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ABSTRACT

Federated Unlearning (FU) has emerged as a critical compliance mechanism for
data privacy regulations, requiring unlearned clients to provide verifiable Proof
of Federated Unlearning (PoFU) to auditors upon data removal requests. How-
ever, we uncover a significant privacy vulnerability: when gradient differences are
served as PoFU, honest-but-curious auditors may exploit mathematical correla-
tions between gradient differences and forgotten samples to reconstruct the latter.
Such reconstruction, if feasible, would face three key challenges: (i) restricted
auditor access to client-side data, (ii) limited samples derivable from individual
PoFU, and (iii) high-dimensional redundancy in gradient differences. To over-
come these challenges, we propose Inverting Gradient difference to Forgotten
data (IGF), a novel learning-based reconstruction attack framework that employs
Singular Value Decomposition (SVD) for dimensionality reduction and feature
extraction. IGF incorporates a tailored pixel-level inversion model optimized via
a composite loss that captures both structural and semantic cues. This enables
efficient and high-fidelity reconstruction of large-scale samples, surpassing existing
methods. To counter this novel attack, we design an orthogonal obfuscation de-
fense that preserves PoFU verification utility while preventing sensitive forgotten
data reconstruction. Experiments across multiple datasets validate the effective-
ness of the attack and the robustness of the defense. The code is available at
https://anonymous.4open.science/r/IGF.

1 INTRODUCTION
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Figure 1: Auditing process in FU

Federated Learning (FL) enables distributed entities, such
as financial institutions, healthcare providers, and IoT net-
works, to collaboratively train models without sharing raw
data. This decentralized approach mitigates risks associ-
ated with data transfer, enhancing privacy and security for
data owners. However, regulations like the GDPR (Rosen,
2011; Pardau, 2018), which enshrine the right to be for-
gotten, pose a significant technical challenge for FL sys-
tems. Merely preventing raw data leaks is insufficient for
compliance. Instead, the requirement to honor data sub-
jects’ requests for erasure (Article 17, GDPR) necessitates
mechanisms to eliminate impacts resulting from specific
personal data on the global models and demonstrate effec-
tive erasure. This challenge has spurred the development
of verifiable Federated Unlearning (FU) (Liu et al., 2020), a paradigm designed to verifiably forget
the contribution of designated data from trained models.

Figure 1 illustrates a typical scenario where multinational financial institutions, acting as FL clients
, collaboratively train an anti-fraud model (Lindstrom, 2024). Subsequently, the auditor mandates

all clients to forget the outdated transaction data using the FU algorithm and obtains proof of FU
(PoFU) (Gao et al., 2024; Weng et al., 2024; Zuo et al., 2025; Salem et al., 2020) from the unlearned
client. Given that auditors lack direct access to raw client data, they typically rely on PoFU as a
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non-invasive auditing mechanism. In particular, PoFU often leverages gradient differences, defined
as the gradient of the forgotten sample (e.g., outdated transactions here) computed on the original
model minus that on the unlearned model. A sufficiently small L2 norm of this difference indicates
successful forgetting (Gao et al., 2024).

However, most research (Wu et al., 2022; Wang et al., 2022; Zhong et al., 2025) primarily focuses
on FU algorithm design, overlooking vulnerabilities to reconstruction attacks by third-party audi-
tors (Boenisch et al., 2023; Le et al., 2023), especially when gradient differences serve as PoFU.
Recent advances in reconstruction attacks have exposed critical vulnerabilities in centralized machine
(un)learning. For instance, DLG (Zhu et al., 2019) showed that shared gradients can be inverted to
reconstruct training data, while subsequent work (Geiping et al., 2020) highlighted privacy leakage
risks from gradient sharing. More recently, unlearning inversion attacks (Hu et al., 2024) reconstruct
forgotten data by only accessing the parameter deviations of the original and unlearned models.
However, these approaches face three primary limitations when applying to FU scenarios: (i) they
require white-box access to both models to compute parameter deviations, (ii) they struggle with
large-scale data reconstruction due to limited, noisy gradient differences weakly linked to forgotten
samples, requiring novel inversion methods, and (iii) the high dimensionality of parameter deviations
or gradients differences increases the computational cost of inversion models. More crucially, as the
auditor lacks access to client-side raw data (Thudi et al., 2022) and relies solely on PoFU to audit
unlearning, there are additional complexities to be considered for reconstruction attack. Current
reconstruction attacks target model parameters or gradients, but those exploiting gradient differences
that are commonly used for PoFU remain underexplored. This gap motivates our research question:

Q: Can gradient differences, serving as PoFU, enable third-party auditors to reconstruct forgotten
data? If so, how can high-fidelity, large-scale data reconstruction be achieved against high-
dimensional gradient differences?

To address this, we propose a learning-based reconstruction attack for verifiable FU, termed Inverting
Gradient difference to Forgotten data (IGF). To handle high-dimensional gradient differences, we
employ Singular Value Decomposition (SVD) for dimensionality reduction, extracting essential
features while eliminating redundancy, thus streamlining the input of the inversion model. We then
design a pixel-level convolutional inversion model that learns the latent mapping between gradient
differences and original samples, optimized via a composite loss function that balances structural
and perceptual fidelity. This enables batch-wise reconstruction from individual PoFU, avoiding
per-sample optimization overhead. Collectively, these components facilitate robust, large-scale
reconstruction across benchmark datasets and global model architectures. Our contributions include:

• We identify gradient differences that serve as PoFU for a novel attack surface capable of
high-fidelity data reconstruction. By formalizing an honest-but-curious third-party auditor,
we demonstrate that passive observers can reconstruct forgotten samples during the critical
FU auditing phase (Li et al., 2022).

• We propose the IGF attack framework, integrating SVD with a pixel-level inversion network
optimized via a composite loss function. Extensive experiments and ablation studies show
that IGF outperforms state-of-the-art (SOTA) learning-based (LTI (Wu et al., 2023)) and
optimization-based (GIAMU (Hu et al., 2024), DLGD (Zhu et al., 2019)) methods, achieving
superior reconstruction fidelity and computational efficiency.

• We further propose an orthogonal obfuscation defense mechanism to mitigate IGF and vali-
date defense efficacy through rigorous theoretical analysis and comprehensive experiments.

2 RELATED WORK

Federated Unlearning (FU). FU has recently emerged to address the challenge of selectively
removing specific clients or data points from a trained FL model. This paradigm is driven by
regulatory imperatives, such as the right to be forgotten under GDPR, as well as the inherent
dynamism of real-world FL deployments. Existing approaches can be categorized into two main
types: Exact Federated Unlearning (EFU) (Liu et al., 2022) and Approximate Federated Unlearning
(AFU) (Halimi et al., 2022). EFU achieves thorough removal by retraining the model from scratch on
the retained dataset, ensuring that the influence of the target data is completely eliminated. However,
this method is computationally intensive and may be impractical for large-scale FL systems. AFU
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aims to reduce computational overhead by approximating the unlearning process through applying
gradient ascent to maximize the loss. For instance, Wang et al. (2024) propose that clients estimate
the gradient influence of the data to be removed using local retained data and then apply gradient
ascent to negate this influence. A subsequent fine-tuning step is introduced to preserve overall utility.
Similarly, Xu et al. (2024) employ model explanations to identify key parameter channels associated
with the forgotten categories and update only those channels in reverse. Meanwhile, Gu et al. (2024)
pre-generate linear transformation parameters related to the target data during the training phase
and applies reverse transformations to eliminate unwanted effects. The above methods balance
effectiveness and efficiency. Some studies (Chen et al., 2025; Wang et al., 2025) explore how to
diminish the model’s utility by poisoning or cause excessive forgetting through malicious requests,
yet overlook potential reconstruction vulnerabilities during the verification stage.

