© o N O g A~ W N =

Compressed Computation is (probably) not
Computation in Superposition

Anonymous Author(s)
Affiliation
Address

email

Abstract

We study whether the Compressed Computation (CC) toy model [Braun et al.|[2025]]
is an instance of computation in superposition. The CC model appears to compute
100 ReLU functions with just 50 neurons, achieving a better loss than expected from
only representing 50 ReLU functions. We show that the model mixes inputs via its
noisy residual stream, corresponding to an unintended mixing matrix in the labels.
Splitting the training objective into the ReL.U term and the mixing term, we find
that performance gains scale with the magnitude of the mixing matrix and vanish
when the matrix is removed. The learned neuron directions concentrate in the
subspace associated with the top 50 eigenvalues of the mixing matrix, suggesting
that the mixing term governs the solution. Finally, a semi-non-negative matrix
factorization (SNMF) baseline derived solely from the mixing matrix reproduces
the qualitative loss profile and improves on prior baselines, though it does not
match the trained model. These results suggest CC is not a suitable toy model of
computation in superposition.

1 Introduction

Superposition lets networks represent many sparse features in fewer dimensions [Elhage et al.| {2022,
Gurnee et al.}[2023| Bricken et al.,[2023|]. The related question, computation in superposition, asks
whether models can implement more nonlinear functions than they have nonlinearities when inputs
are sparse [Hanni et al.| 2024) Bushnaq and Mendel,, 2024, |Adler and Shavitl 2024/ |Olah et al.,
2025|]. Braun et al.|[2025] introduce a toy model of Compressed Computation (CC) which seemingly
implements computation in superposition: it appears to compute 100 ReLU functions of sparse inputs
using only 50 neurons.

We re-examine the CC model, and find that its performance—a better loss than a naive baseline
computing only 50 ReLU functions—is likely due to noisy labels introduced by Braun et al.|[2025]’s
architecture. Our key results are:

* The CC model’s performance advantage is dependent on residual stream noise that mixes
different inputs into the labels (in addition to the ReLU target). The model does not beat

baselines without this effective “mixing matrix”.

* The CC model’s performance scales smoothly with the mixing matrix’s magnitude (higher
is better, up to a limit). We also find that the trained model focuses on the top 50 singular
vectors of the mixing matrix (all its neuron directions mostly fall into this subspace), mostly

ignoring the 50 others.

* We introduce a new baseline model derived from the SNMF of the mixing matrix alone
which beats the previous naive baseline, and qualitatively matches the CC model’s loss
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profile. However, the SNMF weights qualitatively differ from the trained model’s weights,
and we don’t fully recover the trained model’s loss.

2 Methods

We show the residual CC architecture with fixed random embedding W [Braun et al.l [2025] is
equivalent to a 1-layer MLP trained on y = ReLU(z) + Mx with M = I — WgW}, (details in
appendix [A.1). Inputs 2. g9 are nonzero with probability p and drawn uniformly from [—1,1],
otherwise zero. We vary M across three conditions: M = 0 (clean), random M ~ N (0, 02), and the
embedding-induced M =1 — Wg Wg Only Wi, and Wy, are trained. Training details are provided
in appendix [B] We provide our core code and scripts to reproduce all figures at|this URL.

Original CC ’ Equivalent simplified CC ‘

With labels y = ReLU(x) + x With labels y = ReLU(x) + M x

Figure 1: The original model architecture from Braun et al.|[2025]], and our simpler equivalent model.
The labels for our (new) model are y; = ReLU(x;) + > ; Mijx;. The matrix M mixes other inputs
x; into the label y;. Thus the MLP needs to learn both the ReLU term, and the mixing term.

3 Results

Simplified model reproduces CC results. We reproduce the results of Braun et al.| [2025] with
our simplified model. Our 1-layer MLP model is trained on y = ReLU(z) + Mz with a mixing
matrix M = 1 — WgWL. This mixing matrix accounts for the noisy residual stream contribution in
Braun et al.[[2025]’s model. Our model produces the same results, and we reproduce their figures
in appendix |C| Figure |2|(left) shows that the “better—than-naiveﬂ at low p / worse at high p” profile
is reproduced by the embedding-like M, as well as by a random M ~ A(0,0.02). We find that a
symmetric random M matrix matches |Braun et al.| [2025]’s results almost exactly.

