

Claim which do not use context or use context481

only without the claim, as shown in Appendix C.1,482

demonstrates the overall better performance of the483

full paradigm. By incorporating context summaries484

generated by large language models (LLMs) based485

on Wikipedia content, the task shifts from relying486

solely on the tweet’s linguistic features to leverag-487

ing additional context that supports or challenges488

the verifiability of a claim. To quantify the informa-489

tional value of these summaries, we employ a Nat-490

ural Language Inference (NLI) model 2 (Williams491

et al., 2017) to compute entailment, neutral, and492

contradiction scores between each tweet and its493

associated context, using CC-G4o and CC-M, re-494

spectively.495

2https://huggingface.co/FacebookAI/
roberta-large-mnli

The entailment score measures how well the 496

context aligns with the original tweet, the neutral 497

score reflects additional information introduced, 498

and the contradiction score indicates semantic con- 499

flict. As shown in Figure 3, CC-G4o produces a 500

higher average entailment score (0.53) than CC-M 501

(0.36), indicating that it more faithfully preserves 502

the tweet’s content. CC-G4o also displays a bi- 503

modal distribution in entailment, suggesting that 504

its contexts are either highly aligned or largely un- 505

related, while CC-M concentrates around lower 506

scores, implying more frequent addition of loosely 507

related information. In contrast, CC-M shows 508

higher neutral scores, pointing to broader contex- 509

tual enrichment. Both context types maintain low 510

contradiction scores, demonstrating strong factual 511

consistency. These characteristics reveal a trade- 512

off between precision and coverage: CC-G4o of- 513

fers more focused, fact-dense context that enhances 514

precision, whereas CC-M provides a wider range 515

of information, which can improve recall. This 516

trade-off is reflected in model performance. On the 517

dev_test set, encoder-based models (e.g., BERT 518

and RoBERTa) perform slightly better with CC-M 519

due to its broader coverage. However, on the test 520

set, CC-G4o consistently enables better general- 521

ization. For example, CCMistral-G4o achieves an 522

F1-score improvement of approximately 1.1% over 523

CCMistral-M. GPT-4o-generated contexts also lead 524

to notable precision gains, particularly for decoder- 525

based models; CCMistral-G4o shows a 10% increase 526

in precision compared to its baseline. Meanwhile, 527

both context types significantly boost recall. No- 528

tably, CCLlama3-G4o and CCLlama3-M improve re- 529

call from 0.2819 to 0.9597 and 0.9060, respec- 530

tively, and CCRoBERTa-G4o achieves the highest 531
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Figure 3: Information gain distribution in CC-G4o and CC-M.

