VERIFIABLY FORGOTTEN? GRADIENT DIFFERENCES STILL ENABLE DATA RECONSTRUCTION IN FEDERATED UNLEARNING

Anonymous authors

000

001

002

004

006

008 009 010

011

013

014

015

016

017

018

019

021

023

025

026

027

028

029

031

033 034

037

040

041

042

043

044

046

047

048

049

051

052

Paper under double-blind review

ABSTRACT

Federated Unlearning (FU) has emerged as a critical compliance mechanism for data privacy regulations, requiring unlearned clients to provide verifiable Proof of Federated Unlearning (PoFU) to auditors upon data removal requests. However, we uncover a significant privacy vulnerability: when gradient differences are served as PoFU, honest-but-curious auditors may exploit mathematical correlations between gradient differences and forgotten samples to reconstruct the latter. Such reconstruction, if feasible, would face three key challenges: (i) restricted auditor access to client-side data, (ii) limited samples derivable from individual PoFU, and (iii) high-dimensional redundancy in gradient differences. To overcome these challenges, we propose Inverting Gradient difference to Forgotten data (IGF), a novel learning-based reconstruction attack framework that employs Singular Value Decomposition (SVD) for dimensionality reduction and feature extraction. IGF incorporates a tailored pixel-level inversion model optimized via a composite loss that captures both structural and semantic cues. This enables efficient and high-fidelity reconstruction of large-scale samples, surpassing existing methods. To counter this novel attack, we design an orthogonal obfuscation defense that preserves PoFU verification utility while preventing sensitive forgotten data reconstruction. Experiments across multiple datasets validate the effectiveness of the attack and the robustness of the defense. The code is available at https://anonymous.4open.science/r/IGF.

1 Introduction

Federated Learning (FL) enables distributed entities, such as financial institutions, healthcare providers, and IoT networks, to collaboratively train models without sharing raw data. This decentralized approach mitigates risks associated with data transfer, enhancing privacy and security for data owners. However, regulations like the GDPR (Rosen, 2011; Pardau, 2018), which enshrine the *right to be forgotten*, pose a significant technical challenge for FL systems. Merely preventing raw data leaks is insufficient for compliance. Instead, the requirement to honor data subjects' requests for erasure (Article 17, GDPR) necessitates mechanisms to eliminate impacts resulting from specific personal data on the global models and demonstrate effective erasure. This challenge has spurred the development

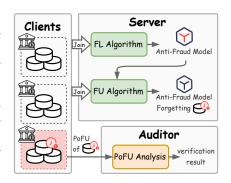


Figure 1: Auditing process in FU

of verifiable Federated Unlearning (FU) (Liu et al., 2020), a paradigm designed to verifiably forget the contribution of designated data from trained models.

Figure 1 illustrates a typical scenario where multinational financial institutions, acting as FL clients collaboratively train an anti-fraud model (Lindstrom, 2024). Subsequently, the auditor mandates all clients to forget the outdated transaction data using the FU algorithm and obtains proof of FU (PoFU) (Gao et al., 2024; Weng et al., 2024; Zuo et al., 2025; Salem et al., 2020) from the unlearned client. Given that auditors lack direct access to raw client data, they typically rely on PoFU as a

non-invasive auditing mechanism. In particular, PoFU often leverages gradient differences, defined as the gradient of the forgotten sample (e.g., outdated transactions here) computed on the original model minus that on the unlearned model. A sufficiently small L2 norm of this difference indicates successful forgetting (Gao et al., 2024).

However, most research (Wu et al., 2022; Wang et al., 2022; Zhong et al., 2025) primarily focuses on FU algorithm design, overlooking vulnerabilities to reconstruction attacks by third-party auditors (Boenisch et al., 2023; Le et al., 2023), especially when gradient differences serve as PoFU. Recent advances in reconstruction attacks have exposed critical vulnerabilities in centralized machine (un)learning. For instance, DLG (Zhu et al., 2019) showed that shared gradients can be inverted to reconstruct training data, while subsequent work (Geiping et al., 2020) highlighted privacy leakage risks from gradient sharing. More recently, unlearning inversion attacks (Hu et al., 2024) reconstruct forgotten data by only accessing the parameter deviations of the original and unlearned models. However, these approaches face three primary limitations when applying to FU scenarios: (i) they require white-box access to both models to compute parameter deviations, (ii) they struggle with large-scale data reconstruction due to limited, noisy gradient differences weakly linked to forgotten samples, requiring novel inversion methods, and (iii) the high dimensionality of parameter deviations or gradients differences increases the computational cost of inversion models. More crucially, as the auditor lacks access to client-side raw data (Thudi et al., 2022) and relies solely on PoFU to audit unlearning, there are additional complexities to be considered for reconstruction attack. Current reconstruction attacks target model parameters or gradients, but those exploiting gradient differences that are commonly used for PoFU remain underexplored. This gap motivates our research question:

Q: Can gradient differences, serving as PoFU, enable third-party auditors to reconstruct forgotten data? If so, how can high-fidelity, large-scale data reconstruction be achieved against high-dimensional gradient differences?

To address this, we propose a learning-based reconstruction attack for verifiable FU, termed Inverting Gradient difference to Forgotten data (IGF). To handle high-dimensional gradient differences, we employ Singular Value Decomposition (SVD) for dimensionality reduction, extracting essential features while eliminating redundancy, thus streamlining the input of the inversion model. We then design a pixel-level convolutional inversion model that learns the latent mapping between gradient differences and original samples, optimized via a composite loss function that balances structural and perceptual fidelity. This enables batch-wise reconstruction from individual PoFU, avoiding per-sample optimization overhead. Collectively, these components facilitate robust, large-scale reconstruction across benchmark datasets and global model architectures. Our contributions include:

- We identify gradient differences that serve as PoFU for a novel attack surface capable of high-fidelity data reconstruction. By formalizing an *honest-but-curious* third-party auditor, we demonstrate that passive observers can reconstruct forgotten samples during the critical FU auditing phase (Li et al., 2022).
- We propose the IGF attack framework, integrating SVD with a pixel-level inversion network optimized via a composite loss function. Extensive experiments and ablation studies show that IGF outperforms state-of-the-art (SOTA) learning-based (LTI (Wu et al., 2023)) and optimization-based (GIAMU (Hu et al., 2024), DLGD (Zhu et al., 2019)) methods, achieving superior reconstruction fidelity and computational efficiency.
- We further propose an orthogonal obfuscation defense mechanism to mitigate IGF and validate defense efficacy through rigorous theoretical analysis and comprehensive experiments.

2 RELATED WORK

Federated Unlearning (FU). FU has recently emerged to address the challenge of selectively removing specific clients or data points from a trained FL model. This paradigm is driven by regulatory imperatives, such as the *right to be forgotten* under GDPR, as well as the inherent dynamism of real-world FL deployments. Existing approaches can be categorized into two main types: *Exact Federated Unlearning (EFU)* (Liu et al., 2022) and *Approximate Federated Unlearning (AFU)* (Halimi et al., 2022). EFU achieves thorough removal by retraining the model from scratch on the retained dataset, ensuring that the influence of the target data is completely eliminated. However, this method is computationally intensive and may be impractical for large-scale FL systems. AFU

aims to reduce computational overhead by approximating the unlearning process through applying gradient ascent to maximize the loss. For instance, Wang et al. (2024) propose that clients estimate the gradient influence of the data to be removed using local retained data and then apply gradient ascent to negate this influence. A subsequent fine-tuning step is introduced to preserve overall utility. Similarly, Xu et al. (2024) employ model explanations to identify key parameter channels associated with the forgotten categories and update only those channels in reverse. Meanwhile, Gu et al. (2024) pre-generate linear transformation parameters related to the target data during the training phase and applies reverse transformations to eliminate unwanted effects. The above methods balance effectiveness and efficiency. Some studies (Chen et al., 2025; Wang et al., 2025) explore how to diminish the model's utility by poisoning or cause excessive forgetting through malicious requests, yet overlook potential reconstruction vulnerabilities during the verification stage.

Gradient Inversion Attack. Recent studies have leveraged gradient inversion techniques to reconstruct clients' private training data in FL (Zhang et al., 2023; Jeon et al., 2021; Fang et al., 2023; Sun et al., 2024; Wu et al., 2023). Zhang et al. (2023) demonstrate the feasibility of generative gradient inversion in FL by constructing an over-parameterized convolutional neural network that satisfies gradient-matching requirements. Similarly, Jeon et al. (2021) leverage pre-trained generative models as priors to circumvent direct optimization in high-dimensional pixel space and reconstructs data via latent-space parameter optimization. Additionally, Fang et al. (2023) adopt a staged optimization strategy for the intermediate feature domains of generative models, progressively optimizing from the latent space to intermediate layers to enhance attack effectiveness. Sun et al. (2024) introduce an anomaly detection model to capture latent distributions from limited data, using it as a regularization term to improve attack performance. In the context of FU, Hu et al. (2024) reveal the feature and label information by analyzing differences between the original and unlearned models.

Therefore, traditional gradient inversion attacks focus on reconstructing training data directly from original gradients provided by clients in standard FL scenarios. In contrast, our work targets **gradient differences** used as PoFU, where the attacker must reconstruct deleted data from indirect and variant gradient information. *This introduces unique challenges: gradient differences contain limited and mixed signals with weaker correlations to the forgotten samples, requiring fundamentally different inversion methods.*

3 METHODOLOGY

3.1 PROBLEM FORMULATION

Federated Learning (FL). In the FL framework with H clients, each client i ($i \in [H]$) holds a local dataset \mathcal{D}_i containing $|\mathcal{D}_i|$ samples. Let \mathbf{M} denote the original global model parameterized by $\boldsymbol{\theta}$, and consider a supervised learning objective that minimizes the empirical loss over the federated dataset $\mathcal{D} = \bigcup_{i=1}^H \mathcal{D}_i : \mathcal{L}(\boldsymbol{\theta}) = \frac{1}{|\mathcal{D}|} \sum_{(x,y) \in \mathcal{D}} \ell(\mathbf{M}(x;\boldsymbol{\theta}),y)$. The stochastic gradient for a data sample $(x_s,y_s) \in \mathcal{D}$ is $\mathbf{g}_s = \nabla_{\boldsymbol{\theta}} \ell(\mathbf{M}(x_s;\boldsymbol{\theta}),y_s)$. Federated Averaging (FedAvg) (McMahan et al., 2017) operates through T global rounds. At each global round $t \in \{0,1,\ldots,T-1\}$, the server broadcasts the current global model parameters $\boldsymbol{\theta}^t$ to all clients. Each client i updates $\boldsymbol{\theta}^t$ via local SGD on \mathcal{D}_i : $\boldsymbol{\theta}_i^t = \boldsymbol{\theta}^t - \boldsymbol{\eta} \cdot \nabla_{\boldsymbol{\theta}} \mathcal{L}_i(\boldsymbol{\theta}^t)$, where $\mathcal{L}_i(\boldsymbol{\theta}^t) = \frac{1}{|\mathcal{D}_i|} \sum_{(x,y) \in \mathcal{D}_i} \ell(\mathbf{M}(x;\boldsymbol{\theta}^t),y)$. Server aggregates via weighted averaging:

$$\boldsymbol{\theta}^{t+1} = \sum_{i=1}^{H} \frac{|\mathcal{D}_i|}{|\mathcal{D}|} \boldsymbol{\theta}_i^t, \quad |\mathcal{D}| = \sum_{i=1}^{H} |\mathcal{D}_i|. \tag{1}$$

The final global model parameter after T rounds is θ^T .