Gradient Inversion Attack. Recent studies have leveraged gradient inversion techniques to recon-
struct clients’ private training data in FL (Zhang et al., 2023; Jeon et al., 2021; Fang et al., 2023; Sun
et al., 2024; Wu et al., 2023). Zhang et al. (2023) demonstrate the feasibility of generative gradient
inversion in FL by constructing an over-parameterized convolutional neural network that satisfies
gradient-matching requirements. Similarly, Jeon et al. (2021) leverage pre-trained generative models
as priors to circumvent direct optimization in high-dimensional pixel space and reconstructs data via
latent-space parameter optimization. Additionally, Fang et al. (2023) adopt a staged optimization
strategy for the intermediate feature domains of generative models, progressively optimizing from
the latent space to intermediate layers to enhance attack effectiveness. Sun et al. (2024) introduce an
anomaly detection model to capture latent distributions from limited data, using it as a regularization
term to improve attack performance. In the context of FU, Hu et al. (2024) reveal the feature and
label information by analyzing differences between the original and unlearned models.

Therefore, traditional gradient inversion attacks focus on reconstructing training data directly from
original gradients provided by clients in standard FL scenarios. In contrast, our work targets gradient
differences used as PoFU, where the attacker must reconstruct deleted data from indirect and variant
gradient information. This introduces unique challenges: gradient differences contain limited and
mixed signals with weaker correlations to the forgotten samples, requiring fundamentally different
inversion methods.

3 METHODOLOGY

3.1 PROBLEM FORMULATION

Federated Learning (FL). In the FL framework with H clients, each client i (i ∈ [H]) holds a local
dataset Di containing |Di| samples. Let M denote the original global model parameterized by θ, and
consider a supervised learning objective that minimizes the empirical loss over the federated dataset
D =

⋃H
i=1Di:L(θ) = 1

|D|
∑

(x,y)∈D ℓ
(
M(x;θ), y

)
. The stochastic gradient for a data sample

(xs, ys) ∈ D is gs = ∇θℓ
(
M(xs;θ), ys

)
. Federated Averaging (FedAvg) (McMahan et al., 2017)

operates through T global rounds. At each global round t ∈ {0, 1, . . . , T − 1}, the server broadcasts
the current global model parameters θt to all clients. Each client i updates θt via local SGD on Di:
θt
i = θt − η · ∇θLi(θ

t), where Li(θ
t) = 1

|Di|
∑

(x,y)∈Di
ℓ
(
M(x;θt), y

)
. Server aggregates via

weighted averaging:

θt+1 =

H∑
i=1

|Di|
|D|

θt
i , |D| =

H∑
i=1

|Di|. (1)

The final global model parameter after T rounds is θT .

FU Scenarios. Let Cn ⊆ [H] denote normal clients retaining their original datasets {Dj}j∈Cn , and
Cu = [H] \ Cn represent unlearned clients modifying their local datasets {Di}i∈Cu

. Following Zhong
et al. (2025), we formalize three scenarios: (i) sample-level unlearning: For each client i ∈ Cu,
partition Di into retained Dr

i and forgotten subsets Df
i = Di \ Dr

i ; (ii) class-level unlearning: Each
client i ∈ Cu removes all samples of target class yf , yielding Df

i = {(x, y) ∈ Di | y = yf} with
Dr

i = Di \ Df
i ; (iii) client-level unlearning: Each client i ∈ Cu sets Df

i = Di and Dr
i = ∅. We

denote the unlearned global model as uM, the forgotten dataset as Dforgotten =
⋃

i∈Cu
Df

i and the
retained dataset as Dretained = (

⋃
j∈Cn

Dj) ∪ (
⋃

i∈Cu
Dr

i ).
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A. Learning Phase C.Verification & Attack PhaseB. Unlearning Phase

Normal Clients Unlearned Clients

Server

...

FL Algorithm
FU Algorithm
*Exact FU
*Approximate FU

Local Clients

Auditor
Client

Dataset

Inversion ModelGlobal Model

Algorithm Gradient Differences

C.2 Privacy Exfiltration Phase

 Gradient 
Projection via SVD Inversion Model  

Constructed
Results

C.1 Inversion Model Training Phase

Query Auxiliary Samples

PoFUs

Figure 2: Schematic overview of IGF framework. A. Learning Phase: Clients collaboratively train
the global model via FL. B. Unlearning Phase: The unlearned clients are required to forget specific
data contributions and submit the proof of federated unlearning (PoFU). C. Verification & Attack
Phase: The honest-but-curious auditor A verifies PoFUs, while attempting to infer forgotten data
using a pre-trained inversion model I.

FU Methods. We implement two mainstream FU approaches: (i) EFU retrains the global model
on dataset Dretained from scratch, minimizing

∑
(x,y)∈Dretained ℓ(M(x;θ), y). This method precisely

removes contributions of Dforgotten from the global model. (ii) AFU performs projected gradient
ascent and constrains maximization on Dforgotten. For each client i ∈ Cu, it computes θ′

i = θT +

ηu · ∇θL′
i(θ

T ) where L′
i(θ

T ) = 1

|Df
i |

∑
(x,y)∈Df

i
ℓ
(u
M(x;θT ), y

)
but maintains ∥θ′

i − θT ∥2 ≤ ζ,

where ζ is the parameter deviation constraint. Then the server aggregates the unlearned local model
parameters:

θ′ =
∑
i∈Cu

|Df
i |

|Dforgotten|
θ′
i, |Dforgotten| =

∑
i∈Cu

|Df
i |, (2)

and fine-tunes uM with θ′ on Dretained.

Verification in FU. Each unlearned client i ∈ Cu locally computes PoFU of gradient differences
∆g(ni) =

{
∆g

(ni)
j = ∇θℓ

(
M(xj ;θ

T ), yj
)
−∇θℓ

(u
M(xj ;θ

′), yj
)
|(xj , yj) ∈ Df

i

}
. Auditor re-

ceives PoFUs ∆g = {∆g(ni)}i∈Cu and validates unlearning by checking each ∥∆g
(ni)
j ∥2 ≤ τ with

predefined threshold τ (Gao et al., 2024). The necessity of the gradient differences in verifiable FU
lies in ensuring that a data point (x, y) is included in the training dataset of the original model M but
excluded from that of the unlearned model uM.

Threat Assumption. We model the auditor, denoted A, as an honest-but-curious entity that strictly
follows the FU protocol but seeks to infer private client data. Consistent with prior reconstruction
attacks (Wu et al., 2023; Hu et al., 2024; Geiping et al., 2020; Zhu et al., 2019), A possesses an
auxiliary dataset Daux. Operating in a gray-box setting, A lacks knowledge of the global model’s
architecture but can collude with the server to query the flattened gradient for arbitrary samples from
both the original model M, and the unlearned model uM. During the exploitation phase, A passively
collects PoFUs ∆g from unlearned clients, and endeavors to reconstruct the forgotten samples.

3.2 FRAMEWORK OF IGF

We adopt a learning-based inversion model to invert gradient differences to forgotten samples during
the verification phase of FU. The main schematic of IGF is shown in Figure 2, and the formalized
details are as follows:

4
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Inversion Model Training Phase. (i) Preparation of Training Dataset. To prepare the training data
for inversion model I, for each data point (xi, yi) in auxiliary dataset Daux, the auditor A collects:{

Gi = {∇θℓ(M(x;θT ), yi)}(xi,yi)∈Daux

uGi = {∇θℓ(
uM(x;θ′), yi)}(xi,yi)∈Daux ,

(3)

where Gi and uGi denote the sets of flatten gradients queried from M and uM, respectively. Gradient
differences ∆G = {∆Gi = Gi −u Gi|(xi, yi) ∈ Daux} form a set of d-dimensional vectors, with d
as the number of trainable parameters.

(ii) Gradient Differences Projection via SVD. To extract the key features and address redundancy
caused by the high dimensionality of gradient differences, A projects ∆G to a lower-dimensional
space using SVD. Let the m denote the number of samples in Daux, A constructs a matrix Ψ =
[∆G1,∆G2, . . . ,∆Gm]⊤ ∈ Rm×d, where each row corresponds to a sample’s gradient difference
and m ≪ d typically holds. A centers the gradient differences by subtracting the mean vector
µ = 1

m

∑m
i=1 ∆Gi, resulting in Ψcen = Ψ− µ1⊤

m. Then A then performs SVD on Ψcen, yielding
Ψcen = UΣV⊤ with U ∈ Rm×m, V ∈ Rd×d, and diagonal matrix Σ contains singular values
σ1 ≥ σ2 ≥ · · · ≥ σm ≥ 0. To preserve essential information while reducing dimensionality, A
selects the smallest k such that the cumulative explained variance exceeds a threshold ν:

k = min

{
j

∣∣∣∣ j∑
i=1

σ2
i /

m∑
i=1

σ2
i ≥ ν

}
. (4)

So A gets the projection matrix V[k] ∈ Rd×k denotes the first k columns of V. And the projected
gradient differences of Daux are computed as ∆Gproj = ΨV[k] ∈ Rm×k.

