
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ONE MODEL TO CRITIQUE THEM ALL: REWARDING
AGENTIC TOOL-USE VIA EFFICIENT REASONING

Anonymous authors
Paper under double-blind review

ABSTRACT

Reward models (RMs) play a critical role in aligning large language models
(LLMs) with human preferences. Yet in the domain of tool learning, the lack
of RMs specifically designed for function-calling tasks has limited progress to-
ward more capable agentic AI. We introduce TOOLRM, a family of lightweight
generative RMs tailored for general tool-use scenarios. To build these models, we
propose a novel pipeline that constructs pairwise preference data using rule-based
scoring and multidimensional sampling. This yields ToolPref-Pairwise-30K, a di-
verse, balanced, and challenging dataset of critique tasks that supports reinforce-
ment learning with verifiable feedback. To evaluate tool-use RMs, we also intro-
duce TRBENCHBFCL, a benchmark built on the agentic evaluation suite BFCL.
Trained on our constructed data, models from the Qwen3-4B/8B series achieve up
to 14.28% higher accuracy, substantially outperforming frontier models such as
Claude 4 and OpenAI o3 in pairwise reward judgments. Beyond training objec-
tives, TOOLRM generalizes to broader critique tasks, including Best-of-N sam-
pling and self-correction. Experiments on ACEBENCH highlight its effectiveness
and efficiency, enabling inference-time scaling and reducing output token usage
by over 66%. We release data and model checkpoints to facilitate future research.

1 INTRODUCTION

Recent advances in agentic artificial intelligence (AI) have been driven in large part by the tool-use
capabilities of large language models (LLMs) (Schick et al., 2023; Patil et al., 2024; OpenAI, 2025).
By leveraging external tools, LLMs can recognize their limitations and extend their capabilities
through environment interaction. The research focus has recently shifted from behavior cloning via
supervised finetuning on curated trajectories (Schick et al., 2023; Tang et al., 2023) to trial-and-error
approaches based on reinforcement learning from verifiable rewards (RLVR) (Feng et al., 2025; Qian
et al., 2025), enabling more generalizable and robust tool-use behavior.

Despite these gains, the lack of reliable reward models (RMs) tailored to tool-use tasks remains a
core limitation. Most existing methods depend on verified tool-call trajectories for feedback, which
restricts scalability to domains lacking such annotations. At inference time, the absence of precise
reward signals also makes it hard to leverage multiple sampled answers for test-time selection (Wang
et al., 2023; Snell et al., 2025). We argue that developing a robust RM—capable of evaluating tool-
use behavior without requiring ground-truth labels—is critical for advancing this field.

Designing effective RMs for tool-use presents three key challenges: (C1) Constructing high-quality
preference pairs that reflect tool-use intent (Liu et al., 2024a). (C2) Enabling generalizable critique
beyond 3H-style modeling (Askell et al., 2021), as tool-use tasks often allow more objective, causal
reasoning. (C3) Evaluating RM performance in this setting, which remains underexplored for both
frontier LLMs and specialized critics.

To address these challenges, we introduce TOOLRM, a family of lightweight generative RMs for
general tool-use tasks. We design a two-stage pipeline to construct high-quality preference data.
First, we curate and validate tool-calling trajectories from diverse open-source datasets, segment
them into context–response pairs, and sample alternative responses using multiple LLMs. Instead of
relying on ground-truth matches, we apply rule-based labeling to capture fine-grained preferences. A
multidimensional sampling strategy ensures diverse scenarios, varied preference intensity, and high
task complexity (C1). To strengthen critique ability, we train TOOLRM with a pairwise objective

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Tool-Use Data Sourcing Trajectory Segmentation & Validation 

Raw Trajectory

SYSTEM

USER

…

ASSISTANT

ASSISTANT

Tool

…

Response Sampling & Verification

Segmented Trajectory

USER
…

ASSISTANT

conversation history 𝒙

gt response 𝑦∗

Segmented Trajectory

SYSTEM

Tool

…

ASSISTANT

conversation history 𝒙

GT response 𝑦∗

ASSISTANT

sampled response #𝑦

Scoring
Function

Too Difficult

Too Easy

Sample

Drop

Rule-based 
Score 𝑠̂

Candidate 
Data Pool

Stage 1: Trajectory Preparation

Critic Task Completion Balanced Multi-Dimensional Sampling Pairwise Data Construction

Frontier LLMs

×

×

Pairwise Data Pool

chosen 𝑦" rejected 𝑦#

context 𝒙 with scores
𝑠! > 𝑠"

Data Source

Diversifying

Task Complexity

Challenging Balancing

preferenceI s s+ -= -

Preference Intensity

Model Training

response 1

context 𝒙

response 2

Which one is better?

<evaluation>
Ok, let me think…
</evaluation>

<choice>

2
</choice>

ground-truth 
answer: 𝟏

Learn from 
Feedback

GRPO ( )J q Binary Reward

Ranked Sampling

Stage 2: Preference Data Construction

Permutate

Difficulty-Aware Sampling

Reserve
Hello, I have a request regarding a past flight reservation …

To assist you with the cancellation request, I need to verify …

Hermes FC 
standardAPIGen/-MT

Hermes-FC

ToolAlpaca

Glaive-FC

BUTTON

CFB

As an airline agent, you can help users book, modify, or cancel flight 
reservations. Before taking any actions that update the booking …

# Agent Policy

You may call one or more functions to assist with the user query …
For each function call, return a json object with function name and …

# Instruction

{"name": "book_reservation", "description": "Book a reservation.”, …}
{"name": "list_all_airports", "description": "List all airports & cities.", …}

# Tool Schema

Normalize

Self-Check

Validate

Figure 1: Overview of the proposed pipeline for training ToolRM.

using unified instructions and verifiable supervision, enabling the model to learn robust reasoning
without curated traces (C2). We also introduce TRBENCHBFCL, a benchmark based on BFCL (Patil
et al., 2025), to systematically evaluate RM performance on tool-use tasks (C3).

In summary, our key contributions are as follows:

• We propose a novel pipeline for generating high-quality pairwise preference data for reward mod-
eling in tool-use scenarios. Using seven open-source tool-calling datasets, we construct ToolPref-
Pairwise-30K, a diverse and balanced set of 30,000 challenging preference pairs. This resource is
publicly released to support future work in tool-oriented reward modeling.

• We train TOOLRM on the Qwen3-4B/8B series using RLVR, achieving strong gains in pairwise
reward judgments. Beyond training objectives, our models generalize to broader critique tasks,
enabling efficient inference-time scaling and producing compact, informative critiques.

• We introduce TRBENCHBFCL, a dedicated benchmark for evaluating reward models in tool-use
settings. Our analysis reveals that even state-of-the-art LLMs and specialized reward models show
significant gaps on this benchmark, underscoring the need for targeted solutions.

2 METHODOLOGY

We introduce a pipeline for training a generative reward model for tool-use. As shown in Figure 1,
we first label tool-calling trajectories using rule-based verifiers. In stage two, we construct pairwise
preferences via balanced multidimensional sampling. The model is trained with a pairwise critique
objective under the RLVR paradigm, resulting in ToolRM with strong evaluative capabilities.

2.1 TRAJECTORY PREPARATION

Task Sourcing. To build a diverse dataset, we collate function-calling tasks from seven open-
source, tool-learning datasets, spanning a wide variety of task domains and trajectory patterns:
APIGen (Liu et al., 2024b), APIGen-MT (Prabhakar et al., 2025), BUTTON (Chen et al., 2025b),
ComplexFuncBench (Zhong et al., 2025), Hermes-Function-Calling (Teknium et al., 2025), Glaive-
Function-Calling1, and ToolAlpaca (Tang et al., 2023). To address format inconsistencies across
these sources, we standardize all conversation records of raw tasks into format-aligned trajectories
Traw = {τi}Ni=1, discarding any data with invalid role orders. The message format within each tra-
jectory τi is normalized to adhere to the Hermes Function Calling standard2, where special tags
<tools>, <tool_call>, and <tool_response> are used to enclose tool schemas, calls, and
responses, respectively. At the beginning of each τi, a function-calling prompt is uniformly included

1We use a 5k cleaned glaive-function-calling subset in hermes-function-calling-v1.
2https://github.com/NousResearch/Hermes-Function-Calling

2

https://github.com/NousResearch/Hermes-Function-Calling


108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Table 1: Statistics for each constituent dataset. Raw and Filtered are reported by the number of
original tasks, while Segmented counts the number of segmented trajectories, with Avg. T indicating
their average number of turns. Trajectory patterns in each dataset are characterized from turn, step,
and order perspectives: ‘ST’ and ‘MT’ denote ‘single-turn’ and ‘multi-turn’; ‘SS’ and ‘MS’ denote
‘single-step’ and ‘multi-step’; ‘P’ and ‘S’ denote ‘parallel’ and ‘sequential’, respectively.

Data Source Raw Filtered Segmented Avg. T Schemas Pattern of Trajectory Task DomainTurn Step Order
APIGen 60,000 60,000 59,960 3.00 4,205 ST SS/MS P Finance/Sports/Technology/Travel . . .
APIGen-MT 5,000 4,874 20,055 11.75 26 MT SS/MS P/S Airline/Retail
BUTTON 8,000 8,000 20,811 5.19 22,101 MT SS/MS P/S Daily Life
ComplexFuncBench 1,000 1,000 3,259 5.43 40 ST MS S Hotel/Flight/Attraction/Car Rental/Taxi
Glaive-Function-Calling 5,209 4,344 6,747 4.82 1,565 MT SS/MS P Stocks and Orders/Movie/Flight Services . . .
Hermes-Function-Calling 1,893 1,724 1,724 3.00 2,383 ST SS/MS P Information Extraction/API Call/Software . . .
ToolAlpaca 4,098 2,510 6,194 4.24 2,040 ST SS/MS P/S News/Jobs/Finance/Entertainment . . .

as the system message, along with the schemas of available tools in the task. Additional agent poli-
cies are prepended to this message for complex tasks from specific sources (e.g., APIGen-MT). See
Appendix E for an example of a tool-use task trajectory.

Trajectory Segmentation and Validation. To enable subsequent rule-based verification of ar-
bitrary trajectories against ground-truth answers, we first perform tool schema validation for each
trajectory τi. Tool schemas are typically provided as dictionary objects, which we verify as valid
JSON schemas describing tools compatible with OpenAI’s tool-calling format3. Invalid schemas are
corrected, and duplicates are removed. The validated schemas are then wrapped into function-type
JSON objects and incorporated into the aforementioned system message as tool descriptions.

Next, we partition each raw trajectory τi ∈ Traw into sub-trajectories that each terminate with an
assistant message. This yields a set of segmented trajectories, denoted as Tseg = {τj}Mj=1. Each
segment τj consists of a conversation history xj (the sequence of messages preceding the assistant
message) and its corresponding assistant response yj . A preliminary filtering is then applied: we
retain a segment τj only if the message following yj in the raw trajectory τi does not contain any
unsuccessful tool response, which ensures the basic validity of tool calls in yj .

A stricter validation of tool calls is further employed for the assistant response within each retained
trajectory τj . Each tool call in yj is validated against the tool schemas: it must be parsable in the
required format (e.g., {"name":"...","arguments":{...}}) and its function name and
arguments must match the schema definitions. Responses containing duplicate tool calls are also
discarded. Finally, only the trajectories τj = (xj , yj) that pass all format and content checks are
kept. For these validated trajectories, we designate the response within them as the ground-truth
response y∗j , and the clean dataset consists of these validated pairs Tclean = {(xj , y

∗
j )}M

′

j=1. Table 1
summarizes statistics for each data source, including the number of unique tool schemas and the
distribution of tool-call trajectory patterns, measured by turn-, step-, and order-wise occurrences.

