
Compressed Computation is (probably) not
Computation in Superposition

Anonymous Author(s)
Affiliation
Address
email

Abstract

We study whether the Compressed Computation (CC) toy model Braun et al. [2025]1

is an instance of computation in superposition. The CC model appears to compute2

100 ReLU functions with just 50 neurons, achieving a better loss than expected from3

only representing 50 ReLU functions. We show that the model mixes inputs via its4

noisy residual stream, corresponding to an unintended mixing matrix in the labels.5

Splitting the training objective into the ReLU term and the mixing term, we find6

that performance gains scale with the magnitude of the mixing matrix and vanish7

when the matrix is removed. The learned neuron directions concentrate in the8

subspace associated with the top 50 eigenvalues of the mixing matrix, suggesting9

that the mixing term governs the solution. Finally, a semi-non-negative matrix10

factorization (SNMF) baseline derived solely from the mixing matrix reproduces11

the qualitative loss profile and improves on prior baselines, though it does not12

match the trained model. These results suggest CC is not a suitable toy model of13

computation in superposition.14

1 Introduction15

Superposition lets networks represent many sparse features in fewer dimensions [Elhage et al., 2022,16

Gurnee et al., 2023, Bricken et al., 2023]. The related question, computation in superposition, asks17

whether models can implement more nonlinear functions than they have nonlinearities when inputs18

are sparse [Hänni et al., 2024, Bushnaq and Mendel, 2024, Adler and Shavit, 2024, Olah et al.,19

2025]. Braun et al. [2025] introduce a toy model of Compressed Computation (CC) which seemingly20

implements computation in superposition: it appears to compute 100 ReLU functions of sparse inputs21

using only 50 neurons.22

We re-examine the CC model, and find that its performance—a better loss than a naive baseline23

computing only 50 ReLU functions—is likely due to noisy labels introduced by Braun et al. [2025]’s24

architecture. Our key results are:25

• The CC model’s performance advantage is dependent on residual stream noise that mixes26

different inputs into the labels (in addition to the ReLU target). The model does not beat27

baselines without this effective “mixing matrix”.28

• The CC model’s performance scales smoothly with the mixing matrix’s magnitude (higher29

is better, up to a limit). We also find that the trained model focuses on the top 50 singular30

vectors of the mixing matrix (all its neuron directions mostly fall into this subspace), mostly31

ignoring the 50 others.32

• We introduce a new baseline model derived from the SNMF of the mixing matrix alone33

which beats the previous naive baseline, and qualitatively matches the CC model’s loss34

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.



profile. However, the SNMF weights qualitatively differ from the trained model’s weights,35

and we don’t fully recover the trained model’s loss.36

2 Methods37

We show the residual CC architecture with fixed random embedding WE [Braun et al., 2025] is38

equivalent to a 1-layer MLP trained on y = ReLU(x) + Mx with M = I − WEW
T
E (details in39

appendix A.1). Inputs x0..99 are nonzero with probability p and drawn uniformly from [−1, 1],40

otherwise zero. We vary M across three conditions: M = 0 (clean), random M ∼ N (0, σ2), and the41

embedding-induced M = I −WEW
T
E . Only Win and Wout are trained. Training details are provided42

in appendix B. We provide our core code and scripts to reproduce all figures at this URL.43

Figure 1: The original model architecture from Braun et al. [2025], and our simpler equivalent model.
The labels for our (new) model are yi = ReLU(xi) +

∑
j Mijxi. The matrix M mixes other inputs

xj into the label yi. Thus the MLP needs to learn both the ReLU term, and the mixing term.

3 Results44

Simplified model reproduces CC results. We reproduce the results of Braun et al. [2025] with45

our simplified model. Our 1-layer MLP model is trained on y = ReLU(x) + Mx with a mixing46

matrix M = 1−WEW
T
E . This mixing matrix accounts for the noisy residual stream contribution in47

Braun et al. [2025]’s model. Our model produces the same results, and we reproduce their figures48

in appendix C. Figure 2 (left) shows that the “better-than-naive1 at low p / worse at high p” profile49

is reproduced by the embedding-like M , as well as by a random M ∼ N (0, 0.02). We find that a50

symmetric random M matrix matches Braun et al. [2025]’s results almost exactly.51