(iii) Training Inversion Model. A trains the inversion model, denoted as I and parameterized by ω,
to map projected gradient differences to samples in Daux by minimizing the composite loss function:

Lattack(ω) = LM (ω) + βLP (ω), (5)

where β trades off between pixel-level accuracy and perceptual quality. This design is common in
image reconstruction tasks and can flexibly adjust the optimization objectives of the model to ensure
that the reconstruction results are both accurate and natural. specifically, LM quantifies the structural
pixel-level discrepancy between reconstructed image I(∆Gproj

i ;ω) and ground truth image xi:

LM (ω) =
1

m

m∑
i=1

∥I(∆Gproj
i ;ω)− xi∥22. (6)

Similarly, we define LP , which measures the semantic similarity between the reconstructed and true
images using a VGG-based feature extractor ϕ(·):

LP (ω) =
1

m

m∑
i=1

∥ϕ
(
I(∆Gproj

i ;ω)
)
− ϕ (xi) ∥22 (7)

Further, we elaborately designed the architecture of I to capture the latent mapping between gradient
differences and images effectively. I employs a pixel-level convolutional network for progressive
upsampling, which reduces artifacts in the reconstructed images. This design facilitates a nonlinear
transformation from PoFU space to structured image space. Further architectural details are provided
in Appendix F.

Privacy Exfiltration Phase. Following the training phase, the auditor A possesses the projection
matrix V[k] and the inversion model I with parameter ω. Upon receiving PoFUs, for each PoFU

∆g(ni) of each client i ∈ Cu, A constructs the matrix Ψ(ni) =
[
∆g

(ni)
1 ,∆g

(ni)
2 , . . . ,g

(ni)
ni

]⊤
∈

Rni×d, where ni denotes the number of samples in Df
i . This matrix is then projected into a lower-

dimensional space ∆g(ni)
proj

= Ψ(ni)V[k] ∈ Rni×k. The batched reconstruction of projected
gradient differences ∆g(ni)

proj
is performed as follows:

5
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x̂(ni) = {x̂j = I(∆g
(ni)
j

proj
;ω)|j ∈ [ni]}, (8)

where x̂(ni) = {x̂1, x̂2, . . . , x̂ni
} represents the ni reconstructed samples of client i. This exploitation

enables A to utilize the pre-trained inversion model to implement the large-scale reconstructions
from individual PoFU, thereby compromising data privacy even from the passive view.

3.3 ORTHOGONAL OBFUSCATION DEFENSE METHOD

Our inversion model exploits the directional information in gradient differences to reconstruct
sensitive training data. Traditional defense methods often fail to disrupt the directional patterns,
preserving the overall gradient differences structure and remaining susceptible to statistical recovery
techniques. As illustrated in Figure 3, we propose a defense strategy that alters the vector direction
while retaining the L2-norm information necessary for auditing. Our approach projects gradient
differences into an orthogonal subspace, thereby disrupting the patterns and spatial structures that
attackers rely on to reconstruct the forgotten sample.

Defense PoFU 
vector

PoFU vector

Orthogonal
random vector

Do not change the magnitude information of the
gradient, but change the direction of the gradient.

Figure 3: Schematic of or-
thogonal obfuscation defense

For each PoFU ∆g(ni) of unlearned client i, i needs to modify the
direction of each entry ∆g

(ni)
j but maintain its L2-norm. We intro-

duce random vectors r(ni) that are orthogonal to ∆g(ni) element-
wisely. The construction begins by sampling an initial random vector
r
(ni)
j with the same dimensionality as ∆g

(ni)
j , drawn from a stan-

dard normal distribution r
(ni)
j ∼ N (0, 1)d. Then client i applies the

Gram-Schmidt orthogonalization (ort, 2001) to compute:

∆g
(ni)

obf

j = r
(ni)
j −

r
(ni)

⊤

j ∆g
(ni)
j

∥∆g
(ni)
j ∥2

∆g
(ni)
j . (9)

This step ensures that ∆g
(ni)

obf

j lies in a subspace orthogonal to

∆g
(ni)
j , effectively decoupling its direction from the original PoFU vector while preserving the

randomness needed for obfuscation.

4 EXPERIMENT

4.1 EXPERIMENT SETTINGS

Datasets and Models. We assess the IGF framework on widely adopted benchmark datasets: CIFAR-
10, CIFAR-100 (Krizhevsky et al., 2009), MNIST (LeCun et al., 1998), and Fashion-MNIST (Xiao
et al., 2017). These datasets offer diverse challenges, featuring varying image resolutions (28× 28
and 32×32) and class numbers (10 to 100), making them an ideal testbed for assessing generalization.
Additionally, we utilize the SVHN dataset (Netzer et al., 2011) as the out-of-distribution (OOD)
auxiliary dataset to evaluate the attack’s robustness to distributional shifts. More dataset details are
provided in Appendix C.1. To probe the attack’s robustness across architectural variations and to
explore how the proposed inversion model scales with the network complexity of the global model,
we adopt two architectures: a convolutional neural network (ConvNet) and a deeper residual network
(ResNet20) (He et al., 2016).

Training Setup. In cross-silo FL and FU, we configure 40 clients with 10% client selection and
conduct 20 global rounds to derive the original and unlearned models. For the unlearning task, we
designate 1000 samples to be forgotten. We consider an honest-but-curious adversary A capable of
storing or collecting a small auxiliary dataset, with a size comparable to a typical validation or test set,
consistent with prior work (Sun et al., 2024; Wu et al., 2023). Furthermore, the auxiliary dataset is
in-distribution with respect to the forgotten dataset.1 During the attack, A trains the inversion model
with β = 1, batch size 256, learning rate 10−4, and a fixed seed (1234) for reproducibility. Gradient

1Notably, high-quality reconstruction remains feasible even under out-of-distribution auxiliary data; refer to
Appendix E.3 for ablation details.
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differences from ConvNet are used directly, while those from ResNet20 are compressed via SVD
projection to reduce computation. All experiments are conducted in PyTorch on NVIDIA A10 GPUs.
To assess IGF, we adopt standard reconstruction metrics: MSE, PSNR, and LPIPS (Geiping et al.,
2020; Hu et al., 2024; Sun et al., 2024; Zhang et al., 2018); metric details appear in Appendix C.2.

4.2 EXPERIMENTAL RESULTS

Table 1: Reconstruction performance (MSE, PSNR, and LPIPS) on CIFAR-10 and CIFAR-100
datasets with ConvNet and ResNet20 as global models. Gradient differences are applied with no
defense. Each cell reports results for EFU / AFU, with bold indicating the best performance across
different FU scenarios.