Response Sampling and Verification. In this phase, we begin by sampling multiple model re-
sponses for each conversation history. To ensure diversity in the outputs, we select five models from
three different families with varying tool-calling capabilities: Claude-3.7-Sonnet, Gemini-2.5-Pro,
Qwen2.5-Max, Qwen-32B, and Qwen3-8B. For each pair (xj , y

∗
j ) in the cleaned dataset Tclean, the

context xj is sent to all five models, yielding a set of new assistant responses {ŷj,k}5k=1. Each
sampled response ŷj,k is then scored using a rule-based function that compares it against its corre-
sponding ground-truth response y∗j , yielding a score between 0 and 1. Unlike prior rule-based TIR
approaches (Qian et al., 2025), our method for training the reward model prioritizes the correctness
of tool call content (reasoning ability) over strict format adherence (instruction-following ability),
since downstream applications often use varying tool call structures. Consequently, we only score ŷ
that can be successfully parsed into the expected tool-call format and discard all others.

For a given ground-truth response y∗ and a sampled response ŷ (we drop indices j, k for simplicity),
let C∗ = {c∗i }

NG
i=1 and Ĉ = {ĉl}NP

l=1 denote the lists of tool calls parsed from them, respectively. Each
tool call is a JSON object containing a string-typed name and a dictionary of arguments. Scoring
starts with two disqualifiers: if either applies, the final score ŝ is set to 0:

3https://platform.openai.com/docs/guides/function-calling

3

https://platform.openai.com/docs/guides/function-calling


162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

• Mismatched Number of Tool Calls. The number of predicted tool calls does not match the number
of ground-truth tool calls:

|Ĉ| ̸= |C∗| ⇒ ŝ = 0 (1)

• Duplicated Tool Calls. The set of predicted tool calls contains identical duplicates (both name and
arguments are the same). For ĉl, ĉm ∈ Ĉ:

∃l ̸= m s.t. is_identical(ĉl, ĉm)⇒ ŝ = 0 (2)

If a sampled response ŷ passes the above initial checks, a match score si is calculated for each
ground-truth tool call c∗i ∈ C∗. This score is determined by matching c∗i with the predicted tool call
of the same name that achieves the highest argument similarity. Specifically:

si = max
ĉ∈Ĉ

1[c∗i.name = ĉ.name] · sim(c∗i.arguments, ĉ.arguments) (3)

where 1[·] is an indicator function equal to 1 if the tool names match and 0 otherwise. This ensures
that arguments are only compared when tool names align. The argument similarity function sim(·)
measures the ratio of identical key-value pairs to the total number of unique keys across both dic-
tionaries. A key-value pair is considered identical only if the key appears in both dictionaries and
the corresponding values match, with string comparisons performed in a case-insensitive manner. If
both dictionaries are empty, the similarity is defined as 1. The final rule-based score ŝ can then be
calculated as the mean of all individual match scores si, with ŝ = 1 when both y∗ and ŷ contain no
tool calls:

ŝ =
1

NG

NG∑
i=1

si (4)

Difficulty-Aware Down-Sampling. After collecting all rule-based scores for sampled responses,
we perform difficulty-aware down-sampling. This is done by grouping all sampled responses by
their original context xj . Empirically, tasks that are either too easy or too difficult are not ideal for
model training: (1) contexts for which all sampled responses have a rule-based score of 1 are dis-
carded, as they offer no meaningful variation for model critique; (2) contexts for which no sampled
response receives a rule-based score of 1 are also removed, as such cases likely contain noise in
either xj or y∗j . We retain the remaining candidate data as a flat set of quadruples:

Dcand = {(xj , y
∗
j , ŷj,k, ŝj,k) | context j passes the filter} (5)

Each contains the conversation history, the ground-truth response, a sampled response, and the cor-
responding rule-based score. This pool serves as the source for constructing preference datasets.

2.2 PREFERENCE DATA CONSTRUCTION

Pairwise Data Construction. This section outlines the construction of data for training RM as a
critic. Such models are typically used to evaluate data in either a pointwise or pairwise manner. Our
preliminary experiments with a pointwise model, using rule-based scores as supervision signals, led
to superficial overfitting. The model learned to mimic the score distribution in the training set rather
than develop genuine analytical skills—a form of reward hacking that limited its performance on
out-of-distribution (OOD) tasks. To address this limitation, we focus on training reward models
with pairwise critique tasks, which mitigate the above issue by relying on comparative judgments
rather than direct scoring. The pairwise reward model is designed to distinguish a preferred response
from a rejected one for a given context. To construct the training data for this, we sample pairs of
responses from the preprocessed data pool Dcand, where ground-truth preferences are determined
by their rule-based scores. Each pair consists of a chosen response y+ and a rejected response y−

that shares the same context but differs in score. We traverse Dcand and arrange the permutations
according to the above rules to get a candidate pairwise data pool:

Dpair-cand = {(x, y∗, y+, y−, s+, s−) | s+ > s−, (x, y∗, y+, s+), (x, y∗, y−, s−) ∈ Dcand} (6)

Balanced Multi-Dimensional Sampling. To enable efficient training with fewer data, we then
adopt a balanced, multi-dimensional sampling strategy to select samples from Dpair-cand. In this
strategy, we focus on the following three dimensions of data:

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

• Diversity of Data Sources. Incorporating a diverse range of tool schemas and user queries en-
hances the generalizability of trained models. To this end, we aim to sample contexts from differ-
ent sources in a balanced manner. For each context x in data, we denote its source as x.source.

• Coverage of Preference Intensity. For each pair of chosen and rejected responses, the difference
in their rule-based scores reflects the intensity of the preference signal: a large difference signifies
a strong preference, while a small difference suggests a weak one. To train a more robust reward
model, our data sampling process is designed to cover this full spectrum of preference signals,
from weak to strong. For each pairwise data point, we measure its preference intensity by:

Ipreference = s+ − s− (7)

• Complexity of Tasks. Challenging the reward model with more complex tasks is essential for
enhancing its analytical capabilities. We calculate the complexity score of one candidate data
point according to its ground-truth response y∗:

Scomplex = |C∗|+
NG∑
i=1

|c∗i.arguments| (8)

where C∗ is the set of tool calls parsed from y∗. Both the number of tool calls and arguments are
accumulated to measure the task complexity. Notably, over-complicated data points (Scomplex >
50) are filtered out for a higher success rate of rollout trajectory in the model training stage.

Guided by the above principles, we use a heuristic algorithm to select samples from Dpair-cand that
are more efficient for model training. Specifically, we prioritize samples with higher complexity
scores Scomplex while ensuring that the data source x.source and preference intensity Ipreference are
as balanced as possible, resulting in a subset of pairwise data Dpair-sampled ⊆ Dpair-cand for subsequent
model training. Details of the heuristic algorithm are provided in Appendix D.

2.3 MODEL TRAINING

Critique Task Design. To elicit the evaluative capabilities of models as critics, we prompt them
as expert AI performance evaluators. Given a conversation history and two candidate assistant re-
sponses, their task is to provide a thorough evaluation of each and then select the superior one,
outputting its name within <choice> tags. We tailor instructions to different models according
to their native output style: reasoning models follow a think-mode template, where their evalua-
tions are embedded within the reasoning process, while non-reasoning models use a no-think-mode
template, explicitly presenting their evaluations within <evaluation> tags. To ensure consistent
and comprehensive critiques, we further establish unified evaluation criteria that guide the model.
These guidelines specify which types of errors in tool-invocation responses should be penalized.
For each sampled data (x, y∗, y+, y−, s+, s−) ∈ Dpair-sampled, we format the conversation history x
into a single string. This string is then concatenated with the two assistant responses y+ and y− to
form the final input query q. To reduce position bias and prevent reward hacking during training, we
randomly swap the order of the assistant responses in 50% of the queries, recording the position of
y+ as the ground-truth answer a. The resulting dataset Dpref = {(q, a)i}Ki=1 is then used to train the
reward model. Please see Appendix F for detailed prompt templates.

Training Objective. We train the target reward model within the RLVR paradigm using Group
Relative Policy Optimization (GRPO) (Shao et al., 2024), a variant of Proximal Policy Optimization
(PPO) (Schulman et al., 2017) that improves efficiency and reduces computational cost by replacing
the critic network with grouped relative advantages. Given an input query q and its ground-truth
answer a, let O = {o1, o2, . . . , oG} denote the set of rollout trajectories generated by the old policy
πθold . Our goal is to optimize the policy πθ by maximizing the following objective:

JGRPO(θ) = E(q,a)∼Dpref,{oi}G
i=1∼πθold (·|q) 1

G

G∑
i=1

1

|oi|

|oi|∑
t=1

[
min

(
πθ(oi,t|q, oi,<t)

πθold(oi,t|q, oi,<t)
Ai,t, clip

(
πθ(oi,t|q, oi,<t)

πθold(oi,t|q, oi,<t)
, 1− ϵ, 1 + ϵ

)
Ai,t

)] (9)

where ϵ is a clipping-related hyper-parameter for stabilizing training. Ai,t denotes the relative ad-
vantage calculated based on outputs of each rollout group:

Ai,t =
ri −mean({r1, r2, . . . , rG})

std({r1, r2, . . . , rG})
(10)

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Here, ri denotes the binary reward assigned to the rollout trajectory oi. It is determined by whether
a valid choice can be successfully extracted from oi and whether it accurately answers q:

ri =

{
1, if is_equivalent(a, extract_choice(oi)))
0, otherwise.

Following Qian et al. (2025), we omit the KL penalty term from the original GRPO objective to
encourage more effective exploitation of reward signals during policy updates. Building on this, we
design a verifiable reward system for training generative reward models in the tool-use scenario.

3 EXPERIMENTS

3.1 DO TOOLRM PROVIDE PRECISE REWARDS?

Benchmark Construction. We evaluate the reward models using an improved benchmark adapted
from IBM Research4, based on BFCL. The original benchmark pairs correct function calls with in-
correct ones generated by 25 permissively licensed models but has two main limitations: (1) it only
covers single-turn tasks, and (2) its negative responses are too trivial for powerful RMs to differen-
tiate. To overcome this, we construct a more challenging benchmark using the multi_turn_base
split from BFCL V3 and curate harder negative samples from seven top-performing function-
calling models5: xLAM-2-70B-FC-R (Prabhakar et al., 2025), GPT-4o (Hurst et al., 2024), OpenAI
o1 (Jaech et al., 2024), Qwen3-32B (Yang et al., 2025), DeepSeek-R1 (Guo et al., 2025a), Gemini-
2.5-Pro (Comanici et al., 2025), and Claude-3.7-Sonnet (Anthropic, 2025).

The resulting benchmark, TRBENCHBFCL, includes 2,983 samples from 1,397 unique tasks across 9
splits, covering 20 distinct error types with rejected responses from 7 different models. Since BFCL
tasks and their synthetic data are excluded from training, TRBENCHBFCL serves as a strong OOD
evaluation set for TOOLRM. Additional statistics and implementation details are in Appendix C.2.

Evaluation Metric. We assess reward model performance via pairwise preference classification.
To minimize position bias, each sample is evaluated twice, swapping the response order on the
second pass. A sample is correct only if both orders yield the correct prediction. For scalar-output
RMs, we compute scores for chosen and rejected responses and mark the result correct if the score
order matches the preference label. We report average accuracy (Avg.) across splits and weighted-
average accuracy (W-Avg.), based on sample counts.