FU Scenarios. Let $C_n \subseteq [H]$ denote normal clients retaining their original datasets $\{\mathcal{D}_j\}_{j \in C_n}$, and $\mathcal{C}_u = [H] \setminus \mathcal{C}_n$ represent unlearned clients modifying their local datasets $\{\mathcal{D}_i\}_{i \in \mathcal{C}_u}$. Following Zhong et al. (2025), we formalize three scenarios: (i) sample-level unlearning: For each client $i \in \mathcal{C}_u$, partition \mathcal{D}_i into retained \mathcal{D}_i^r and forgotten subsets $\mathcal{D}_i^f = \mathcal{D}_i \setminus \mathcal{D}_i^r$; (ii) class-level unlearning: Each client $i \in \mathcal{C}_u$ removes all samples of target class y^f , yielding $\mathcal{D}_i^f = \{(x,y) \in \mathcal{D}_i \mid y = y^f\}$ with $\mathcal{D}_i^r = \mathcal{D}_i \setminus \mathcal{D}_i^f$; (iii) client-level unlearning: Each client $i \in \mathcal{C}_u$ sets $\mathcal{D}_i^f = \mathcal{D}_i$ and $\mathcal{D}_i^r = \emptyset$. We denote the unlearned global model as ${}^u\mathbf{M}$, the forgotten dataset as $\mathcal{D}^{\text{forgotten}} = \bigcup_{i \in \mathcal{C}_u} \mathcal{D}_i^f$ and the retained dataset as $\mathcal{D}^{\text{retained}} = (\bigcup_{j \in \mathcal{C}_n} \mathcal{D}_j) \cup (\bigcup_{i \in \mathcal{C}_n} \mathcal{D}_i^r)$.

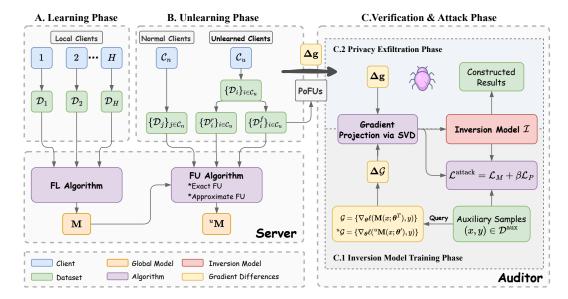


Figure 2: Schematic overview of IGF framework. **A. Learning Phase**: Clients collaboratively train the global model via FL. **B. Unlearning Phase**: The unlearned clients are required to forget specific data contributions and submit the proof of federated unlearning (PoFU). **C. Verification & Attack Phase**: The *honest-but-curious* auditor \mathcal{A} verifies PoFUs, while attempting to infer forgotten data using a pre-trained inversion model \mathcal{I} .

FU Methods. We implement two mainstream FU approaches: (i) EFU retrains the global model on dataset $\mathcal{D}^{\text{retained}}$ from scratch, minimizing $\sum_{(x,y)\in\mathcal{D}^{\text{retained}}}\ell(\mathbf{M}(x;\boldsymbol{\theta}),y)$. This method precisely removes contributions of $\mathcal{D}^{\text{forgotten}}$ from the global model. (ii) AFU performs projected gradient ascent and constrains maximization on $\mathcal{D}^{\text{forgotten}}$. For each client $i\in\mathcal{C}_u$, it computes $\boldsymbol{\theta}_i'=\boldsymbol{\theta}^T+\eta_u\cdot\nabla_{\boldsymbol{\theta}}\mathcal{L}_i'(\boldsymbol{\theta}^T)$ where $\mathcal{L}_i'(\boldsymbol{\theta}^T)=\frac{1}{|\mathcal{D}_i^I|}\sum_{(x,y)\in\mathcal{D}_i^I}\ell^u(\mathbf{M}(x;\boldsymbol{\theta}^T),y)$ but maintains $\|\boldsymbol{\theta}_i'-\boldsymbol{\theta}^T\|_2\leq\zeta$, where ζ is the parameter deviation constraint. Then the server aggregates the unlearned local model parameters:

$$\boldsymbol{\theta}' = \sum_{i \in \mathcal{C}_u} \frac{|\mathcal{D}_i^f|}{|\mathcal{D}^{\text{forgotten}}|} \boldsymbol{\theta}_i', \quad |\mathcal{D}^{\text{forgotten}}| = \sum_{i \in \mathcal{C}_u} |\mathcal{D}_i^f|, \tag{2}$$

and fine-tunes ${}^{u}\mathbf{M}$ with $\boldsymbol{\theta}'$ on $\mathcal{D}^{\text{retained}}$.

Verification in FU. Each unlearned client $i \in \mathcal{C}_u$ locally computes PoFU of gradient differences $\Delta \mathbf{g}^{(n_i)} = \left\{ \Delta \mathbf{g}_j^{(n_i)} = \nabla_{\boldsymbol{\theta}} \ell \left(\mathbf{M}(x_j; \boldsymbol{\theta}^T), y_j \right) - \nabla_{\boldsymbol{\theta}} \ell \left({}^u \mathbf{M}(x_j; \boldsymbol{\theta}'), y_j \right) | (x_j, y_j) \in \mathcal{D}_i^f \right\}$. Auditor receives PoFUs $\Delta \mathbf{g} = \left\{ \Delta \mathbf{g}^{(n_i)} \right\}_{i \in \mathcal{C}_u}$ and validates unlearning by checking each $\|\Delta \mathbf{g}_j^{(n_i)}\|_2 \leq \tau$ with predefined threshold τ (Gao et al., 2024). The necessity of the gradient differences in verifiable FU lies in ensuring that a data point (x, y) is included in the training dataset of the original model \mathbf{M} but excluded from that of the unlearned model ${}^u \mathbf{M}$.

Threat Assumption. We model the auditor, denoted \mathcal{A} , as an *honest-but-curious* entity that strictly follows the FU protocol but seeks to infer private client data. Consistent with prior reconstruction attacks (Wu et al., 2023; Hu et al., 2024; Geiping et al., 2020; Zhu et al., 2019), \mathcal{A} possesses an auxiliary dataset \mathcal{D}^{aux} . Operating in a gray-box setting, \mathcal{A} lacks knowledge of the global model's architecture but can collude with the server to query the flattened gradient for arbitrary samples from both the original model \mathbf{M} , and the unlearned model ${}^u\mathbf{M}$. During the exploitation phase, \mathcal{A} passively collects PoFUs $\Delta \mathbf{g}$ from unlearned clients, and endeavors to reconstruct the forgotten samples.

3.2 Framework of IGF

We adopt a learning-based inversion model to invert gradient differences to forgotten samples during the verification phase of FU. The main schematic of IGF is shown in Figure 2, and the formalized details are as follows:

Inversion Model Training Phase. (i) Preparation of Training Dataset. To prepare the training data for inversion model \mathcal{I} , for each data point (x_i, y_i) in auxiliary dataset \mathcal{D}^{aux} , the auditor \mathcal{A} collects:

$$\begin{cases} \mathcal{G}_i = \{ \nabla_{\boldsymbol{\theta}} \ell(\mathbf{M}(x; \boldsymbol{\theta}^T), y_i) \}_{(x_i, y_i) \in \mathcal{D}^{\text{aux}}} \\ {}^{u}\mathcal{G}_i = \{ \nabla_{\boldsymbol{\theta}} \ell({}^{u}\mathbf{M}(x; \boldsymbol{\theta}'), y_i) \}_{(x_i, y_i) \in \mathcal{D}^{\text{aux}}}, \end{cases}$$
(3)

where \mathcal{G}_i and ${}^u\mathcal{G}_i$ denote the sets of flatten gradients queried from \mathbf{M} and ${}^u\mathbf{M}$, respectively. Gradient differences $\Delta\mathcal{G} = \{\Delta\mathcal{G}_i = \mathcal{G}_i - {}^u\mathcal{G}_i | (x_i, y_i) \in \mathcal{D}^{\text{aux}}\}$ form a set of d-dimensional vectors, with d as the number of trainable parameters.

(ii) **Gradient Differences Projection via SVD**. To extract the key features and address redundancy caused by the high dimensionality of gradient differences, \mathcal{A} projects $\Delta \mathcal{G}$ to a lower-dimensional space using SVD. Let the m denote the number of samples in \mathcal{D}^{aux} , \mathcal{A} constructs a matrix $\Psi = [\Delta \mathcal{G}_1, \Delta \mathcal{G}_2, \dots, \Delta \mathcal{G}_m]^\top \in \mathbb{R}^{m \times d}$, where each row corresponds to a sample's gradient difference and $m \ll d$ typically holds. \mathcal{A} centers the gradient differences by subtracting the mean vector $\boldsymbol{\mu} = \frac{1}{m} \sum_{i=1}^{m} \Delta \mathcal{G}_i$, resulting in $\boldsymbol{\Psi}^{\text{cen}} = \boldsymbol{\Psi} - \boldsymbol{\mu} \mathbf{1}_m^\top$. Then \mathcal{A} then performs SVD on $\boldsymbol{\Psi}^{\text{cen}}$, yielding $\boldsymbol{\Psi}^{\text{cen}} = \mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^\top$ with $\mathbf{U} \in \mathbb{R}^{m \times m}$, $\mathbf{V} \in \mathbb{R}^{d \times d}$, and diagonal matrix $\boldsymbol{\Sigma}$ contains singular values $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_m \geq 0$. To preserve essential information while reducing dimensionality, \mathcal{A} selects the smallest k such that the cumulative explained variance exceeds a threshold ν :

$$k = \min \left\{ j \left| \sum_{i=1}^{j} \sigma_i^2 / \sum_{i=1}^{m} \sigma_i^2 \ge \nu \right\} .$$
 (4)

So \mathcal{A} gets the projection matrix $\mathbf{V}^{[k]} \in \mathbb{R}^{d \times k}$ denotes the first k columns of \mathbf{V} . And the projected gradient differences of $\mathcal{D}^{\mathrm{aux}}$ are computed as $\mathbf{\Delta}\mathcal{G}^{\mathrm{proj}} = \mathbf{\Psi}\mathbf{V}^{[k]} \in \mathbb{R}^{m \times k}$.