Backbone Method FU Scenario CIFAR-10 CIFAR-100
MSE ↓ PSNR ↑ LPIPS ↓ MSE ↓ PSNR ↑ LPIPS ↓

ConvNet

Ours sample-level 0.0211 / 0.0218 17.19 / 17.09 0.3261 / 0.3624 0.0364 / 0.0261 14.97 / 16.07 0.4383 / 0.4190
Ours class-level 0.0259 / 0.0234 16.08 / 16.51 0.3531 / 0.3316 0.0397 / 0.0298 14.41 / 15.73 0.4451 / 0.4201
Ours client-level 0.0206 / 0.0223 17.32 / 16.78 0.3747 / 0.3558 0.0382 / 0.0265 14.65 / 16.07 0.4361 / 0.4223

GIAMU sample-level 0.2330 / 0.2460 13.22 / 12.78 0.3390 / 0.3190 – – –

ResNet20
Ours sample-level 0.0445 / 0.0564 14.05 / 13.02 0.4607 / 0.4719 0.0391 / 0.0353 14.56 / 15.02 0.4267 / 0.4025
Ours class-level 0.0535 / 0.0512 13.01 / 13.21 0.4608 / 0.4366 0.0474 / 0.0438 13.49 / 13.84 0.4060 / 0.4032
Ours client-level 0.0435 / 0.0533 14.12 / 13.08 0.4617 / 0.4983 0.0422 / 0.0362 14.27 / 14.73 0.4187 / 0.3627

Reconstruction Performance across Datasets. The results presented in Table 1 provide compelling
evidence of IGF’s capability to reconstruct forgotten data with high fidelity. On CIFAR-10 with
ConvNet under EFU at the sample-level, IGF achieves an MSE of 0.0211, PSNR of 17.19, and LPIPS
of 0.3261, reflecting reconstructions with minimal pixel-wise errors and superior perceptual quality.
On the more complex CIFAR-100 dataset, which contains 100 fine-grained classes compared to
CIFAR-10’s 10, we observe a moderate decline in performance: MSE increases to 0.0364, PSNR
decreases to 14.9658, and LPIPS rises to 0.4383. This performance degradation is consistent across
all FU methods and scenarios with ConvNet on CIFAR-100, which we attribute to the increased
dataset complexity and higher inter-class variability, making inversion inherently more challenging.

Adaptability across Global Model Architectures. IGF also demonstrates adaptability across model
architectures. On CIFAR-10, reconstruction performances with ConvNet are slightly better than
ResNet20, with MSE values of 0.0211 and 0.0445, respectively. Consistent with prior findings (Wu
et al., 2023), inversion performance declines as FL model complexity increases. This disparity stems
from the higher-dimensional gradients of ResNet20, which introduce greater noise and optimization
challenges, thereby reducing inversion fidelity compared to the cleaner, more tractable gradients
of ConvNet. Nevertheless, IGF achieves satisfactory reconstruction quality even with the deeper
ResNet20 architecture, highlighting its robustness to varying model complexities.

Adaptability across FU Scenarios. We test IGF under three FU scenarios: sample-level unlearning
(the number of samples to be forgotten is set to 1000), class-level unlearning (the class index to
be forgotten is set to 1), and client-level unlearning (all samples from the third client are set to be
forgotten). IGF exhibits stable performance, with ConvNet’s MSE fluctuating within 0.0053 under
EFU on CIFAR-10, indicating resilience to differing unlearning granularity. In other configurations,
alterations to the FU scenarios have a negligible impact on reconstruction performance, further
highlighting IGF’s stability.

Vulnerability Comparison of FU Methods. Experimental results reveal certain gaps in vulnerability
to reconstruction attacks between EFU and AFU methods. EFU outperforms AFU in reconstruction
metrics on CIFAR-10 with ResNet20, as EFU’s retraining from scratch yields clearer gradient
differences reflecting forgotten data’s impact. In contrast, AFU’s gradient ascent operation introduces
noise, complicating reconstruction. Despite this, IGF achieves reasonable reconstruction quality,
highlighting a critical privacy risk: even AFU methods remain vulnerable to reconstruction attacks.

Comparison with Baselines. We first compare IGF against GIAMU (Hu et al., 2024), a recent
inversion attack specifically tailored for centralized machine unlearning. GIAMU takes the difference
between the original and unlearned models as input and reconstructs samples via an optimization-
based approach. As shown in Table 1, all GIAMU results are directly sourced from Hu et al. (2024)
where the training datasets of the two models differ by only a single sample. For sample-level
unlearning on CIFAR-10 under EFU, IGF outperforms GIAMU by 88.1%, 30.1%, and 3.8% in MSE,
PSNR, and LPIPS, respectively. Under AFU, the improvements are even more substantial, with gains
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of 91.1% in MSE and 33.6% in LPIPS. Moreover, as with other optimization-based methods (Zhu
et al., 2019; Ju et al., 2025), GIAMU requires hundreds of queries per sample during the online
(Privacy Exfiltration) phase, whereas IGF needs only two queries. Additionally, GIAMU assumes a
white-box setting in which A can access the parameters of the original and unlearned models, which
significantly complicates the attack process.

Notably, few baseline attacks are suitable for direct comparison in FU reconstruction, as most
methods target gradients derived from fully trained models, we nonetheless present a comprehensive
comparison of IGF with two SOTA inversion approaches: the learning-based LTI (Wu et al.,
2023) and the optimization-based DLGD (Zhu et al., 2019), detailed in Appendix D.
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Figure 4: Original and reconstructed images from the CIFAR-10 dataset, with 1,000 forgotten samples
at the sample-level using EFU.

Visual Inspection of Reconstructed Images. Beyond quantitative metrics, visual inspection of the
reconstructed images in Figure 4 offers additional insights into IGF’s effectiveness. The reconstructed
images clearly capture the essential features of the original forgotten samples, including object shapes,
colors, and textures. This visual similarity reinforces the quantitative results and shows that our
attack can reconstruct forgotten data with sufficient fidelity to pose a real privacy risk. We further
extend IGF to MNIST and Fashion-MNIST, which contain images of different sizes than CIFAR.
The reconstructed results, shown in Figure 13, reveal that the images are nearly indistinguishable
from the originals based on gradient differences. This high-quality reconstruction is achieved through
our composite optimization approach, which combines LM with LP loss. This combination ensures
that the reconstructed images not only match the original images at the pixel level but also maintain
perceptual similarity in terms of high-level features.

Table 2: Reconstruction performance across three metrics on five common defense mechanisms.

Defense Method None Gradient Pruning Sign Compression Gauss Noise Gradient Perturb Gradient Smooth
0.7 0.8 0.9 0.001 0.1 0.01 0.1

MSE ↓ 0.0211 0.0216 0.0221 0.0222 0.0225 0.0298 0.0197 0.0232
PSNR ↑ 17.19 17.0758 17.0694 17.0521 16.9704 15.7044 17.6116 16.8371
LPIPS ↓ 0.3261 0.3704 0.3796 0.3810 0.3796 0.4011 0.3663 0.3852

Reconstruction Performance against Defense Mechanisms.

We evaluate the reconstruction performance of IGF against five common defense mechanisms on
ConvNet at the sample-level using EFU. The technical details of these defenses are provided in
Appendix C.3, with results summarized in Table 2. Against Gradient Pruning (with hyperparameters
{0.7, 0.8, 0.9}), Sign Compression, and Gradient Smoothing, IGF maintains comparable performance
to the no-defense baseline, achieving MSE values around 0.022, PSNR around 17, and LPIPS around
0.38. Among the defenses, Gaussian Noise proves comparatively robust, while Gradient Perturbation
is the comparatively weakest. Overall, IGF delivers reasonable reconstruction quality with negligible
degradation relative to the no-defense setting. This robustness arises from our learning-based inversion
model, which exhibits strong mapping capabilities. These findings underscore IGF’s substantial
resilience, enabling it to largely bypass existing defenses and recover forgotten data effectively.
Consequently, they highlight the pressing need for novel defense strategies that can fundamentally
impair an attacker’s ability to reconstruct meaningful information.

Reconstruction Performance against Orthogonal Obfuscation Defense. As shown in the Figure 5,
our proposed Orthogonal Obfuscation Defense disrupts reconstruction by altering gradient difference
directions while preserving their L2-norm. Reconstructed images exhibit random noise, effectively
thwarting IGF and protecting sensitive data. A detailed theoretical analysis of the Orthogonal
Obfuscation Defense is provided in Appendix H.
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Figure 5: Forgotten images and our reconstructed images on the CIFAR-10 dataset under Orthogonal
Obfuscation defense on ConvNet at the sample-level using EFU.

4.3 ABLATION STUDIES

(d) Our Full(c) Our w/o Composite Optimized

(a) Original (b) Our w/o Modules

Figure 6: Forgotten images and our reconstructed images using inversion model across different
component configurations on ConvNet at the sample-level using EFU.

