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ABSTRACT

Reward models (RMs) play a critical role in aligning large language models
(LLMs) with human preferences. Yet in the domain of tool learning, the lack
of RMs specifically designed for function-calling tasks has limited progress to-
ward more capable agentic Al. We introduce TOOLRM, a family of lightweight
generative RMs tailored for general tool-use scenarios. To build these models, we
propose a novel pipeline that constructs pairwise preference data using rule-based
scoring and multidimensional sampling. This yields ToolPref-Pairwise-30K, a di-
verse, balanced, and challenging dataset of critique tasks that supports reinforce-
ment learning with verifiable feedback. To evaluate tool-use RMs, we also intro-
duce TRBENCHggcL, a benchmark built on the agentic evaluation suite BFCL.
Trained on our constructed data, models from the Qwen3-4B/8B series achieve up
to 14.28% higher accuracy, substantially outperforming frontier models such as
Claude 4 and OpenAl 03 in pairwise reward judgments. Beyond training objec-
tives, TOOLRM generalizes to broader critique tasks, including Best-of-N sam-
pling and self-correction. Experiments on ACEBENCH highlight its effectiveness
and efficiency, enabling inference-time scaling and reducing output token usage
by over 66%. We release data and model checkpoints to facilitate future research.

1 INTRODUCTION

Recent advances in agentic artificial intelligence (AI) have been driven in large part by the tool-use
capabilities of large language models (LLMs) (Schick et al.,|2023; Patil et al.,2024; |(OpenAlL [2025)).
By leveraging external tools, LLMs can recognize their limitations and extend their capabilities
through environment interaction. The research focus has recently shifted from behavior cloning via
supervised finetuning on curated trajectories (Schick et al.} 2023 Tang et al.,2023) to trial-and-error
approaches based on reinforcement learning from verifiable rewards (RLVR) (Feng et al.,[2025;|Qian
et al.| 2025)), enabling more generalizable and robust tool-use behavior.

Despite these gains, the lack of reliable reward models (RMs) tailored to tool-use tasks remains a
core limitation. Most existing methods depend on verified tool-call trajectories for feedback, which
restricts scalability to domains lacking such annotations. At inference time, the absence of precise
reward signals also makes it hard to leverage multiple sampled answers for test-time selection (Wang
et al.| 2023} Snell et al.| 2025). We argue that developing a robust RM—capable of evaluating tool-
use behavior without requiring ground-truth labels—is critical for advancing this field.

Designing effective RMs for tool-use presents three key challenges: (C1) Constructing high-quality
preference pairs that reflect tool-use intent (Liu et al.,[2024a). (C2) Enabling generalizable critique
beyond 3H-style modeling (Askell et al.| 2021)), as tool-use tasks often allow more objective, causal
reasoning. (C3) Evaluating RM performance in this setting, which remains underexplored for both
frontier LLMs and specialized critics.

To address these challenges, we introduce TOOLRM, a family of lightweight generative RMs for
general tool-use tasks. We design a two-stage pipeline to construct high-quality preference data.
First, we curate and validate tool-calling trajectories from diverse open-source datasets, segment
them into context—response pairs, and sample alternative responses using multiple LLMs. Instead of
relying on ground-truth matches, we apply rule-based labeling to capture fine-grained preferences. A
multidimensional sampling strategy ensures diverse scenarios, varied preference intensity, and high
task complexity (C1). To strengthen critique ability, we train TOOLRM with a pairwise objective
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Figure 1: Overview of the proposed pipeline for training ToolRM.

using unified instructions and verifiable supervision, enabling the model to learn robust reasoning
without curated traces (C2). We also introduce TRBENCHgEgc1,, a benchmark based on BFCL (Patil
2023), to systematically evaluate RM performance on tool-use tasks (C3).

In summary, our key contributions are as follows:

* We propose a novel pipeline for generating high-quality pairwise preference data for reward mod-
eling in tool-use scenarios. Using seven open-source tool-calling datasets, we construct ToolPref-
Pairwise-30K, a diverse and balanced set of 30,000 challenging preference pairs. This resource is
publicly released to support future work in tool-oriented reward modeling.

* We train TOOLRM on the Qwen3-4B/8B series using RLVR, achieving strong gains in pairwise
reward judgments. Beyond training objectives, our models generalize to broader critique tasks,
enabling efficient inference-time scaling and producing compact, informative critiques.

* We introduce TRBENCHprcL, a dedicated benchmark for evaluating reward models in tool-use
settings. Our analysis reveals that even state-of-the-art LLMs and specialized reward models show
significant gaps on this benchmark, underscoring the need for targeted solutions.

2 METHODOLOGY

We introduce a pipeline for training a generative reward model for tool-use. As shown in Figure[T]
we first label tool-calling trajectories using rule-based verifiers. In stage two, we construct pairwise
preferences via balanced multidimensional sampling. The model is trained with a pairwise critique
objective under the RLVR paradigm, resulting in ToolRM with strong evaluative capabilities.

2.1 TRAIJECTORY PREPARATION

Task Sourcing. To build a diverse dataset, we collate function-calling tasks from seven open-
source, tool-learning datasets, spanning a wide variety of task domains and trajectory patterns:
APIGen [2024b), APIGen-MT (Prabhakar et al.| [2025), BUTTON [2025b),
ComplexFuncBench (Zhong et al., 2025), Hermes-Function-Calling (Teknium et al., [2025)), Glaive-
Function—CallinéII, and ToolAlpaca (Tang et al.L 2023). To address format inconsistencies across
these sources, we standardize all conversation records of raw tasks into format-aligned trajectories
Teaw = {Ti},fil, discarding any data with invalid role orders. The message format within each tra-
jectory 7; is normalized to adhere to the Hermes Function Calling standarﬂ where special tags
<tools>, <tool_call>, and <tool_response> are used to enclose tool schemas, calls, and
responses, respectively. At the beginning of each 7;, a function-calling prompt is uniformly included

"We use a 5k cleaned glaive-function-calling subset in hermes-function-calling-v1.
https://github.com/NousResearch/Hermes-Function-Calling
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Table 1: Statistics for each constituent dataset. Raw and Filtered are reported by the number of
original tasks, while Segmented counts the number of segmented trajectories, with Avg. T indicating
their average number of turns. Trajectory patterns in each dataset are characterized from turn, step,
and order perspectives: ‘ST’ and ‘MT’ denote ‘single-turn’ and ‘multi-turn’; ‘SS’ and ‘MS’ denote
‘single-step’ and ‘multi-step’; ‘P” and ‘S’ denote ‘parallel’ and ‘sequential’, respectively.

Data Source Raw  Filtered Segmented Avg. T Schemas %ﬁ% Task Domain

APIGen 60,000 60,000 59,960 3.00 4,205 ST SS/MS P Finance/Sports/Technology/Travel ...
APIGen-MT 5,000 4,874 20,055 11.75 26 MT SS/MS P/S Airline/Retail

BUTTON 8,000 8,000 20,811 5.19 22,101  MT  SS/MS P/S Daily Life
ComplexFuncBench 1,000 1,000 3,259 5.43 40 ST MS S Hotel/Flight/Attraction/Car Rental/Taxi
Glaive-Function-Calling 5,209 4,344 6,747 4.82 1,565 MT SS/MS P Stocks and Orders/Movie/Flight Services ...
Hermes-Function-Calling 1,893 1,724 1,724 3.00 2,383 ST  SS/MS P Information Extraction/API Call/Software ...
ToolAlpaca 4,098 2,510 6,194 4.24 2,040 ST SS/MS P/S News/Jobs/Finance/Entertainment . . .

as the system message, along with the schemas of available tools in the task. Additional agent poli-
cies are prepended to this message for complex tasks from specific sources (e.g., APIGen-MT). See
Appendix [E] for an example of a tool-use task trajectory.

Trajectory Segmentation and Validation. To enable subsequent rule-based verification of ar-
bitrary trajectories against ground-truth answers, we first perform tool schema validation for each
trajectory 7;. Tool schemas are typically provided as dictionary objects, which we verify as valid
JSON schemas describing tools compatible with OpenAlI’s tool-calling formaﬂ Invalid schemas are
corrected, and duplicates are removed. The validated schemas are then wrapped into function-type
JSON objects and incorporated into the aforementioned system message as tool descriptions.

Next, we partition each raw trajectory 7; € T into sub-trajectories that each terminate with an
assistant message. This yields a set of segmented trajectories, denoted as Tee = {7 }jl‘/il Each
segment 7; consists of a conversation history x; (the sequence of messages preceding the assistant
message) and its corresponding assistant response 3/;. A preliminary filtering is then applied: we
retain a segment 7; only if the message following y; in the raw trajectory 7; does not contain any
unsuccessful tool response, which ensures the basic validity of tool calls in y;.

A stricter validation of tool calls is further employed for the assistant response within each retained
trajectory 7;. Each tool call in y; is validated against the tool schemas: it must be parsable in the
required format (e.g., {"name":"...", "arguments":{...}}) and its function name and
arguments must match the schema definitions. Responses containing duplicate tool calls are also
discarded. Finally, only the trajectories 7; = (x;,y;) that pass all format and content checks are
kept. For these validated trajectories, we designate the response within them as the ground-truth
response y;‘ and the clean dataset consists of these validated pairs Tciean = {(X;, y;‘) é”ill. Table
summarizes statistics for each data source, including the number of unique tool schemas and the
distribution of tool-call trajectory patterns, measured by turn-, step-, and order-wise occurrences.