CC loss advantage requires a nonzero mixing matrix. Without the noise-induced mixing matrix,52

the model does not beat the naive loss (yellow line in Figure 2 left) for sparse inputs.2 If the model53

was achieving a good loss due to computation in superposition, we would expect the loss to still54

beat the naive loss even with M = 0. Furthermore, we confirm that a model trained on M ̸= 055

immediately reverts to the naive loss when fine-tuned on an M = 0 dataset (Figure 3).56

CC loss advantage scales with the magnitude of M . We train CC models over a range of noise57

scales M ∼ N (0, σ) with σ from 0 to 0.08, as shown in Figure 2 (right). We find that the loss58

decreases with σ (for σ ≲ 0.03). This direct correspondence strongly suggests that the loss advantage59

is coming directly from the noise term, rather than from computing the 100 ReLU target functions60

(computation in superposition).61

Potential mechanism behind the Compressed Computation model. We notice that the direction62

read (Win) and written (Wout) by each MLP neuron lie mostly in the 50-dimensional subspace63

spanned by the positive eigenvalues of M (Figure 4 left, top panels) or the top 50 singular vectors64

1The naive baseline of representing 50 ReLU functions perfectly achieves a loss of 0.0833 on a clean dataset
(details in appendix A.2).

2The dense regime is a different mechanism, discussed in appendix D.

2

https://osf.io/dhqf7/files/osfstorage?view_only=7a036c7c8da342e6bb72f08cc7352c71


Figure 2: Left: With M ̸= 0 (embed-like, random, or symmetric), the model beats the naive loss at
low sparsity. Labels with embed-like M allow for the lowest loss, but random M matrices behave
similarly. Right: Optimal loss decreases with noise scale σ for small σ and increases again at large σ.

Figure 3: Transplant to clean labels. A model trained with M ̸= 0 immediately reverts to the naive
loss when fine-tuned on M = 0, indicating the lower loss is not just due to training dynamics.

of I +M (bottom panels). We confirm this by measuring the cosine similarity between singular-65

and eigenvectors before and after the projection through (WoutWin). We find that only the top ∼ 5066

vectors are represented fully, with a sharp drop-off in similarity around index 40-60 (Figure 4 right).67

We further analyze the trained model’s weights and find (i) the entries of the M matrix are strongly68

correlated with the entries of WoutWin (Figure 5 left), and (ii) Win is mostly non-negative and both69

weight matrices are sparse (Figure 5 right). Given this we attempt to design hand-coded model70

weights using the SNMF of M , setting Win to the non-negative factor. We find that this SNMF71

solution beats the naive loss for a range of noise scales σ (Figure 6), in a qualitatively similar pattern72

to the trained model (Figure 2 right). However, the SNMF solution does not reach a loss as low as the73

trained model, and its weights are less sparse than the trained weights (Figure 5 right).74

4 Conclusion75

Our work sheds light on the mechanism behind the Braun et al. [2025] model of compressed76

computation. We ruled out the hypothesis that the embedding noise was only required for the training77

of the model, and instead showed that the noise-induced mixing matrix is what allows the model to78

beat the naive baseline. We provided an improved SNMF baseline that explains some but not all of79

the trained model’s performance and properties. While we were not able to fully reverse-engineer the80

Compressed Computation model, we hope that our work inspires new attempts to find a toy model of81

computation in superposition, and further reverse-engineer the CC model.82

3



Figure 4: Left: Neuron read/write directions align with the top ∼ 50 eigen/singular vectors of M .
Right: The linear map WoutWin preserves those top directions while strongly attenuating the rest.

Figure 5: Left: Entries of the M matrix strongly correlated with entries of WoutWin (with an offset
for the diagonal entries). Right: Win is mostly nonnegative and both weight matrices are sparse.

References83

Micah Adler and Nir Shavit. On the complexity of neural computation in superposition, 2024.84

Dan Braun, Lucius Bushnaq, Stefan Heimersheim, Jake Mendel, and Lee Sharkey. Interpretability85

in parameter space: Minimizing mechanistic description length with attribution-based parameter86

decomposition, 2025.87

Trenton Bricken, Adly Templeton, Joshua Batson, Brian Chen, Adam Jermyn, Tom Conerly, Nick88

Turner, Cem Anil, Carson Denison, Amanda Askell, Robert Lasenby, Yifan Wu, Shauna Kravec,89