To evaluate the effectiveness of our proposed composite loss optimization module and pixel-level
inversion model in the attack framework, we conduct ablation studies to visualize the reconstruction
results under various configurations, as shown in Figure 6. The Original row depicts the ground-
truth forgotten samples. The Our w/o Modules variant, which utilizes MSE as the loss function
alongside a simple three-layer multi-layer perceptron as the inversion model, yields severely degraded
reconstructions characterized by pronounced artifacts and substantial loss of structural integrity. This
outcome highlights the intrinsic difficulties of reconstruction attacks and underscores the indispensable
value of our proposed enhancements. The Our w/o Composite Optimized configuration, which
preserves the pixel-level inversion model but employs MSE for loss computation, generates images
that maintain rudimentary shapes yet are plagued by blurring, chromatic aberrations, and deficient fine-
grained details. This emphasizes the pivotal role of perceptual losses in distilling high-level semantic
attributes that transcend basic pixel-wise fidelity. By contrast, our full model (Our Full), which
integrates two main proposed components, achieves reconstructions with significantly improved
visual quality. These images exhibit sharper definition, better texture preservation, and more accurate
color reproduction. By effectively balancing low-level pixel information and high-level semantic
features, our comprehensive approach yields reconstructions that closely resemble the original
forgotten samples. Further ablation studies on federated aggregation methods, auxiliary datasets,
dimensionality reduction techniques, and the hyperparameter β are provided in Appendix E.

5 CONCLUSION

In this paper, we expose a critical privacy vulnerability in FU by proposing a novel reconstruction
attack that exploits gradient differences used as PoFU. Our proposed IGF leverages the latent
correlations between gradient differences and forgotten samples to reconstruct large-scale private
data from individual PoFU. Through extensive experiments, we demonstrate that our attack achieves
high-fidelity reconstruction, exposing the inadequacy of existing FU safeguards. To counter this
threat, we introduce an orthogonal obfuscation defense that disrupts the reconstruction process,
forcing inverted images into fixed noise patterns that resist reconstruction. Our findings underscore
the fragility of current FU mechanisms against gradient-based and gradient-difference-based attacks,
highlighting the urgent need for robust defenses and motivating further exploration of secure FU
strategies.
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ETHICS STATEMENT

This research adheres to the ICLR Code of Ethics, which all authors have read and committed to
follow during the submission process. The study involves analyzing potential privacy vulnerabilities
in Federated Unlearning (FU) systems, specifically focusing on the reconstruction of forgotten data
using gradient differences as Proof of Federated Unlearning (PoFU). While the work aims to enhance
privacy protections by identifying and mitigating these vulnerabilities, it raises concerns regarding
privacy and security issues.

The proposed Inverting Gradient difference to Forgotten data (IGF) attack framework and the
orthogonal obfuscation defense mechanism were developed using publicly available benchmark
datasets (e.g., CIFAR-10, MNIST) and do not involve human subjects or real-world personal data.
However, the theoretical capability of reconstructing forgotten samples could have implications if
applied to sensitive data, potentially leading to privacy breaches. To address this, we emphasize
that our defense mechanism is designed to preserve PoFU verification utility while preventing such
reconstructions, thereby supporting compliance with data privacy regulations like GDPR.

REPRODUCIBILITY STATEMENT

We have made every effort to ensure the reproducibility of our work. The details of the model
architecture, training process, and hyperparameters are provided in Section 4.1 and Appendix F. A
complete description of the experimental setup, including datasets, models, and evaluation metrics,
is included in Section 4.1 and Appendix C. Algorithmic details and proofs of theoretical claims are
presented in Appendix H.

This study adheres to the principles of open science, emphasizing transparency and accessibility in
research. The source code accompanying this work is publicly available on Anonymous GitHub
at https://anonymous.4open.science/r/IGF. The repository provides artifact instruc-
tions, dependencies, core codes (e.g., data, models, evaluation), and scripts, in compliance with
ICLR’s reproducibility policy.
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Verifiably Forgotten? Gradient Differences Still Enable Data Reconstruction in
Federated Unlearning
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A DISCUSSION AND LIMITATIONS

To the best of our knowledge, IGF framework is the first to exploit gradient differences as an attack
surface in federated unlearning (FU). Previous reconstruction attacks in machine learning and feder-
ated learning (FL) (Zhu et al., 2019; Geiping et al., 2020; Sun et al., 2024; Wu et al., 2023) directly
leverage sample-level gradients, which inherently contain richer sample information. Currently, the
only available baseline for reconstruction attacks in FU is GIAMU (Hu et al., 2024), which relies on
white-box access to both the original and unlearned models and overlooks the privacy vulnerabilities
arising from gradient differences sharing during verification. Our work addresses this gap by demon-
strating that an honest-but-curious adversary with partial prior knowledge can reconstruct forgotten
samples by inverting gradient differences. Additionally, in extreme scenarios, such as a black-box
setting where the adversary lacks prior knowledge or cannot exploit the directionality of gradient
differences, the attack’s complexity increases significantly, making the reconstruction of forgotten
data largely unexplored.

B TECHNICAL REFERENCE MATERIALS

This section provides essential technical references to support the understanding and implementation
of the proposed Inverting Gradient difference to Forgotten data (IGF) framework. Table 3 consolidates
key notations and equations used throughout the paper, offering a concise reference for readers to
interpret the methodology and results. Complementing this, the pseudocode (Algorithm 1) outlines
the IGF framework’s procedural steps, facilitating a clear and reproducible depiction of the attack
mechanisms. Together, these materials enhance the accessibility of the technical content, helping to
engage with the proposed methods efficiently.

Table 3: Mathematical notations

Notation Description Notation Description
C Set of Clients D Global Dataset
H The Number of Clients M Original Global Model

uM Unlearned Global Model g Stochastic Gradient
G Gradient Queried by Adversary ℓ Loss Function in Local Training
T Number of Global Rounds I Inversion Model

(x, y) Data Point B Batch Size
ϕ(·) Intermediate Feature Extractor ∆G,∆g Gradient Differences
d Model Size U Left Singular Vectors
V Right Singular Vectors r Random Vector
M Mask Matrix in Gradient Pruning ϵ Gaussian Noise
w Window Size in Gradient Smoothing ζ Parameter Deviation Constraint Radius
Ψ Gradient Differences Matrix V[k] Projection Matrix

C EXPERIMENTAL SETTINGS

C.1 DATASETS

We evaluate our proposed IGF method on the widely adopted CIFAR-10 and CIFAR-100
datasets (Krizhevsky et al., 2009), which serve as standard benchmarks in the fields of reconstruction
attacks and federated learning. CIFAR-10 consists of 60,000 color images (32× 32 pixels) spanning
10 categories, with 50,000 images allocated for training and 10,000 for testing, ensuring 6,000 images
per category. Similarly, CIFAR-100 mirrors this structure but encompasses 100 categories, each
containing 600 images, for a total of 60,000 images (50,000 training and 10,000 testing).

In addition, we assess our approach using the MNIST (LeCun et al., 1998) and Fashion-MNIST (Xiao
et al., 2017) datasets. MNIST comprises 70,000 grayscale images (28× 28 pixels) of handwritten
digits, split into 60,000 training and 10,000 testing images. Fashion-MNIST, conceived as a more
demanding counterpart to MNIST, also includes 70,000 grayscale images (28× 28 pixels) across 10
categories of fashion items, adhering to the same training-testing division.
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Algorithm 1 Inverting Gradient difference to Forgotten data (IGF) framework

Input: Original model M, unlearned model uM, auxiliary dataset Daux, PoFUs {∆g(ni)}i∈Cu ,
variance threshold ν; Training parameters of the inversion model: loss trade-off β, learning rate η,
epochs E.

Output: Reconstruction results {x̂(ni)}i∈Cu
.