(iii) **Training Inversion Model**. A trains the inversion model, denoted as \mathcal{I} and parameterized by ω , to map projected gradient differences to samples in \mathcal{D}^{aux} by minimizing the composite loss function:

$$\mathcal{L}^{\text{attack}}(\boldsymbol{\omega}) = \mathcal{L}_M(\boldsymbol{\omega}) + \beta \mathcal{L}_P(\boldsymbol{\omega}), \tag{5}$$

where β trades off between pixel-level accuracy and perceptual quality. This design is common in image reconstruction tasks and can flexibly adjust the optimization objectives of the model to ensure that the reconstruction results are both accurate and natural. specifically, \mathcal{L}_M quantifies the structural pixel-level discrepancy between reconstructed image $\mathcal{I}(\Delta \mathcal{G}_i^{\text{proj}}; \omega)$ and ground truth image x_i :

$$\mathcal{L}_{M}(\boldsymbol{\omega}) = \frac{1}{m} \sum_{i=1}^{m} \| \mathcal{I}(\boldsymbol{\Delta} \mathcal{G}_{i}^{\text{proj}}; \boldsymbol{\omega}) - x_{i} \|_{2}^{2}.$$
 (6)

Similarly, we define \mathcal{L}_P , which measures the semantic similarity between the reconstructed and true images using a VGG-based feature extractor $\phi(\cdot)$:

$$\mathcal{L}_{P}(\boldsymbol{\omega}) = \frac{1}{m} \sum_{i=1}^{m} \|\phi\left(\mathcal{I}(\boldsymbol{\Delta}\mathcal{G}_{i}^{\text{proj}}; \boldsymbol{\omega})\right) - \phi\left(x_{i}\right)\|_{2}^{2}$$
(7)

Further, we elaborately designed the architecture of $\mathcal I$ to capture the latent mapping between gradient differences and images effectively. $\mathcal I$ employs a pixel-level convolutional network for progressive upsampling, which reduces artifacts in the reconstructed images. This design facilitates a nonlinear transformation from PoFU space to structured image space. Further architectural details are provided in Appendix $\mathbf F$.

Privacy Exfiltration Phase. Following the training phase, the auditor \mathcal{A} possesses the projection matrix $\mathbf{V}^{[k]}$ and the inversion model \mathcal{I} with parameter $\boldsymbol{\omega}$. Upon receiving PoFUs, for each PoFU $\Delta \mathbf{g}^{(n_i)}$ of each client $i \in \mathcal{C}_u$, \mathcal{A} constructs the matrix $\mathbf{\Psi}^{(n_i)} = \left[\Delta \mathbf{g}_1^{(n_i)}, \Delta \mathbf{g}_2^{(n_i)}, \ldots, \mathbf{g}_{n_i}^{(n_i)}\right]^{\mathsf{T}} \in \mathbb{R}^{n_i \times d}$, where n_i denotes the number of samples in \mathcal{D}_i^f . This matrix is then projected into a lower-dimensional space $\Delta \mathbf{g}^{(n_i)^{\mathrm{proj}}} = \mathbf{\Psi}^{(n_i)} \mathbf{V}^{[k]} \in \mathbb{R}^{n_i \times k}$. The batched reconstruction of projected gradient differences $\Delta \mathbf{g}^{(n_i)^{\mathrm{proj}}}$ is performed as follows:

271

272 273

274

275

276 277

278 279

280

281

282

283

284

285 286

287 288

289

290

291

292

293

295

296

297

298 299

300

301

303 304

305 306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

$$\hat{\mathbf{x}}^{(n_i)} = \{\hat{x}_j = \mathcal{I}(\Delta \mathbf{g}_j^{(n_i)^{\text{proj}}}; \boldsymbol{\omega}) | j \in [n_i] \},$$
(8)

where $\hat{\mathbf{x}}^{(n_i)} = \{\hat{x}_1, \hat{x}_2, \dots, \hat{x}_{n_i}\}$ represents the n_i reconstructed samples of client i. This exploitation enables A to utilize the pre-trained inversion model to implement the large-scale reconstructions from individual PoFU, thereby compromising data privacy even from the passive view.

ORTHOGONAL OBFUSCATION DEFENSE METHOD

Our inversion model exploits the directional information in gradient differences to reconstruct sensitive training data. Traditional defense methods often fail to disrupt the directional patterns, preserving the overall gradient differences structure and remaining susceptible to statistical recovery techniques. As illustrated in Figure 3, we propose a defense strategy that alters the vector direction while retaining the L2-norm information necessary for auditing. Our approach projects gradient differences into an orthogonal subspace, thereby disrupting the patterns and spatial structures that attackers rely on to reconstruct the forgotten sample.

For each PoFU $\Delta \mathbf{g}^{(n_i)}$ of unlearned client i, i needs to modify the direction of each entry $\Delta \mathbf{g}_{j}^{(n_{i})}$ but maintain its L2-norm. We introduce random vectors $\mathbf{r}^{(n_i)}$ that are orthogonal to $\mathbf{\Delta g}^{(n_i)}$ elementwisely. The construction begins by sampling an initial random vector $\mathbf{r}_{i}^{(n_{i})}$ with the same dimensionality as $\Delta \mathbf{g}_{i}^{(n_{i})}$, drawn from a standard normal distribution $\mathbf{r}_i^{(n_i)} \sim \mathcal{N}(0,1)^d$. Then client i applies the Gram-Schmidt orthogonalization (ort, 2001) to compute:

at are orthogonal to
$$\Delta \mathbf{g}^{(n_i)}$$
 elements by sampling an initial random vector nality as $\Delta \mathbf{g}_j^{(n_i)}$, drawn from a stan-
$$\sim \mathcal{N}(0,1)^d$$
. Then client i applies the on (ort, 2001) to compute:
$$-\frac{\mathbf{r}_j^{(n_i)^\top} \Delta \mathbf{g}_j^{(n_i)}}{\mathbf{g}_j^{(n_i)}} \Delta \mathbf{g}_j^{(n_i)}. \tag{9}$$

 $oldsymbol{\Delta} \mathbf{g}_{j}^{(n_i)^{\mathsf{obf}}} = \mathbf{r}_{j}^{(n_i)} - rac{\mathbf{r}_{j}^{(n_i)^{ op}} oldsymbol{\Delta} \mathbf{g}_{j}^{(n_i)}}{\|oldsymbol{\Delta} \mathbf{g}_{j}^{(n_i)}\|^2} oldsymbol{\Delta} \mathbf{g}_{j}^{(n_i)}.$

Figure 3: Schematic of orthogonal obfuscation defense

This step ensures that $\Delta \mathbf{g}_{j}^{(n_{i})^{\mathrm{obf}}}$ lies in a subspace orthogonal to $\Delta \mathbf{g}_{i}^{(n_{i})}$, effectively decoupling its direction from the original PoFU vector while preserving the randomness needed for obfuscation.

EXPERIMENT

EXPERIMENT SETTINGS

Datasets and Models. We assess the IGF framework on widely adopted benchmark datasets: CIFAR-10, CIFAR-100 (Krizhevsky et al., 2009), MNIST (LeCun et al., 1998), and Fashion-MNIST (Xiao et al., 2017). These datasets offer diverse challenges, featuring varying image resolutions (28×28 and 32×32) and class numbers (10 to 100), making them an ideal testbed for assessing generalization. Additionally, we utilize the SVHN dataset (Netzer et al., 2011) as the out-of-distribution (OOD) auxiliary dataset to evaluate the attack's robustness to distributional shifts. More dataset details are provided in Appendix C.1. To probe the attack's robustness across architectural variations and to explore how the proposed inversion model scales with the network complexity of the global model, we adopt two architectures: a convolutional neural network (ConvNet) and a deeper residual network (ResNet20) (He et al., 2016).

Training Setup. In cross-silo FL and FU, we configure 40 clients with 10% client selection and conduct 20 global rounds to derive the original and unlearned models. For the unlearning task, we designate 1000 samples to be forgotten. We consider an honest-but-curious adversary A capable of storing or collecting a small auxiliary dataset, with a size comparable to a typical validation or test set, consistent with prior work (Sun et al., 2024; Wu et al., 2023). Furthermore, the auxiliary dataset is in-distribution with respect to the forgotten dataset. During the attack, A trains the inversion model with $\beta = 1$, batch size 256, learning rate 10^{-4} , and a fixed seed (1234) for reproducibility. Gradient

¹Notably, high-quality reconstruction remains feasible even under out-of-distribution auxiliary data; refer to Appendix E.3 for ablation details.

differences from *ConvNet* are used directly, while those from *ResNet20* are compressed via SVD projection to reduce computation. All experiments are conducted in PyTorch on NVIDIA A10 GPUs. To assess IGF, we adopt standard reconstruction metrics: MSE, PSNR, and LPIPS (Geiping et al., 2020; Hu et al., 2024; Sun et al., 2024; Zhang et al., 2018); metric details appear in Appendix C.2.

4.2 EXPERIMENTAL RESULTS

Table 1: Reconstruction performance (MSE, PSNR, and LPIPS) on CIFAR-10 and CIFAR-100 datasets with *ConvNet* and *ResNet20* as global models. Gradient differences are applied with no defense. Each cell reports results for EFU / AFU, with **bold** indicating the best performance across different FU scenarios.

Backbone	Method	FU Scenario	CIFAR-10			CIFAR-100		
Ducinounc		10 500111110	MSE↓	PSNR ↑	LPIPS ↓	MSE↓	PSNR ↑	LPIPS ↓
ConvNet	Ours Ours Ours GIAMU	sample-level class-level client-level sample-level	0.0211 / 0.0218 0.0259 / 0.0234 0.0206 / 0.0223 0.2330 / 0.2460	17.19 / 17.09 16.08 / 16.51 17.32 / 16.78 13.22 / 12.78	0.3261 / 0.3624 0.3531 / 0.3316 0.3747 / 0.3558 0.3390 / 0.3190	0.0364 / 0.0261 0.0397 / 0.0298 0.0382 / 0.0265	14.97 / 16.07 14.41 / 15.73 14.65 / 16.07	0.4383 / 0.4190 0.4451 / 0.4201 0.4361 / 0.4223
ResNet20	Ours Ours Ours	sample-level class-level client-level	0.0445 / 0.0564 0.0535 / 0.0512 0.0435 / 0.0533	14.05 / 13.02 13.01 / 13.21 14.12 / 13.08	0.4607 / 0.4719 0.4608 / 0.4366 0.4617 / 0.4983	0.0391 / 0.0353 0.0474 / 0.0438 0.0422 / 0.0362	14.56 / 15.02 13.49 / 13.84 14.27 / 14.73	0.4267 / 0.4025 0.4060 / 0.4032 0.4187 / 0.3627

Reconstruction Performance across Datasets. The results presented in Table 1 provide compelling evidence of IGF's capability to reconstruct forgotten data with high fidelity. On CIFAR-10 with *ConvNet* under EFU at the *sample-level*, IGF achieves an MSE of 0.0211, PSNR of 17.19, and LPIPS of 0.3261, reflecting reconstructions with minimal pixel-wise errors and superior perceptual quality. On the more complex CIFAR-100 dataset, which contains 100 fine-grained classes compared to CIFAR-10's 10, we observe a moderate decline in performance: MSE increases to 0.0364, PSNR decreases to 14.9658, and LPIPS rises to 0.4383. This performance degradation is consistent across all FU methods and scenarios with *ConvNet* on CIFAR-100, which we attribute to the increased dataset complexity and higher inter-class variability, making inversion inherently more challenging.