Model Training. We train reward models on three reasoning-capable models—Qwen3-4B,
Qwen3-8B, and Qwen3-4B-Thinking-2507—and one non-reasoning model, Qwen3-4B-Instruct-
2507. At both training and inference, we apply the appropriate think-mode or no-think-mode tem-
plates. Our preference dataset, ToolPref-Pairwise-30K, contains 30,000 samples (29,500 for train-
ing, 500 for validation), built with our proposed pipeline. See training details in Appendix C.1.

Baseline Models. We benchmark ToolRM on TRBENCHBFCL against strong LLMs in the LLM-
as-a-judge setup, including GPT, Gemini, Claude, DeepSeek, and Qwen. Specialized models are
also tested: generative (Skywork-Critic (Shiwen et al., 2024), M-Prometheus (Pombal et al., 2025),
RM-R1 (Chen et al., 2025c), RRM (Guo et al., 2025b)), discriminative (Skywork-Reward (Liu et al.,
2024a), InternLM2-Reward (Cai et al., 2024)), and hybrid (Cloud-RM (Ankner et al., 2024)).

Main Results. Table 2 presents evaluation results on TRBENCHBFCL across all splits. Training
on ToolPref-Pairwise-30K significantly boosts performance, yielding an average gain of 10.12%
and a maximum of 14.28% in weighted accuracy. ToolRM, trained on Qwen3-4B-Thinking-2507,
consistently outperforms nearly all baselines, including on the multi-turn-base split—despite being
trained on step-wise critiques. Since BFCL scoring for multi-turn tasks relies on state- and response-
based signals rather than rule-matching, these gains demonstrate that ToolRM acquires robust,
generalizable analytical capabilities rather than overfitting to rule-based labels.

4https://huggingface.co/datasets/ibm-research/fc-reward-bench
5Trajectories from https://github.com/HuanzhiMao/BFCL-Result

6

https://huggingface.co/datasets/ibm-research/fc-reward-bench
https://github.com/HuanzhiMao/BFCL-Result


324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 2: Evaluation results of reward models on TRBenchBFCL. A higher percentage of accuracy
indicates a stronger ability to distinguish the better response in tool-calling tasks. The best result
in each column is bolded, and the second-best is underlined. (♢): evaluated with the think-mode
template; (♡): evaluated with the no-think-mode template; (♣): evaluated with the official template.
( ): pairwise inputs; ( ): pointwise inputs; ( ): critique as output; ( ): choice as output; ( ):
scalar reward as output. Models trained in this paper are indicated with a green background .

Classification Accuracy (%)
Models

S M P PM LS LM LP LPM MTB Avg. W-Avg.

Proprietary & Open-source Frontier LLMs

DeepSeek-AI/DeepSeek-R1-0528♢ 68.61 70.42 87.71 85.64 64.62 46.45 76.47 75.00 36.77 67.97 57.93
OpenAI/GPT-4o-2024-11-20♡ 69.34 66.20 86.71 86.67 50.47 50.82 67.65 78.33 38.38 66.06 59.00
OpenAI/o3-2025-04-16♢ 70.80 69.01 85.71 84.87 55.19 50.43 67.65 76.67 41.21 66.84 59.40
Google/Gemini-2.5-Flash♢ 64.23 66.20 89.70 89.49 56.13 51.13 79.41 80.00 36.77 68.12 59.87
Google/Gemini-2.5-Pro♢ 75.18 67.61 88.04 91.79 58.96 48.32 82.35 73.33 39.80 69.49 59.94
Qwen/Qwen3-235B-A22B-Thinking-2507♢ 71.53 69.01 86.05 90.26 67.92 51.52 85.29 76.67 34.55 70.31 60.64
DeepSeek-AI/DeepSeek-V3-0324♡ 75.18 66.20 88.70 89.74 58.02 53.86 70.59 73.33 37.17 68.09 61.45
Qwen/Qwen2.5-Max♡ 77.37 73.24 89.04 90.00 58.02 55.18 67.65 70.00 37.98 68.72 62.39
Anthropic/Claude-3.7-Sonnet♢ 76.64 67.61 91.69 92.82 60.85 52.77 73.53 78.33 39.19 70.38 62.45
Anthropic/Claude-4-Sonnet♢ 81.02 77.46 91.36 91.28 62.74 54.95 82.35 83.33 41.01 73.95 64.23

Open-source Reward Models

Databricks/CLoud-RM-Llama-3-8B♣ 25.55 35.21 33.22 32.82 31.60 37.88 32.35 25.00 49.90 33.73 37.34
Unbabel/M-Prometheus-7B♡ 54.74 54.93 71.43 74.87 43.87 46.69 38.24 53.33 34.14 52.47 51.19
Microsoft-Research/RRM-7B♢ 65.69 56.34 82.06 84.62 43.40 49.65 44.12 68.33 36.36 58.95 56.05
UIUC/RM-R1-DeepSeek-Distilled-Qwen-32B♢ 75.18 76.06 68.44 80.51 61.79 49.18 52.94 53.33 38.18 61.73 56.25
Unbabel/M-Prometheus-14B♡ 64.96 57.75 88.37 87.44 44.34 46.38 64.71 61.67 39.39 61.67 56.32
Skywork/Skywork-Critic-Llama-3.1-8B♣ 54.74 59.15 86.05 83.59 47.17 45.75 67.65 61.67 50.30 61.79 56.92
Skywork/Skywork-Critic-Llama-3.1-70B♣ 64.23 67.61 87.38 88.21 44.34 51.68 70.59 66.67 47.47 65.35 60.31
Microsoft-Research/RRM-32B♢ 76.64 76.06 87.38 89.23 67.92 56.90 67.65 75.00 42.83 71.07 64.50
Skywork/Skywork-Reward-Llama-3.1-8B-v0.2♣ 83.21 70.42 92.36 92.31 59.91 62.51 67.65 75.00 59.80 73.68 70.23
InternLM/InternLM2-7B-Reward♣ 80.29 80.28 88.04 89.74 63.68 65.16 67.65 73.33 61.21 74.38 71.17

Models Trained on ToolPref-Pairwise-30K

Qwen/Qwen3-4B-Instruct-2507♡ 71.53 64.79 90.37 89.23 51.42 50.66 70.59 86.67 36.57 67.98 59.67
TOOLRM-Qwen3-4B-Instruct-2507♡ 70.80 74.65 91.03 89.49 55.66 60.41 94.12 81.67 49.90 74.19 66.85 (+7.18)

Qwen/Qwen3-4B (Thinking mode)♢ 70.07 73.24 89.70 87.69 56.60 48.09 79.41 81.67 39.80 69.59 59.34
TOOLRM-Qwen3-4B♢ 81.02 78.87 89.04 88.97 63.21 62.12 91.18 86.67 52.32 77.04 68.89 (+9.55)

Qwen/Qwen3-8B (Thinking mode)♢ 71.53 61.97 89.37 90.26 58.49 48.09 85.29 76.67 39.19 68.98 59.44
TOOLRM-Qwen3-8B♢ 81.02 76.06 89.70 91.03 64.62 61.50 91.18 80.00 52.73 76.43 68.92 (+9.48)

Qwen/Qwen3-4B-Thinking-2507♢ 67.88 70.42 85.71 87.69 61.79 46.61 85.29 85.00 33.54 69.33 57.59
TOOLRM-Qwen3-4B-Thinking-2507♢ 83.21 80.28 90.03 92.56 71.23 66.02 94.12 88.33 52.12 79.77 71.87 (+14.28)

In LLM-as-a-judge evaluations, Claude models outperform other frontier LLMs, aligning with their
tool-use strengths. Among specialized reward models, InternLM2-7B-Reward performs best, likely
due to its diverse training on 2.4M preference pairs spanning dialogue, code, and math. Interestingly,
Skywork-Reward-Llama-3.1-8B-v0.2 surpasses its generative counterpart Skywork-Critic, despite
both being trained on similar preference data samples. This suggests that, without targeted training,
scalar-output discriminative RMs may generalize better to tool-use tasks than generative critics.

Lastly, reasoning (thinking) models show greater gains from critique training than instruction-tuned
counterparts, and models with longer initial reasoning patterns (e.g., Qwen3-4B-Thinking-2507 vs.
Qwen3-4B) benefit the most. This highlights that even with weaker initial performance, a greater
capacity for exploration can ultimately lead to stronger outcomes through RL. A comparison
between DeepSeek-R1 and DeepSeek-V3 further emphasizes the pivotal role of high-quality data in
enhancing models’ reasoning abilities on targeted tasks.

3.2 DO TOOLRM HELP WITH INFERENCE-TIME SCALING?

Setup. We assess whether ToolRM improves tool-call inference using 823 samples from the Nor-
mal split of ACEBENCH (Chen et al., 2025a), a benchmark for tool-use evaluation. For each sam-
ple, we apply Best-of-N (BoN) sampling with Qwen3-4B-Instruct-2507 (temperature = 1.0), and
use generative reward models to select the best response. We compare two judges: the baseline

7

https://huggingface.co/ankner/Llama3-8B-CLoud-RM
https://huggingface.co/Unbabel/M-Prometheus-7B
https://huggingface.co/Reward-Reasoning/RRM-7B
https://huggingface.co/gaotang/RM-R1-DeepSeek-Distilled-Qwen-32B
https://huggingface.co/Unbabel/M-Prometheus-14B
https://huggingface.co/Skywork/Skywork-Critic-Llama-3.1-8B
https://huggingface.co/Skywork/Skywork-Critic-Llama-3.1-70B
https://huggingface.co/Reward-Reasoning/RRM-32B
https://huggingface.co/Skywork/Skywork-Reward-Llama-3.1-8B-v0.2
https://huggingface.co/internlm/internlm2-7b-reward
https://huggingface.co/Qwen/Qwen3-4B-Instruct-2507
https://huggingface.co/Qwen/Qwen3-4B
https://huggingface.co/Qwen/Qwen3-8B
https://huggingface.co/Qwen/Qwen3-4B-Thinking-2507


378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

0

700

1400

2100

2800

3500

60

63

66

69

72

75

w/o Critic w/ Base w/ ToolRM

N
um

be
r o

f T
ok

en
s

Ac
cu

ra
cy

 (%
)

Performance Critique Length

63

64

65

66

67

0 4 8 12 16
Ac

cu
ra

cy
 (%

)
Number of Responses

Base ToolRM

Figure 2: Comparison of BoN
sampling on ACEBench.

0

700

1400

2100

2800

3500

60

63

66

69

72

75

w/o Critic w/ Base w/ ToolRM

N
um

be
r o

f T
ok

en
s

Ac
cu

ra
cy

 (%
)

Critic Output Length Performance

63

64

65

66

67

0 4 8 12 16
Ac

cu
ra

cy
 (%

)
Number of Responses

Base ToolRM

Figure 3: Comparison of model self-
correction on ACEBench.

Qwen3-4B-Thinking-2507 (Base) and our trained ToolRM-Qwen3-4B-Thinking-2507 (ToolRM).
Performance is measured by average accuracy across all samples.

Main Results. Figure 2 shows that ToolRM consistently matches or outperforms the baseline
across all BoN settings, with gains of 3.2 and 1.3 points over the non-BoN and BoN-16 baselines,
respectively. These improvements suggest that RL training enhances underlying reasoning, enabling
effective generalization beyond the original training context. Notably, ToolRM maintains stable
performance as the candidate pool grows, demonstrating its robustness to long-context reasoning
and its utility in inference-time scaling for tool-use tasks.