▷ Inversion Model Training Phase
1: for each (xi, yi) ∈ Daux do ▷ Preparation of Training Dataset
2: Collects Gi,u Gi against Eq. (3),
3: Computes ∆Gi = Gi −u Gi and appends it into ∆G
4: end for
5: Construct Ψ← [∆G1, . . . ,∆Gm]⊤ where m = |Daux| ▷ Gradient Differences Projection via

SVD
6: Center Ψcen = Ψ− µ1⊤

m with mean vector µ = 1
m

∑
∆Gi

7: Perform SVD: U,Σ,V⊤ ← SVD(Ψcen)
8: Select k via cumulative variance ≥ ν as in Eq. (4)
9: Compute projected gradient differences ∆Gproj ← ΨV[k]

10: Initialize inversion model I(ω) ▷ Training Inversion Model
11: for epoch = 1 to E do
12: Optimize ω by minimizing Lattack = LM + βLP as in Eq. (5)–(7)
13: end for

▷ Privacy Exfiltration Phase
14: for each i ∈ Cu, A do
15: Receive PoFU ∆g(ni)

16: Construct Ψ(ni) from ∆g(ni)

17: Project ∆g(ni)
proj ← (Ψ(ni) − µ1⊤

m)V[k]

18: Reconstruct forgotten samples x̂(ni) as in Eq. (8)
19: end for
20: return {x̂(ni)}i∈Cu

To investigate the influence of the auxiliary dataset’s distribution relative to the forgetting dataset on
IGF’s reconstruction efficacy, we further employ the SVHN (Netzer et al., 2011) dataset. SVHN is a
real-world image dataset designed for machine learning applications, particularly digit recognition,
comprising over 600,000 labeled color images of house numbers sourced from Google Street View.
These images, typically in 32 × 32 RGB format, feature digits from 0 to 9 and are available in
single-digit or multi-digit sequence formats.

C.2 DETAILS OF METRICS

MSE measures the average squared difference between the original forgotten image and the recon-
structed image. It is widely used as a loss function in image processing tasks and image quality
assessment MSE = 1

N

∑N
i=1(xi − x̂i)

2, where xi is the pixel value of the original forgotten image
and x̂i is the pixel value of the reconstruction.

PSNR measures the quality of the reconstructed or compressed image relative to the forgotten image.
It is expressed in decibels (dB) and is inversely related to MSE—lower MSE values correspond to
higher PSNR values. PSNR = 10 · log10

(
R2

MSE

)
, Where R is the maximum pixel value.

LPIPS (Zhang et al., 2018) is a perceptual similarity metric designed to assess the perceptual quality
of images based on learned features from a neural network (typically a pretrained deep network
like VGG). Unlike MSE and PSNR, LPIPS is more aligned with human visual perception, focusing
on perceptual similarity rather than pixel-level accuracy LPIPS(x, x̂) = 1

L

∑L
l=1 ∥ϕl(x)− ϕl(x̂)∥22,

where L is the total number of layers used for feature extraction. ∥ · ∥2 is the Euclidean distance (L2
norm) between the feature maps.
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C.3 DETAILS OF COMMON DEFENSE MECHANISMS

This section outlines five defense mechanisms (Wu et al., 2023) designed to obfuscate shared gradients
and mitigate gradient-based reconstruction attacks through various perturbation techniques. Given an
input gradient vector g, each mechanism produces an obfuscated gradient vector g′. We adapt these
mechanisms to perturb shared gradient differences in FU.

(a) Sign Compression. The sign compression mechanism applies the sign operation to each compo-
nent of the gradient g, retaining only its sign (−1, 0, or 1) and discarding magnitude information.
This preserves the gradient’s direction while significantly reducing communication overhead, as only
sign bits are transmitted. By limiting the attacker’s access to sign information, this method increases
the difficulty of reconstructing forgotten data. The operation is defined as:

g′ = sign(g), where sign(gi) =


1, if gi > 0

−1, if gi < 0

0, if gi = 0

(10)

(b) Gradient Pruning. Gradient pruning sparsifies the gradient by retaining only the k components
with the largest absolute values, setting all others to zero. A binary maskM selectively preserves
these significant components. Widely used in FL to reduce communication costs, this method also
enhances privacy by limiting the attacker’s access to a subset of gradient components, complicating
the inference of forgotten data. The operation is formulated as:

g′ = g ⊙M, (11)

where ⊙ denotes element-wise multiplication, andM is the mask matrix.

(c) Gaussian Noise. This mechanism perturbs the gradient g by adding independent and identically
distributed Gaussian noise ϵ ∼ N (0, σ2I). Controlled by the standard deviation σ, the noise
introduces uncertainty to achieve differential privacy, obscuring precise gradient values and hindering
reconstruction of forgotten data. The operation is expressed as:

g′ = g + ϵ, ϵ ∼ N (0, σ2I). (12)

(d) Gradient Perturbation. This method perturbs the gradient by adding noise proportional to the
gradient’s magnitude, applying larger perturbations to dimensions with greater gradient values. The
perturbed gradient is defined as:

g′ = g + (N (0, I)× scale)× (|g| × factor) , (13)

whereN (0, I) is a standard normal random tensor, scale determines the base perturbation magnitude,
and factor adjusts the sensitivity of the perturbation to the gradient’s amplitude.

(e) Gradient Smoothing. Gradient smoothing mitigates high-frequency variations in the gradient by
applying a moving average over the feature dimensions, blending the result with the original gradient.
The operation is formulated as:

g′ = reshape
(
(1− αgs)g

flat + αgs ·MAw(g
flat)

)
, (14)

where gflat is the flattened gradient, MAw denotes the moving average with window size w, and
αgs ∈ [0, 1] controls the smoothing intensity.

D MORE COMPREHENSIVE BASELINE COMPARISON

D.1 COMPARISON WITH LEARNING-BASED SOTA

The learning-based SOTA method, Learning To Invert (LTI) (Wu et al., 2023), leverages gradients
from an auxiliary dataset as inputs for training the inversion model, incorporates hash-based dimen-
sionality reduction, and employs mean squared error (MSE) as the loss function. Our proposed IGF
surpasses LTI in several key aspects:

Auxiliary Sample Efficiency. Under the same CIFAR-10 dataset, IGF requires ∼ 10, 000 auxiliary
samples to train the inversion model, whereas LTI demands ∼ 50, 000 samples, demonstrating
superior efficiency in data utilization.
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Loss Function Innovation. Our composite loss function explicitly optimizes both pixel-level
accuracy and high-level semantic fidelity. Extensive ablation studies validate its pivotal role in
enhancing reconstruction quality (Figure 6(d)), which is far beyond simple MSE loss used in prior
works (Wu et al., 2023; Hu et al., 2024) (Figure 6(c)).

Input Reduction for Inversion Model. The gradient difference derived from large-scale global
models like ResNet-20 exhibits 269, 722 dimensions. This high-dimensional output serves as input
for inversion models, significantly increasing computational complexity. As detailed in Section E.5,
our SVD-based approach outperforms hash-based dimensionality reduction (Wu et al., 2023) in both
dimensionality reduction efficiency (Table 10) and numerical reconstruction accuracy (Figure 10).

D.2 COMPARISON WITH OPTIMIZATION-BASED SOTA

Notably, few baseline attacks are directly comparable for FU reconstruction, as most existing methods
either: i) Process gradients from a single model, or ii) Compare differences between two models.
To enable fair comparison, we adapt input formats and optimization procedures of DLG (Zhu et al.,
2019) to serve as baseline. The adapted algorithm is named DLGD (Deep Leakage from Gradient
Difference) and presented in Algorithm 2.

Algorithm 2 Deep Leakage from Gradient Difference (DLGD).
Input: Gradient difference ∆g; Colluding client who can compute the gradients on original

model M(·;θT ) and unlearned model uM(·;θ′)
Output: private forgotten data x,y
The honest-but-curious auditor A executes:

1: x′
1 ← N (0, 1) , y′

1 ← N (0, 1) ▷ Initialize dummy inputs and labels.
2: for i← 1 to Niter do
3: Query ∇θℓ

(
M(x′

i;θ
T ),y′

i

)
and∇θℓ

(u
M(x′

i;θ
′),y′

i

)
from colluding client.

4: ∆g′
i ← ∇θℓ

(
M(x′

i;θ
T ),y′

i

)
−∇θℓ

(u
M(x′

i;θ
′),y′

i

)
▷ Compute dummy gradient

difference.
5: Di ← ||∆g′

i −∆g||2
6: x′

i+1 ← x′
i − η∇x′

i
Di , y′

i+1 ← y′
i − η∇y′

i
Di ▷ Update data to match gradient difference.