Adaptability across Global Model Architectures. IGF also demonstrates adaptability across model architectures. On CIFAR-10, reconstruction performances with *ConvNet* are slightly better than *ResNet20*, with MSE values of 0.0211 and 0.0445, respectively. Consistent with prior findings (Wu et al., 2023), inversion performance declines as FL model complexity increases. This disparity stems from the higher-dimensional gradients of *ResNet20*, which introduce greater noise and optimization challenges, thereby reducing inversion fidelity compared to the cleaner, more tractable gradients of *ConvNet*. Nevertheless, IGF achieves satisfactory reconstruction quality even with the deeper *ResNet20* architecture, highlighting its robustness to varying model complexities.

Adaptability across FU Scenarios. We test IGF under three FU scenarios: sample-level unlearning (the number of samples to be forgotten is set to 1000), class-level unlearning (the class index to be forgotten is set to 1), and client-level unlearning (all samples from the third client are set to be forgotten). IGF exhibits stable performance, with ConvNet's MSE fluctuating within 0.0053 under EFU on CIFAR-10, indicating resilience to differing unlearning granularity. In other configurations, alterations to the FU scenarios have a negligible impact on reconstruction performance, further highlighting IGF's stability.

Vulnerability Comparison of FU Methods. Experimental results reveal certain gaps in vulnerability to reconstruction attacks between EFU and AFU methods. EFU outperforms AFU in reconstruction metrics on CIFAR-10 with *ResNet20*, as EFU's retraining from scratch yields clearer gradient differences reflecting forgotten data's impact. In contrast, AFU's gradient ascent operation introduces noise, complicating reconstruction. Despite this, IGF achieves reasonable reconstruction quality, highlighting a critical privacy risk: even AFU methods remain vulnerable to reconstruction attacks.

Comparison with Baselines. We first compare IGF against GIAMU (Hu et al., 2024), a recent inversion attack specifically tailored for centralized machine unlearning. GIAMU takes the difference between the original and unlearned models as input and reconstructs samples via an optimization-based approach. As shown in Table 1, all GIAMU results are directly sourced from Hu et al. (2024) where the training datasets of the two models differ by only a single sample. For *sample-level* unlearning on CIFAR-10 under EFU, IGF outperforms GIAMU by 88.1%, 30.1%, and 3.8% in MSE, PSNR, and LPIPS, respectively. Under AFU, the improvements are even more substantial, with gains

of 91.1% in MSE and 33.6% in LPIPS. Moreover, as with other optimization-based methods (Zhu et al., 2019; Ju et al., 2025), GIAMU requires hundreds of queries per sample during the online (Privacy Exfiltration) phase, whereas IGF needs only two queries. Additionally, GIAMU assumes a white-box setting in which $\mathcal A$ can access the parameters of the original and unlearned models, which significantly complicates the attack process.

Notably, few baseline attacks are suitable for direct comparison in FU reconstruction, as most methods target gradients derived from fully trained models, we nonetheless present a comprehensive comparison of IGF with two SOTA inversion approaches: the learning-based LTI (Wu et al., 2023) and the optimization-based DLGD (Zhu et al., 2019), detailed in Appendix D.

Figure 4: Original and reconstructed images from the CIFAR-10 dataset, with 1,000 forgotten samples at the *sample-level* using EFU.

Visual Inspection of Reconstructed Images. Beyond quantitative metrics, visual inspection of the reconstructed images in Figure 4 offers additional insights into IGF's effectiveness. The reconstructed images clearly capture the essential features of the original forgotten samples, including object shapes, colors, and textures. This visual similarity reinforces the quantitative results and shows that our attack can reconstruct forgotten data with sufficient fidelity to pose a real privacy risk. We further extend IGF to MNIST and Fashion-MNIST, which contain images of different sizes than CIFAR. The reconstructed results, shown in Figure 13, reveal that the images are nearly indistinguishable from the originals based on gradient differences. This high-quality reconstruction is achieved through our composite optimization approach, which combines \mathcal{L}_M with \mathcal{L}_P loss. This combination ensures that the reconstructed images not only match the original images at the pixel level but also maintain perceptual similarity in terms of high-level features.

Table 2: Reconstruction performance across three metrics on five common defense mechanisms.

Defense Method	efense Method None Gradient Pruning Sign Compression		Gauss Noise	Gradient Perturb	Gradient Smooth			
Detense Wiemou	110110	0.7	0.8	0.9	0.001	0.1	0.01	0.1
MSE↓	0.0211	0.0216	0.0221	0.0222	0.0225	0.0298	0.0197	0.0232
PSNR ↑	17.19	17.0758	17.0694	17.0521	16.9704	15.7044	17.6116	16.8371
LPIPS ↓	0.3261	0.3704	0.3796	0.3810	0.3796	0.4011	0.3663	0.3852

Reconstruction Performance against Defense Mechanisms.

We evaluate the reconstruction performance of IGF against five common defense mechanisms on *ConvNet* at the *sample-level* using EFU. The technical details of these defenses are provided in Appendix C.3, with results summarized in Table 2. Against Gradient Pruning (with hyperparameters {0.7, 0.8, 0.9}), Sign Compression, and Gradient Smoothing, IGF maintains comparable performance to the no-defense baseline, achieving MSE values around 0.022, PSNR around 17, and LPIPS around 0.38. Among the defenses, Gaussian Noise proves comparatively robust, while Gradient Perturbation is the comparatively weakest. Overall, IGF delivers reasonable reconstruction quality with negligible degradation relative to the no-defense setting. This robustness arises from our learning-based inversion model, which exhibits strong mapping capabilities. These findings underscore IGF's substantial resilience, enabling it to largely bypass existing defenses and recover forgotten data effectively. Consequently, they highlight the pressing need for novel defense strategies that can fundamentally impair an attacker's ability to reconstruct meaningful information.

Reconstruction Performance against Orthogonal Obfuscation Defense. As shown in the Figure 5, our proposed Orthogonal Obfuscation Defense disrupts reconstruction by altering gradient difference directions while preserving their L2-norm. Reconstructed images exhibit random noise, effectively thwarting IGF and protecting sensitive data. A detailed theoretical analysis of the Orthogonal Obfuscation Defense is provided in Appendix H.

Figure 5: Forgotten images and our reconstructed images on the CIFAR-10 dataset under Orthogonal Obfuscation defense on *ConvNet* at the *sample-level* using EFU.

4.3 ABLATION STUDIES

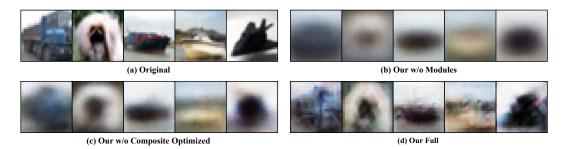


Figure 6: Forgotten images and our reconstructed images using inversion model across different component configurations on *ConvNet* at the *sample-level* using EFU.

To evaluate the effectiveness of our proposed composite loss optimization module and pixel-level inversion model in the attack framework, we conduct ablation studies to visualize the reconstruction results under various configurations, as shown in Figure 6. The Original row depicts the groundtruth forgotten samples. The Our w/o Modules variant, which utilizes MSE as the loss function alongside a simple three-layer multi-layer perceptron as the inversion model, yields severely degraded reconstructions characterized by pronounced artifacts and substantial loss of structural integrity. This outcome highlights the intrinsic difficulties of reconstruction attacks and underscores the indispensable value of our proposed enhancements. The **Our w/o Composite Optimized** configuration, which preserves the pixel-level inversion model but employs MSE for loss computation, generates images that maintain rudimentary shapes yet are plagued by blurring, chromatic aberrations, and deficient finegrained details. This emphasizes the pivotal role of perceptual losses in distilling high-level semantic attributes that transcend basic pixel-wise fidelity. By contrast, our full model (Our Full), which integrates two main proposed components, achieves reconstructions with significantly improved visual quality. These images exhibit sharper definition, better texture preservation, and more accurate color reproduction. By effectively balancing low-level pixel information and high-level semantic features, our comprehensive approach yields reconstructions that closely resemble the original forgotten samples. Further ablation studies on federated aggregation methods, auxiliary datasets, dimensionality reduction techniques, and the hyperparameter β are provided in Appendix E.

5 CONCLUSION

In this paper, we expose a critical privacy vulnerability in FU by proposing a novel reconstruction attack that exploits gradient differences used as PoFU. Our proposed IGF leverages the latent correlations between gradient differences and forgotten samples to reconstruct large-scale private data from individual PoFU. Through extensive experiments, we demonstrate that our attack achieves high-fidelity reconstruction, exposing the inadequacy of existing FU safeguards. To counter this threat, we introduce an orthogonal obfuscation defense that disrupts the reconstruction process, forcing inverted images into fixed noise patterns that resist reconstruction. Our findings underscore the fragility of current FU mechanisms against gradient-based and gradient-difference-based attacks, highlighting the urgent need for robust defenses and motivating further exploration of secure FU strategies.

ETHICS STATEMENT

This research adheres to the ICLR Code of Ethics, which all authors have read and committed to follow during the submission process. The study involves analyzing potential privacy vulnerabilities in Federated Unlearning (FU) systems, specifically focusing on the reconstruction of forgotten data using gradient differences as Proof of Federated Unlearning (PoFU). While the work aims to enhance privacy protections by identifying and mitigating these vulnerabilities, it raises concerns regarding privacy and security issues.

The proposed Inverting Gradient difference to Forgotten data (IGF) attack framework and the orthogonal obfuscation defense mechanism were developed using publicly available benchmark datasets (e.g., CIFAR-10, MNIST) and do not involve human subjects or real-world personal data. However, the theoretical capability of reconstructing forgotten samples could have implications if applied to sensitive data, potentially leading to privacy breaches. To address this, we emphasize that our defense mechanism is designed to preserve PoFU verification utility while preventing such reconstructions, thereby supporting compliance with data privacy regulations like GDPR.

REPRODUCIBILITY STATEMENT

We have made every effort to ensure the reproducibility of our work. The details of the model architecture, training process, and hyperparameters are provided in Section 4.1 and Appendix F. A complete description of the experimental setup, including datasets, models, and evaluation metrics, is included in Section 4.1 and Appendix C. Algorithmic details and proofs of theoretical claims are presented in Appendix H.

This study adheres to the principles of open science, emphasizing transparency and accessibility in research. The source code accompanying this work is publicly available on Anonymous GitHub at https://anonymous.4open.science/r/IGF. The repository provides artifact instructions, dependencies, core codes (e.g., data, models, evaluation), and scripts, in compliance with ICLR's reproducibility policy.

REFERENCES

Orthogonalization. In *Encyclopedia of Mathematics*. EMS Press, 2001. https://encyclopediaofmath.org/wiki/Orthogonalization.

Franziska Boenisch, Adam Dziedzic, Roei Schuster, Ali Shahin Shamsabadi, Ilia Shumailov, and Nicolas Papernot. When the curious abandon honesty: Federated learning is not private. In 2023 IEEE 8th European Symposium on Security and Privacy (EuroS&P), pp. 175–199. IEEE, 2023.

Jian Chen, Zehui Lin, Wanyu Lin, Wenlong Shi, Xiaoyan Yin, and Di Wang. Fedmua: Exploring the vulnerabilities of federated learning to malicious unlearning attacks. *IEEE Transactions on Information Forensics and Security*, 2025.