Response Sampling and Verification. In this phase, we begin by sampling multiple model re-
sponses for each conversation history. To ensure diversity in the outputs, we select five models from
three different families with varying tool-calling capabilities: Claude-3.7-Sonnet, Gemini-2.5-Pro,
Qwen2.5-Max, Qwen-32B, and Qwen3-8B. For each pair (x;, y;) in the cleaned dataset Tgjean, the
context x; is sent to all five models, yielding a set of new assistant responses {g; x}%_,. Each
sampled response §; . is then scored using a rule-based function that compares it against its corre-
sponding ground-truth response v, yielding a score between 0 and 1. Unlike prior rule-based TIR
approaches (Qian et al.,[2025), our method for training the reward model prioritizes the correctness
of tool call content (reasoning ability) over strict format adherence (instruction-following ability),
since downstream applications often use varying tool call structures. Consequently, we only score §
that can be successfully parsed into the expected tool-call format and discard all others.

For a given ground-truth response y* and a sampled response ¢ (we drop indices j, k for simplicity),
let C* = {¢; }¥5, and € = {&} 1%, denote the lists of tool calls parsed from them, respectively. Each
tool call is a JSON object containing a string-typed name and a dictionary of arguments. Scoring
starts with two disqualifiers: if either applies, the final score 5 is set to O:

*https://platform.openai.com/docs/guides/function-calling
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* Mismatched Number of Tool Calls. The number of predicted tool calls does not match the number
of ground-truth tool calls:

IC| #IC* | = §=0 (1)

* Duplicated Tool Calls. The set of predicted tool calls contains identical duplicates (both name and
arguments are the same). For ¢;, ¢, € C:

3l # m s.t.is_identical(éy, &) = § =10 ()

If a sampled response 4 passes the above initial checks, a match score s; is calculated for each
ground-truth tool call ¢; € C*. This score is determined by matching ¢} with the predicted tool call
of the same name that achieves the highest argument similarity. Specifically:

s; = max 1[¢] .name = ¢.name] - sim(c} . arguments, é. arguments) (3)

eeC

where 1[-] is an indicator function equal to 1 if the tool names match and 0 otherwise. This ensures
that arguments are only compared when tool names align. The argument similarity function sim(-)
measures the ratio of identical key-value pairs to the total number of unique keys across both dic-
tionaries. A key-value pair is considered identical only if the key appears in both dictionaries and
the corresponding values match, with string comparisons performed in a case-insensitive manner. If
both dictionaries are empty, the similarity is defined as 1. The final rule-based score s can then be
calculated as the mean of all individual match scores s;, with § = 1 when both y* and ¢ contain no

tool calls:
R 1
§= —NG g S; 4)

Difficulty-Aware Down-Sampling. After collecting all rule-based scores for sampled responses,
we perform difficulty-aware down-sampling. This is done by grouping all sampled responses by
their original context x;. Empirically, tasks that are either too easy or too difficult are not ideal for
model training: (1) contexts for which all sampled responses have a rule-based score of 1 are dis-
carded, as they offer no meaningful variation for model critique; (2) contexts for which no sampled
response receives a rule-based score of 1 are also removed, as such cases likely contain noise in
either x; or y;. We retain the remaining candidate data as a flat set of quadruples:

Deana = {(Xj, Y} » Uj.k> 85.1) | context j passes the filter} (5)

Each contains the conversation history, the ground-truth response, a sampled response, and the cor-
responding rule-based score. This pool serves as the source for constructing preference datasets.

2.2 PREFERENCE DATA CONSTRUCTION

Pairwise Data Construction. This section outlines the construction of data for training RM as a
critic. Such models are typically used to evaluate data in either a pointwise or pairwise manner. Our
preliminary experiments with a pointwise model, using rule-based scores as supervision signals, led
to superficial overfitting. The model learned to mimic the score distribution in the training set rather
than develop genuine analytical skills—a form of reward hacking that limited its performance on
out-of-distribution (OOD) tasks. To address this limitation, we focus on training reward models
with pairwise critique tasks, which mitigate the above issue by relying on comparative judgments
rather than direct scoring. The pairwise reward model is designed to distinguish a preferred response
from a rejected one for a given context. To construct the training data for this, we sample pairs of
responses from the preprocessed data pool D g, Where ground-truth preferences are determined
by their rule-based scores. Each pair consists of a chosen response y* and a rejected response y~
that shares the same context but differs in score. We traverse D.,ng and arrange the permutations
according to the above rules to get a candidate pairwise data pool:

Dpair—cand = {(X, y*7 y+, yi, 3+7 57) ‘ S+ > 57; (Xa y*» era S+)7 (Xv y*a y77 37) € Dcand} (6)
Balanced Multi-Dimensional Sampling. To enable efficient training with fewer data, we then

adopt a balanced, multi-dimensional sampling strategy to select samples from Dpgircand- In this
strategy, we focus on the following three dimensions of data:
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* Diversity of Data Sources. Incorporating a diverse range of tool schemas and user queries en-
hances the generalizability of trained models. To this end, we aim to sample contexts from differ-
ent sources in a balanced manner. For each context x in data, we denote its source as X . source.

» Coverage of Preference Intensity. For each pair of chosen and rejected responses, the difference
in their rule-based scores reflects the intensity of the preference signal: a large difference signifies
a strong preference, while a small difference suggests a weak one. To train a more robust reward
model, our data sampling process is designed to cover this full spectrum of preference signals,
from weak to strong. For each pairwise data point, we measure its preference intensity by:
Ipreference =st -5~ (7N
* Complexity of Tasks. Challenging the reward model with more complex tasks is essential for
enhancing its analytical capabilities. We calculate the complexity score of one candidate data
point according to its ground-truth response y*:
Ng
Scomplex = |C*| + Z |C;k . arguments| ()
i=1
where C* is the set of tool calls parsed from y*. Both the number of tool calls and arguments are
accumulated to measure the task complexity. Notably, over-complicated data points (Scomplex >
50) are filtered out for a higher success rate of rollout trajectory in the model training stage.

Guided by the above principles, we use a heuristic algorithm to select samples from Dygir-cang that
are more efficient for model training. Specifically, we prioritize samples with higher complexity
scores Scomplex While ensuring that the data source x . source and preference intensity Ipreference are
as balanced as possible, resulting in a subset of pairwise data Dpair-sampled € Dhpair-cand for subsequent
model training. Details of the heuristic algorithm are provided in Appendix [D]

2.3 MODEL TRAINING

Critique Task Design. To elicit the evaluative capabilities of models as critics, we prompt them
as expert Al performance evaluators. Given a conversation history and two candidate assistant re-
sponses, their task is to provide a thorough evaluation of each and then select the superior one,
outputting its name within <choice> tags. We tailor instructions to different models according
to their native output style: reasoning models follow a think-mode template, where their evalua-
tions are embedded within the reasoning process, while non-reasoning models use a no-think-mode
template, explicitly presenting their evaluations within <evaluation> tags. To ensure consistent
and comprehensive critiques, we further establish unified evaluation criteria that guide the model.
These guidelines specify which types of errors in tool-invocation responses should be penalized.
For each sampled data (x,y*,y",y~,s1,s7) € Dhpair-sampled, We format the conversation history x
into a single string. This string is then concatenated with the two assistant responses y and 3~ to
form the final input query g. To reduce position bias and prevent reward hacking during training, we
randomly swap the order of the assistant responses in 50% of the queries, recording the position of
y* as the ground-truth answer a. The resulting dataset Dyer = {(q, a); } X, is then used to train the
reward model. Please see Appendix [F|for detailed prompt templates.

Training Objective. We train the target reward model within the RLVR paradigm using Group
Relative Policy Optimization (GRPO) (Shao et al.,2024), a variant of Proximal Policy Optimization
(PPO) (Schulman et al.,|2017)) that improves efficiency and reduces computational cost by replacing
the critic network with grouped relative advantages. Given an input query ¢ and its ground-truth
answer a, let O = {01, 02, ..., 05} denote the set of rollout trajectories generated by the old policy
Tp,,- Our goal is to optimize the policy mg by maximizing the following objective:

Jrp0(0) = B(g.0) Dy, {0116, ~may (1)

G Jos] ) ) ) ) 9
|:Clr' E Torl ! | E [min (7@(01,,&\(1, Oiu<t) A4, clip <7ﬂ€(ol’t|q’oz’<t)) 11— 1+ 5) Ai,t)} ©)
0;
i—1 Vil

7004 (01,19, 05, <t) T6us (06,614, 06, <t

where € is a clipping-related hyper-parameter for stabilizing training. A;; denotes the relative ad-
vantage calculated based on outputs of each rollout group:

r; —mean({ry,ra,...,7G})
std({r1,72,...,7¢})

(10)

Aig =
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Here, r; denotes the binary reward assigned to the rollout trajectory o;. It is determined by whether
a valid choice can be successfully extracted from o; and whether it accurately answers q:

_ [1,if is_equivalent(a, extract_choice(0;)))
* )0, otherwise.