3.3 DO CRITIQUES IMPROVE MODEL SELF-CORRECTION?

Setup. We assess the effectiveness of critiques generated by ToolRM in guiding self-correction.
For each sample in the Normal subset of ACEBench, Qwen3-4B-Instruct-2507 first produces a
function-calling response. A generative reward model then critiques this output with concise feed-
back. Using this critique, the same model edits its response. We compare two critics: the baseline
Qwen3-4B-Thinking-2507 (Base) and our trained ToolRM-Qwen3-4B-Thinking-2507 (ToolRM).
Performance is measured by average accuracy over all samples.

Main Results. As shown in Figure 3, ToolRM leads to notable gains in self-correction accuracy:
+11.4 points over w/o Critic and +2.0 over w/ Base, confirming its ability to produce reliable, tar-
geted critiques. Additionally, ToolRM achieves this with much lower decoding cost—reducing av-
erage output length from 3,211 to 1,111 tokens—demonstrating efficient reasoning without sacri-
ficing critique quality. See Appendix G for more qualitative examples.

3.4 ABLATION STUDIES

Table 3: Ablated evaluation results
on TRBenchBFCL.

Model Avg. Acc W-Avg. Acc
Full ToolRM 79.77 71.87
- w/o BMDS 74.28 67.24 (-4.63)
- w/o EC 75.36 68.69 (-3.18)

To assess the contribution of our two key data construction
components, we conduct an ablation study with two variants:
one replaces balanced multi-dimensional sampling with ran-
dom sampling (w/o BMDS); the other removes unified evalua-
tion criteria during training (w/o EC). Both models are trained
using GRPO on Qwen3-4B-Thinking-2507 with 30K pairwise
preferences, keeping all other settings fixed. As shown in Ta-
ble 3, removing either component significantly degrades per-
formance. Without BMDS, the average data complexity drops (5.83→4.43), leading to a less
challenging and imbalanced dataset. Without evaluation criteria, output length decreases sharply
(1,204→694), suggesting these criteria promote more comprehensive reasoning during training.

3.5 IMPACT OF DATA SCALING ON TOOLRM

We investigate the influence of data scaling on model performance. Figure 4a shows the results for
Qwen3-4B-Thinking-2507 on TRBenchBFCL, trained with data samples ranging from 10K to 40K.
Notably, the model achieves its highest performance with 30K training samples. Performance does
not increase monotonically with data size because our sampling strategy prioritizes more complex

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

55.00

60.00

65.00

70.00

75.00

0 100 200 300 400
W

-A
vg

. A
cc

Training Steps

10K 20K 30K 40K

0

2

4

6

8

0

4000

8000

12000

16000

10K 20K 30K 40K

C
om

pl
ex

ity
 o

f T
as

k

N
um

be
r o

f  
Ta

sk
s

Data Scales

Unique Source Tasks Avg. Complexity

1 epoch of 
training on 30K data

Qwen3-4B-
Thinking-2507

(a) Evaluation results on TRBenchBFCL.

55.00

60.00

65.00

70.00

75.00

0 100 200 300 400

W
-A

vg
. A

cc

Training Steps

10K 20K 30K 40K

0

2

4

6

8

0

4000

8000

12000

16000

10K 20K 30K 40K

C
om

pl
ex

ity
 o

f T
as

k

N
um

be
r o

f  
Ta

sk
s

Data Scales

Unique Source Tasks Avg. Complexity

1 epoch of 
training on 30K data

Qwen3-4B-
Thinking-2507

(b) Statistics across different data scales.

Figure 4: Statistics and the impact of data scale on model training.

tasks. As the dataset grows, the average task complexity declines, leading to less effective training
signals. Figure 4b illustrates this trend: while the number of unique tasks rises with larger datasets,
their average complexity decreases. These results demonstrate that our proposed strategy success-
fully balances task diversity and complexity when exploring the candidate data pool.

4 RELATED WORK

Tool Learning in the Era of LLMs. Early work on agentic AI, such as Yao et al. (2023), combines
chain-of-thought reasoning (Wei et al., 2022) with tool-augmented actions to elicit LLMs’ tool-use
capabilities. Later methods imitate curated tool-use trajectories via supervised fine-tuning (Schick
et al., 2023; Liu et al., 2024b), but often struggle with complex or out-of-distribution tasks. More re-
cently, researchers have integrated verified rewards into tool-aware reasoning, with designs tailored
for question answering (Jin et al., 2025; Song et al., 2025), math (Feng et al., 2025; Dong et al.,
2025), and general tool-use (Qian et al., 2025; Zhang et al., 2025).

Reward Modeling. Reward models guide large language models toward outputs that align with
human preferences (Ouyang et al., 2022; Bai et al., 2022). They are typically either (1) discrimina-
tive, outputting scalar scores to rank responses (Cai et al., 2024; Liu et al., 2024a), or (2) generative,
producing textual rewards for domains such as chat (Shiwen et al., 2024), code (McAleese et al.,
2024), and literary translation (Pombal et al., 2025). A recent trend views reward modeling as a
reasoning process (Chen et al., 2025c; Guo et al., 2025b) to enhance reward quality. Following this
line of work, we extend generative reward modeling to the field of tool calling in this paper.

5 CONCLUSION

This paper presents TOOLRM, a family of generative reward models tailored for agentic tool-use
tasks. Central to our framework is a novel data construction pipeline that combines rule-based la-
beling with balanced multi-dimensional sampling. This approach enables the automatic generation
of fine-grained pairwise preference data, yielding a dataset that is diverse, well-balanced, and delib-
erately challenging. The resulting dataset supports efficient RL-based training and encourages the
development of nuanced reasoning strategies beyond surface-level signal matching.

By formulating the reward modeling objective as a discriminative critique task, and optimizing via
RLVR, TOOLRM not only learns to assign scalar preferences but also acquires robust and general-
izable analytical capabilities. Our comprehensive evaluation across multiple benchmarks confirms
the utility of TOOLRM in three key dimensions: (i) delivering high-fidelity reward signals that align
with human preferences and outperform frontier baselines; (ii) enabling inference-time scaling by
reliably selecting optimal outputs from diverse candidate pools; and (iii) providing efficient and
effective pointwise critiques that improve self-correction with minimal decoding overhead.

These results collectively suggest that reward models, when trained on structured critique data, can
evolve into capable reasoning agents, capable of supporting downstream decision-making in real-
world LLM applications. Future work may explore extending this approach to more open-ended
agentic tasks, incorporating human-in-the-loop feedback, and leveraging generative critics to guide
multi-agent coordination and planning.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

To promote reproducibility, prompt templates for model training and inference across all exper-
iments are shown in Appendix F. All open-source models used in our experiments are obtained
from their official HuggingFace repositories6. In addition to the main text, Appendix C offers fur-
ther implementation details on benchmark construction and the experimental setup. To facilitate
reproduction of the proposed data sampling strategy BMDS, we include a detailed description and
pseudocode in Appendix D. We will open-source the trained reward-model series TOOLRM, to-
gether with the training dataset ToolPref-Pairwise-30K, and the enhanced benchmark TRBenchBFCL
to advance future research in this field.

REFERENCES

Zachary Ankner, Mansheej Paul, Brandon Cui, Jonathan D Chang, and Prithviraj Ammanabrolu.
Critique-out-loud reward models. arXiv preprint arXiv:2408.11791, 2024.

Anthropic. Claude 3.7 sonnet and claude code, 2025. URL https://www.anthropic.com/
news/claude-3-7-sonnet.

Amanda Askell, Yuntao Bai, Anna Chen, Dawn Drain, Deep Ganguli, Tom Henighan, Andy Jones,
Nicholas Joseph, Ben Mann, Nova DasSarma, et al. A general language assistant as a laboratory
for alignment. arXiv preprint arXiv:2112.00861, 2021.

Yuntao Bai, Saurav Kadavath, Sandipan Kundu, Amanda Askell, Jackson Kernion, Andy Jones,
Anna Chen, Anna Goldie, Azalia Mirhoseini, Cameron McKinnon, et al. Constitutional AI:
Harmlessness from AI feedback. arXiv preprint arXiv:2212.08073, 2022.

Victor Barres, Honghua Dong, Soham Ray, Xujie Si, and Karthik Narasimhan. τ2-bench: Evaluating
conversational agents in a dual-control environment. arXiv preprint arXiv:2506.07982, 2025.

Zheng Cai, Maosong Cao, Haojiong Chen, Kai Chen, Keyu Chen, Xin Chen, Xun Chen, Zehui
Chen, Zhi Chen, Pei Chu, et al. Internlm2 technical report. arXiv preprint arXiv:2403.17297,
2024.

Chen Chen, Xinlong Hao, Weiwen Liu, Xu Huang, Xingshan Zeng, Shuai Yu, Dexun Li, Shuai
Wang, Weinan Gan, Yuefeng Huang, et al. Acebench: Who wins the match point in tool usage?
arXiv preprint arXiv:2501.12851, 2025a.

Mingyang Chen, sunhaoze, Tianpeng Li, Fan Yang, Hao Liang, KeerLu, Bin CUI, Wentao Zhang,
Zenan Zhou, and weipeng chen. Facilitating multi-turn function calling for LLMs via composi-
tional instruction tuning. In The Thirteenth International Conference on Learning Representa-
tions, 2025b.

Xiusi Chen, Gaotang Li, Ziqi Wang, Bowen Jin, Cheng Qian, Yu Wang, Hongru Wang, Yu Zhang,
Denghui Zhang, Tong Zhang, et al. RM-R1: Reward modeling as reasoning. arXiv preprint
arXiv:2505.02387, 2025c.

Gheorghe Comanici, Eric Bieber, Mike Schaekermann, Ice Pasupat, Noveen Sachdeva, Inderjit
Dhillon, Marcel Blistein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the
frontier with advanced reasoning, multimodality, long context, and next generation agentic capa-
bilities. arXiv preprint arXiv:2507.06261, 2025.

Guanting Dong, Yifei Chen, Xiaoxi Li, Jiajie Jin, Hongjin Qian, Yutao Zhu, Hangyu Mao, Guorui
Zhou, Zhicheng Dou, and Ji-Rong Wen. Tool-star: Empowering llm-brained multi-tool reasoner
via reinforcement learning. arXiv preprint arXiv:2505.16410, 2025.

Jiazhan Feng, Shijue Huang, Xingwei Qu, Ge Zhang, Yujia Qin, Baoquan Zhong, Chengquan Jiang,
Jinxin Chi, and Wanjun Zhong. Retool: Reinforcement learning for strategic tool use in LLMs.
arXiv preprint arXiv:2504.11536, 2025.

6https://huggingface.co/

10

https://www.anthropic.com/news/claude-3-7-sonnet
https://www.anthropic.com/news/claude-3-7-sonnet
https://huggingface.co/


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-R1: Incentivizing reasoning capability in
LLMs via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025a.

Jiaxin Guo, Zewen Chi, Li Dong, Qingxiu Dong, Xun Wu, Shaohan Huang, and Furu Wei. Reward
reasoning model. arXiv preprint arXiv:2505.14674, 2025b.

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
trow, Akila Welihinda, Alan Hayes, Alec Radford, et al. GPT-4o system card. arXiv preprint
arXiv:2410.21276, 2024.

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. OpenAI o1 system card. arXiv
preprint arXiv:2412.16720, 2024.

Bowen Jin, Hansi Zeng, Zhenrui Yue, Jinsung Yoon, Sercan O Arik, Dong Wang, Hamed Zamani,
and Jiawei Han. Search-r1: Training LLMs to reason and leverage search engines with reinforce-
ment learning. In Second Conference on Language Modeling, 2025.