Hao Fang, Bin Chen, Xuan Wang, Zhi Wang, and Shu-Tao Xia. Gifd: A generative gradient inversion method with feature domain optimization. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pp. 4967–4976, 2023.

Xiangshan Gao, Xingjun Ma, Jingyi Wang, Youcheng Sun, Bo Li, Shouling Ji, Peng Cheng, and Jiming Chen. Verifi: Towards verifiable federated unlearning. *IEEE Transactions on Dependable and Secure Computing*, 2024.

Jonas Geiping, Hartmut Bauermeister, Hannah Dröge, and Michael Moeller. Inverting gradients-how easy is it to break privacy in federated learning? *Advances in neural information processing systems*, 33:16937–16947, 2020.

Hanlin Gu, Gongxi Zhu, Jie Zhang, Xinyuan Zhao, Yuxing Han, Lixin Fan, and Qiang Yang. Unlearning during learning: An efficient federated machine unlearning method. *arXiv preprint arXiv:2405.15474*, 2024.

- Anisa Halimi, Swanand Kadhe, Ambrish Rawat, and Nathalie Baracaldo. Federated unlearning: How to efficiently erase a client in fl?, 2022. *URL https://arxiv. org/abs/2207.05521*, 2022.
- Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 770–778, 2016.
 - Hongsheng Hu, Shuo Wang, Tian Dong, and Minhui Xue. Learn what you want to unlearn: Unlearning inversion attacks against machine unlearning. In 2024 IEEE Symposium on Security and Privacy (SP), pp. 3257–3275. IEEE, 2024.
 - Jinwoo Jeon, Kangwook Lee, Sewoong Oh, Jungseul Ok, et al. Gradient inversion with generative image prior. *Advances in neural information processing systems*, 34:29898–29908, 2021.
 - Bocheng Ju, Junchao Fan, Jiaqi Liu, and Xiaolin Chang. Dragd: A federated unlearning data reconstruction attack based on gradient differences. *arXiv preprint arXiv:2507.09602*, 2025.
 - Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. *Placeholder Journal*, 2009.
 - Junqing Le, Di Zhang, Xinyu Lei, Long Jiao, Kai Zeng, and Xiaofeng Liao. Privacy-preserving federated learning with malicious clients and honest-but-curious servers. *IEEE Transactions on Information Forensics and Security*, 18:4329–4344, 2023.
 - Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to document recognition. *Proceedings of the IEEE*, 86(11):2278–2324, 1998.
 - Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia Smith. Federated optimization in heterogeneous networks. *Proceedings of Machine learning and systems*, 2:429–450, 2020.
 - Zhuohang Li, Jiaxin Zhang, Luyang Liu, and Jian Liu. Auditing privacy defenses in federated learning via generative gradient leakage. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 10132–10142, 2022.
 - Cassandra Lindstrom. Federated unlearning in financial applications. preprints 202409.1816, 2024.
 - Gaoyang Liu, Xiaoqiang Ma, Yang Yang, Chen Wang, and Jiangchuan Liu. Federated unlearning. *arXiv preprint arXiv:2012.13891*, 2020.
 - Yi Liu, Lei Xu, Xingliang Yuan, Cong Wang, and Bo Li. The right to be forgotten in federated learning: An efficient realization with rapid retraining. In *IEEE INFOCOM 2022-IEEE conference on computer communications*, pp. 1749–1758. IEEE, 2022.
 - Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas. Communication-efficient learning of deep networks from decentralized data. In *Artificial intelligence and statistics*, pp. 1273–1282. PMLR, 2017.
 - Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Baolin Wu, Andrew Y Ng, et al. Reading digits in natural images with unsupervised feature learning. In *NIPS workshop on deep learning and unsupervised feature learning*, volume 2011, pp. 7. Granada, 2011.
 - Stuart L Pardau. The california consumer privacy act: Towards a european-style privacy regime in the united states. *J. Tech. L. & Pol'y*, 23:68, 2018.
 - Sashank Reddi, Zachary Charles, Manzil Zaheer, Zachary Garrett, Keith Rush, Jakub Konečný, Sanjiv Kumar, and H Brendan McMahan. Adaptive federated optimization. *arXiv preprint arXiv:2003.00295*, 2020.
 - Jeffrey Rosen. The right to be forgotten. Stan. L. Rev. Online, 64:88, 2011.
 - Ahmed Salem, Apratim Bhattacharya, Michael Backes, Mario Fritz, and Yang Zhang. {Updates-Leak}: Data set inference and reconstruction attacks in online learning. In 29th USENIX security symposium (USENIX Security 20), pp. 1291–1308, 2020.

- Yu Sun, Gaojian Xiong, Xianxun Yao, Kailang Ma, and Jian Cui. Gi-pip: Do we require impractical auxiliary dataset for gradient inversion attacks? In *ICASSP 2024-2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)*, pp. 4675–4679. IEEE, 2024.
- Anvith Thudi, Hengrui Jia, Ilia Shumailov, and Nicolas Papernot. On the necessity of auditable algorithmic definitions for machine unlearning. In 31st USENIX Security Symposium (USENIX Security 22), pp. 4007–4022, Boston, MA, August 2022. USENIX Association. ISBN 978-1-939133-31-1. URL https://www.usenix.org/conference/usenixsecurity22/presentation/thudi.
- Junxiao Wang, Song Guo, Xin Xie, and Heng Qi. Federated unlearning via class-discriminative pruning. In *Proceedings of the ACM web conference* 2022, pp. 622–632, 2022.
- Weiqi Wang, Chenhan Zhang, Zhiyi Tian, and Shui Yu. Fedu: Federated unlearning via user-side influence approximation forgetting. *IEEE Transactions on Dependable and Secure Computing*, 2024.
- Wenbin Wang, Qiwen Ma, Zifan Zhang, Yuchen Liu, Zhuqing Liu, and Minghong Fang. Poisoning attacks and defenses to federated unlearning. *arXiv preprint arXiv:2501.17396*, 2025.
- Kilian Weinberger, Anirban Dasgupta, John Langford, Alex Smola, and Josh Attenberg. Feature hashing for large scale multitask learning. In *Proceedings of the 26th annual international conference on machine learning*, pp. 1113–1120, 2009.
- Jiasi Weng, Shenglong Yao, Yuefeng Du, Junjie Huang, Jian Weng, and Cong Wang. Proof of unlearning: Definitions and instantiation. *IEEE Transactions on Information Forensics and Security*, 19:3309–3323, 2024. doi: 10.1109/TIFS.2024.3358993.
- Chen Wu, Sencun Zhu, and Prasenjit Mitra. Federated unlearning with knowledge distillation. *arXiv* preprint arXiv:2201.09441, 2022.
- Ruihan Wu, Xiangyu Chen, Chuan Guo, and Kilian Q Weinberger. Learning to invert: Simple adaptive attacks for gradient inversion in federated learning. In *Uncertainty in Artificial Intelligence*, pp. 2293–2303. PMLR, 2023.
- Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmarking machine learning algorithms. *arXiv preprint arXiv:1708.07747*, 2017.
- Heng Xu, Tianqing Zhu, Lefeng Zhang, Wanlei Zhou, and S Yu Philip. Update selective parameters: Federated machine unlearning based on model explanation. *IEEE Transactions on Big Data*, 2024.
- Chi Zhang, Zhang Xiaoman, Ekanut Sotthiwat, Yanyu Xu, Ping Liu, Liangli Zhen, and Yong Liu. Generative gradient inversion via over-parameterized networks in federated learning. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pp. 5126–5135, 2023.
- Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable effectiveness of deep features as a perceptual metric. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 586–595, 2018.
- Zhengyi Zhong, Weidong Bao, Ji Wang, Shuai Zhang, Jingxuan Zhou, Lingjuan Lyu, and Wei Yang Bryan Lim. Unlearning through knowledge overwriting: Reversible federated unlearning via selective sparse adapter. *arXiv preprint arXiv:2502.20709*, 2025.
- Ligeng Zhu, Zhijian Liu, and Song Han. Deep leakage from gradients. *Advances in neural information processing systems*, 32, 2019.
- Xuhan Zuo, Minghao Wang, Tianqing Zhu, Lefeng Zhang, Shui Yu, and Wanlei Zhou. Federated learning with blockchain-enhanced machine unlearning: A trustworthy approach. *IEEE Transactions on Services Computing*, pp. 1–15, 2025. doi: 10.1109/TSC.2025.3553709.

Verifiably Forgotten? Gradient Differences Still Enable Data Reconstruction in Federated Unlearning

Table of Contents for Appendix.

A	Disci	ussion and Limitations	14
В	Tech	nical Reference Materials	14
C	Ехре	eriment Settings	14
	C.1	Datasets	.14
	C.2	Details of metrics	15
	C.3	Details of common defense mechanisms	16
D	More	e Comprehensive Baseline Comparison	16
	D.1	Comparison with learning-based SOTA	16
	D.2	Comparison with optimization-based SOTA	. 17
E	Addi	itional Ablation Studies	18
	E.1	Reconstruction performance against defense eechanisms on ResNet20	. 18
	E.2	Impact of different federated aggregation methods	. 19
	E.3	Impact of different distributions of auxiliary datasets	19
	E.4	Impact of different auxiliary dataset sizes	. 20
	E.5	Comparative ablation study of dimensionality reduction methods	20
	E.6	Comparative Ablation Study of different β parameters	. 21
F	Inver	rsion Model Architecture	22
G	Addi	itional Reconstructed Images	22
Н	Theo	oretical Analysis of Orthogonal Obfuscation Defense	24
I	The U	Jse of Large Language Models (LLMs)	24

708

709

710

711

712

713

714

715 716

717 718

719

720

721

722

723

724

725 726

727 728

729

730

731

732

733

734

735

736

737

739

740741742

743 744

745 746

747

748

749

750

751 752

753

754

755

A DISCUSSION AND LIMITATIONS

To the best of our knowledge, IGF framework is the first to exploit gradient differences as an attack surface in federated unlearning (FU). Previous reconstruction attacks in machine learning and federated learning (FL) (Zhu et al., 2019; Geiping et al., 2020; Sun et al., 2024; Wu et al., 2023) directly leverage *sample-level* gradients, which inherently contain richer sample information. Currently, the only available baseline for reconstruction attacks in FU is GIAMU (Hu et al., 2024), which relies on *white-box* access to both the original and unlearned models and overlooks the privacy vulnerabilities arising from gradient differences sharing during verification. Our work addresses this gap by demonstrating that an *honest-but-curious* adversary with partial prior knowledge can reconstruct forgotten samples by inverting gradient differences. Additionally, in extreme scenarios, such as a black-box setting where the adversary lacks prior knowledge or cannot exploit the directionality of gradient differences, the attack's complexity increases significantly, making the reconstruction of forgotten data largely unexplored.

B TECHNICAL REFERENCE MATERIALS

This section provides essential technical references to support the understanding and implementation of the proposed Inverting Gradient difference to Forgotten data (IGF) framework. Table 3 consolidates key notations and equations used throughout the paper, offering a concise reference for readers to interpret the methodology and results. Complementing this, the pseudocode (Algorithm 1) outlines the IGF framework's procedural steps, facilitating a clear and reproducible depiction of the attack mechanisms. Together, these materials enhance the accessibility of the technical content, helping to engage with the proposed methods efficiently.