Following |Qian et al.| (2025, we omit the KL penalty term from the original GRPO objective to
encourage more effective exploitation of reward signals during policy updates. Building on this, we
design a verifiable reward system for training generative reward models in the tool-use scenario.

3 EXPERIMENTS

3.1 Do ToOLRM PROVIDE PRECISE REWARDS?

Benchmark Construction. We evaluate the reward models using an improved benchmark adapted
from IBM Researclﬂ based on BFCL. The original benchmark pairs correct function calls with in-
correct ones generated by 25 permissively licensed models but has two main limitations: (1) it only
covers single-turn tasks, and (2) its negative responses are too trivial for powerful RMs to differen-
tiate. To overcome this, we construct a more challenging benchmark using the multi_turn_base
split from BFCL V3 and curate harder negative samples from seven top-performing function-
calling modelﬂ xLAM-2-70B-FC-R (Prabhakar et al.,2025), GPT-40 (Hurst et al.,[2024), OpenAl
ol (Jaech et al,[2024), Qwen3-32B (Yang et al., 2025), DeepSeek-R1 (Guo et al.| 2025a), Gemini-
2.5-Pro (Comanici et al., [2025)), and Claude-3.7-Sonnet (Anthropicl 2025)).

The resulting benchmark, TRBENCHgpcL, includes 2,983 samples from 1,397 unique tasks across 9
splits, covering 20 distinct error types with rejected responses from 7 different models. Since BFCL
tasks and their synthetic data are excluded from training, TRBENCHgy (1, serves as a strong OOD
evaluation set for TOOLRM. Additional statistics and implementation details are in Appendix[C.2]

Evaluation Metric. We assess reward model performance via pairwise preference classification.
To minimize position bias, each sample is evaluated twice, swapping the response order on the
second pass. A sample is correct only if both orders yield the correct prediction. For scalar-output
RMs, we compute scores for chosen and rejected responses and mark the result correct if the score
order matches the preference label. We report average accuracy (Avg.) across splits and weighted-
average accuracy (W-Avg.), based on sample counts.

Model Training. We train reward models on three reasoning-capable models—Qwen3-4B,
Qwen3-8B, and Qwen3-4B-Thinking-2507—and one non-reasoning model, Qwen3-4B-Instruct-
2507. At both training and inference, we apply the appropriate think-mode or no-think-mode tem-
plates. Our preference dataset, ToolPref-Pairwise-30K, contains 30,000 samples (29,500 for train-
ing, 500 for validation), built with our proposed pipeline. See training details in Appendix [C.1]

Baseline Models. We benchmark ToolRM on TRBENCHggcy, against strong LLMs in the LLM-
as-a-judge setup, including GPT, Gemini, Claude, DeepSeek, and Qwen. Specialized models are
also tested: generative (Skywork-Critic (Shiwen et al.| [2024), M-Prometheus (Pombal et al., [2025)),
RM-R1 (Chen et al.,2025c), RRM (Guo et al.,2025b)), discriminative (Skywork-Reward (Liu et al.,
2024a)), InternLM?2-Reward (Cai et al., |2024)), and hybrid (Cloud-RM (Ankner et al.|[2024)).

Main Results. Table [2] presents evaluation results on TRBENCHggcr, across all splits. Training
on ToolPref-Pairwise-30K significantly boosts performance, yielding an average gain of 10.12%
and a maximum of 14.28% in weighted accuracy. ToolRM, trained on Qwen3-4B-Thinking-2507,
consistently outperforms nearly all baselines, including on the multi-turn-base split—despite being
trained on step-wise critiques. Since BFCL scoring for multi-turn tasks relies on state- and response-
based signals rather than rule-matching, these gains demonstrate that ToolRM acquires robust,
generalizable analytical capabilities rather than overfitting to rule-based labels.

4https ://huggingface.co/datasets/ibm-research/fc-reward-bench
>Trajectories from https: //github.com/HuanzhiMao/BFCL-Result


https://huggingface.co/datasets/ibm-research/fc-reward-bench
https://github.com/HuanzhiMao/BFCL-Result

Under review as a conference paper at ICLR 2026

Table 2: Evaluation results of reward models on TRBenchggcr,. A higher percentage of accuracy
indicates a stronger ability to distinguish the better response in tool-calling tasks. The best result
in each column is bolded, and the second-best is underlined. (¢&): evaluated with the think-mode
template; (©): evaluated with the no-think-mode template; (&): evaluated with the official template.
(s»): pairwise inputs; (@): pointwise inputs; (+): critique as output; (#): choice as output; (H):
scalar reward as output. Models trained in this paper are indicated with a green background .

Classification Accuracy (%)

Models
S M P PM LS LM LP LPM MTB Avg. W-Avg.
Proprietary & Open-source Frontier LLMs

sn+ DeepSeek-Al/DeepSeek-R1-0528% 68.61 7042 8771 8564 64.62 4645 7647 7500 36.77 6797 57.93
58+ OpenAI/GPT-40-2024-11-207 69.34 6620 86.71 86.67 50.47 50.82 67.65 7833 3838 66.06 59.00
58+ OpenAl/03-2025-04-16¢ 70.80 69.01 8571 84.87 55.19 5043 67.65 76.67 4121 66.84 59.40
58+ Google/Gemini-2.5-Flash 6423 6620 89.70 8949 56.13 51.13 79.41 80.00 36.77 68.12 59.87

1+ Google/Gemini-2.5-Pro® 75.18 67.61 88.04 91.79 5896 4832 8235 7333 39.80 69.49 59.94
s+ Qwen/Qwen3-235B-A22B-Thinking-2507¢ 71.53  69.01 86.05 9026 67.92 51.52 8529 76.67 34.55 70.31 60.64
#a+ DeepSeek-Al/DeepSeek-V3-03247 75.18 6620 88.70 89.74 58.02 53.86 70.59 73.33 37.17 68.09 61.45
sne Qwen/Qwen2.5-Max® 7737 7324 89.04 90.00 58.02 55.18 67.65 70.00 37.98 68.72 62.39
#a++ Anthropic/Claude-3.7-Sonnet® 76.64 67.61 91.69 9282 6085 5277 7353 7833 39.19 70.38 62.45

“ Anthropic/Claude-4-Sonnet® 81.02 7746 9136 91.28 62.74 5495 8235 8333 41.01 7395 64.23

Open-source Reward Models
@ ¥ Databricks/CLoud-RM-Llama-3-8B* 25.55 3521 3322 3282 31.60 37.88 3235 2500 49.90 33.73 37.34
&a+ {Unbabel/M-Prometheus-7B " 5474 5493 7143 7487 43.87 46.69 3824 5333 3414 5247 51.19
48+ Microsoft-Research/RRM-7B 65.69 56.34 8206 84.62 43.40 49.65 44.12 6833 3636 5895 56.05
#a++ UIUC/RM-R1-DeepSeek-Distilled-Qwen-32B?  75.18 76.06 68.44 80.51 61.79 49.18 5294 5333 3818 61.73 56.25
48+ [Unbabel/M-Prometheus-14B 6496 57775 8837 8744 4434 4638 6471 61.67 3939 61.67 56.32
Skywork/Skywork-Critic-Llama-3.1-8B™* 5474 59.15 86.05 83.59 47.17 4575 6765 61.67 5030 61.79 56.92
52 Skywork/Skywork-Critic-Llama-3.1-70B* 64.23  67.61 8738 8821 4434 51.68 7059 66.67 4747 6535 60.31
48+ Microsoft-Research/RRM-32B 76.64 76.06 8738 89.23 67.92 56.90 67.65 7500 42.83 71.07 64.50
@M Skywork/Skywork-Reward-Llama-3.1-8B-v0.2* 8321 70.42 9236 9231 5991 62.51 67.65 7500 59.80 73.68 70.23
@ InternLM/InternLM2-7B-Reward® 80.29 80.28 88.04 89.74 63.68 65.16 67.65 7333 61.21 7438 7117
Models Trained on ToolPref-Pairwise-30K

#a++ Qwen/Qwen3-4B-Instruct-2507" 7153 6479 9037 89.23 5142 50.66 7059 86.67 36.57 67.98 59.67
44+ TOOLRM-Qwen3-4B-Instruct-2507% 70.80 74.65 91.03 89.49 5566 6041 94.12 81.67 4990 74.19 66.85 (+7.18)

\++ Qwen/Qwen3-4B |(Thinking mode)< 70.07 7324 89.70 87.69 56.60 48.09 79.41 81.67 39.80 69.59 59.34
48 TOOLRM-Qwen3-4B¢ 81.02 78.87 89.04 8897 6321 62.12 91.18 86.67 5232 77.04 68.89 (+9.55)
48+ Qwen/Qwen3-8B (Thinking mode) 71.53 6197 89.37 90.26 5849 48.09 8529 76.67 39.19 68.98 59.44
58 TOOLRM-Qwen3-8B¢ 81.02 76.06 89.70 91.03 64.62 61.50 91.18 80.00 52.73 7643 68.92 (+9.48)
50+ Qwen/Qwen3-4B-Thinking-2507 67.88 7042 8571 87.69 61.79 46.61 8529 8500 33.54 69.33 57.59
42 ToOOLRM-Qwen3-4B-Thinking-2507< 83.21 80.28 90.03 9256 71.23 66.02 94.12 88.33 52.12 79.77 71.87 (+14.28)

In LLM-as-a-judge evaluations, Claude models outperform other frontier LLMs, aligning with their
tool-use strengths. Among specialized reward models, InternL.M2-7B-Reward performs best, likely
due to its diverse training on 2.4M preference pairs spanning dialogue, code, and math. Interestingly,
Skywork-Reward-Llama-3.1-8B-v0.2 surpasses its generative counterpart Skywork-Critic, despite
both being trained on similar preference data samples. This suggests that, without targeted training,
scalar-output discriminative RMs may generalize better to tool-use tasks than generative critics.