Seungone Kim, Jamin Shin, Yejin Cho, Joel Jang, Shayne Longpre, Hwaran Lee, Sangdoo Yun,
Seongjin Shin, Sungdong Kim, James Thorne, and Minjoon Seo. Prometheus: Inducing fine-
grained evaluation capability in language models. In The Twelfth International Conference on
Learning Representations, 2024.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the ACM SIGOPS 29th Symposium on Operating
Systems Principles, 2023.

Nathan Lambert, Jacob Morrison, Valentina Pyatkin, Shengyi Huang, Hamish Ivison, Faeze Brah-
man, Lester James V. Miranda, Alisa Liu, Nouha Dziri, Shane Lyu, Yuling Gu, Saumya Malik,
Victoria Graf, Jena D. Hwang, Jiangjiang Yang, Ronan Le Bras, Oyvind Tafjord, Chris Wilhelm,
Luca Soldaini, Noah A. Smith, Yizhong Wang, Pradeep Dasigi, and Hannaneh Hajishirzi. Tülu 3:
Pushing frontiers in open language model post-training. arXiv preprint arXiv:2411.15124, 2025.

Harrison Lee, Samrat Phatale, Hassan Mansoor, Thomas Mesnard, Johan Ferret, Kellie Ren Lu,
Colton Bishop, Ethan Hall, Victor Carbune, Abhinav Rastogi, and Sushant Prakash. RLAIF vs.
RLHF: Scaling reinforcement learning from human feedback with AI feedback. In Forty-first
International Conference on Machine Learning, 2024.

Chris Yuhao Liu, Liang Zeng, Jiacai Liu, Rui Yan, Jujie He, Chaojie Wang, Shuicheng Yan, Yang
Liu, and Yahui Zhou. Skywork-reward: Bag of tricks for reward modeling in LLMs. arXiv
preprint arXiv:2410.18451, 2024a.

Weiwen Liu, Xu Huang, Xingshan Zeng, Xinlong Hao, Shuai Yu, Dexun Li, Shuai Wang, Weinan
Gan, Zhengying Liu, Yuanqing Yu, Zezhong Wang, Yuxian Wang, Wu Ning, Yutai Hou, Bin
Wang, Chuhan Wu, Wang Xinzhi, Yong Liu, Yasheng Wang, Duyu Tang, Dandan Tu, Lifeng
Shang, Xin Jiang, Ruiming Tang, Defu Lian, Qun Liu, and Enhong Chen. ToolACE: Winning
the points of LLM function calling. In The Thirteenth International Conference on Learning
Representations, 2025a.

Zijun Liu, Peiyi Wang, Runxin Xu, Shirong Ma, Chong Ruan, Peng Li, Yang Liu, and Yu Wu.
Inference-time scaling for generalist reward modeling. arXiv preprint arXiv:2504.02495, 2025b.

Zuxin Liu, Thai Hoang, Jianguo Zhang, Ming Zhu, Tian Lan, Juntao Tan, Weiran Yao, Zhiwei Liu,
Yihao Feng, Rithesh RN, et al. APIGen: Automated pipeline for generating verifiable and diverse
function-calling datasets. Advances in Neural Information Processing Systems, 37:54463–54482,
2024b.

Nat McAleese, Rai Michael Pokorny, Juan Felipe Ceron Uribe, Evgenia Nitishinskaya, Maja Tre-
bacz, and Jan Leike. Llm critics help catch llm bugs. arXiv preprint arXiv:2407.00215, 2024.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu, Long Ouyang, Christina Kim, Christopher
Hesse, Shantanu Jain, Vineet Kosaraju, William Saunders, et al. WebGPT: Browser-assisted
question-answering with human feedback. arXiv preprint arXiv:2112.09332, 2021.

OpenAI. Deep research system card, 2025. URL https://openai.com/index/
deep-research-system-card/.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. Advances in Neural Information Processing Systems, 35:
27730–27744, 2022.

Shishir G Patil, Tianjun Zhang, Xin Wang, and Joseph E. Gonzalez. Gorilla: Large language model
connected with massive APIs. In The Thirty-eighth Annual Conference on Neural Information
Processing Systems, 2024.

Shishir G. Patil, Huanzhi Mao, Charlie Cheng-Jie Ji, Fanjia Yan, Vishnu Suresh, Ion Stoica, and
Joseph E. Gonzalez. The Berkeley Function Calling Leaderboard (BFCL): From tool use to agen-
tic evaluation of large language models. In Forty-second International Conference on Machine
Learning, 2025.

José Pombal, Dongkeun Yoon, Patrick Fernandes, Ian Wu, Seungone Kim, Ricardo Rei, Graham
Neubig, and André FT Martins. M-prometheus: A suite of open multilingual llm judges. arXiv
preprint arXiv:2504.04953, 2025.

Akshara Prabhakar, Zuxin Liu, Ming Zhu, Jianguo Zhang, Tulika Awalgaonkar, Shiyu Wang,
Zhiwei Liu, Haolin Chen, Thai Hoang, Juan Carlos Niebles, et al. APIGen-MT: Agentic
pipeline for multi-turn data generation via simulated agent-human interplay. arXiv preprint
arXiv:2504.03601, 2025.

Cheng Qian, Emre Can Acikgoz, Qi He, Hongru Wang, Xiusi Chen, Dilek Hakkani-Tür, Gokhan
Tur, and Heng Ji. Toolrl: Reward is all tool learning needs. arXiv preprint arXiv:2504.13958,
2025.

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru
Tang, Bill Qian, Sihan Zhao, Lauren Hong, Runchu Tian, Ruobing Xie, Jie Zhou, Mark Gerstein,
dahai li, Zhiyuan Liu, and Maosong Sun. ToolLLM: Facilitating large language models to master
16000+ real-world APIs. In The Twelfth International Conference on Learning Representations,
2024.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessi, Roberta Raileanu, Maria Lomeli, Eric Hambro,
Luke Zettlemoyer, Nicola Cancedda, and Thomas Scialom. Toolformer: Language models can
teach themselves to use tools. In Thirty-seventh Conference on Neural Information Processing
Systems, 2023.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathemati-
cal reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng,
Haibin Lin, and Chuan Wu. HybridFlow: A flexible and efficient RLHF framework. In Proceed-
ings of the Twentieth European Conference on Computer Systems, pp. 1279–1297, 2025.

Tu Shiwen, Zhao Liang, Chris Yuhao Liu, Liang Zeng, and Yang Liu. Skywork critic model series,
September 2024. URL https://huggingface.co/Skywork.

Charlie Victor Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling LLM test-time com-
pute optimally can be more effective than scaling parameters for reasoning. In The Thirteenth
International Conference on Learning Representations, 2025.

12

https://openai.com/index/deep-research-system-card/
https://openai.com/index/deep-research-system-card/
https://huggingface.co/Skywork


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Huatong Song, Jinhao Jiang, Yingqian Min, Jie Chen, Zhipeng Chen, Wayne Xin Zhao, Lei Fang,
and Ji-Rong Wen. R1-searcher: Incentivizing the search capability in LLMs via reinforcement
learning. arXiv preprint arXiv:2503.05592, 2025.

Qiaoyu Tang, Ziliang Deng, Hongyu Lin, Xianpei Han, Qiao Liang, Boxi Cao, and Le Sun. ToolAl-
paca: Generalized tool learning for language models with 3000 simulated cases. arXiv preprint
arXiv:2306.05301, 2023.

Ryan Teknium, Roger Jin, Jai Suphavadeeprasit, Dakota Mahan, Jeffrey Quesnelle, Joe Li, Chen
Guang, Shannon Sands, and Karan Malhotra. Hermes 4 technical report. arXiv preprint
arXiv:2508.18255, 2025.

Chenglong Wang, Yang Gan, Yifu Huo, Yongyu Mu, Qiaozhi He, MuRun Yang, Bei Li, Tong Xiao,
Chunliang Zhang, Tongran Liu, and JingBo Zhu. GRAM: A generative foundation reward model
for reward generalization. In Forty-second International Conference on Machine Learning, 2025.

Jize Wang, Ma Zerun, Yining Li, Songyang Zhang, Cailian Chen, Kai Chen, and Xinyi Le. GTA: A
benchmark for general tool agents. In NeurIPS 2024 Workshop on Open-World Agents, 2024.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le, Ed H. Chi, Sharan Narang, Aakanksha
Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language
models. In The Eleventh International Conference on Learning Representations, 2023.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, brian ichter, Fei Xia, Ed H. Chi,
Quoc V Le, and Denny Zhou. Chain of thought prompting elicits reasoning in large language
models. In Advances in Neural Information Processing Systems, pp. 24824–24837, 2022.

Chenxi Whitehouse, Tianlu Wang, Ping Yu, Xian Li, Jason Weston, Ilia Kulikov, and Swarnadeep
Saha. J1: Incentivizing thinking in LLM-as-a-judge via reinforcement learning. arXiv preprint
arXiv:2505.10320, 2025.

An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao, Bowen Yu, Chengpeng Li, Dayiheng Liu, Jian-
hong Tu, Jingren Zhou, Junyang Lin, et al. Qwen2.5-math technical report: Toward mathematical
expert model via self-improvement. arXiv preprint arXiv:2409.12122, 2024.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint
arXiv:2505.09388, 2025.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik R Narasimhan, and Yuan Cao.
ReAct: Synergizing reasoning and acting in language models. In The Eleventh International
Conference on Learning Representations, 2023.

Shunyu Yao, Noah Shinn, Pedram Razavi, and Karthik R Narasimhan. τ -bench: A benchmark for
\underline{T}ool-\underline{A}gent-\underline{U}ser interaction in real-world domains. In The
Thirteenth International Conference on Learning Representations, 2025.

Yue Yu, Zhengxing Chen, Aston Zhang, Liang Tan, Chenguang Zhu, Richard Yuanzhe Pang, Yundi
Qian, Xuewei Wang, Suchin Gururangan, Chao Zhang, Melanie Kambadur, Dhruv Mahajan, and
Rui Hou. Self-generated critiques boost reward modeling for language models. In Proceedings of
the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational
Linguistics: Human Language Technologies (Volume 1: Long Papers), pp. 11499–11514, 2025.

Shaokun Zhang, Yi Dong, Jieyu Zhang, Jan Kautz, Bryan Catanzaro, Andrew Tao, Qingyun Wu,
Zhiding Yu, and Guilin Liu. Nemotron-research-tool-n1: Exploring tool-using language models
with reinforced reasoning. arXiv preprint arXiv:2505.00024, 2025.

Lucen Zhong, Zhengxiao Du, Xiaohan Zhang, Haiyi Hu, and Jie Tang. ComplexFuncBench: Ex-
ploring multi-step and constrained function calling under long-context scenario. arXiv preprint
arXiv:2501.10132, 2025.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A THE USE OF LARGE LANGUAGE MODELS

During the completion of this work, we employed Gemini 2.5 Pro (Comanici et al., 2025) to identify
grammatical errors and refine the text in the preliminary draft stage. The data construction pipeline
code was initially developed by the human authors and then verified using Qwen3-Coder (Yang
et al., 2025). All suggestions from the LLMs were manually reviewed and confirmed for accuracy.