CC loss advantage requires a nonzero mixing matrix. Without the noise-induced mixing matrix,
the model does not beat the naive loss (yellow line in Figure [2|left) for sparse inputsE] If the model
was achieving a good loss due to computation in superposition, we would expect the loss to still
beat the naive loss even with M = 0. Furthermore, we confirm that a model trained on M # 0
immediately reverts to the naive loss when fine-tuned on an M = 0 dataset (Figure 3).

CC loss advantage scales with the magnitude of /. We train CC models over a range of noise
scales M ~ N(0,0) with o from 0 to 0.08, as shown in Figure 2| (right). We find that the loss
decreases with o (for o < 0.03). This direct correspondence strongly suggests that the loss advantage
is coming directly from the noise term, rather than from computing the 100 ReL U target functions
(computation in superposition).

Potential mechanism behind the Compressed Computation model. We notice that the direction
read (W) and written (W) by each MLP neuron lie mostly in the 50-dimensional subspace
spanned by the positive eigenvalues of M (Figure []left, top panels) or the top 50 singular vectors

!The naive baseline of representing 50 ReLU functions perfectly achieves a loss of 0.0833 on a clean dataset
(details in appendix[A.Z).
2The dense regime is a different mechanism, discussed in appendix@
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Loss over input sparsity for different mixing matrices M Loss over a range of mixing matrix magnitudes
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Figure 2: Left: With M # 0 (embed-like, random, or symmetric), the model beats the naive loss at
low sparsity. Labels with embed-like M allow for the lowest loss, but random M matrices behave
similarly. Right: Optimal loss decreases with noise scale o for small o and increases again at large o.

Transplanting weights from noisy case to clean case
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Figure 3: Transplant to clean labels. A model trained with M # 0 immediately reverts to the naive
loss when fine-tuned on M = 0, indicating the lower loss is not just due to training dynamics.

of I + M (bottom panels). We confirm this by measuring the cosine similarity between singular-
and eigenvectors before and after the projection through (W, Wiy, ). We find that only the top ~ 50
vectors are represented fully, with a sharp drop-off in similarity around index 40-60 (Figure @] right).

We further analyze the trained model’s weights and find (i) the entries of the M matrix are strongly
correlated with the entries of Wt Wiy, (Figure |§|16ft), and (ii) Wi, is mostly non-negative and both
weight matrices are sparse (Figure [5] right). Given this we attempt to design hand-coded model
weights using the SNMF of M, setting W, to the non-negative factor. We find that this SNMF
solution beats the naive loss for a range of noise scales o (Figure[6), in a qualitatively similar pattern
to the trained model (Figure 2] right). However, the SNMF solution does not reach a loss as low as the
trained model, and its weights are less sparse than the trained weights (Figure 3] right).

4 Conclusion

Our work sheds light on the mechanism behind the |Braun et al.| [2025] model of compressed
computation. We ruled out the hypothesis that the embedding noise was only required for the training
of the model, and instead showed that the noise-induced mixing matrix is what allows the model to
beat the naive baseline. We provided an improved SNMF baseline that explains some but not all of
the trained model’s performance and properties. While we were not able to fully reverse-engineer the
Compressed Computation model, we hope that our work inspires new attempts to find a toy model of
computation in superposition, and further reverse-engineer the CC model.
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Figure 4: Left: Neuron read/write directions align with the top ~ 50 eigen/singular vectors of M.
Right: The linear map W, Wi, preserves those top directions while strongly attenuating the rest.
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Figure 5: Left: Entries of the M matrix strongly correlated with entries of W, Wi, (with an offset
for the diagonal entries). Right: W, is mostly nonnegative and both weight matrices are sparse.
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does not reach as low a loss as the trained model.
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A Mathematical details

A.1 Equivalence of the CC model and 1-layer MLP

The CC residual architecture corresponds to the function

g =WE (Wga + W/ ReLU(W! Wgx)) (1)
= WiWgx +WEW, ReLU(W/! Wgx) )
N—_——
I-M Wout ReLU (Wi, )

and is trained on the objective y' = ReLU(z) 4 «. This is equivalent to training a 1-layer MLP
§ = WoutReLU (Wi, ) 3)
on the objective y = ReLU(z) + M.

A.2 Naive baseline loss

A noise-free model could implement 50 ReL.U target functions perfectly, and ignore the other 50 target
functions. The expected loss for an unrepresented feature is then 0.5 f_ll ReLU(z)%dx ~ 0.1667.
Thus the average loss per feature is 0.0833 for the naive baseline.