Lastly, reasoning (thinking) models show greater gains from critique training than instruction-tuned
counterparts, and models with longer initial reasoning patterns (e.g., Qwen3-4B-Thinking-2507 vs.
Qwen3-4B) benefit the most. This highlights that even with weaker initial performance, a greater
capacity for exploration can ultimately lead to stronger outcomes through RL. A comparison
between DeepSeek-R1 and DeepSeek-V3 further emphasizes the pivotal role of high-quality data in
enhancing models’ reasoning abilities on targeted tasks.

3.2 Do ToOLRM HELP WITH INFERENCE-TIME SCALING?

Setup. We assess whether ToolRM improves tool-call inference using 823 samples from the Nor-
mal split of ACEBENCH (Chen et al.| 2025a)), a benchmark for tool-use evaluation. For each sam-
ple, we apply Best-of-N (BoN) sampling with Qwen3-4B-Instruct-2507 (temperature = 1.0), and
use generative reward models to select the best response. We compare two judges: the baseline


https://huggingface.co/ankner/Llama3-8B-CLoud-RM
https://huggingface.co/Unbabel/M-Prometheus-7B
https://huggingface.co/Reward-Reasoning/RRM-7B
https://huggingface.co/gaotang/RM-R1-DeepSeek-Distilled-Qwen-32B
https://huggingface.co/Unbabel/M-Prometheus-14B
https://huggingface.co/Skywork/Skywork-Critic-Llama-3.1-8B
https://huggingface.co/Skywork/Skywork-Critic-Llama-3.1-70B
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Figure 2: Comparison of BoN  Figure 3: Comparison of model self-
sampling on ACEBench. correction on ACEBench.

Qwen3-4B-Thinking-2507 (Base) and our trained ToolRM-Qwen3-4B-Thinking-2507 (ToolRM).
Performance is measured by average accuracy across all samples.

Main Results. Figure [2| shows that ToolRM consistently matches or outperforms the baseline
across all BoN settings, with gains of 3.2 and 1.3 points over the non-BoN and BoN-16 baselines,
respectively. These improvements suggest that RL training enhances underlying reasoning, enabling
effective generalization beyond the original training context. Notably, ToolRM maintains stable
performance as the candidate pool grows, demonstrating its robustness to long-context reasoning
and its utility in inference-time scaling for tool-use tasks.

3.3 Do CRITIQUES IMPROVE MODEL SELF-CORRECTION?

Setup. We assess the effectiveness of critiques generated by ToolRM in guiding self-correction.
For each sample in the Normal subset of ACEBench, Qwen3-4B-Instruct-2507 first produces a
function-calling response. A generative reward model then critiques this output with concise feed-
back. Using this critique, the same model edits its response. We compare two critics: the baseline
Qwen3-4B-Thinking-2507 (Base) and our trained ToolRM-Qwen3-4B-Thinking-2507 (ToolRM).
Performance is measured by average accuracy over all samples.

Main Results. As shown in Figure [3| ToolRM leads to notable gains in self-correction accuracy:
+11.4 points over w/o Critic and +2.0 over w/ Base, confirming its ability to produce reliable, tar-
geted critiques. Additionally, ToolRM achieves this with much lower decoding cost—reducing av-
erage output length from 3,211 to 1,111 tokens—demonstrating efficient reasoning without sacri-
ficing critique quality. See Appendix [G|for more qualitative examples.

3.4 ABLATION STUDIES

To assess the contribution of our two key data construction Table 3: Ablated evaluation results
components, we conduct an ablation study with two variants: on TRBenchggcy..

one replaces balanced multi-dimensional sampling with ran-
dom sampling (w/o BMDS); the other removes unified evalua- e 7977 T
tion criteria during training (w/o EC). Both models are trained w10 : :
using GRPO on Qwen3-4B-Thinking-2507 with 30K pairwise o re > 1530 oo 30
preferences, keeping all other settings fixed. As shown in Ta-
ble 3] removing either component significantly degrades per-
formance. Without BMDS, the average data complexity drops (5.83—4.43), leading to a less
challenging and imbalanced dataset. Without evaluation criteria, output length decreases sharply
(1,204—694), suggesting these criteria promote more comprehensive reasoning during training.

Model Avg. Acc  W-Avg. Acc

3.5 IMPACT OF DATA SCALING ON TOOLRM

We investigate the influence of data scaling on model performance. Figure [#a|shows the results for
Qwen3-4B-Thinking-2507 on TRBenchggcy, trained with data samples ranging from 10K to 40K.
Notably, the model achieves its highest performance with 30K training samples. Performance does
not increase monotonically with data size because our sampling strategy prioritizes more complex
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Figure 4: Statistics and the impact of data scale on model training.

tasks. As the dataset grows, the average task complexity declines, leading to less effective training
signals. Figure [4b|illustrates this trend: while the number of unique tasks rises with larger datasets,
their average complexity decreases. These results demonstrate that our proposed strategy success-
fully balances task diversity and complexity when exploring the candidate data pool.

4 RELATED WORK

Tool Learning in the Era of LLMs. Early work on agentic Al, such as|Yao et al.|(2023)), combines
chain-of-thought reasoning (Wei et al., [2022) with tool-augmented actions to elicit LLMs’ tool-use
capabilities. Later methods imitate curated tool-use trajectories via supervised fine-tuning (Schick
et al., 2023} |Liu et al.,|2024b), but often struggle with complex or out-of-distribution tasks. More re-
cently, researchers have integrated verified rewards into tool-aware reasoning, with designs tailored
for question answering (Jin et al,, 2025} [Song et al.| |2025), math (Feng et al., 2025} Dong et al.,
2023)), and general tool-use (Qian et al., 2025} Zhang et al., 2025).

Reward Modeling. Reward models guide large language models toward outputs that align with
human preferences (Ouyang et al., 2022} Bai et al.| 2022)). They are typically either (1) discrimina-
tive, outputting scalar scores to rank responses (Cai et al.}2024; Liu et al.,[20244a)), or (2) generative,
producing textual rewards for domains such as chat (Shiwen et al., [2024), code (McAleese et al.|
2024), and literary translation (Pombal et al.l [2025). A recent trend views reward modeling as a
reasoning process (Chen et al., [2025c; |Guo et al., 2025b) to enhance reward quality. Following this
line of work, we extend generative reward modeling to the field of tool calling in this paper.

5 CONCLUSION

This paper presents TOOLRM, a family of generative reward models tailored for agentic tool-use
tasks. Central to our framework is a novel data construction pipeline that combines rule-based la-
beling with balanced multi-dimensional sampling. This approach enables the automatic generation
of fine-grained pairwise preference data, yielding a dataset that is diverse, well-balanced, and delib-
erately challenging. The resulting dataset supports efficient RL-based training and encourages the
development of nuanced reasoning strategies beyond surface-level signal matching.

By formulating the reward modeling objective as a discriminative critique task, and optimizing via
RLVR, TOOLRM not only learns to assign scalar preferences but also acquires robust and general-
izable analytical capabilities. Our comprehensive evaluation across multiple benchmarks confirms
the utility of TOOLRM in three key dimensions: (i) delivering high-fidelity reward signals that align
with human preferences and outperform frontier baselines; (ii) enabling inference-time scaling by
reliably selecting optimal outputs from diverse candidate pools; and (iii) providing efficient and
effective pointwise critiques that improve self-correction with minimal decoding overhead.

These results collectively suggest that reward models, when trained on structured critique data, can
evolve into capable reasoning agents, capable of supporting downstream decision-making in real-
world LLM applications. Future work may explore extending this approach to more open-ended
agentic tasks, incorporating human-in-the-loop feedback, and leveraging generative critics to guide
multi-agent coordination and planning.
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REPRODUCIBILITY STATEMENT

To promote reproducibility, prompt templates for model training and inference across all exper-
iments are shown in Appendix |F| All open-source models used in our experiments are obtained
from their official HuggingFace repositoriesﬂ In addition to the main text, Appendix |C| offers fur-
ther implementation details on benchmark construction and the experimental setup. To facilitate
reproduction of the proposed data sampling strategy BMDS, we include a detailed description and
pseudocode in Appendix [D| We will open-source the trained reward-model series TOOLRM, to-
gether with the training dataset ToolPref-Pairwise-30K, and the enhanced benchmark TRBenchggcy,
to advance future research in this field.
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A THE USE OF LARGE LANGUAGE MODELS

During the completion of this work, we employed Gemini 2.5 Pro (Comanici et al.,|2025) to identify
grammatical errors and refine the text in the preliminary draft stage. The data construction pipeline
code was initially developed by the human authors and then verified using Qwen3-Coder (Yang
et al.| 2025). All suggestions from the LLMs were manually reviewed and confirmed for accuracy.