recall score (0.9034) across its variants.532

Overall, these results confirm that contextual533

summaries—especially those with high factual pre-534

cision from GPT-4o—improve model performance535

both in terms of precision and recall depending on536

the context’s characteristics.537

6 Error Analysis538

To better understand the limitations of our Context-539

Claim paradigm, we conducted a detailed error540

analysis of the CCRoBERTa-G4o model using five541

different random initialization seeds. This multi-542

seed approach helps us distinguish between consis-543

tent model weaknesses and performance variations544

due to randomness in initialization.545

Figure 4: Confusion matrix of CCRoBERTa-G4o

Our analysis highlights two major issues: (1)546

a persistent struggle with identifying unverifiable547

claims, and (2) failures in how the model incor-548

porates contextual information for certain exam-549

ples. As shown in Figure 4, the model consistently550

struggles more with unverifiable claims (label 0)551

compared to verifiable ones. On the dev_test set,552

35% of unverifiable claims are misclassified, 52%553

on the test set. In contrast, verifiable claims are554

correctly classified 91% of the time. This imbal-555

ance suggests the model has trouble learning what556

makes a claim unverifiable. Interestingly, the low557

false negative rate (9%) indicates that when the558

model does label a claim as unverifiable, it’s usu- 559

ally right—suggesting it has selected on some reli- 560

able patterns, but not all. Additionally, the same 89 561

examples in the dev_test set and 42 in the test set 562

were misclassified across all five seeds, pointing to 563

specific cases that consistently challenge the model, 564

rather than errors caused by random variation. We 565

summarize representative failure cases and the cor- 566

responding reasoning behind the model’s misclassi- 567

fications in Appendix C.2. The examples highlight 568

difficulties such as confusion between factual and 569

opinion-based claims, misinterpretation of rhetor- 570

ical language, and poor handling of references to 571

inaccessible or private information. 572

7 Conclusion 573

We present Context-Driven Claim Detection 574

(ContextClaim), a novel paradigm for identifying 575

verifiable claims. To the best of our knowledge, 576

ContextClaim is the first method to incorporate con- 577

textual information retrieval from trusted sources to 578

construct a dynamic knowledge base. This knowl- 579

edge base is subsequently distilled into a concise 580

contextual summary to support the detection of 581

verifiable claims. For context summarization, we 582

employ two large language models—GPT-4o and 583

Mistral—resulting in two variants: CC-G4o and 584

CC-M, respectively. CC-G4o generally demon- 585

strates superior factual precision and denser sum- 586

marization, attributed to its improved preservation 587

of the original content, such as tweet-specific se- 588

mantics. Experimental results show that integrating 589

ContextClaim with existing claim detection mod- 590

els leads to substantial performance improvements. 591

Additionally, both encoder-only and decoder-only 592

language models, when augmented with Context- 593

Claim, consistently outperform baseline models 594

that utilize only the raw claim text as input. 595
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Limitations596

While ContextClaim shows promise for verifiable597

claim detection, several limitations remain. First,598

we do not examine its effectiveness in out-of-599

domain settings, particularly when test domains600

differ substantially from COVID-19-related con-601

tent, which may restrict the method’s applicability602

in more diverse real-world scenarios. Second, the603

paradigm assumes access to trustworthy knowledge604

sources; however, in cases where source reliability605

is uncertain (e.g., when retrieving content via gen-606

eral search engines like Google), the accuracy and607

consistency of the contextual summaries may be608

compromised. Lastly, due to practical constraints,609

including resource limitations and the scope of610

this study, we have not conducted human evalu-611

ations on quality and utility of the generated con-612

text. These limitations motivate us to plan to ex-613

plore a more generalized and domain-adaptive solu-614

tion supported by a more comprehensive evaluation615

framework for context-driven claim detection.616
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A More Details and Analysis of831

ContextClaim832

A.1 ContextClaim Paradigm833

Figure 5 shows the complete workflow of the834

ContextClaim paradigm discussed in Section 3.835

A.2 Statistics of CT22 and Retrieved836

Contextual Information837

Table 5 presents the statistics of CT22 English838

dataset. To study the impact of contextual infor-839

mation in the claim detection task, we enhance840

the CT22 dataset by attaching retrieved context to841

each tweet. This is done by applying the first three842

components of our paradigm—entity extraction,843

context retrieval, and generation—to build an ex-844

tended version of the dataset. This format allows845

us to explicitly incorporate contextual information846

alongside the original tweets for use in the claim847

detection task. Some tweets do not receive con-848

textual information because they lack identifiable849

entities or have no relevant matches in Wikipedia.850

Table 6 shows how contextual data is distributed851

across the four subsets.852

Figure 6 shows that the word-length distributions853

of CT22 across all subsets are generally similar,854

while Figure 7 highlights that the test and dev855

sets contain slightly longer tweets and exhibit more856

variation in length than the train and dev_test sets.857

Although the dev_test and test sets show similar858

overall word-length distributions, their maximum859

tweet lengths differ: 63 tokens for dev_test versus 860

33 for test. These differences are considered when 861

interpreting performance metrics across evaluation 862

sets. 863

Subset Verifiable Unverifiable Total

train 2,122 1,202 3,324
dev 195 112 307
dev_test 574 337 911
test 149 102 251

Table 5: Statistics of CT22 English dataset.

Subset Verifiable Unverifiable Total

train 2,069 1,125 3,194
dev 191 103 294
dev_test 565 326 891
test 141 90 231

Table 6: Statistics of retrieved contextual information
on the CT22 dataset.