Nicholas Schiefer, Tim Maxwell, Nicholas Joseph, Zac Hatfield-Dodds, Alex Tamkin, Karina90

Nguyen, Brayden McLean, Josiah E. Burke, Tristan Hume, Shan Carter, Tom Henighan, and91

Christopher Olah. Towards monosemanticity: Decomposing language models with dictionary92

learning. Transformer Circuits Thread, 2023. URL https://transformer-circuits.pub/93

2023/monosemantic-features/index.html.94

Lucius Bushnaq and Jake Mendel. Circuits in superposition: Compress-95

ing many small neural networks into one. Alignment Forum, 2024.96

URL https://www.alignmentforum.org/posts/roE7SHjFWEoMcGZKd/97

circuits-in-superposition-compressing-many-small-neural.98

Nelson Elhage, Tristan Hume, Catherine Olsson, Nicholas Schiefer, Tom Henighan, Shauna Kravec,99

Zac Hatfield-Dodds, Robert Lasenby, Dawn Drain, Carol Chen, Roger Grosse, Sam McCandlish,100

Jared Kaplan, Dario Amodei, Martin Wattenberg, and Christopher Olah. Toy models of superposi-101

tion. Transformer Circuits Thread, 2022. URL https://transformer-circuits.pub/2022/102

toy_model/index.html.103

4

https://transformer-circuits.pub/2023/monosemantic-features/index.html
https://transformer-circuits.pub/2023/monosemantic-features/index.html
https://transformer-circuits.pub/2023/monosemantic-features/index.html
https://www.alignmentforum.org/posts/roE7SHjFWEoMcGZKd/circuits-in-superposition-compressing-many-small-neural
https://www.alignmentforum.org/posts/roE7SHjFWEoMcGZKd/circuits-in-superposition-compressing-many-small-neural
https://www.alignmentforum.org/posts/roE7SHjFWEoMcGZKd/circuits-in-superposition-compressing-many-small-neural
https://transformer-circuits.pub/2022/toy_model/index.html
https://transformer-circuits.pub/2022/toy_model/index.html
https://transformer-circuits.pub/2022/toy_model/index.html


Figure 6: The semi-NMF baseline derived from M reproduces the qualitative loss-vs-σ curve, but
does not reach as low a loss as the trained model.

Wes Gurnee, Neel Nanda, Matthew Pauly, Katherine Harvey, Dmitrii Troitskii, and Dimitris Bertsimas.104

Finding neurons in a haystack: Case studies with sparse probing, 2023.105

Kaarel Hänni, Jake Mendel, Dmitry Vaintrob, and Lawrence Chan. Mathematical models of compu-106

tation in superposition, 2024.107

Chris Olah, Nicholas L. Turner, and Tom Conerly. A toy model of interference weights. Trans-108

former Circuits Thread, July 2025. URL https://transformer-circuits.pub/2025/109

interference-weights/index.html.110

A Mathematical details111

A.1 Equivalence of the CC model and 1-layer MLP112

The CC residual architecture corresponds to the function113

ŷ′ = WT
E (WEx+W ′

outReLU(W ′
inWEx)) (1)

= WT
EWE︸ ︷︷ ︸
I−M

x+WT
EW ′

outReLU(W ′
inWEx)︸ ︷︷ ︸

WoutReLU(Winx)

(2)

and is trained on the objective y′ = ReLU(x) + x. This is equivalent to training a 1-layer MLP114

ŷ = WoutReLU(Winx) (3)

on the objective y = ReLU(x) +Mx.115

A.2 Naive baseline loss116

A noise-free model could implement 50 ReLU target functions perfectly, and ignore the other 50 target117

functions. The expected loss for an unrepresented feature is then 0.5
∫ 1

−1
ReLU(x)2dx ≈ 0.1667.118

Thus the average loss per feature is 0.0833 for the naive baseline.119

This only holds on the clean dataset (M = 0). With noisy labels, the naive solution would need to be120

adjusted to account for the noise. We do not investigate this further, and only indicate the 0.0833 line121

for comparison with Braun et al. [2025].122

B Training details123

We use a batch size of 2048 and a learning rate of 0.003 with cosine scheduler. To control for training124

exposure we train all models for 10,000 non-empty batches. The only trainable parameters are Win125

and Wout (not M ). In some experiments we optimize a scale factor σ for the mixing matrix M126

simultaneously with the weights for convenience.127

5

https://transformer-circuits.pub/2025/interference-weights/index.html
https://transformer-circuits.pub/2025/interference-weights/index.html
https://transformer-circuits.pub/2025/interference-weights/index.html