B FULL RELATED WORK

B.1 ToOOL LEARNING IN THE ERA OF LLMS

The emergence of foundational capabilities in large language models (LL.Ms) has enabled them to
identify and use appropriate tools in a human-like manner. |Yao et al.| (2023) unlock this ability
by combining chain-of-thought reasoning (Wei et al.| 2022)) with tool-augmented actions. Another
line of approaches clones behaviors from completed tool-calling trajectories using supervised fine-
tuning (Schick et al.| [2023} [Tang et al.| 2023} [Liu et al., 2024b; |2025a)), while these methods may
face challenges generalizing to complex and out-of-distribution tasks. To address this limitation,
other approaches employ reinforcement learning with human preference data to learn via trial-and-
error (Nakano et al.,[2021). Building on recent successes in reasoning models (Lambert et al., 2025;
Shao et al., [2024), utilizing verified rewards to facilitate tool-integrated reasoning has become a
promising direction. Reward designs based on the format and correctness of the final answer have
proven effective in tasks like question-answering (Jin et al., 2025} Song et al., 2025)), math (Feng
et al.l 2025} Dong et al.| |2025), and general tool-calling (Qian et al., [2025; [Zhang et al., [2025),
leading to generalized model improvements through reinforcement learning.

B.2 EVALUATION OF LLM TooL-USE

Numerous tool-calling benchmarks have been proposed in recent years. To enable realistic and re-
liable evaluation, tasks are either drawn from real-world domains (Wang et al., |2024; Patil et al.,
2024; Zhong et al., [2025} [Yao et al., [2025]; Barres et al.,[2025) or generated via well-designed data-
synthesis pipelines (Qin et al.| [2024} (Chen et al., 2025a). Among these, BFCL (Patil et al., 2025)
covers diverse and complex patterns of tool usage and serves as a comprehensive benchmark for
evaluating LLMs’ tool-use capabilities. Nevertheless, there remains a lack of a benchmark that as-
sesses whether current models can provide accurate feedback on LLM actions in tool-use scenarios.

B.3 REWARD MODELING OF HUMAN PREFERENCES

Reinforcement learning has proven effective for aligning LLMs with human preferences, using feed-
back from humans (Ouyang et al., [ 2022) or other capable LLMs (Bai et al.| 2022} [Lee et al., 2024)).
Central to this process are reward models (RMs), which are primarily developed in two ways. The
first is discriminative modeling, where RMs output a scalar score to differentiate between preferred
and rejected responses (Yang et al, [2024;|Cai et al.| [2024; [Liu et al.| 2024a;2025b). The second is
generative modeling, where models provide textual rewards as natural language critiques for tasks
like chat (Shiwen et al.| [2024; [Kim et al., [2024; [Yu et al.| [2025)), code (McAleese et al., [2024)), and
literary machine translation (Pombal et al.| 2025). Hybrid approaches combine critiques with scalar
rewards to better capture nuanced preferences (Ankner et al.l 2024} Wang et al.,[2025), while recent
work frames reward modeling as reasoning tasks (Chen et al.| 2025c; Wang et al., 2025} |Guo et al.,
2025b; (Whitehouse et al., |2025). In this paper, we extend generative reward modeling to general
tool use, offering textual critiques as valuable feedback.

C EXPERIMENT DETAILS

C.1 MODEL TRAINING

We train the reward models on eight NVIDIA A100 80G GPUs. We perform one epoch of GRPO
training using veRL (Sheng et al., 2025)), with a learning rate of 1e—6 and a clip ratio of € = 0.2.
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Figure 5: Statistics of the enhanced reward model benchmark TRBenchggcy .

At each training step, we sample a batch of 128 queries and generate 8 trajectories per query. Tra-
jectory generation is handled by the vllm backend (Kwon et al.l[2023)), employing sampling hyper-
parameters of temperature=1.0, top_p=1.0, and top_k=-1. Due to resource constraints,
we limit the maximum prompt length to 16,384 tokens and the maximum response length to 4,096
tokens for model training.

C.2 BENCHMARK IMPLEMENTATION

In constructing TRBENCHprcL, We prepare preference pairs for each data task according to its
turn-wise trajectory pattern. For single-turn tasks (splits originally introduced in BFCL v1 and
v2), evaluation is based on the Abstract Syntax Tree (AST), which compares a model-generated
function against its function documentation and a set of possible correct answers. In these cases, we
source the oracle answers directly from the benchmark as the chosen responses and extract incorrect
responses from the failed trajectories, forming chosen—rejected pairs for each task.

For multi-turn tasks (the split introduced in BFCL v3), evaluation instead relies on state-based and
response-based checksﬂ which differ from the rule-based matching used to check tool calls in build-
ing Dyprer. In these complex scenarios, while pinpointing the single failing tool call is difficult, one
can easily identify the entire incorrect turn by comparing the generated trajectory to the ground truth.
We leverage this to create evaluation pairs: the incorrect output is the concatenation of all tool calls
the model generated in that turn, and the correct output is the concatenation of all tool calls from the
corresponding ground-truth solution. We show statistics of the enhanced reward model benchmark
TRBenchggcy. in Figure[5]

To ensure fair evaluation across different types of baseline models, we first apply the same think-
mode/no-think-mode template used in our model evaluations. If the test model is unable to follow
the specific instruction, we instead evaluate it using its official prompt. To fully harness the potential
of the test models, the official default sampling parameters are used for inference, except that the
maximum output length is limited to 8,192 tokens to prevent excessively long and repetitive chain-
of-thought content.

D THE BALANCED MULTI-DIMENSIONAL SAMPLING ALGORITHM

In this section, we detail the implementation of the BMDS strategy for efficient sampling. To
discretize the distribution of preference intensities Ipreference among data samples, we initialize
a set of bins B = {bg,b1,...,by} with fixed intervals. In our experiments, we set: B =
{(0,0.1],(0.1,0.2],...,(0.9,1]}. Each sample in the candidate pairwise data pool Dpair-cana 18 as-
signed to the corresponding bin, indexed from 0 to m, according to its preference intensity. We then
group the samples by a composite key (source, bin_index) to ensure representation across
different data sources and varying preference intensities. Within each group, samples are sorted in
descending order of task complexity Scompiexity- Sampling proceeds greedily: we first exhaustively
select all samples from the group with the fewest entries, and then allocate the remaining quota
as evenly as possible across the other bins. This yields a diverse, well-balanced, and sufficiently
challenging subset of data. We present pseudocode of this strategy in Algorithm I

"https://gorilla.cs.berkeley.edu/blogs/13_bfcl_v3_multi_turn.html
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Algorithm 1 Balanced Multi-Dimensional Sampling Strategy

Iutput: Data pool Dysir-cand, bin edges B, target sample size N
Output A subset Dpgir-sampled Of diverse, balanced, and challenging samples
. # Step 0: Check data sufficiency
if | Dpair-cana| < N then
raise InsufficientDataError
end if
# Step 1: Assign samples to bins
for each d; € Dpir-cand dO
d; bin_idx < assign(d;.Ipreference, B)
end for
9: # Step 2: Group by composite key
10: Initialize group dictionary G < ()
11: for each d; € Dysir-cana dO
12:  key < (d;.source,d;.bin_idx)
13:  Glkey] « Glkey] U {d;}
14: end for
15: # Step 3: Sort within each group by task complexity (descending)
16: for each group G € G do
17: G < sort(G,key = Scomplexity, order=descending)
18: end for
19: # Step 4: Sort groups by size (ascending)
20: Gsorted — sort(G.values(), key = |G|, order=ascending)
21: # Step 5: Greedy allocation
22: Initialize sampling quotas: @ < [0] X |Gsorted|
23: Nremaining +— N, k<0
24: while k& < |Gsorted| and Nyemaining > 0 do
25: m < |gsoned| -
26: Navg < [Nremaining/m]
27:  if |GoorealK]| < Nayg then

PPE‘Q.L{‘.J?S'.’!\.’.H

28: Q[k] < |Gsortea ]|

29: N, remaining — Nremaining - |gsorted[k]‘
30: k+—k+1

31:  else

32: # Distribute remaining quota evenly
33: q < LNremaining/mJ

34: 7 4= Nremaining mod m

35: for i = k to |Gsortea| — 1 do

36: Q[i] + q

37: end for

38: fori =0tor —1do

39: QHgsorted‘ -1- Z} < QHgsorled' -1- Z} +1
40: end for

41: break

42:  endif

43: end while

44: # Step 6: Sample data based on quotas

45: Dpair—sampled — @

46: fori =0 to ‘gsorted| —1do

47 Dpair-sampled < Dpair-sampled U Gsorted [Z] [: QM]
48: end for

49: return Dpuirsampled

E EXAMPLE OF TOOL-USE TASK TRAJECTORY

During conversation order validation, we retain only trajectories that satisfy the following message-
role transition rules: [system—user, user—assistant, assistant—user/tool,
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tool—assistant]. In this work, tool responses are set into user messages for compatibil-
ity. Figure[6]shows a format-aligned example from BUTTON illustrating a tool-use task trajectory.