Notation Description Notation Description \mathcal{C} \mathcal{D} Set of Clients Global Dataset \mathbf{M} HThe Number of Clients Original Global Model $^{u}\mathbf{M}$ Unlearned Global Model Stochastic Gradient \mathbf{g} \mathcal{G} ī Gradient Queried by Adversary Loss Function in Local Training T \mathcal{I} Number of Global Rounds Inversion Model BData Point **Batch Size** (x,y)Intermediate Feature Extractor $\Delta \mathcal{G}, \Delta \mathbf{g}$ **Gradient Differences** $\phi(\cdot)$ Model Size U Left Singular Vectors V Right Singular Vectors Random Vector Mask Matrix in Gradient Pruning Gaussian Noise \mathcal{M} Parameter Deviation Constraint Radius wWindow Size in Gradient Smoothing Ψ Gradient Differences Matrix Projection Matrix

Table 3: Mathematical notations

C EXPERIMENTAL SETTINGS

C.1 DATASETS

We evaluate our proposed IGF method on the widely adopted CIFAR-10 and CIFAR-100 datasets (Krizhevsky et al., 2009), which serve as standard benchmarks in the fields of reconstruction attacks and federated learning. CIFAR-10 consists of 60,000 color images (32×32 pixels) spanning 10 categories, with 50,000 images allocated for training and 10,000 for testing, ensuring 6,000 images per category. Similarly, CIFAR-100 mirrors this structure but encompasses 100 categories, each containing 600 images, for a total of 60,000 images (50,000 training and 10,000 testing).

In addition, we assess our approach using the MNIST (LeCun et al., 1998) and Fashion-MNIST (Xiao et al., 2017) datasets. MNIST comprises 70,000 grayscale images (28×28 pixels) of handwritten digits, split into 60,000 training and 10,000 testing images. Fashion-MNIST, conceived as a more demanding counterpart to MNIST, also includes 70,000 grayscale images (28×28 pixels) across 10 categories of fashion items, adhering to the same training-testing division.

```
756
            Algorithm 1 Inverting Gradient difference to Forgotten data (IGF) framework
                   Input: Original model M, unlearned model {}^{u}M, auxiliary dataset \mathcal{D}_{aux}, PoFUs \{\Delta \mathbf{g}^{(n_i)}\}_{i \in \mathcal{C}_u},
758
             variance threshold \nu; Training parameters of the inversion model: loss trade-off \beta, learning rate \eta,
759
             epochs E.
760
                   Output: Reconstruction results \{\hat{\mathbf{x}}^{(n_i)}\}_{i \in \mathcal{C}_n}.
761
                   > Inversion Model Training Phase
762
              1: for each (x_i, y_i) \in \mathcal{D}_{aux} do
                                                                                                             ▶ Preparation of Training Dataset
763
                        Collects \mathcal{G}_i, ^u \mathcal{G}_i against Eq. (3),
764
                        Computes \Delta \mathcal{G}_i = \mathcal{G}_i - {}^u \mathcal{G}_i and appends it into \Delta \mathcal{G}
765
              4: end for
766
              5: Construct \Psi \leftarrow [\Delta \mathcal{G}_1, \dots, \Delta \mathcal{G}_m]^\top where m = |\mathcal{D}_{\text{aux}}|
                                                                                                       767
              6: Center \Psi^{\text{cen}} = \Psi - \mu \mathbf{1}_m^{\top} with mean vector \mu = \frac{1}{m} \sum \Delta \mathcal{G}_i
768
              7: Perform SVD: \mathbf{U}, \mathbf{\Sigma}, \mathbf{V}^{\top} \leftarrow \text{SVD}(\mathbf{\Psi}^{\text{cen}})
769
              8: Select k via cumulative variance \geq \nu as in Eq. (4)
770
              9: Compute projected gradient differences \Delta \mathcal{G}^{\text{proj}} \leftarrow \Psi \mathbf{V}^{[k]}
771
             10: Initialize inversion model \mathcal{I}(\omega)
                                                                                                                      ▶ Training Inversion Model
772
             11: for epoch = 1 to E do
773
                        Optimize \omega by minimizing \mathcal{L}_{attack} = \mathcal{L}_M + \beta \mathcal{L}_P as in Eq. (5)–(7)
             12:
774
             13: end for
775
                   > Privacy Exfiltration Phase
776
             14: for each i \in \mathcal{C}_u, \mathcal{A} do
777
                        Receive PoFU \Delta \mathbf{g}^{(n_i)}
778
                        Construct \Psi^{(n_i)} from \Delta \mathbf{g}^{(n_i)}
             16:
779
                        Project \Delta \mathbf{g}^{(n_i)^{\mathrm{proj}}} \leftarrow (\mathbf{\Psi}^{(n_i)} - \boldsymbol{\mu} \mathbf{1}_m^{\top}) \mathbf{V}^{[k]}
             17:
780
                        Reconstruct forgotten samples \hat{\mathbf{x}}^{(n_i)} as in Eq. (8)
781
             19: end for
```

To investigate the influence of the auxiliary dataset's distribution relative to the forgetting dataset on IGF's reconstruction efficacy, we further employ the SVHN (Netzer et al., 2011) dataset. SVHN is a real-world image dataset designed for machine learning applications, particularly digit recognition, comprising over 600,000 labeled color images of house numbers sourced from Google Street View. These images, typically in 32×32 RGB format, feature digits from 0 to 9 and are available in single-digit or multi-digit sequence formats.

C.2 DETAILS OF METRICS

20: **return** $\{\hat{\mathbf{x}}^{(n_i)}\}_{i\in\mathcal{C}_u}$

782

787

788

789

790

791

792793794

796

797

798

799

800 801

802

803

804 805

806

807

808 809 MSE measures the average squared difference between the original forgotten image and the reconstructed image. It is widely used as a loss function in image processing tasks and image quality assessment MSE = $\frac{1}{N} \sum_{i=1}^{N} (x_i - \hat{x}_i)^2$, where x_i is the pixel value of the original forgotten image and \hat{x}_i is the pixel value of the reconstruction.

PSNR measures the quality of the reconstructed or compressed image relative to the forgotten image. It is expressed in decibels (dB) and is inversely related to MSE—lower MSE values correspond to higher PSNR values. PSNR = $10 \cdot \log_{10} \left(\frac{R^2}{\text{MSE}} \right)$, Where R is the maximum pixel value.

LPIPS (Zhang et al., 2018) is a perceptual similarity metric designed to assess the perceptual quality of images based on learned features from a neural network (typically a pretrained deep network like VGG). Unlike MSE and PSNR, LPIPS is more aligned with human visual perception, focusing on perceptual similarity rather than pixel-level accuracy LPIPS $(x,\hat{x}) = \frac{1}{L} \sum_{l=1}^{L} \|\phi_l(x) - \phi_l(\hat{x})\|_2^2$, where L is the total number of layers used for feature extraction. $\|\cdot\|_2$ is the Euclidean distance (L2 norm) between the feature maps.

C.3 DETAILS OF COMMON DEFENSE MECHANISMS

This section outlines five defense mechanisms (Wu et al., 2023) designed to obfuscate shared gradients and mitigate gradient-based reconstruction attacks through various perturbation techniques. Given an input gradient vector \mathbf{g} , each mechanism produces an obfuscated gradient vector \mathbf{g}' . We adapt these mechanisms to perturb shared gradient differences in FU.

(a) **Sign Compression.** The sign compression mechanism applies the sign operation to each component of the gradient g, retaining only its sign (-1, 0, or 1) and discarding magnitude information. This preserves the gradient's direction while significantly reducing communication overhead, as only sign bits are transmitted. By limiting the attacker's access to sign information, this method increases the difficulty of reconstructing forgotten data. The operation is defined as:

$$\mathbf{g}' = \operatorname{sign}(\mathbf{g}), \quad \text{where} \quad \operatorname{sign}(\mathbf{g}_i) = \begin{cases} 1, & \text{if } \mathbf{g}_i > 0 \\ -1, & \text{if } \mathbf{g}_i < 0 \\ 0, & \text{if } \mathbf{g}_i = 0 \end{cases}$$
 (10)

(b) **Gradient Pruning.** Gradient pruning sparsifies the gradient by retaining only the k components with the largest absolute values, setting all others to zero. A binary mask $\mathcal M$ selectively preserves these significant components. Widely used in FL to reduce communication costs, this method also enhances privacy by limiting the attacker's access to a subset of gradient components, complicating the inference of forgotten data. The operation is formulated as:

$$\mathbf{g}' = \mathbf{g} \odot \mathcal{M},\tag{11}$$

where \odot denotes element-wise multiplication, and \mathcal{M} is the mask matrix.

(c) Gaussian Noise. This mechanism perturbs the gradient ${\bf g}$ by adding independent and identically distributed Gaussian noise $\epsilon \sim \mathcal{N}(0, \sigma^2 {\bf I})$. Controlled by the standard deviation σ , the noise introduces uncertainty to achieve differential privacy, obscuring precise gradient values and hindering reconstruction of forgotten data. The operation is expressed as:

$$\mathbf{g}' = \mathbf{g} + \epsilon, \quad \epsilon \sim \mathcal{N}(0, \sigma^2 \mathbf{I}).$$
 (12)

(d) **Gradient Perturbation.** This method perturbs the gradient by adding noise proportional to the gradient's magnitude, applying larger perturbations to dimensions with greater gradient values. The perturbed gradient is defined as:

$$\mathbf{g}' = \mathbf{g} + (\mathcal{N}(\mathbf{0}, \mathbf{I}) \times \text{scale}) \times (|\mathbf{g}| \times \text{factor}), \tag{13}$$

where $\mathcal{N}(\mathbf{0}, \mathbf{I})$ is a standard normal random tensor, scale determines the base perturbation magnitude, and factor adjusts the sensitivity of the perturbation to the gradient's amplitude.

(e) **Gradient Smoothing.** Gradient smoothing mitigates high-frequency variations in the gradient by applying a moving average over the feature dimensions, blending the result with the original gradient. The operation is formulated as:

$$\mathbf{g}' = \text{reshape}\left((1 - \alpha_{gs})\mathbf{g}^{\text{flat}} + \alpha_{gs} \cdot \mathbf{M}\mathbf{A}_w(\mathbf{g}^{\text{flat}})\right),$$
 (14)

where \mathbf{g}^{flat} is the flattened gradient, $\mathbf{M}\mathbf{A}_w$ denotes the moving average with window size w, and $\alpha_{\text{gs}} \in [0,1]$ controls the smoothing intensity.

D MORE COMPREHENSIVE BASELINE COMPARISON

D.1 COMPARISON WITH LEARNING-BASED SOTA

The learning-based SOTA method, Learning To Invert (LTI) (Wu et al., 2023), leverages gradients from an auxiliary dataset as inputs for training the inversion model, incorporates hash-based dimensionality reduction, and employs mean squared error (MSE) as the loss function. Our proposed IGF surpasses LTI in several key aspects:

Auxiliary Sample Efficiency. Under the same CIFAR-10 dataset, IGF requires $\sim 10,000$ auxiliary samples to train the inversion model, whereas LTI demands $\sim 50,000$ samples, demonstrating superior efficiency in data utilization.