C Analysis of the CC model128

We reproduce the CC model of Braun et al. [2025] with our simplified architecture with M =129

1 −WEW
T
E for a randomly generated R1000×100 embedding matrix WE , as well as for a random130

matrix M ∼ N (0, 0.02).131

In Figure 7 we show the loss per feature (that is, MSE loss divided by feature probability p) as a132

function of training and evaluation sparsity.133

Figure 7: Loss per feature (L/p) as a function of evaluation sparsity. Each solid line corresponds to a
model trained at a given sparsity. The models learn one of two solution types, depending on the input
sparsity used during training: the CC solution (violet) or a dense solution (green). Both types beat
the naive baseline (dashed line) in their respective regime. Black circles connected by a dotted line
represent the results seen by Braun et al. [2025], where models were evaluated only at their training
sparsity.

In the sparse regime (low probability p ≲ 0.05) we find solutions that perform well on sparse inputs,134

and less well on dense inputs. They typically exhibit a similar input-output response for all features135

(Figure 8 left), and weights distributed across all features (Figure 9 left, equivalent to Figure 6 in136

Braun et al. [2025]). The maximally sparse case (exactly one input active) behaves very similar to137

p ≤ 0.01.138

In the dense regime (high probability p ≳ 0.2) we find solutions with a constant per-feature loss on139

sparse inputs, but a better performance on dense inputs. These solutions tend to implement half the140

input features with a single neuron each, while ignoring the other half (Figures 8 right and 9 right).141

6



Figure 8: Input/output behaviour of the two model types (for one-hot inputs): In the CC solution (left
panel), all features (inputs) are similarly-well represented: each input activates the corresponding
output feature. In contrast, the dense solution (right panel) shows a strong (and more accurate)
response for half the features, while barely responding to the other half. The green dashed line
indicates the expected response under perfect performance.

Figure 9: Weights representing each input feature, split by neuron. Each bar corresponds to a feature
(x-axis) and shows the adjusted weight value from Wout ⊙Win, split by neuron index (color). The
CC solution (left) combinations of neurons to represent each feature (to around 70%), whereas the
dense solution (right) allocates a single neuron to fully (∼100%) represent 50 out of 100 features.

D Mechanism of the dense solution142

The dense regime is less interesting as it is not related to computation in superposition, however143

Figure 7 shows that the model can beat the naive baseline in the dense regime. In this section we144

provide an explanation of this behaviour, and a hand-coded model that matches the trained model’s145

performance in the dense regime.146

Revisiting Figures 8 and 9, we notice an intriguing pattern: roughly half of the features are well-147

learned, while the other half are only weakly represented. Our hypothesis is that the model represents148

half the features correctly, and approximates the other half by emulating a bias term. Our architecture149

does not include biases, but we think the model can create an offset in the outputs by setting the150

corresponding output weight rows to positive values, averaging over all features. This essentially151

uses the other features to, on average, create an offset.152

We test this “naive + offset” solution on the clean dataset (M = 0) as the behaviour seems to be the153

same regardless of noise (but we did not explore this further), and find that the hardcoded naive +154

offset solution does in fact match the trained models’ losses. Figure 10 left shows the optimal weight155

7



value (offset strength; same value for every Wout entry of non-represented features), and Figure 10156

right shows the corresponding loss as a function of feature probability. We find that the hardcoded157

models (dashed lines) closely match or exceed the trained models (solid lines). We thus conclude that158

the high density behaviour can be explained by a simple bias term, and not particularly interesting.159

Figure 10: Left: A non-zero offset in the Wout entries of unrepresented features improves the loss in
the dense regime. We determine the optimal value empirically for each input feature probability p.
Right: This hand-coded naive + offset model (dashed lines) consistently matches or outperforms the
model trained on clean labels (solid lines) in the dense regime. (Note that this plot only shows the
clean dataset (M = 0) which is why no solution outperforms the naive loss in the sparse regime.)

8


	Introduction
	Methods
	Results
	Conclusion
	Mathematical details
	Equivalence of the CC model and 1-layer MLP
	Naive baseline loss

	Training details
	Analysis of the CC model
	Mechanism of the dense solution