ool-Call Trajecto BU
{
"role": "system",
"content": "# Tools
You may call one or more functions to assist with the user query.
You are provided with function signatures within <tools></tools> XML tags:
<tools>
{"type": "function", "function": {"name": "get_items_by_color", "description": "Retrieve all items in the inventory filtered by a specified color.",
"parameters": {"required": ["color", "date"], "type": "object", "properties": {"color": {"type": "string", "description": "The color of the items to be
retrieved."}, "date": {"type": "string", "description": "The date for which the inventory is being checked, in YYYY-MM-DD format."}}}}}
{"type": "function", "function": {"name": "count_items", "description": "Count the number of items in a given list.", "parameters": {"required":
["items"], "type": "object", "properties": {"items": {"type": "array", "description": "The list of items to be counted."}}}}}
</tools>
For each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:
<tool_call>
{"name": <function-name>, "arguments": <args-json-object>}
</tool_call>"
b
{
"role": "user",
"content": "Hi, I need to count the red and blue items in the warehouse inventory today and compare their quantities. The warehouse inventory data
should have information about item colors and quantities. Can you help me with this?"
b
{
"role": "assistant",
"content": "<think>
The user wants to count the red and blue items in the warehouse inventory today and compare their quantities. To accomplish this task, we need to:
1. Retrieve the total number of red items in the warehouse inventory today.
2. Retrieve the total number of blue items in the warehouse inventory today.
3. Compare the counts of red and blue items.
4. Provide the final answer based on the comparison.
We will start by retrieving and counting the red items first.
</think>
<tool_call>
{"name": "get_items_by_color", "arguments": {"color": "red", "date": "2023-10-05"}}
</tool_call>"
b
{
"role": "user",
"content": "<tool_response>
{"name": "get_items_by_color", "arguments": {"color": "red", "date": "2023-10-05"}, "results": {"items": [{"id": "001", "name": "Red T-shirt",
"color": "red", "quantity": 50, " date added": "2023-09-20"}, {“ id": "002", "name": "Red Mug", "color": "red", "quantlty 120, "date_added": "2023-
10-01"}, {"id": "003", "name": "Red Hat", "color": "red", "quantity": 30, "date_added": "2023-09-29"}1}}
</tool_response>"
b
{
"role": "assistant",
"content": "<think>
The function "get_items_by_color" returned a list of red items along with their quantities for the date 2023-10-05. The items are:
- Red T-shirt: Quantity 50
- Red Mug: Quantity 120
- Red Hat: Quantity 30 We need to count the total quantity of these red items. We'll sum up the quantities of all the red items returned.
</think>
<tool_call>
{"name": "count_items", "arguments": {"items": [{"id": "001", "name": "Red T-shirt", "color": "red", "quantity": 50, "date_added": "2023-09-20"},
{"id": "002", "name": "Red Mug", "color": "red", "quantity": 120, "date_added": "2023-10-01"}, {"id": "003", "name": "Red Hat", "color": "red",
"quantity": 30, "date_added": "2023-09-29"}]}}
</tool_call>"
b
{
"role": "user",
"content": "<tool_response>
{"name": "count_items", "arguments": {"items": [{"id": "001", "name": "Red T-shirt", "color": "red", "quantity": 50, "date_added": "2023-09-20"},
{"id": "002", "name": "Red Mug", "color": "red", "quantity": 120, "date_added": "2023-10-01"}, {"id": "003", "name": "Red Hat", "color": "red",
"quantity": 30, "date_added": "2023-09-29"}]}, "results": {"count": 3}}
</tool_response>"
{
"role": "assistant",
"content": "<think>
The “count_items’ function returned a count of 3 for the red items. However, the task requires summmg the quantities of the items, not just counting
the number of different items. We need to manually sum the quantities of the red items, as the *count_items' function didn't provide the total quantity
but rather the count of item types. The quantities are 50, 120, and 30. The total quantity of red items is (50 + 120 + 30 = 200).
Next, we should retrieve and count the blue items in the warehouse inventory for today.
</think>
<tool_call>
{"name": "get_items_by_color", "arguments": {"color": "blue", "date": "2023-10-05"}}
</tool_call>”
}

Figure 6: A format-aligned tool-use trajectory from BUTTON.
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F PROMPTING TEMPLATES

We present the evaluator prompt templates for the pairwise critique task used in both training and
inference. The think-mode and no-think-mode templates are shown in Figures[7]and[8] respectively.
Figure [9] shows the prompt template used by the judge for the BoN sampling task, in which the
N sampled responses are inserted and labeled from 1 to N. Figures [T0]and [IT]show the prompt
templates used by critic and editor for the self-correction task. Figure [12| presents the template of
the system prompt in each tool-use trajectory.

Serve as an Evaluator for Pairwise Critique Task (Think Mode)

<task>

You are an expert evaluator of Al assistant performance. Given a complete user-assistant conversation
history and two generated assistant responses, you are to conduct a thorough, fact-based, and
comprehensive comparison. Based on specific evidence from your evaluation, make a clear choice of
which response is superior. There may be a list of tools available to the assisatnt. The assistant starts
with one or more cycles of (thinking about which tool to use -> performing tool call -> waiting for tool
response), and ends with (thinking about the answer -> answer of the question). The thinking processes,
tool calls, tool responses, and answer are enclosed within their tags. There could be multiple thinking
processes, tool calls, tool call parameters and tool response parameters.

</task>

<evaluation_criteria>

- Available tools must be fully and appropriately leveraged to meet the requirements.

- Tool call names must be valid, correct, and complete.

- Tool call arguments must be valid, correct, and complete.

- Fabrication, including the creation of information or knowledge not provided by the user, conflicting
with user input, or not derived from the tools, must be penalized.

- Repetitive or unnecessary tool calls must be penalized.

- Excessive or unnecessary requests for user clarification beyond what is essential must be penalized.

</evaluation_criteria>

<conversation_history>
{chat history}
</conversation_history>

<current_response_1>
{assistant response 1}
</current_response_1>

<current_response_2>
{assistant response 2}
</current_response_2>

Output your choice (either '1' or '2') within <choice></choice> XML tags. No explanations should
precede or follow the choice. Answer in the following format.

<choice>

{{your_choice}}

</choice>

Figure 7: Evaluator prompt template of the pairwise critique task for reasoning LLMs.
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Serve as an Evaluator for Pairwise Critique Task (No Think Mode)

<task>

You are an expert evaluator of Al assistant performance. Given a complete user-assistant conversation
history and two generated assistant responses, you are to conduct a thorough, fact-based, and
comprehensive comparison. Based on specific evidence from your evaluation, make a clear choice of
which response is superior. There may be a list of tools available to the assisatnt. The assistant starts
with one or more cycles of (thinking about which tool to use -> performing tool call -> waiting for tool
response), and ends with (thinking about the answer -> answer of the question). The thinking processes,
tool calls, tool responses, and answer are enclosed within their tags. There could be multiple thinking
processes, tool calls, tool call parameters and tool response parameters.

</task>

<evaluation_criteria>

- Available tools must be fully and appropriately leveraged to meet the requirements.

- Tool call names must be valid, correct, and complete.

- Tool call arguments must be valid, correct, and complete.

- Fabrication, including the creation of information or knowledge not provided by the user, conflicting
with user input, or not derived from the tools, must be penalized.

- Repetitive or unnecessary tool calls must be penalized.

- Excessive or unnecessary requests for user clarification beyond what is essential must be penalized.
</evaluation_criteria>

<conversation_history>
{chat_history}
</conversation_history>

<current_response 1>
{assistant response 1}
</current_response 1>

<current_response 2>
{assistant_response 2}
</current_response 2>

Output your evaluation within <evaluation></evaluation> XML tags, and then enclose your choice
(either '1' or '2') within <choice></choice> XML tags. Answer in the following format.
<evaluation>

{{your_evaluation} }

</evaluation>

<choice>

{{your_choice}}

</choice>

Figure 8: Evaluator prompt template of the pairwise critique task for non-reasoning LLMs.
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Serve as A Judge for Best-of-N Sampling (Think Mode)

<task>

You are an expert evaluator of Al assistant performance. Given a complete user-assistant conversation
history and {N| generated assistant responses, you are to conduct a thorough, fact-based, and
comprehensive comparison. Based on specific evidence from your evaluation, make a clear choice of
which response is superior. If multiple responses are identical and equally the best, select the one with
the smallest number.

</task>

<evaluation_criteria>

- Available tools must be fully and appropriately leveraged to meet the requirements.

- Tool call names must be valid, correct, and complete.

- Tool call arguments must be valid, correct, and complete.