Loss Function Innovation. Our composite loss function explicitly optimizes both pixel-level accuracy and high-level semantic fidelity. Extensive ablation studies validate its pivotal role in enhancing reconstruction quality (Figure 6(d)), which is far beyond simple MSE loss used in prior works (Wu et al., 2023; Hu et al., 2024) (Figure 6(c)).

Input Reduction for Inversion Model. The gradient difference derived from large-scale global models like ResNet-20 exhibits 269, 722 dimensions. This high-dimensional output serves as input for inversion models, significantly increasing computational complexity. As detailed in Section E.5, our SVD-based approach outperforms hash-based dimensionality reduction (Wu et al., 2023) in both dimensionality reduction efficiency (Table 10) and numerical reconstruction accuracy (Figure 10).

D.2 COMPARISON WITH OPTIMIZATION-BASED SOTA

Notably, few baseline attacks are directly comparable for FU reconstruction, as most existing methods either: i) Process gradients from a single model, or ii) Compare differences between two models. To enable fair comparison, we adapt input formats and optimization procedures of DLG (Zhu et al., 2019) to serve as baseline. The adapted algorithm is named DLGD (Deep Leakage from Gradient Difference) and presented in Algorithm 2.

Algorithm 2 Deep Leakage from Gradient Difference (DLGD).

Input: Gradient difference Δg ; Colluding client who can compute the gradients on original model $\mathbf{M}(\cdot; \boldsymbol{\theta}^T)$ and unlearned model ${}^{u}\mathbf{M}(\cdot; \boldsymbol{\theta'})$

Output: private forgotten data x, y

The *honest-but-curious* auditor A executes:

```
1: \mathbf{x'}_1 \leftarrow \mathcal{N}(0,1), \mathbf{y'}_1 \leftarrow \mathcal{N}(0,1)
                                                                                                        ▶ Initialize dummy inputs and labels.
```

2: for $i \leftarrow 1$ to N_{iter} do

Query $\nabla_{\theta} \ell(\mathbf{M}(\mathbf{x}_i'; \theta^T), \mathbf{y}_i')$ and $\nabla_{\theta} \ell({}^u \mathbf{M}(\mathbf{x}_i'; \theta'), \mathbf{y}_i')$ from **colluding client**.

 $\Delta \mathbf{g'}_i \leftarrow \nabla_{\boldsymbol{\theta}} \ell \left(\mathbf{M}(\mathbf{x}_i'; \boldsymbol{\theta}^T), \mathbf{y}_i' \right) - \nabla_{\boldsymbol{\theta}} \ell \left(\mathbf{M}(\mathbf{x}_i'; \boldsymbol{\theta'}), \mathbf{y}_i' \right)$ difference.

 $\begin{array}{l} \mathbb{D}_i \leftarrow ||\Delta \mathbf{g'}_i - \Delta \mathbf{g}||^2 \\ \mathbf{x}'_{i+1} \leftarrow \mathbf{x}'_i - \eta \nabla_{\mathbf{x}'_i} \mathbb{D}_i \text{ , } \mathbf{y}'_{i+1} \leftarrow \mathbf{y}'_i - \eta \nabla_{\mathbf{y}'_i} \mathbb{D}_i \end{array} \Rightarrow \text{Update data to match gradient difference.}$

864

865

866

867

868

870

871

872

873 874

875 876

877

878

879

880

882

883

884

885

887

889

890

891

892 893 894

895

897

898

899

900

901

902

903 904

910

911 912

913

914

915

916

917

8: **return** $\mathbf{x}'_{n+1}, \mathbf{y}'_{n+1}$

Our experiments incorporating optimization-based SOTA (DLGD) demonstrate that **IGF achieves** lower communication overhead and superior reconstruction performance.

Communication Complexity. As illustrated in Table 4, IGF incurs a fixed number of gradient differences from offline queries on the auxiliary dataset and zero online queries for reconstructing any number of forgotten samples in FU. Conversely, DLGD eliminates offline query overhead but scales linearly with the number of samples under a fixed iteration count N_{iter} .

Table 4: Comparison of offline and online computational complexity.

Method	Offline	Online
Optimization-based SOTA (DLGD)	0	$\sim 2 \times N_{\text{iter}} \times \theta \times N_u$
Our proposed IGF	$\sim 2 imes N_{ m aux} imes heta$	0

 $N_{\rm aux} \approx$ thousands, $N_{\rm iter} \approx$ hundreds, $\theta =$ model size and N_u is the number of forgotten samples to be reconstructed.

Superior Reconstruction Accuracy. We evaluate DLGD's reconstruction performance across varying iteration counts ($N_{\text{iter}} = 100, 200, 300, 500$) in Table 5. The optimal numerical reconstruction is observed at $N_{\text{iter}} = 200$. Nonetheless, IGF consistently outperforms DLGD in reconstruction quality across all evaluated N_{iter} values.

Furthermore, visualizations of DLGD's reconstructed samples in Figure 7 illustrate its inability to extract meaningful signals from gradient differences, resulting in visually degraded outputs resembling

Table 5: Reconstruction performance of IGF vs. DLGD with different iterations N_{iter} .

Metric	IGF	DLGD(100)	DLGD(200)	DLGD(300)	DLGD(500)
MSE ↓	0.0211	0.5378	0.4494	0.7022	1.6185
PSNR ↑	17.19	2.6935	3.4730	1.5349	-2.0914
LPIPS ↓	0.3261	0.4142	0.3855	0.4232	0.4779

random noise. This limitation stems from the challenges in optimizing randomly generated dummy gradient differences to recover forgotten samples, aligning with observations in Ju et al. (2025). Thus, directly applying optimization-based methods to gradient differences yields suboptimal reconstruction performance.

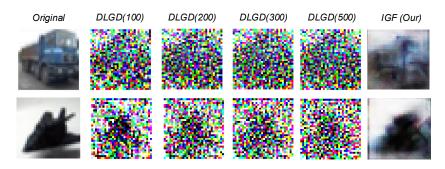


Figure 7: Reconstruction images of IGF vs. DLGD with different iterations N_{iter} .

This observation aligns with our perspective: gradient differences for the same sample, compared to gradients, contain limited and mixed signals, making reconstruction more challenging.

Efficient Large-Scale Reconstruction. We further quantify runtime overhead (in seconds) for reconstructing varying numbers of forgotten samples (N_u) , with $N_{\text{iter}} = 200$. Table 6 highlights IGF's scalability, amortizing its fixed 3,020-second training overhead across samples. In contrast, DLGD's per-sample optimization leads to linear runtime growth with N_u .

Table 6: Reconstruction runtime (in seconds) of IGF and DLGD for varying forgotten samples N_u , assuming $N_{\text{iter}} = 200$.

	$N_u = 0$	$N_u = 50$	$N_u = 200$	$N_u = 400$	$N_u = 600$	$N_u = 800$
IGF	3020	3045	3220	3320	3420	3520
DLGD	U	3300	13200	26400	39600	52800

E ADDITIONAL ABLATION STUDIES

E.1 RECONSTRUCTION PERFORMANCE AGAINST DEFENSE MECHANISMS ON ResNet20

To further validate the robustness and generalizability of IGF, we conducted additional ablation studies evaluating its performance against common defense mechanisms using *ResNet20* as the global model backbone. As shown in Table 7, we assessed the IGF attack against five common defense mechanisms. Without defenses, our attack achieves MSE=0.04, PSNR=13.51, and LPIPS=0.43 on CIFAR-10. With defenses applied, the attack remains highly effective, with MSE ranging from 0.04 to 0.06, PSNR from 12.06 to 13.51, and LPIPS from 0.43 to 0.54, indicating that these defenses fail to disrupt our attack significantly. This aligns with our conclusion that current defense mechanisms that disrupt our attack significantly are inadequate against gradient-difference-based reconstruction attacks, underscoring the need for our proposed orthogonal obfuscation defense.

Table 7: Reconstruction performance across three metrics at five common defense mechanisms on *ResNet20*.

Defense Method	od None Gradient Pruning Sign Compression Gauss Noise G		Gradient Perturb	Gradient Smooth				
		0.7	0.8	0.9	0.001	0.1	0.01	0.1
MSE ↓	0.0445	0.0585	0.0584	0.0585	0.0445	0.0607	0.0585	0.0581
PSNR ↑	14.05	12.3307	12.33	12.3254	13.5144	12.0673	12.3270	12.3275
LPIPS	0.4607	0.5272	0.5316	0.5364	0.4389	0.5452	0.5345	0.5357

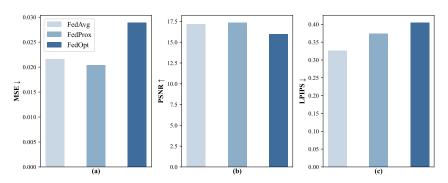


Figure 8: The reconstruction performance under different federated aggregation methods.

E.2 IMPACT OF DIFFERENT FEDERATED AGGREGATION METHODS

We investigated how three federated aggregation methods, including FedAvg (McMahan et al., 2017), FedProx (Li et al., 2020), and FedOpt (Reddi et al., 2020), affect the performance of reconstruction attacks in FU scenarios. Figure 8 illustrates the performance of our attack method across various aggregation algorithms commonly used in FL systems. The results demonstrate that while aggregation methods can influence reconstruction quality, our attack remains effective across different techniques. When examining more sophisticated aggregation methods like FedProx and FedOpt, we observe slightly different reconstruction patterns, but the overall attack effectiveness remains consistent.

E.3 IMPACT OF DIFFERENT DISTRIBUTIONS OF AUXILIARY DATASETS

We select SVHN (Netzer et al., 2011) as the auxiliary dataset for out-of-distribution (OOD) tasks. Compared to CIFAR-10, SVHN exhibits entirely distinct visual features and semantic categories, rendering it a dataset with a markedly different distribution. To quantify the degree of OOD in the auxiliary dataset, we introduce the variable α . The auxiliary dataset consists of 10,000 samples, with SVHN comprising a proportion α and CIFAR-10 comprising $1-\alpha$. Specifically, when $\alpha=0$, the auxiliary dataset is in-distribution with the forgotten dataset, while $\alpha=1$ corresponds a fully OOD auxiliary dataset.

Table 8: The results of *ConvNet* as the FL model at different degrees of OOD.

α	0.0	0.1	0.3	0.5	0.7	0.9	1.0
MSE ↓	0.0211	0.02066	0.0219	0.0236	0.0261	0.0306	0.0395
PSNR ↑	17.1947	17.3447	17.1221	16.8155	16.449	15.829	14.837
LPIPS ↓	0.3261	0.373	0.387	0.408	0.436	0.489	0.55

Table 9: The results of *ResNet20* as the FL model at different degrees of OOD.