7: end for
8: return x′

n+1,y
′
n+1

Our experiments incorporating optimization-based SOTA (DLGD) demonstrate that IGF achieves
lower communication overhead and superior reconstruction performance.

Communication Complexity. As illustrated in Table 4, IGF incurs a fixed number of gradient
differences from offline queries on the auxiliary dataset and zero online queries for reconstructing
any number of forgotten samples in FU. Conversely, DLGD eliminates offline query overhead but
scales linearly with the number of samples under a fixed iteration count Niter.

Table 4: Comparison of offline and online computational complexity.

Method Offline Online
Optimization-based SOTA (DLGD) 0 ∼ 2×Niter × θ ×Nu

Our proposed IGF ∼ 2×Naux × θ 0

Naux ≈ thousands, Niter ≈ hundreds, θ = model size and Nu is the number of forgotten samples to be
reconstructed.

Superior Reconstruction Accuracy. We evaluate DLGD’s reconstruction performance across
varying iteration counts (Niter = 100, 200, 300, 500) in Table 5. The optimal numerical reconstruction
is observed at Niter = 200. Nonetheless, IGF consistently outperforms DLGD in reconstruction
quality across all evaluated Niter values.

Furthermore, visualizations of DLGD’s reconstructed samples in Figure 7 illustrate its inability to
extract meaningful signals from gradient differences, resulting in visually degraded outputs resembling
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Table 5: Reconstruction performance of IGF vs. DLGD with different iterations Niter.

Metric IGF DLGD(100) DLGD(200) DLGD(300) DLGD(500)
MSE ↓ 0.0211 0.5378 0.4494 0.7022 1.6185
PSNR ↑ 17.19 2.6935 3.4730 1.5349 -2.0914
LPIPS ↓ 0.3261 0.4142 0.3855 0.4232 0.4779

random noise. This limitation stems from the challenges in optimizing randomly generated dummy
gradient differences to recover forgotten samples, aligning with observations in Ju et al. (2025). Thus,
directly applying optimization-based methods to gradient differences yields suboptimal reconstruction
performance.

Original DLGD(100) DLGD(200) DLGD(300) DLGD(500) IGF (Our)

Figure 7: Reconstruction images of IGF vs. DLGD with different iterations Niter.

This observation aligns with our perspective: gradient differences for the same sample, com-
pared to gradients, contain limited and mixed signals, making reconstruction more challenging.

Efficient Large-Scale Reconstruction. We further quantify runtime overhead (in seconds) for
reconstructing varying numbers of forgotten samples (Nu), with Niter = 200. Table 6 highlights
IGF’s scalability, amortizing its fixed 3,020-second training overhead across samples. In contrast,
DLGD’s per-sample optimization leads to linear runtime growth with Nu.

Table 6: Reconstruction runtime (in seconds) of IGF and DLGD for varying forgotten samples Nu,
assuming Niter = 200.

Nu = 0 Nu = 50 Nu = 200 Nu = 400 Nu = 600 Nu = 800

IGF 3020 3045 3220 3320 3420 3520
DLGD 0 3300 13200 26400 39600 52800

E ADDITIONAL ABLATION STUDIES

E.1 RECONSTRUCTION PERFORMANCE AGAINST DEFENSE MECHANISMS ON ResNet20

To further validate the robustness and generalizability of IGF, we conducted additional ablation
studies evaluating its performance against common defense mechanisms using ResNet20 as the global
model backbone. As shown in Table 7, we assessed the IGF attack against five common defense
mechanisms. Without defenses, our attack achieves MSE=0.04, PSNR=13.51, and LPIPS=0.43 on
CIFAR-10. With defenses applied, the attack remains highly effective, with MSE ranging from 0.04
to 0.06, PSNR from 12.06 to 13.51, and LPIPS from 0.43 to 0.54, indicating that these defenses fail
to disrupt our attack significantly. This aligns with our conclusion that current defense mechanisms
that disrupt our attack significantly are inadequate against gradient-difference-based reconstruction
attacks, underscoring the need for our proposed orthogonal obfuscation defense.
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Table 7: Reconstruction performance across three metrics at five common defense mechanisms on
ResNet20.

Defense Method None Gradient Pruning Sign Compression Gauss Noise Gradient Perturb Gradient Smooth
0.7 0.8 0.9 0.001 0.1 0.01 0.1

MSE ↓ 0.0445 0.0585 0.0584 0.0585 0.0445 0.0607 0.0585 0.0581
PSNR ↑ 14.05 12.3307 12.33 12.3254 13.5144 12.0673 12.3270 12.3275
LPIPS ↓ 0.4607 0.5272 0.5316 0.5364 0.4389 0.5452 0.5345 0.5357

Figure 8: The reconstruction performance under different federated aggregation methods.

E.2 IMPACT OF DIFFERENT FEDERATED AGGREGATION METHODS

We investigated how three federated aggregation methods, including FedAvg (McMahan et al., 2017),
FedProx (Li et al., 2020), and FedOpt (Reddi et al., 2020), affect the performance of reconstruction
attacks in FU scenarios. Figure 8 illustrates the performance of our attack method across various
aggregation algorithms commonly used in FL systems. The results demonstrate that while aggregation
methods can influence reconstruction quality, our attack remains effective across different techniques.
When examining more sophisticated aggregation methods like FedProx and FedOpt, we observe
slightly different reconstruction patterns, but the overall attack effectiveness remains consistent.

E.3 IMPACT OF DIFFERENT DISTRIBUTIONS OF AUXILIARY DATASETS

We select SVHN (Netzer et al., 2011) as the auxiliary dataset for out-of-distribution (OOD) tasks.
Compared to CIFAR-10, SVHN exhibits entirely distinct visual features and semantic categories,
rendering it a dataset with a markedly different distribution. To quantify the degree of OOD in the
auxiliary dataset, we introduce the variable α. The auxiliary dataset consists of 10, 000 samples, with
SVHN comprising a proportion α and CIFAR-10 comprising 1− α. Specifically, when α = 0, the
auxiliary dataset is in-distribution with the forgotten dataset, while α = 1 corresponds a fully OOD
auxiliary dataset.

Table 8: The results of ConvNet as the FL model at different degrees of OOD.

α 0.0 0.1 0.3 0.5 0.7 0.9 1.0

MSE ↓ 0.0211 0.02066 0.0219 0.0236 0.0261 0.0306 0.0395
PSNR ↑ 17.1947 17.3447 17.1221 16.8155 16.449 15.829 14.837
LPIPS ↓ 0.3261 0.373 0.387 0.408 0.436 0.489 0.55
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Table 9: The results of ResNet20 as the FL model at different degrees of OOD.

α 0.0 0.1 0.3 0.5 0.7 0.9 1.0

MSE ↓ 0.0445 0.0598 0.05991 0.05997 0.06034 0.0615 0.06404
PSNR ↑ 14.05 12.7890 12.7867 12.7682 12.762 12.6687 12.50563
LPIPS ↓ 0.4607 0.5199 0.52849 0.53568 0.54463 0.5456 0.57495

We present the numerical results of ConvNet and ResNet20 serving as FL model at different degrees
of OOD in Table 8 and 9, respectively. Based on the above experimental results, we can draw
the following conclusions: Higher OOD degrees (α approaching 1) result in relatively poorer
reconstruction performance, as the auxiliary data becomes semantically and categorically unrelated
to the forgotten dataset. When the auxiliary dataset includes a proportion of in-distribution data (e.g.,
α = 0.1, 0.3, 0.5, the reconstruction quality of our proposed IGF method remains high.
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Figure 9: The reconstruction performance with different auxiliary dataset sizes.

E.4 IMPACT OF DIFFERENT AUXILIARY DATASET SIZES

We investigate the influence of varying auxiliary dataset sizes on the efficacy of our attack method. As
illustrated in Figure 9, we incrementally scale the dataset from 500 to 10,000 samples. Experimental
results reveal that performance metrics stabilize when the auxiliary dataset comprises approximately
8,000 to 10,000 samples, demonstrating that our method achieves efficient and robust performance
without requiring extensive auxiliary data. Notably, even with a modest dataset size, our proposed
attack method effectively leverages available knowledge to deliver high-quality image reconstruction.