- Fabrication, including the creation of information or knowledge not provided by the user, conflicting
with user input, or not derived from the tools, must be penalized.

- Repetitive or unnecessary tool calls must be penalized.

- Excessive or unnecessary requests for user clarification beyond what is essential must be penalized.
</evaluation_criteria>

<conversation_history>
{chat history}
</conversation_history>

<current_response 1>
{assistant response 1}
</current_response_1>

<current_response_2>
{assistant_response 2}
</current_response 2>

<current_response {N}>
{assistant response N}
</current_response {N}>

Output your choice (a number between 1 and {N|) within <choice></choice> XML tags. No
explanations should precede or follow the choice. Answer in the following format.

<choice>

{{your_choice}}

</choice>

Figure 9: Judge prompt template of the Best-of-N sampling task for reasoning LLMs.
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Serve as a Critic for Self-Correction (Think Mode)

<task>

You are an expert evaluator of Al assistant performance. Given a complete user-assistant conversation
history and a generated assistant response, you are to conduct a thorough, fact-based, and
comprehensive evaluation. Based on specific evidence from your evaluation, provide a concise critique
on how the current assistant response should be revised. If the response is entirely correct and requires
no changes, output '[correct]' as your critique.

</task>

<evaluation_criteria>

- Available tools must be fully and appropriately leveraged to meet the requirements.

- Tool call names must be valid, correct, and complete.

- Tool call arguments must be valid, correct, and complete.

- Fabrication, including the creation of information or knowledge not provided by the user, conflicting
with user input, or not derived from the tools, must be penalized.

- Repetitive or unnecessary tool calls must be penalized.

- Excessive or unnecessary requests for user clarification beyond what is essential must be penalized.
</evaluation_criteria>

<conversation_history>

{chat history}
</conversation_history>

<current_response>
{assistant response}
</current_response>

Output your final critique within <critique></critique> XML tags. No explanations should precede or
follow the critique. Answer in the following format.

<critique>

{{your_critique}}

</critique>

Figure 10: Critic prompt template of the self-correction task for reasoning LLMs.
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Serve as an Editor for Self-Correction (No Think Mode)

<task>
You are an expert editor of Al assistant response. Given a complete user-assistant conversation history,

a generated assistant response, and a critique about how to improve it, your task is to produce the
revised response.
</task>

<conversation_history>
{chat_history}
</conversation_history>

<current_response>
{assistant_response}

</current_response>

<critique>
{critique}
</critique>

Output the revised response within <revised response></revised response> XML tags. No

explanations should precede or follow the response. Answer in the following format.
<revised_response>

{{revised_response}}

</revised_response>

Figure 11: Editor prompt template of the self-correction task for non-reasoning LLM:s.

System Prompt in Tool-Use Trajectory

# Tools

You may call one or more functions to assist with the user query.

You are provided with function signatures within <tools></tools> XML tags:
<tools>

{tool descs}

</tools>

For each function call, return a json object with function name and arguments within
<tool call></tool call> XML tags:

<tool call>

{{"name": <function-name>, "arguments": <args-json-object>}}

</tool call>

# Agent Policy
{agent policy}

Figure 12: System prompt template of the tool-use trajectory.
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G CASE STUDIES

Through representative cases, we compare critiques from Claude 4 Sonnet and ToolRM-Qwen3-
4B-Thinking-2507 on TRBenchgrcy. pairwise test samples. In the case shown in Figure[I3] ToolRM
accurately distinguishes correct from incorrect tool-call parameters without inducing “overthinking”
hallucinations when the user query plausibly maps to multiple candidate parameters. Another case,
shown in Figure [T4] further demonstrates its tendency to ground analysis in contextual rationale
rather than engage in speculative, divergent reasoning. Moreover, as shown in Figure [T5] ToolRM
adheres more closely to the evaluation criteria, preferring tool calls without redundant parameters.
Taken together, these behaviors enable ToolRM to deliver reliable critiques in tool-use scenarios.

A Case from TRBenchsrcL

Prompt of the Pairwise Critique Task

<conversation_history>
[system]: # Tools ...

<tools>
{"type": "function", "function": {"name": "add_mtnards_server", "description": "Registers a new MTNA Rich Data Services (RDS) server with the
specified nickname and host within the environment, using the provided API key for authentication.", ...} }}}

{"type": "function", "function": {"name": "list_servers", "description": "Retrieve a list of all the servers within the specified environment, optionally
"o "o

filtering by server type.", "parameters": {"type": "dict", "properties": {"server_type": {"type": "string", "description": "The type of servers to be listed. If
not specified, all server types are included.", "enum: ["all", "graphql", "mtna", "openapi", "postgres”, "rds", "sql"], "default": "all"}}, "required": []}}}

</tools>

[user]: Could you retrieve a list of all the MTNA Rich Data Services servers for me?
</conversation_history>

<current_response_1> <current_response_2>
<tool_ca.11>. <tool_call>
{"name": "list_servers", "arguments": {"server_type": "mtna"}} {"name": "list_servers", "arguments": {"server_type": "rds"}}
</tool_call> </tool_call>
</current_response_1> </current_response_&2>
Response from ToolRM Response from Claude-4-Sonnet
<think> <think>
Okay, let's tackle this evaluation. So, the user is asking for a list of The user is asking for a list of all the MTNA Rich Data Services
all MTNA Rich Data Services servers. Servers.
First, I need to check the available tools. The tools list has a Looking at the tools available, there's a ‘list_servers' function that can
function called list_servers which can take a server_type parameter. "Retrieve a list of all the servers within the specified environment,
The possible server types include "mtna" as one of the options. optionally filtering by server type."
Looking at Response 1: They used list_servers with server_type The parameters show that “server_type" is an optional parameter with
"mtna". That seems correct because the user is asking for MTNA possible values: ["all", "graphql", "mtna", "openapi", "postgres", "rds",
Rich Data Services servers. MTNA probably stands for MTNA "sql"].
Rich Data Services, so the server_type should be "mtna". The user specifically asked for "MTNA Rich Data Services servers".
Response 2: They used list_servers with server_type "rds". Wait, Let me analyze this:
rds is another server type. The user is asking for MTNA servers, 1. MTNA Rich Data Services - this seems to be a specific type of
not RDS servers. So Response 2 is incorrect here. The tool service
parameter should be "mtna" to get MTNA servers, not "rds". 2. Looking at the “add_mtnards_server" function, it mentions
Also, checking the tools documentation: The list_servers function "Registers a new MTNA Rich Data Services (RDS) server"
has a server_type enum that includes "mtna" and "rds" among So MTNA Rich Data Services = RDS server type according to the
others. So the correct server_type for MTNA Rich Data Services is function description.
"mtna", Now let me look at the two responses:
Therefore, Response 1 is correct because it uses server_type "mtna", Response 1: " {"name": "list_servers", "arguments": {"server_type":
which matches the user's request. Response 2 uses "rds" which is "mtna"}}
wrong because the user is asking for MTNA servers, not RDS Response 2: * {"name": "list_servers", "arguments": {"server_type":
servers. So the superior response is Response 1. "rds"}}* . L _ .
</think> From the add_mtnards_server’ function description: "Registers a new
<choice> MTNA Rich Data Services (RDS) server"
1 = This clearly indicates that MTNA Rich Data Services servers are
</choice> :« referred to as "rds" type servers in the system, not "mtna" type servers.

So Response 2 is correct - it uses "rds" as the server_type, which
matches what the system calls MTNA Rich Data Services servers.

Response 1 uses "mtna" which doesn't appear to be the correct server
type designation for MTNA Rich Data Services servers based on the
function descriptions.

</think>

<choice> -
2 X

</choice>

Figure 13: The case 1 from TRBenchgpcy, featuring responses from ToolRM and Claude 4 Sonnet.
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A Case from TRBenchercL