α	0.0	0.1	0.3	0.5	0.7	0.9	1.0
	14.05	12.7890	12.7867	0.05997 12.7682 0.53568	12.762	12.6687	12.50563

We present the numerical results of *ConvNet* and *ResNet20* serving as FL model at different degrees of OOD in Table 8 and 9, respectively. Based on the above experimental results, we can draw the following conclusions: Higher OOD degrees (α approaching 1) result in relatively poorer reconstruction performance, as the auxiliary data becomes semantically and categorically unrelated to the forgotten dataset. When the auxiliary dataset includes a proportion of in-distribution data (e.g., $\alpha = 0.1, 0.3, 0.5$, the reconstruction quality of our proposed IGF method remains high.

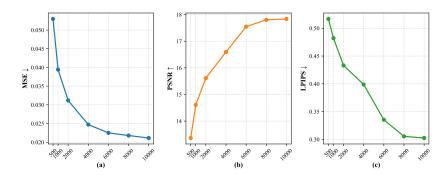


Figure 9: The reconstruction performance with different auxiliary dataset sizes.

E.4 IMPACT OF DIFFERENT AUXILIARY DATASET SIZES

We investigate the influence of varying auxiliary dataset sizes on the efficacy of our attack method. As illustrated in Figure 9, we incrementally scale the dataset from 500 to 10,000 samples. Experimental results reveal that performance metrics stabilize when the auxiliary dataset comprises approximately 8,000 to 10,000 samples, demonstrating that our method achieves efficient and robust performance without requiring extensive auxiliary data. Notably, even with a modest dataset size, our proposed attack method effectively leverages available knowledge to deliver high-quality image reconstruction.

E.5 Comparative Ablation Study of Dimensionality Reduction Methods

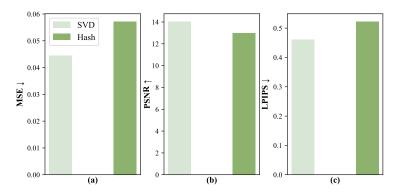


Figure 10: Comparison of the reconstruction effectiveness with applying SVD and Hash dimensionality reduction.

To gain a deeper understanding of the effectiveness of dimensionality reduction methods, we compared the performance of Hash-based dimensionality reduction and Singular Value Decomposition (SVD) in terms of reduction quality and reconstruction results. Hash-based dimensionality reduction (Weinberger et al., 2009) is a vector compression method that relies on random projection, mapping high-dimensional gradient differences to a lower-dimensional space through a sparse random matrix. Specifically, a sparse matrix is constructed where each high-dimensional vector component is randomly assigned to a lower-dimensional target dimension, and each reduced dimension represents the cumulative sum of the corresponding high-dimensional gradient differences. This approach is computationally efficient and well-suited for rapidly compressing gradient differences. However, its randomness disregards the inherent structure of the gradient differences, potentially leading to significant information loss.

As shown in Figure 10, SVD outperforms the reconstruction after Hash dimensionality reduction in both reconstruction effects, and as shown in Table 10 achieves more significant dimensionality reduction by extracting only key information. SVD-based dimensionality reduction is a data-driven method that decomposes the covariance matrix of the gradient differences to extract principal component directions as the projection basis. SVD dynamically selects the number of dimensions to retain a substantial portion of the variance (e.g., 95%), ensuring that the reduced results capture the primary patterns of the original gradient differences.

Method	Size
Original	269722
Hash	134861
SVD	433

Table 10: Comparison of the effectiveness of SVD and Hash for gradient differences reduction.

SVD outperforms Hash-based reduction because it prioritizes the retention of critical information while minimizing the impact of

irrelevant noise. Furthermore, in reconstruction tasks, SVD-preserved gradient differences maintain structured features, enabling inversion models to more effectively learn the mapping from lower-dimensional features to the original data, resulting in higher-quality reconstructed images. Conversely, Hash-based reduction disrupts the gradient differences structure through random mixing, making it challenging for reconstruction networks to disentangle useful information, which often leads to blurry or distorted reconstructed images.

E.6 Comparative Ablation Study of different β parameters

To investigate the role of the parameter β in the loss function, which governs the trade-off between pixel-level accuracy and perceptual quality, we conduct an ablation study to assess its impact on reconstruction attack performance. Specifically, we evaluate the effect of varying $\beta \in \{0.1, 1.0, 2.0\}$ on three key metrics: MSE, PSNR, and LPIPS. As shown in Figure 11, increasing β reveals a clear trade-off: pixel-level accuracy degrades, as indicated by worsening MSE, and perceptual quality diminishes, as reflected by deteriorating LPIPS, while PSNR exhibits a peak at an intermediate β before declining. These findings underscore β 's critical role in mediating the balance between pixel-wise fidelity and high-level perceptual features.

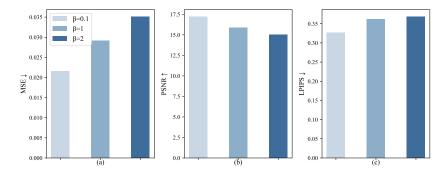


Figure 11: The reconstruction performance under different β .

INVERSION MODEL ARCHITECTURE

 As illustrated in Figure 12, our pixel-level inversion model features a carefully designed architecture comprising multiple Conv2d and BatchNorm2d layers. We incorporate PixelShuffle for effective upsampling, minimizing artifacts in reconstructed results. A linear layer paired with an initial Reshape operation enhances input processing, while a final Sigmoid activation and Reshape ensure high-quality output generation.

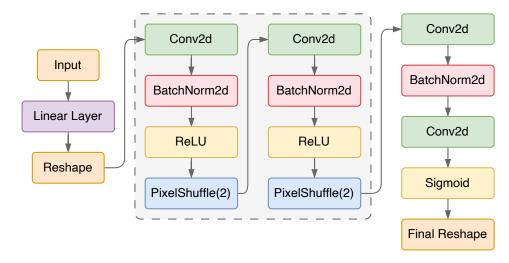


Figure 12: Architecture of the proposed pixel-level inversion model.

ADDITIONAL RECONSTRUCTED IMAGES G

This section showcases the forgotten images and their corresponding reconstructions across multiple datasets, as presented in Figures 13, 14, and 15. In each figure, odd columns display the original **images**, and even columns show our reconstructed results. Specifically, Figure 13 illustrates the reconstruction results of IGF using ConvNet in the sample-level scenario on the MNIST and Fashion-MNIST datasets. Due to the lower complexity of the MNIST series images, gradient information can more effectively capture key features, resulting in reconstructed images that closely resemble the originals. In contrast, Figure 14 presents the reconstruction results of IGF using *ConvNet* in the sample-level scenario on the CIFAR-100 dataset. Despite the complex distribution of the CIFAR-100 dataset, IGF can still generate reconstructed images with a certain level of effectiveness. For the scenario of class-level unlearning, Figure 15 presents the forgotten images and reconstruction results on CIFAR-10 for the unlearned class (car).

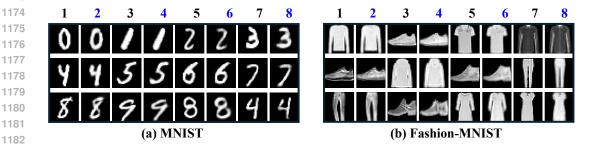


Figure 13: Forgotten and reconstructed images on MNIST and Fashion-MNIST within 1,000 randomly forgotten samples.

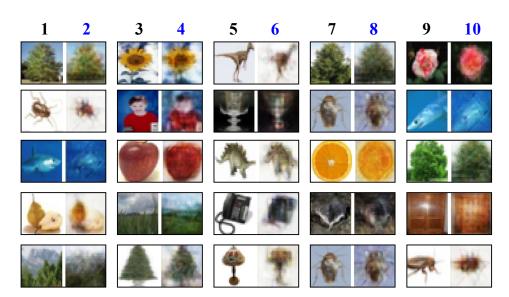


Figure 14: Forgotten and reconstructed images on CIFAR-100.

Figure 15: Forgotten and reconstructed images on CIFAR-10 for the unlearned class (car).

H THEORETICAL ANALYSIS OF ORTHOGONAL OBFUSCATION DEFENSE

We aim to construct a mapping $f: \Delta g \mapsto \Delta g^{\text{obf}}$ such that:

$$(\Delta g^{\text{obf}})^{\top} \Delta g = 0, \qquad \|\Delta g^{\text{obf}}\|_2 = \|\Delta g\|_2.$$
 (15)

Let the original gradient difference vector be $\Delta g \in \mathbb{R}^d$, and let $r \sim \mathcal{N}(0, I_d)$ be a random Gaussian vector. Define

$$u = r - \frac{r^{\top} \Delta g}{\|\Delta g\|_2^2} \Delta g, \qquad \Delta g^{\text{obf}} = \|\Delta g\|_2 \cdot \frac{u}{\|u\|_2}. \tag{16}$$

Orthogonality.

$$(\Delta g^{\text{obf}})^{\top} \Delta g = \left(\|\Delta g\|_2 \cdot \frac{u}{\|u\|_2} \right)^{\top} \Delta g = \frac{\|\Delta g\|_2}{\|u\|_2} \cdot (u^{\top} \Delta g). \tag{17}$$

Since

$$u^{\top} \Delta g = \left(r - \frac{r^{\top} \Delta g}{\|\Delta g\|_2^2} \Delta g \right)^{\top} \Delta g = r^{\top} \Delta g - \frac{r^{\top} \Delta g}{\|\Delta g\|_2^2} \cdot \Delta g^{\top} \Delta g = r^{\top} \Delta g - r^{\top} \Delta g = 0, \quad (18)$$

we obtain

$$(\Delta g^{\text{obf}})^{\top} \Delta g = 0. \tag{19}$$

Norm Preservation.

$$\|\Delta g^{\text{obf}}\|_{2} = \left\| \|\Delta g\|_{2} \cdot \frac{u}{\|u\|_{2}} \right\|_{2} = \|\Delta g\|_{2} \cdot \left\| \frac{u}{\|u\|_{2}} \right\|_{2} = \|\Delta g\|_{2} \cdot 1 = \|\Delta g\|_{2}. \tag{20}$$

If u = 0, then

$$r = \frac{r^{\top} \Delta g}{\|\Delta g\|_2^2} \Delta g \iff r \in \operatorname{span}(\Delta g). \tag{21}$$

Since $r \sim \mathcal{N}(0, I_d)$ is drawn from a continuous distribution, the probability of r lying in the one-dimensional subspace spanned by Δg is zero for d > 1. Hence this case can be ignored in practice.

$$\Delta g^{
m obf}$$
 is orthogonal to Δg and has the same norm.

The construction is based on Gram-Schmidt orthogonalization. A random Gaussian vector r is chosen, and its projection onto Δg is subtracted to yield u, which is guaranteed to be orthogonal to Δg . To ensure that the obfuscated vector preserves the same magnitude as the original one, u is normalized to a unit vector and scaled by $\|\Delta g\|_2$. This guarantees both orthogonality and norm preservation. The only degenerate case occurs if r is collinear with Δg , but this event has probability zero in continuous distributions and is negligible in practice.

I THE USE OF LARGE LANGUAGE MODELS (LLMS)

In the preparation of this paper, a large language model (LLM) was used solely for minor text polishing and grammar corrections. The LLM did not contribute to research ideation, content generation, or any other significant aspect of the work. All content, including the final text, has been thoroughly reviewed and approved by the authors, who take full responsibility for its accuracy and originality.