B Hyperparameters 864

B.1 Hyperparameter Optimization 865

For encoder-only models, we conduct systematic 866

hyperparameter optimization across them to ensure 867

optimal performance and fair comparison between 868

baselines and our proposed approach. For this pur- 869

pose, we employ the Optuna framework (Akiba 870

et al., 2019), utilizing Bayesian optimization with 871

the Tree-structured Parzen Estimator (TPE) sam- 872

pler. Each model conducts 20 independent trials 873

with a MedianPruner strategy implemented to ter- 874

minate underperforming trials early, thus conserv- 875

ing computational resources. Given the imbalanced 876

nature of our dataset and the specific requirements 877

of claim verification systems, we design a multi- 878

objective optimization approach. While maximiz- 879

ing the F1 score on the dev set served as our pri- 880

mary metric due to its balance of precision and 881

recall, we also prioritize individual precision and 882

recall metrics. This approach reflects our goal of 883

filtering out as many unverifiable claims as possi- 884

ble to reduce the workload for subsequent claim 885

verification stage, while still maintaining high re- 886

call for verifiable claims. Specifically, we employ a 887

weighted combination of these metrics (0.6 for F1 888

score, 0.2 for precision, and 0.2 for recall) to select 889

the optimal configuration. The best-performing 890

hyperparameter configuration for each model is 891

determined by the highest combined score across 892

all trials, ensuring that each model was optimized 893
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Figure 5: Proposed ContextClaim paradigm.

Figure 6: Word length distribution across datasets in
CT22.

to its full potential for fair comparison. The hy-894

perparameter search space and the final selected895

configurations for BERT and RoBERTa models896

corresponding to each dataset are detailed in Table897

7, showing the optimized parameters used in our898

experiments.899

B.2 Hyperparameter Configurations900

Table 8 presents the fine-tuning configurations for901

decoder-only models, selected through empirical902

tuning to balance computational efficiency and per-903

formance.904

C Further Detailed Analysis905

C.1 Ablation Studies906

As discussed in Section 3, the ContextClaim907

paradigm was introduced to improve verifiable908

claim detection by combining the original claim909

with additional context summaries. We compared910

this approach to a baseline that uses only the claim911

(Baseline), and also explored the impact of using912

Figure 7: Word length distribution by class in CT22.

two different types of contextual information—CC- 913

G4o and CC-M—within the paradigm. In this sec- 914

tion, we conduct an ablation study to further un- 915

derstand the role of each input component. Specifi- 916

cally, we examine model performance when only 917

the generated context is used, and compare it 918

against the Baseline and full ContextClaim setups. 919

Table 9 shows F1 scores for different models 920

and input settings on both the dev_test and test 921

sets. We find that using only contextual infor- 922

mation (Context-G4o or Context-M) achieves re- 923

sults that are often close to those of the Base- 924

line. For example, on the dev_test set, Context- 925

G4o reaches 97.4% of Baseline performance for 926

RoBERTa (0.8314 vs. 0.8586) and 96.6% for 927

BERT (0.8222 vs. 0.8438). This suggests that 928

the generated context alone can provide strong sig- 929

nals for classification—sometimes nearly as infor- 930

mative as the original claim. We also observe a 931

consistent trend: GPT-4o-generated contexts tend 932

to perform better than those from Mistral when 933

used alone, with the exception of Llama3. For this 934
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Hyperparameter Search Space BERT Models RoBERTa Models

Baseline CC-G4o CC-M Baseline CC-G4o CC-M

Epochs 5 to 15 8 5 8 12 20 20
Batch Size {8, 12, 16, 20} 8 20 20 15 5 12
Dropout Rate 0.1 to 0.35 - 0.24 0.19 - 0.24 0.25
Warmup Ratio 0.1 to 0.2 0.18 0.1 0.14 0.2 0.1 0.18
Learning Rate 5.00E-06 to 5.00E-05 5.00E-05 4.00E-05 2.50E-05 8.10E-06 2.00E-05 7.10E-06

Table 7: Hyperparameter configurations for encoder-only models.