Prompt of the Pairwise Critique Task
<conversation_history>
[system]: # Tools ...
<tools>
{"type": "function", "function": {"name": "CustomDashboardsApi.get_custom_dashboards", "description": "Retrieves a list of custom dashboards that the
user has access to, based on the provided query parameters.", "parameters": {"type": "dict", "required": ["query"], "properties": {"query": {"type": "string",
"description": "A search query string to filter accessible dashboards. Supports logical operators and field-specific filtering."}, "pageSize": {"type":
"integer", "description": "The number of dashboard entries to return per page.", "default": 10}, "page": {"type": "integer", "description": "The page number
to retrieve, used for paginating through large sets of dashboard entries.", "default": 1}}}}}
{"type": "function", "function": {"name": "CustomDashboardsApi.get_custom_dashboard", "description": "Retrieve the details of a custom dashboard by
its unique identifier.", "parameters": {"type": "dict", "required": ["customDashboardId"], "properties": {"customDashboardId": {"type": "string",
"description": "The unique identifier of the custom dashboard to retrieve."}}}}}
</tools>
[user]: Get the dashboard for "dashing".
</conversation_history>
<current_response_1> <current_response_2>
<tool_call> <tool_call>
{"name": "CustomDashboardsApi.get_custom_dashboards", "name": "CustomDashboardsApi.get_custom_dashboard",
"arguments": {"query": "dashing"}} "arguments": {"customDashboardId": "dashing"}}
</tool_call> </tool_call>
</current_response_1> </current_response_2>
Response from ToolRM Response from Claude-4-Sonnet
<think> <think>
Okay, let's tackle this evaluation. So, the user wants to get the Let me analyze both responses based on the evaluation criteria.
dashboard for "dashing". The available tools are three functions: The user is asking: "Get the dashboard for 'dashing."
add_custom_dashboard, get_custom_dashboards, and I need to evaluate which tool call is more appropriate.
get_custom_dashboard. Response 1 uses: 'CustomDashboardsApi.get_custom_dashboards’
First, looking at the conversation history, the user's query is "Get with arguments ' {"query": "dashing"}"
the dashboard for 'dashing''. The assistant needs to use the tools Response 2 uses: "CustomDashboardsApi.get_custom_dashboard’
correctly. with arguments * {"customDashboardld": "dashing"}*
Looking at Response 1: They used get_custom_dashboards with Let me look at the function signatures:
query "dashing". That seems right because the 1. *CustomDashboardsApi.get_custom_dashboards':
get_custom_dashboards function takes a query parameter to find - Description: "Retrieves a list of custom dashboards that the user
dashboards. The parameters are correct here. has access to, based on the provided query parameters."
Response 2: They used get_custom_dashboard with - Required parameters: ["query"]
customDashboardId "dashing". Wait, the get_custom_dashboard - This function searches for dashboards using a query string
function requires a customDashboardId, which is a unique 2. "CustomDashboardsApi.get_custom_dashboard':
identifier. But the user's query is "Get the dashboard for 'dashing'"', - Description: "Retrieve the details of a custom dashboard by its
which might mean they want a dashboard named "dashing" or unique identifier."
with a title containing "dashing". However, the tool - Required parameters: ["customDashboardId"]
get_custom_dashboard needs a specific ID, not a name. The - This function retrieves a specific dashboard by its ID
problem is that the user didn't provide an ID, so the assistant can't Now, the user said "Get the dashboard for 'dashing". The key
know the ID beforehand. Therefore, using get_custom_dashboard question is: is "dashing" a dashboard ID or a search term?
with ID "dashing" might be incorrect because the ID is a unique From the context, it's ambiguous. "Dashing" could be:
identifier, not the dashboard name. The correct approach would 1. The unique identifier of a specific dashboard
be to first use get_custom_dashboards to find the dashboard by 2. A name or part of a name to search for
name (query "dashing") and then get its ID to use in However, looking at the function descriptions:
get_custom_dashboard. But in this case, the user's request is to get - ‘get_custom_dashboard" is for retrieving a specific dashboard by
the dashboard for "dashing", so maybe they mean a dashboard its unique identifier
named "dashing". - ‘get_custom_dashboards’ is for searching/filtering dashboards
Wait, the tools description says for get_custom_dashboards, the The user said "Get THE dashboard for 'dashing' - the use of "THE"
query parameter is a search string. So Response 1 is correct suggests they're looking for a specific dashboard, not searching for
because they're searching for dashboards with query "dashing". multiple dashboards.
Response 2 is trying to get a dashboard by ID "dashing", but the If "dashing" is indeed the dashboard ID, then Response 2 would be
ID is a unique identifier that isn't necessarily the same as the name. correct.
Since the user said "dashboard for 'dashing'", it's more likely they If "dashing" is a search term or dashboard name (not ID), then
want a dashboard whose name is "dashing" or contains "dashing". Response 1 would be correct.
So the correct tool here is get_custom_dashboards with query The singular phrasing "the dashboard" implies a specific, unique
"dashing" (Response 1). Response 2 is using dashboard. This strongly points to using the
get_custom_dashboard with an ID that's probably not valid “get_custom_dashboard" method with "dashing" as the identifier.
because the ID is a unique identifier, not a name. The tool T'll prioritize the most precise interpretation based on the user's
get_custom_dashboard requires a specific ID, which the user language, which suggests a direct retrieval of a specific dashboard.
didn't provide. So Response 2 is incorrect because they're The approach balances efficiency and user intent, targeting a direct
assuming "dashing" is a valid ID, but the tool's parameters need a dashboard fetch while maintaining flexibility if the identifier proves
real ID. Therefore, Response 1 is superior. invalid.
</think> The definite article implies a precise dashboard selection, making
<choice> the direct retrieval method most aligned with the user's expectation.
1 H ; Searching becomes a secondary strategy if direct identification fails.
</choice> V : </think>
<choice>
2
</choice> : x i

Figure 14: The case 2 from TRBenchgpcy , featuring responses from ToolRM and Claude 4 Sonnet.
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A Case

<conversation_history>
[system]: # Tools ...

<tools>
{"type": "function", "function": {"name'

n.on

T

e

BFCL

Prompt of the Pairwise Critique Task

get_shortest_driving_distance", "description": "Calculate the shortest driving distance between two locations.",

"parameters": {"type": "dict", "properties": {"origin": {"type": "string", "description": "Starting point of the journey."}, "destination": {"type": "string",

n.on

"description": "End point of the journey."}, "unit": {"type
"required": ["origin", "destination"]} } }

</tools>

string", "description": "Preferred unit of distance (optional, default is kilometers)."}},

[user]: Find the shortest driving distance between New York City and Washington D.C.

</conversation_history>

<current_response_1>
<tool_call>

o "o

{"name": "get_shortest_driving_distance", "arguments": {"origin":
"New York City", "destination": "Washington D.C."}}
</tool_call>

</current_response_1>

Response from ToolRM
<think>
Okay, let's tackle this evaluation. So, the user wants the shortest
driving distance between New York City and Washington D.C.
The available tools include get_shortest_driving_distance, which
requires origin and destination. The other parameters have a unit
option, defaulting to kilometers.

Looking at Response 1: They called the function with origin and
destination, no unit specified. That's correct because the tool's
parameters say unit is optional with default kilometers. So that's
valid.

Response 2: They added "unit": "miles". The tool's description
says the unit is optional with default kilometers. So specifying
miles is okay, but does the tool accept that? The tool's parameters
say unit is optional, so it's valid. However, the user's query doesn't
specify a unit, so the assistant should probably use the default.
The tool's description says the default is kilometers, so maybe the
assistant shouldn't change it unless needed. Since the user didn't
ask for miles, Response 2 is adding an unnecessary parameter.
That would be a redundancy. The evaluation criteria say to avoid

unnecessary tool calls or parameters. So Response 2 has an extra
parameter that's not needed, which is a drawback. Therefore,

Response 1 is better because it doesn't add unnecessary info. The
tool's parameters say unit is optional, but since the user didn't
specify, the default is fine. So the superior response is Response 1.
</think>
<choice>
1
</choice>

v

<current_response_g2>

<tool_call>

{"name": "get_shortest_driving_distance", "arguments": {"origin":
"New York City", "destination": "Washington D.C.", "unit": "miles"} }
</tool_call>

</current_response_2>

Response from Claude-4-Sonnet

<think>

Let me analyze these two responses based on the evaluation criteria:
1. **Available tools must be fully and appropriately leveraged to
meet the requirements.**

Both responses use the correct tool "get_shortest_driving_distance’
which is appropriate for finding the shortest driving distance

between two locations.
2. **Tool call names must be valid, correct, and complete.**

Both responses use the correct function name
"get_shortest_driving_distance".

3. **Tool call arguments must be valid, correct, and complete.**
Let me check the function signature:

"parameters": {"type": "dict", "properties": {"origin": {"type":
"string", "description": "Starting point of the journey."},
"destination": {"type": "string", "description": "End point of the
journey."}, "unit": {"type": "string", "description": "Preferred unit
of distance (optional, default is kilometers)."}}, "required":
["origin", "destination"]}

Response 1 arguments:

- "origin": "New York City" v/

- "destination": "Washington D.C." v/

- Missing "unit" parameter (but it's optional)

Response 2 arguments:

- "origin": "New York City" v/

- "destination": "Washington D.C." v

- "unit": "miles" v/

Both responses provide the required parameters. Response 2 also
includes the optional "unit" parameter.

4. **Fabrication, including the creation of information or
knowledge not provided by the user, conflicting with user input, or
not derived from the tools, must be penalized.**

Neither response fabricates information. Both are making
appropriate tool calls.

5. **Repetitive or unnecessary tool calls must be penalized.**
Neither response makes repetitive or unnecessary calls.

6. **Excessive or unnecessary requests for user clarification beyond
what is essential must be penalized.**
Neither response requests clarification.

The key difference is that Response 2 includes the "unit" parameter
set to "miles". Since the user asked for the distance between two US

cities (New York City and Washington D.C.), it would be more
natural and user-friendly to provide the result in miles rather than
the default kilometers. While the "unit" parameter is optional,

specifying "miles" would likely give a more useful result for
someone asking about distances between US cities.

Response 2 demonstrates enhanced user-centricity by selecting miles
as the distance unit, which aligns more naturally with US
geographic conventions and user expectations.

</think>

<choice>

2

</choice>
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Figure 15: The case 3 from TRBenchgpcy , featuring responses from ToolRM and Claude 4 Sonnet.
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