E.5 COMPARATIVE ABLATION STUDY OF DIMENSIONALITY REDUCTION METHODS

Figure 10: Comparison of the reconstruction effectiveness with applying SVD and Hash dimensional-
ity reduction.
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To gain a deeper understanding of the effectiveness of dimensionality reduction methods, we com-
pared the performance of Hash-based dimensionality reduction and Singular Value Decomposition
(SVD) in terms of reduction quality and reconstruction results. Hash-based dimensionality re-
duction (Weinberger et al., 2009) is a vector compression method that relies on random projection,
mapping high-dimensional gradient differences to a lower-dimensional space through a sparse random
matrix. Specifically, a sparse matrix is constructed where each high-dimensional vector component is
randomly assigned to a lower-dimensional target dimension, and each reduced dimension represents
the cumulative sum of the corresponding high-dimensional gradient differences. This approach is
computationally efficient and well-suited for rapidly compressing gradient differences. However,
its randomness disregards the inherent structure of the gradient differences, potentially leading to
significant information loss.

Method Size
Original 269722

Hash 134861
SVD 433

Table 10: Comparison of the ef-
fectiveness of SVD and Hash for
gradient differences reduction.

As shown in Figure 10, SVD outperforms the reconstruction after
Hash dimensionality reduction in both reconstruction effects, and
as shown in Table 10 achieves more significant dimensionality
reduction by extracting only key information. SVD-based dimen-
sionality reduction is a data-driven method that decomposes the
covariance matrix of the gradient differences to extract principal
component directions as the projection basis. SVD dynamically
selects the number of dimensions to retain a substantial portion of
the variance (e.g., 95%), ensuring that the reduced results capture
the primary patterns of the original gradient differences.

SVD outperforms Hash-based reduction because it prioritizes the
retention of critical information while minimizing the impact of
irrelevant noise. Furthermore, in reconstruction tasks, SVD-preserved gradient differences maintain
structured features, enabling inversion models to more effectively learn the mapping from lower-
dimensional features to the original data, resulting in higher-quality reconstructed images. Conversely,
Hash-based reduction disrupts the gradient differences structure through random mixing, making
it challenging for reconstruction networks to disentangle useful information, which often leads to
blurry or distorted reconstructed images.

E.6 COMPARATIVE ABLATION STUDY OF DIFFERENT β PARAMETERS

To investigate the role of the parameter β in the loss function, which governs the trade-off between
pixel-level accuracy and perceptual quality, we conduct an ablation study to assess its impact on
reconstruction attack performance. Specifically, we evaluate the effect of varying β ∈ {0.1, 1.0, 2.0}
on three key metrics: MSE, PSNR, and LPIPS. As shown in Figure 11, increasing β reveals a clear
trade-off: pixel-level accuracy degrades, as indicated by worsening MSE, and perceptual quality
diminishes, as reflected by deteriorating LPIPS, while PSNR exhibits a peak at an intermediate
β before declining. These findings underscore β’s critical role in mediating the balance between
pixel-wise fidelity and high-level perceptual features.
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Figure 11: The reconstruction performance under different β.
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F INVERSION MODEL ARCHITECTURE

As illustrated in Figure 12, our pixel-level inversion model features a carefully designed architecture
comprising multiple Conv2d and BatchNorm2d layers. We incorporate PixelShuffle for effective
upsampling, minimizing artifacts in reconstructed results. A linear layer paired with an initial
Reshape operation enhances input processing, while a final Sigmoid activation and Reshape ensure
high-quality output generation.

Input

Linear Layer

Reshape

Conv2d

PixelShuffle(2)

BatchNorm2d

Final Reshape

ReLU

Sigmoid

Conv2d

PixelShuffle(2)

BatchNorm2d

ReLU

Conv2d

BatchNorm2d

Conv2d

Figure 12: Architecture of the proposed pixel-level inversion model.

G ADDITIONAL RECONSTRUCTED IMAGES

This section showcases the forgotten images and their corresponding reconstructions across multiple
datasets, as presented in Figures 13, 14, and 15. In each figure, odd columns display the original
images, and even columns show our reconstructed results. Specifically, Figure 13 illustrates the
reconstruction results of IGF using ConvNet in the sample-level scenario on the MNIST and Fashion-
MNIST datasets. Due to the lower complexity of the MNIST series images, gradient information
can more effectively capture key features, resulting in reconstructed images that closely resemble
the originals. In contrast, Figure 14 presents the reconstruction results of IGF using ConvNet in the
sample-level scenario on the CIFAR-100 dataset. Despite the complex distribution of the CIFAR-100
dataset, IGF can still generate reconstructed images with a certain level of effectiveness. For the
scenario of class-level unlearning, Figure 15 presents the forgotten images and reconstruction results
on CIFAR-10 for the unlearned class (car).

1 2        3 4        5 6       7 8 1 2        3 4        5 6       7  8

(a) MNIST (b) Fashion-MNIST

Figure 13: Forgotten and reconstructed images on MNIST and Fashion-MNIST within 1,000 ran-
domly forgotten samples.
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1 2 3 4 5 6 7 8 9 10 

Figure 14: Forgotten and reconstructed images on CIFAR-100.

1 2 3 4 5 6 7 8

Figure 15: Forgotten and reconstructed images on CIFAR-10 for the unlearned class (car).
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H THEORETICAL ANALYSIS OF ORTHOGONAL OBFUSCATION DEFENSE

We aim to construct a mapping f : ∆g 7→ ∆gobf such that:

(∆gobf)⊤∆g = 0, ∥∆gobf∥2 = ∥∆g∥2. (15)

Let the original gradient difference vector be ∆g ∈ Rd, and let r ∼ N (0, Id) be a random Gaussian
vector. Define

u = r − r⊤∆g

∥∆g∥22
∆g, ∆gobf = ∥∆g∥2 ·

u

∥u∥2
. (16)

Orthogonality.

(∆gobf)⊤∆g =

(
∥∆g∥2 ·

u

∥u∥2

)⊤

∆g =
∥∆g∥2
∥u∥2

· (u⊤∆g). (17)

Since

u⊤∆g =

(
r − r⊤∆g

∥∆g∥22
∆g

)⊤

∆g = r⊤∆g − r⊤∆g

∥∆g∥22
·∆g⊤∆g = r⊤∆g − r⊤∆g = 0, (18)

we obtain
(∆gobf)⊤∆g = 0. (19)

Norm Preservation.

∥∆gobf∥2 =

∥∥∥∥∥∆g∥2 ·
u

∥u∥2

∥∥∥∥
2

= ∥∆g∥2 ·
∥∥∥∥ u

∥u∥2

∥∥∥∥
2

= ∥∆g∥2 · 1 = ∥∆g∥2. (20)

If u = 0, then

r =
r⊤∆g

∥∆g∥22
∆g ⇐⇒ r ∈ span(∆g). (21)

Since r ∼ N (0, Id) is drawn from a continuous distribution, the probability of r lying in the
one-dimensional subspace spanned by ∆g is zero for d > 1. Hence this case can be ignored in
practice.

∆gobf is orthogonal to ∆g and has the same norm.

The construction is based on Gram-Schmidt orthogonalization. A random Gaussian vector r is
chosen, and its projection onto ∆g is subtracted to yield u, which is guaranteed to be orthogonal
to ∆g. To ensure that the obfuscated vector preserves the same magnitude as the original one, u
is normalized to a unit vector and scaled by ∥∆g∥2. This guarantees both orthogonality and norm
preservation. The only degenerate case occurs if r is collinear with ∆g, but this event has probability
zero in continuous distributions and is negligible in practice.

I THE USE OF LARGE LANGUAGE MODELS (LLMS)

In the preparation of this paper, a large language model (LLM) was used solely for minor text
polishing and grammar corrections. The LLM did not contribute to research ideation, content
generation, or any other significant aspect of the work. All content, including the final text, has been
thoroughly reviewed and approved by the authors, who take full responsibility for its accuracy and
originality.
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