B FULL RELATED WORK

B.1 TOOL LEARNING IN THE ERA OF LLMS

The emergence of foundational capabilities in large language models (LLMs) has enabled them to
identify and use appropriate tools in a human-like manner. Yao et al. (2023) unlock this ability
by combining chain-of-thought reasoning (Wei et al., 2022) with tool-augmented actions. Another
line of approaches clones behaviors from completed tool-calling trajectories using supervised fine-
tuning (Schick et al., 2023; Tang et al., 2023; Liu et al., 2024b; 2025a), while these methods may
face challenges generalizing to complex and out-of-distribution tasks. To address this limitation,
other approaches employ reinforcement learning with human preference data to learn via trial-and-
error (Nakano et al., 2021). Building on recent successes in reasoning models (Lambert et al., 2025;
Shao et al., 2024), utilizing verified rewards to facilitate tool-integrated reasoning has become a
promising direction. Reward designs based on the format and correctness of the final answer have
proven effective in tasks like question-answering (Jin et al., 2025; Song et al., 2025), math (Feng
et al., 2025; Dong et al., 2025), and general tool-calling (Qian et al., 2025; Zhang et al., 2025),
leading to generalized model improvements through reinforcement learning.

B.2 EVALUATION OF LLM TOOL-USE

Numerous tool-calling benchmarks have been proposed in recent years. To enable realistic and re-
liable evaluation, tasks are either drawn from real-world domains (Wang et al., 2024; Patil et al.,
2024; Zhong et al., 2025; Yao et al., 2025; Barres et al., 2025) or generated via well-designed data-
synthesis pipelines (Qin et al., 2024; Chen et al., 2025a). Among these, BFCL (Patil et al., 2025)
covers diverse and complex patterns of tool usage and serves as a comprehensive benchmark for
evaluating LLMs’ tool-use capabilities. Nevertheless, there remains a lack of a benchmark that as-
sesses whether current models can provide accurate feedback on LLM actions in tool-use scenarios.

B.3 REWARD MODELING OF HUMAN PREFERENCES

Reinforcement learning has proven effective for aligning LLMs with human preferences, using feed-
back from humans (Ouyang et al., 2022) or other capable LLMs (Bai et al., 2022; Lee et al., 2024).
Central to this process are reward models (RMs), which are primarily developed in two ways. The
first is discriminative modeling, where RMs output a scalar score to differentiate between preferred
and rejected responses (Yang et al., 2024; Cai et al., 2024; Liu et al., 2024a; 2025b). The second is
generative modeling, where models provide textual rewards as natural language critiques for tasks
like chat (Shiwen et al., 2024; Kim et al., 2024; Yu et al., 2025), code (McAleese et al., 2024), and
literary machine translation (Pombal et al., 2025). Hybrid approaches combine critiques with scalar
rewards to better capture nuanced preferences (Ankner et al., 2024; Wang et al., 2025), while recent
work frames reward modeling as reasoning tasks (Chen et al., 2025c; Wang et al., 2025; Guo et al.,
2025b; Whitehouse et al., 2025). In this paper, we extend generative reward modeling to general
tool use, offering textual critiques as valuable feedback.

C EXPERIMENT DETAILS

C.1 MODEL TRAINING

We train the reward models on eight NVIDIA A100 80G GPUs. We perform one epoch of GRPO
training using veRL (Sheng et al., 2025), with a learning rate of 1e-6 and a clip ratio of ϵ = 0.2.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

0 200 400 600 800 1000 1200 1400

live_parallel
live_parallel_multiple

multiple
simple

live_simple
parallel

parallel_multiple
multi_turn_base

live_multiple

0 200 400 600 800

wrong_func_name
execution_response_mismatch

cannot_find_match
value_error:others

instance_stat_mismatch
decoder_wrong_output_format

(Others)
wrong_count

value_error:string

0 200 400 600 800

DeepSeek-R1
OpenAI o1

Qwen3-32B
GPT-4o

xLAM-2-70B-FC-R
Claude-3.7-Sonnet

Gemini-2.5-Pro

(a) Distribution of data patterns.
0 200 400 600 800 1000 1200 1400

live_parallel
live_parallel_multiple

multiple
simple

live_simple
parallel

parallel_multiple
multi_turn_base

live_multiple

0 200 400 600 800

wrong_func_name
execution_response_mismatch

cannot_find_match
value_error:others

instance_stat_mismatch
decoder_wrong_output_format

(Others)
wrong_count

value_error:string

0 200 400 600 800

DeepSeek-R1
OpenAI o1

Qwen3-32B
GPT-4o

xLAM-2-70B-FC-R
Claude-3.7-Sonnet

Gemini-2.5-Pro

(b) Distribution of error types.
0 200 400 600 800 1000 1200 1400

live_parallel
live_parallel_multiple

multiple
simple

live_simple
parallel

parallel_multiple
multi_turn_base

live_multiple

0 200 400 600 800

wrong_func_name
execution_response_mismatch

cannot_find_match
value_error:others

instance_stat_mismatch
decoder_wrong_output_format

(Others)
wrong_count

value_error:string

0 200 400 600 800

DeepSeek-R1
OpenAI o1

Qwen3-32B
GPT-4o

xLAM-2-70B-FC-R
Claude-3.7-Sonnet

Gemini-2.5-Pro

(c) Distribution of response sources.

Figure 5: Statistics of the enhanced reward model benchmark TRBenchBFCL.

At each training step, we sample a batch of 128 queries and generate 8 trajectories per query. Tra-
jectory generation is handled by the vllm backend (Kwon et al., 2023), employing sampling hyper-
parameters of temperature=1.0, top_p=1.0, and top_k=-1. Due to resource constraints,
we limit the maximum prompt length to 16,384 tokens and the maximum response length to 4,096
tokens for model training.

C.2 BENCHMARK IMPLEMENTATION

In constructing TRBENCHBFCL, we prepare preference pairs for each data task according to its
turn-wise trajectory pattern. For single-turn tasks (splits originally introduced in BFCL v1 and
v2), evaluation is based on the Abstract Syntax Tree (AST), which compares a model-generated
function against its function documentation and a set of possible correct answers. In these cases, we
source the oracle answers directly from the benchmark as the chosen responses and extract incorrect
responses from the failed trajectories, forming chosen–rejected pairs for each task.

For multi-turn tasks (the split introduced in BFCL v3), evaluation instead relies on state-based and
response-based checks7, which differ from the rule-based matching used to check tool calls in build-
ing Dpref. In these complex scenarios, while pinpointing the single failing tool call is difficult, one
can easily identify the entire incorrect turn by comparing the generated trajectory to the ground truth.
We leverage this to create evaluation pairs: the incorrect output is the concatenation of all tool calls
the model generated in that turn, and the correct output is the concatenation of all tool calls from the
corresponding ground-truth solution. We show statistics of the enhanced reward model benchmark
TRBenchBFCL in Figure 5.

To ensure fair evaluation across different types of baseline models, we first apply the same think-
mode/no-think-mode template used in our model evaluations. If the test model is unable to follow
the specific instruction, we instead evaluate it using its official prompt. To fully harness the potential
of the test models, the official default sampling parameters are used for inference, except that the
maximum output length is limited to 8,192 tokens to prevent excessively long and repetitive chain-
of-thought content.

D THE BALANCED MULTI-DIMENSIONAL SAMPLING ALGORITHM

In this section, we detail the implementation of the BMDS strategy for efficient sampling. To
discretize the distribution of preference intensities Ipreference among data samples, we initialize
a set of bins B = {b0, b1, . . . , bm} with fixed intervals. In our experiments, we set: B =
{(0, 0.1], (0.1, 0.2], . . . , (0.9, 1]}. Each sample in the candidate pairwise data pool Dpair-cand is as-
signed to the corresponding bin, indexed from 0 to m, according to its preference intensity. We then
group the samples by a composite key (source, bin_index) to ensure representation across
different data sources and varying preference intensities. Within each group, samples are sorted in
descending order of task complexity Scomplexity. Sampling proceeds greedily: we first exhaustively
select all samples from the group with the fewest entries, and then allocate the remaining quota
as evenly as possible across the other bins. This yields a diverse, well-balanced, and sufficiently
challenging subset of data. We present pseudocode of this strategy in Algorithm 1.

7https://gorilla.cs.berkeley.edu/blogs/13_bfcl_v3_multi_turn.html

15

https://gorilla.cs.berkeley.edu/blogs/13_bfcl_v3_multi_turn.html


810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Algorithm 1 Balanced Multi-Dimensional Sampling Strategy

Iutput: Data pool Dpair-cand, bin edges B, target sample size N
Output: A subset Dpair-sampled of diverse, balanced, and challenging samples

1: # Step 0: Check data sufficiency
2: if |Dpair-cand| < N then
3: raise InsufficientDataError
4: end if
5: # Step 1: Assign samples to bins
6: for each di ∈ Dpair-cand do
7: di.bin_idx← assign(di.Ipreference, B)
8: end for
9: # Step 2: Group by composite key

10: Initialize group dictionary G ← ∅
11: for each di ∈ Dpair-cand do
12: key ← (di.source, di.bin_idx)
13: G[key]← G[key] ∪ {di}
14: end for
15: # Step 3: Sort within each group by task complexity (descending)
16: for each group G ∈ G do
17: G← sort(G, key = Scomplexity, order=descending)
18: end for
19: # Step 4: Sort groups by size (ascending)
20: Gsorted ← sort(G.values(), key = |G|, order=ascending)
21: # Step 5: Greedy allocation
22: Initialize sampling quotas: Q← [0]× |Gsorted|
23: Nremaining ← N , k ← 0
24: while k < |Gsorted| and Nremaining > 0 do
25: m← |Gsorted| − k
26: navg ← ⌈Nremaining/m⌉
27: if |Gsorted[k]| ≤ navg then
28: Q[k]← |Gsorted[k]|
29: Nremaining ← Nremaining − |Gsorted[k]|
30: k ← k + 1
31: else
32: # Distribute remaining quota evenly
33: q ← ⌊Nremaining/m⌋
34: r ← Nremaining mod m
35: for i = k to |Gsorted| − 1 do
36: Q[i]← q
37: end for
38: for i = 0 to r − 1 do
39: Q[|Gsorted| − 1− i]← Q[|Gsorted| − 1− i] + 1
40: end for
41: break
42: end if
43: end while
44: # Step 6: Sample data based on quotas
45: Dpair-sampled ← ∅
46: for i = 0 to |Gsorted| − 1 do
47: Dpair-sampled ← Dpair-sampled ∪ Gsorted[i][: Q[i]]
48: end for
49: return Dpair-sampled

E EXAMPLE OF TOOL-USE TASK TRAJECTORY

During conversation order validation, we retain only trajectories that satisfy the following message-
role transition rules: [system→user, user→assistant, assistant→user/tool,

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

tool→assistant]. In this work, tool responses are set into user messages for compatibil-
ity. Figure 6 shows a format-aligned example from BUTTON illustrating a tool-use task trajectory.

{
"role": "system",
"content": "# Tools

You may call one or more functions to assist with the user query.
You are provided with function signatures within <tools></tools> XML tags:
<tools>
{"type": "function", "function": {"name": "get_items_by_color", "description": "Retrieve all items in the inventory filtered by a specified color.", 
"parameters": {"required": ["color", "date"], "type": "object", "properties": {"color": {"type": "string", "description": "The color of the items to be 
retrieved."}, "date": {"type": "string", "description": "The date for which the inventory is being checked, in YYYY-MM-DD format."}}}}}
{"type": "function", "function": {"name": "count_items", "description": "Count the number of items in a given list.", "parameters": {"required": 
["items"], "type": "object", "properties": {"items": {"type": "array", "description": "The list of items to be counted."}}}}}
</tools>

For each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:
<tool_call>
{"name": <function-name>, "arguments": <args-json-object>}
</tool_call>"

},
{

"role": "user",
"content": "Hi, I need to count the red and blue items in the warehouse inventory today and compare their quantities. The warehouse inventory data              
should have information about item colors and quantities. Can you help me with this?"