Parameter Llama3 Mistral

Epochs 3 3
Batch size 16 8
Warmup ratio 0.1 0.05
Learning rate 1.00E-5 3.00E-4
Optimizer adamw paged_adamw8

Grad. accum. 2 4

LoRA r/α 64/16 64/16
LoRA dropout 0.1 0.1
Target modules q,v,o q,v
88-bit quantization; q,v,o: q_proj, v_proj, o_proj; Weight decay:
0.001; Max grad. norm: 1.0; Scheduler: cosine w/ restarts

Table 8: Decoder-only model hyperparameters.

model, Context-M outperforms Context-G4o by a935

large margin, with the F1 score for Context-G4o936

about 30% lower. In most other cases, Context-937

G4o has a 2–4% performance edge over Context-938

M, which supports the idea that GPT-4o’s context939

captures more of the original claim’s content. Im-940

portantly, when we combine both the claim and the941

context (ContextClaim), we generally see improve-942

ments over using either input alone. For instance,943

on the test set, ContextClaim-G4o with RoBERTa944

achieves an F1 score of 0.7955—about a 1.6% in-945

crease over the better of the Baseline (0.7774) and946

Context-G4o (0.7829). While the gain is modest, it947

is consistent across different models, showing that948

the combination of both inputs provides comple-949

mentary information that improves model perfor-950

mance.951

Looking across both evaluation sets, we find952

the improvements from using context remain sta-953

ble despite changes in data distribution. Context-954

only models, in particular, show strong general-955

ization for Llama3, suggesting that the generated956

context may contain more domain-invariant fea-957

tures that help the model remain robust across dif-958

ferent sets. In summary, while using context alone959

already provides strong classification signals, com-960

bining it with the original claim in the Context-961

Claim paradigm leads to the best overall perfor-962

mance by effectively leveraging the strengths of963

both input types. 964

E
va

l.

Model F1 Score

BERT RoBERTa Llama3 Mistral

de
v_

te
st

Baseline 0.8438 0.8586 0.4997 0.8475
CC-G4o 0.8499 0.8602 0.7757 0.8389
CC-M 0.8514 0.8637 0.7862 0.8310
C-G4o 0.8222 0.8314 0.3333 0.8189
C-M 0.8141 0.8061 0.6172 0.7875

te
st

Baseline 0.7706 0.7774 0.4122 0.7678
CC-G4o 0.7667 0.7955 0.7526 0.7893
CC-M 0.7655 0.7864 0.7613 0.7783
C-G4o 0.7584 0.7829 0.3198 0.7518
C-M 0.7564 0.7488 0.6292 0.7452

Table 9: F1 scores for different paradigms across base
models. CC = ContextClaim; C = Context only.

C.2 Detailed Error Analysis 965

Table 10 presents six representative error cases. 966

The first three are unverifiable claims wrongly pre- 967

dicted as verifiable; the last three are the opposite. 968

The “number of error” column shows how consis- 969

tently each was misclassified across the seeds. In 970

Example 1, a tweet speculates on Aaron Rodgers’ 971

vaccine motivations. Although the context pro- 972

vides accurate background, it reinforces the error 973

by emphasizing connections to real-world entities 974

without addressing the unverifiability of the stated 975

motivation. This pattern reflects a broader diffi- 976

culty the model has in separating factual content 977

from unverifiable speculation. Another issue is 978

the confusion between facts and opinions. For ex- 979

ample, Example 3 contains a subjective statement 980

about the NFL, which the model incorrectly la- 981

bels as verifiable, even though the context confirms 982

it’s an opinion. On the other hand, Example 5 983

is a fact-based claim about voting deadlines, yet 984

it’s misclassified as unverifiable—possibly due to 985

the presence of both factual and opinion elements, 986

which the model fails to identify. The model also 987

struggles with non-literal language. Examples 2 988

and 4 show how satire, hyperbole, or rhetorical lan- 989

guage can lead to misclassification, as the model 990
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fails to recognize exaggeration or irony as cues991

for unverifiability or misunderstands rhetorical el-992

ements in factual claims. Finally, in Example 6,993

the claim refers to a confidential Pfizer agreement.994

Though potentially verifiable, the model misclas-995

sifies it, suggesting difficulty in assessing claims996

that reference private or inaccessible information997

without directly presenting supporting information.998

These examples highlight several areas where999

the model could be improved: better integration1000

and interpretation of context, improved ability to1001

distinguish between factual and opinion content,1002

stronger handling of rhetorical language, and more1003

nuanced reasoning about claims involving non-1004

public information.1005
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Tweet text Contextual information Class label #Error

Rodgers heard the vaccine could help protect
his family and he wanted no part of it

The tweet references Aaron Rodgers’ reported stance on
vaccines, implying he wanted no involvement with them
despite hearing they could protect his family. Rodgers, an
accomplished quarterback currently with the New York
Jets, has been a public figure in discussions about vaccine
hesitancy, a term describing the reluctance or refusal to
vaccinate despite available services and strong supporting
evidence of vaccine safety and effectiveness.