This only holds on the clean dataset (M = 0). With noisy labels, the naive solution would need to be
adjusted to account for the noise. We do not investigate this further, and only indicate the 0.0833 line
for comparison with [Braun et al.|[2025]].

B Training details

We use a batch size of 2048 and a learning rate of 0.003 with cosine scheduler. To control for training
exposure we train all models for 10,000 non-empty batches. The only trainable parameters are W,
and Wy, (not M). In some experiments we optimize a scale factor ¢ for the mixing matrix M
simultaneously with the weights for convenience.
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C Analysis of the CC model

We reproduce the CC model of [2025]] with our simplified architecture with M =
00

1 — WgWZE for a randomly generated R'099%1%0 embedding matrix Wi, as well as for a random
matrix M ~ N(0,0.02).

In Figure [7] we show the loss per feature (that is, MSE loss divided by feature probability p) as a
function of training and evaluation sparsity.

Loss over input sparsity for different input feature probabilities p
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Figure 7: Loss per feature (L /p) as a function of evaluation sparsity. Each solid line corresponds to a
model trained at a given sparsity. The models learn one of two solution types, depending on the input
sparsity used during training: the CC solution (violet) or a dense solution (green). Both types beat
the naive baseline (dashed line) in their respective regime. Black circles connected by a dotted line
represent the results seen by [Braun et al.| [2025]], where models were evaluated only at their training
sparsity.

In the sparse regime (low probability p < 0.05) we find solutions that perform well on sparse inputs,
and less well on dense inputs. They typically exhibit a similar input-output response for all features
(Figure [§]left), and weights distributed across all features (Figure [9] left, equivalent to Figure 6 in
Braun et al.| [2025]]). The maximally sparse case (exactly one input active) behaves very similar to
p < 0.01.

In the dense regime (high probability p 2 0.2) we find solutions with a constant per-feature loss on
sparse inputs, but a better performance on dense inputs. These solutions tend to implement half the
input features with a single neuron each, while ignoring the other half (Figures §|right and [J]right).
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Input-output behaviour for individual features
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Figure 8: Input/output behaviour of the two model types (for one-hot inputs): In the CC solution (left
panel), all features (inputs) are similarly-well represented: each input activates the corresponding
output feature. In contrast, the dense solution (right panel) shows a strong (and more accurate)
response for half the features, while barely responding to the other half. The green dashed line
indicates the expected response under perfect performance.
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Figure 9: Weights representing each input feature, split by neuron. Each bar corresponds to a feature
(x-axis) and shows the adjusted weight value from W,y ® Wiy, split by neuron index (color). The
CC solution (left) combinations of neurons to represent each feature (to around 70%), whereas the
dense solution (right) allocates a single neuron to fully (~100%) represent 50 out of 100 features.

D Mechanism of the dense solution

The dense regime is less interesting as it is not related to computation in superposition, however
Figure [7]shows that the model can beat the naive baseline in the dense regime. In this section we
provide an explanation of this behaviour, and a hand-coded model that matches the trained model’s
performance in the dense regime.

Revisiting Figures [§]and [0 we notice an intriguing pattern: roughly half of the features are well-
learned, while the other half are only weakly represented. Our hypothesis is that the model represents
half the features correctly, and approximates the other half by emulating a bias term. Our architecture
does not include biases, but we think the model can create an offset in the outputs by setting the
corresponding output weight rows to positive values, averaging over all features. This essentially
uses the other features to, on average, create an offset.

We test this “naive + offset” solution on the clean dataset (M = 0) as the behaviour seems to be the
same regardless of noise (but we did not explore this further), and find that the hardcoded naive +
offset solution does in fact match the trained models’ losses. Figure [T0|left shows the optimal weight
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value (offset strength; same value for every W, entry of non-represented features), and Figure[I0]
right shows the corresponding loss as a function of feature probability. We find that the hardcoded
models (dashed lines) closely match or exceed the trained models (solid lines). We thus conclude that
the high density behaviour can be explained by a simple bias term, and not particularly interesting.

Trained vs handcoded models on the clean dataset for different training feature probabilities
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Figure 10: Left: A non-zero offset in the W, entries of unrepresented features improves the loss in
the dense regime. We determine the optimal value empirically for each input feature probability p.
Right: This hand-coded naive + offset model (dashed lines) consistently matches or outperforms the
model trained on clean labels (solid lines) in the dense regime. (Note that this plot only shows the
clean dataset (M = 0) which is why no solution outperforms the naive loss in the sparse regime.)
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