},
{

"role": "assistant",
"content": "<think>
The user wants to count the red and blue items in the warehouse inventory today and compare their quantities. To accomplish this task, we need to:
1. Retrieve the total number of red items in the warehouse inventory today.
2. Retrieve the total number of blue items in the warehouse inventory today.
3. Compare the counts of red and blue items.
4. Provide the final answer based on the comparison.
We will start by retrieving and counting the red items first.
</think>
<tool_call>
{"name": "get_items_by_color", "arguments": {"color": "red", "date": "2023-10-05"}}
</tool_call>"

},
{

"role": "user",
"content": "<tool_response>
{"name": "get_items_by_color", "arguments": {"color": "red", "date": "2023-10-05"}, "results": {"items": [{"id": "001", "name": "Red T-shirt", 
"color": "red", "quantity": 50, "date_added": "2023-09-20"}, {"id": "002", "name": "Red Mug", "color": "red", "quantity": 120, "date_added": "2023-
10-01"}, {"id": "003", "name": "Red Hat", "color": "red", "quantity": 30, "date_added": "2023-09-29"}]}}
</tool_response>"

},
{

"role": "assistant",
"content": "<think>
The function `get_items_by_color` returned a list of red items along with their quantities for the date 2023-10-05. The items are:
- Red T-shirt: Quantity 50
- Red Mug: Quantity 120
- Red Hat: Quantity 30 We need to count the total quantity of these red items. We'll sum up the quantities of all the red items returned.
</think>
<tool_call>
{"name": "count_items", "arguments": {"items": [{"id": "001", "name": "Red T-shirt", "color": "red", "quantity": 50, "date_added": "2023-09-20"}, 
{"id": "002", "name": "Red Mug", "color": "red", "quantity": 120, "date_added": "2023-10-01"}, {"id": "003", "name": "Red Hat", "color": "red", 
"quantity": 30, "date_added": "2023-09-29"}]}}
</tool_call>"

},
{

"role": "user",
"content": "<tool_response>
{"name": "count_items", "arguments": {"items": [{"id": "001", "name": "Red T-shirt", "color": "red", "quantity": 50, "date_added": "2023-09-20"}, 
{"id": "002", "name": "Red Mug", "color": "red", "quantity": 120, "date_added": "2023-10-01"}, {"id": "003", "name": "Red Hat", "color": "red", 
"quantity": 30, "date_added": "2023-09-29"}]}, "results": {"count": 3}}
</tool_response>"

},
{

"role": "assistant",
"content": "<think>

The `count_items` function returned a count of 3 for the red items. However, the task requires summing the quantities of the items, not just counting 
the number of different items. We need to manually sum the quantities of the red items, as the `count_items` function didn't provide the total quantity 
but rather the count of item types. The quantities are 50, 120, and 30. The total quantity of red items is (50 + 120 + 30 = 200).
Next, we should retrieve and count the blue items in the warehouse inventory for today.
</think>
<tool_call>
{"name": "get_items_by_color", "arguments": {"color": "blue", "date": "2023-10-05"}}
</tool_call>”

}

A Tool-Call Trajectory from BUTTON

Figure 6: A format-aligned tool-use trajectory from BUTTON.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

F PROMPTING TEMPLATES

We present the evaluator prompt templates for the pairwise critique task used in both training and
inference. The think-mode and no-think-mode templates are shown in Figures 7 and 8, respectively.
Figure 9 shows the prompt template used by the judge for the BoN sampling task, in which the
N sampled responses are inserted and labeled from 1 to N . Figures 10 and 11 show the prompt
templates used by critic and editor for the self-correction task. Figure 12 presents the template of
the system prompt in each tool-use trajectory.

Serve as an Evaluator for Pairwise Critique Task (No Think Mode)

<task>
You are an expert evaluator of AI assistant performance. Given a complete user-assistant conversation 
history and two generated assistant responses, you are to conduct a thorough, fact-based, and 
comprehensive comparison. Based on specific evidence from your evaluation, make a clear choice of 
which response is superior. There may be a list of tools available to the assisatnt. The assistant starts 
with one or more cycles of (thinking about which tool to use -> performing tool call -> waiting for tool 
response), and ends with (thinking about the answer -> answer of the question). The thinking processes, 
tool calls, tool responses, and answer are enclosed within their tags. There could be multiple thinking 
processes, tool calls, tool call parameters and tool response parameters.
</task>

<evaluation_criteria>
- Available tools must be fully and appropriately leveraged to meet the requirements.
- Tool call names must be valid, correct, and complete.
- Tool call arguments must be valid, correct, and complete.
- Fabrication, including the creation of information or knowledge not provided by the user, conflicting 
with user input, or not derived from the tools, must be penalized.
- Repetitive or unnecessary tool calls must be penalized.
- Excessive or unnecessary requests for user clarification beyond what is essential must be penalized.
</evaluation_criteria>

<conversation_history>
{chat_history}
</conversation_history>

<current_response_1>
{assistant_response_1}
</current_response_1>

<current_response_2>
{assistant_response_2}
</current_response_2>

Output your evaluation within <evaluation></evaluation> XML tags, and then enclose your choice 
(either '1' or '2') within <choice></choice> XML tags. Answer in the following format.
<evaluation>
{{your_evaluation}}
</evaluation>
<choice>
{{your_choice}}
</choice>

Serve as an Evaluator for Pairwise Critique Task (Think Mode)

<task>
You are an expert evaluator of AI assistant performance. Given a complete user-assistant conversation 
history and two generated assistant responses, you are to conduct a thorough, fact-based, and 
comprehensive comparison. Based on specific evidence from your evaluation, make a clear choice of 
which response is superior. There may be a list of tools available to the assisatnt. The assistant starts 
with one or more cycles of (thinking about which tool to use -> performing tool call -> waiting for tool 
response), and ends with (thinking about the answer -> answer of the question). The thinking processes, 
tool calls, tool responses, and answer are enclosed within their tags. There could be multiple thinking 
processes, tool calls, tool call parameters and tool response parameters.
</task>

<evaluation_criteria>
- Available tools must be fully and appropriately leveraged to meet the requirements.
- Tool call names must be valid, correct, and complete.
- Tool call arguments must be valid, correct, and complete.
- Fabrication, including the creation of information or knowledge not provided by the user, conflicting 
with user input, or not derived from the tools, must be penalized.
- Repetitive or unnecessary tool calls must be penalized.
- Excessive or unnecessary requests for user clarification beyond what is essential must be penalized.
</evaluation_criteria>

<conversation_history>
{chat_history}
</conversation_history>

<current_response_1>
{assistant_response_1}
</current_response_1>

<current_response_2>
{assistant_response_2}
</current_response_2>

Output your choice (either '1' or '2') within <choice></choice> XML tags. No explanations should 
precede or follow the choice. Answer in the following format.
<choice>
{{your_choice}}
</choice>

Figure 7: Evaluator prompt template of the pairwise critique task for reasoning LLMs.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Serve as an Evaluator for Pairwise Critique Task (No Think Mode)

<task>
You are an expert evaluator of AI assistant performance. Given a complete user-assistant conversation 
history and two generated assistant responses, you are to conduct a thorough, fact-based, and 
comprehensive comparison. Based on specific evidence from your evaluation, make a clear choice of 
which response is superior. There may be a list of tools available to the assisatnt. The assistant starts 
with one or more cycles of (thinking about which tool to use -> performing tool call -> waiting for tool 
response), and ends with (thinking about the answer -> answer of the question). The thinking processes, 
tool calls, tool responses, and answer are enclosed within their tags. There could be multiple thinking 
processes, tool calls, tool call parameters and tool response parameters.
</task>

<evaluation_criteria>
- Available tools must be fully and appropriately leveraged to meet the requirements.
- Tool call names must be valid, correct, and complete.
- Tool call arguments must be valid, correct, and complete.
- Fabrication, including the creation of information or knowledge not provided by the user, conflicting 
with user input, or not derived from the tools, must be penalized.
- Repetitive or unnecessary tool calls must be penalized.
- Excessive or unnecessary requests for user clarification beyond what is essential must be penalized.
</evaluation_criteria>

<conversation_history>
{chat_history}
</conversation_history>

<current_response_1>
{assistant_response_1}
</current_response_1>

<current_response_2>
{assistant_response_2}
</current_response_2>

Output your evaluation within <evaluation></evaluation> XML tags, and then enclose your choice 
(either '1' or '2') within <choice></choice> XML tags. Answer in the following format.
<evaluation>
{{your_evaluation}}
</evaluation>
<choice>
{{your_choice}}
</choice>

Serve as an Evaluator for Pairwise Critique Task (Think Mode)

<task>
You are an expert evaluator of AI assistant performance. Given a complete user-assistant conversation 
history and two generated assistant responses, you are to conduct a thorough, fact-based, and 
comprehensive comparison. Based on specific evidence from your evaluation, make a clear choice of 
which response is superior. There may be a list of tools available to the assisatnt. The assistant starts 
with one or more cycles of (thinking about which tool to use -> performing tool call -> waiting for tool 
response), and ends with (thinking about the answer -> answer of the question). The thinking processes, 
tool calls, tool responses, and answer are enclosed within their tags. There could be multiple thinking 
processes, tool calls, tool call parameters and tool response parameters.
</task>

<evaluation_criteria>
- Available tools must be fully and appropriately leveraged to meet the requirements.
- Tool call names must be valid, correct, and complete.
- Tool call arguments must be valid, correct, and complete.
- Fabrication, including the creation of information or knowledge not provided by the user, conflicting 
with user input, or not derived from the tools, must be penalized.
- Repetitive or unnecessary tool calls must be penalized.
- Excessive or unnecessary requests for user clarification beyond what is essential must be penalized.
</evaluation_criteria>

<conversation_history>
{chat_history}
</conversation_history>

<current_response_1>
{assistant_response_1}
</current_response_1>

<current_response_2>
{assistant_response_2}
</current_response_2>

Output your choice (either '1' or '2') within <choice></choice> XML tags. No explanations should 
precede or follow the choice. Answer in the following format.
<choice>
{{your_choice}}
</choice>

Figure 8: Evaluator prompt template of the pairwise critique task for non-reasoning LLMs.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Serve as a Critic for Self-Correction (Think Mode)

<task>
You are an expert evaluator of AI assistant performance. Given a complete user-assistant conversation 
history and a generated assistant response, you are to conduct a thorough, fact-based, and 
comprehensive evaluation. Based on specific evidence from your evaluation, provide a concise critique 
on how the current assistant response should be revised. If the response is entirely correct and requires 
no changes, output '[correct]' as your critique.
</task>

<evaluation_criteria>
- Available tools must be fully and appropriately leveraged to meet the requirements.
- Tool call names must be valid, correct, and complete.
- Tool call arguments must be valid, correct, and complete.
- Fabrication, including the creation of information or knowledge not provided by the user, conflicting 
with user input, or not derived from the tools, must be penalized.
- Repetitive or unnecessary tool calls must be penalized.
- Excessive or unnecessary requests for user clarification beyond what is essential must be penalized.
</evaluation_criteria>

<conversation_history>
{chat_history}
</conversation_history>

<current_response>
{assistant_response}
</current_response>

Output your final critique within <critique></critique> XML tags. No explanations should precede or 
follow the critique. Answer in the following format.
<critique>
{{your_critique}}
</critique>

Serve as A Judge for Best-of-N Sampling (Think Mode)

<task>
You are an expert evaluator of AI assistant performance. Given a complete user-assistant conversation 
history and {N} generated assistant responses, you are to conduct a thorough, fact-based, and 
comprehensive comparison. Based on specific evidence from your evaluation, make a clear choice of 
which response is superior. If multiple responses are identical and equally the best, select the one with 
the smallest number.
</task>