0 5

My cousin got the vaccine and it turned him
into a llama and he fell into a river and had
to hitch a ride with a village leader back to
his castle, just saying do your own research

Vaccines are biological preparations that provide immu-
nity against diseases. They have been extensively studied
and verified for safety and effectiveness, typically contain-
ing agents that mimic a disease-causing organism.

0 4

Good thing the NFL is really focused on vac-
cines for some of the fittest people in the
world and not the systemic abuse so preva-
lent with so many of its active and former
players.

The tweet criticizes the NFL for its emphasis on vacci-
nations among players, who are considered some of the
fittest individuals, rather than addressing issues of sys-
temic abuse involving active and former players.

0 3

Guys Joe Rogan is NOT a scientist! Don’t
take what he says seriously. Coming up next,
the Jonas brothers and big bird reminding
you to get your vaccine!

Joseph James Rogan is an American podcaster known
for hosting "The Joe Rogan Experience," a widely in-
fluential podcast where he discusses a variety of topics
including science. Despite this influence, Rogan is not
a trained scientist. The tweet humorously contrasts Ro-
gan’s non-expert status with other celebrities, such as the
Jonas Brothers and Big Bird, promoting COVID-19 vac-
cinations, emphasizing that while entertaining, celebrity
opinions on scientific matters should be considered cau-
tiously.

1 5

CALIFORNIANS: My friend needs your sup-
port to stop the Republican recall. Vote no
and return your ballot by tomorrow, 9/14
at 8PM. Vaccines, climate change, immi-
grant rights, minimum wage, reproductive
rights, gun safety and more are on the ballot.
VoteNoOnRecall

The tweet urges Californians to support Governor Gavin
Newsom by voting against the Republican-led recall effort.
It emphasizes the importance of returning ballots by the
deadline to protect policies on issues like vaccines, climate
change, immigrant rights, minimum wage, reproductive
rights, and gun safety. Newsom, a Democrat, has been
California’s governor since 2019.

1 4

PFIZERLEAK: EXPOSING THE PFIZER
MANUFACTURING AND SUPPLY
AGREEMENT. (thread) Background: Pfizer
has been extremely aggressive in trying
to protect the details of their international
COVID19 vaccine agreements. Luckily, I’ve
managed to get one. PfizerLeak Pfizer

A tweet claims to have exposed a manufacturing and sup-
ply agreement related to Pfizer’s COVID-19 vaccine. The
tweet suggests that Pfizer has been actively trying to keep
the details of its international vaccine agreements confi-
dential. The individual behind the tweet, using the hash-
tag #PfizerLeak, asserts they have obtained one of these
agreements. Pfizer, a well-established American pharma-
ceutical company founded in 1849, has been a key player
in developing COVID-19 vaccines during the pandemic.

1 3

Table 10: Error examples of false positive and false negative on the test set.

15


	Introduction
	Related Work
	Claim Detection
	Evidence Retrieval

	Methodology
	Entity Extraction
	Context Retrieval
	Context Summarization
	Verifiable Claim Detection

	Experiment
	Dataset
	Models
	Baseline Models
	ContextClaim Models

	Experimental Settings

	Results and Discussion
	Model Performance Across Architectures and Evaluation Sets
	The Impact of Context Quality

	Error Analysis
	Conclusion
	More Details and Analysis of ContextClaim
	ContextClaim Paradigm
	Statistics of CT22 and Retrieved Contextual Information

	Hyperparameters
	Hyperparameter Optimization
	Hyperparameter Configurations

	Further Detailed Analysis
	Ablation Studies
	Detailed Error Analysis