<evaluation_criteria>
- Available tools must be fully and appropriately leveraged to meet the requirements.
- Tool call names must be valid, correct, and complete.
- Tool call arguments must be valid, correct, and complete.
- Fabrication, including the creation of information or knowledge not provided by the user, conflicting 
with user input, or not derived from the tools, must be penalized.
- Repetitive or unnecessary tool calls must be penalized.
- Excessive or unnecessary requests for user clarification beyond what is essential must be penalized.
</evaluation_criteria>

<conversation_history>
{chat_history}
</conversation_history>

<current_response_1>
{assistant_response_1}
</current_response_1>

<current_response_2>
{assistant_response_2}
</current_response_2>
…
<current_response_{N}>
{assistant_response_N}
</current_response_{N}>

Output your choice (a number between 1 and {N}) within <choice></choice> XML tags. No 
explanations should precede or follow the choice. Answer in the following format.
<choice>
{{your_choice}}
</choice>

Serve as an Editor for Self-Correction (No Think Mode)

<task>
You are an expert editor of AI assistant response. Given a complete user-assistant conversation history, 
a generated assistant response, and a critique about how to improve it, your task is to produce the 
revised response.
</task>

<conversation_history>
{chat_history}
</conversation_history>

<current_response>
{assistant_response}
</current_response>

<critique>
{critique}
</critique>

Output the revised response within <revised_response></revised_response> XML tags. No 
explanations should precede or follow the response. Answer in the following format.
<revised_response>
{{revised_response}}
</revised_response>

Figure 9: Judge prompt template of the Best-of-N sampling task for reasoning LLMs.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Serve as a Critic for Self-Correction (Think Mode)

<task>
You are an expert evaluator of AI assistant performance. Given a complete user-assistant conversation 
history and a generated assistant response, you are to conduct a thorough, fact-based, and 
comprehensive evaluation. Based on specific evidence from your evaluation, provide a concise critique 
on how the current assistant response should be revised. If the response is entirely correct and requires 
no changes, output '[correct]' as your critique.
</task>

<evaluation_criteria>
- Available tools must be fully and appropriately leveraged to meet the requirements.
- Tool call names must be valid, correct, and complete.
- Tool call arguments must be valid, correct, and complete.
- Fabrication, including the creation of information or knowledge not provided by the user, conflicting 
with user input, or not derived from the tools, must be penalized.
- Repetitive or unnecessary tool calls must be penalized.
- Excessive or unnecessary requests for user clarification beyond what is essential must be penalized.
</evaluation_criteria>

<conversation_history>
{chat_history}
</conversation_history>

<current_response>
{assistant_response}
</current_response>

Output your final critique within <critique></critique> XML tags. No explanations should precede or 
follow the critique. Answer in the following format.
<critique>
{{your_critique}}
</critique>

Serve as A Judge for Best-of-N Sampling (Think Mode)

<task>
You are an expert evaluator of AI assistant performance. Given a complete user-assistant conversation 
history and {N} generated assistant responses, you are to conduct a thorough, fact-based, and 
comprehensive comparison. Based on specific evidence from your evaluation, make a clear choice of 
which response is superior. If multiple responses are identical and equally the best, select the one with 
the smallest number.
</task>

<evaluation_criteria>
- Available tools must be fully and appropriately leveraged to meet the requirements.
- Tool call names must be valid, correct, and complete.
- Tool call arguments must be valid, correct, and complete.
- Fabrication, including the creation of information or knowledge not provided by the user, conflicting 
with user input, or not derived from the tools, must be penalized.
- Repetitive or unnecessary tool calls must be penalized.
- Excessive or unnecessary requests for user clarification beyond what is essential must be penalized.
</evaluation_criteria>

<conversation_history>
{chat_history}
</conversation_history>

<current_response_1>
{assistant_response_1}
</current_response_1>

<current_response_2>
{assistant_response_2}
</current_response_2>
…
<current_response_{N}>
{assistant_response_N}
</current_response_{N}>

Output your choice (a number between 1 and {N}) within <choice></choice> XML tags. No 
explanations should precede or follow the choice. Answer in the following format.
<choice>
{{your_choice}}
</choice>

Serve as an Editor for Self-Correction (No Think Mode)

<task>
You are an expert editor of AI assistant response. Given a complete user-assistant conversation history, 
a generated assistant response, and a critique about how to improve it, your task is to produce the 
revised response.
</task>

<conversation_history>
{chat_history}
</conversation_history>

<current_response>
{assistant_response}
</current_response>

<critique>
{critique}
</critique>

Output the revised response within <revised_response></revised_response> XML tags. No 
explanations should precede or follow the response. Answer in the following format.
<revised_response>
{{revised_response}}
</revised_response>

Figure 10: Critic prompt template of the self-correction task for reasoning LLMs.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Serve as a Critic for Self-Correction (Think Mode)

<task>
You are an expert evaluator of AI assistant performance. Given a complete user-assistant conversation 
history and a generated assistant response, you are to conduct a thorough, fact-based, and 
comprehensive evaluation. Based on specific evidence from your evaluation, provide a concise critique 
on how the current assistant response should be revised. If the response is entirely correct and requires 
no changes, output '[correct]' as your critique.
</task>

<evaluation_criteria>
- Available tools must be fully and appropriately leveraged to meet the requirements.
- Tool call names must be valid, correct, and complete.
- Tool call arguments must be valid, correct, and complete.
- Fabrication, including the creation of information or knowledge not provided by the user, conflicting 
with user input, or not derived from the tools, must be penalized.
- Repetitive or unnecessary tool calls must be penalized.
- Excessive or unnecessary requests for user clarification beyond what is essential must be penalized.
</evaluation_criteria>

<conversation_history>
{chat_history}
</conversation_history>

<current_response>
{assistant_response}
</current_response>

Output your final critique within <critique></critique> XML tags. No explanations should precede or 
follow the critique. Answer in the following format.
<critique>
{{your_critique}}
</critique>

Serve as A Judge for Best-of-N Sampling (Think Mode)

<task>
You are an expert evaluator of AI assistant performance. Given a complete user-assistant conversation 
history and {N} generated assistant responses, you are to conduct a thorough, fact-based, and 
comprehensive comparison. Based on specific evidence from your evaluation, make a clear choice of 
which response is superior. If multiple responses are identical and equally the best, select the one with 
the smallest number.
</task>

<evaluation_criteria>
- Available tools must be fully and appropriately leveraged to meet the requirements.
- Tool call names must be valid, correct, and complete.
- Tool call arguments must be valid, correct, and complete.
- Fabrication, including the creation of information or knowledge not provided by the user, conflicting 
with user input, or not derived from the tools, must be penalized.
- Repetitive or unnecessary tool calls must be penalized.
- Excessive or unnecessary requests for user clarification beyond what is essential must be penalized.
</evaluation_criteria>

<conversation_history>
{chat_history}
</conversation_history>

<current_response_1>
{assistant_response_1}
</current_response_1>

<current_response_2>
{assistant_response_2}
</current_response_2>
…
<current_response_{N}>
{assistant_response_N}
</current_response_{N}>

Output your choice (a number between 1 and {N}) within <choice></choice> XML tags. No 
explanations should precede or follow the choice. Answer in the following format.
<choice>
{{your_choice}}
</choice>

Serve as an Editor for Self-Correction (No Think Mode)

<task>
You are an expert editor of AI assistant response. Given a complete user-assistant conversation history, 
a generated assistant response, and a critique about how to improve it, your task is to produce the 
revised response.
</task>

<conversation_history>
{chat_history}
</conversation_history>

<current_response>
{assistant_response}
</current_response>

<critique>
{critique}
</critique>

Output the revised response within <revised_response></revised_response> XML tags. No 
explanations should precede or follow the response. Answer in the following format.
<revised_response>
{{revised_response}}
</revised_response>

Figure 11: Editor prompt template of the self-correction task for non-reasoning LLMs.

Serve as an Evaluator for Pairwise Critique Task (No Think Mode)

<task>
You are an expert evaluator of AI assistant performance. Given a complete user-assistant conversation 
history and two generated assistant responses, you are to conduct a thorough, fact-based, and 
comprehensive comparison. Based on specific evidence from your evaluation, make a clear choice of 
which response is superior. There may be a list of tools available to the assisatnt. The assistant starts 
with one or more cycles of (thinking about which tool to use -> performing tool call -> waiting for tool 
response), and ends with (thinking about the answer -> answer of the question). The thinking processes, 
tool calls, tool responses, and answer are enclosed within their tags. There could be multiple thinking 
processes, tool calls, tool call parameters and tool response parameters.
</task>

<evaluation_criteria>
- Available tools must be fully and appropriately leveraged to meet the requirements.
- Tool call names must be valid, correct, and complete.
- Tool call arguments must be valid, correct, and complete.
- Fabrication, including the creation of information or knowledge not provided by the user, conflicting 
with user input, or not derived from the tools, must be penalized.
- Repetitive or unnecessary tool calls must be penalized.
- Excessive or unnecessary requests for user clarification beyond what is essential must be penalized.
</evaluation_criteria>

<conversation_history>
{chat_history}
</conversation_history>

<current_response_1>
{assistant_response_1}
</current_response_1>

<current_response_2>
{assistant_response_2}
</current_response_2>

Output your evaluation within <evaluation></evaluation> XML tags, and then enclose your choice 
(either '1' or '2') within <choice></choice> XML tags. Answer in the following format.
<evaluation>
{{your_evaluation}}
</evaluation>
<choice>
{{your_choice}}
</choice>

Serve as an Evaluator for Pairwise Critique Task (Think Mode)

<task>
You are an expert evaluator of AI assistant performance. Given a complete user-assistant conversation 
history and two generated assistant responses, you are to conduct a thorough, fact-based, and 
comprehensive comparison. Based on specific evidence from your evaluation, make a clear choice of 
which response is superior. There may be a list of tools available to the assisatnt. The assistant starts 
with one or more cycles of (thinking about which tool to use -> performing tool call -> waiting for tool 
response), and ends with (thinking about the answer -> answer of the question). The thinking processes, 
tool calls, tool responses, and answer are enclosed within their tags. There could be multiple thinking 
processes, tool calls, tool call parameters and tool response parameters.
</task>

<evaluation_criteria>
- Available tools must be fully and appropriately leveraged to meet the requirements.
- Tool call names must be valid, correct, and complete.
- Tool call arguments must be valid, correct, and complete.
- Fabrication, including the creation of information or knowledge not provided by the user, conflicting 
with user input, or not derived from the tools, must be penalized.
- Repetitive or unnecessary tool calls must be penalized.
- Excessive or unnecessary requests for user clarification beyond what is essential must be penalized.
</evaluation_criteria>

<conversation_history>
{chat_history}
</conversation_history>

<current_response_1>
{assistant_response_1}
</current_response_1>

<current_response_2>
{assistant_response_2}
</current_response_2>

Output your choice (either '1' or '2') within <choice></choice> XML tags. No explanations should 
precede or follow the choice. Answer in the following format.
<choice>
{{your_choice}}
</choice>

System Prompt in Tool-Use Trajectory

# Tools
You may call one or more functions to assist with the user query.
You are provided with function signatures within <tools></tools> XML tags:
<tools>
{tool_descs}
</tools>

For each function call, return a json object with function name and arguments within 
<tool_call></tool_call> XML tags:
<tool_call>
{{"name": <function-name>, "arguments": <args-json-object>}}
</tool_call>

# Agent Policy
{agent_policy}

Figure 12: System prompt template of the tool-use trajectory.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

G CASE STUDIES

Through representative cases, we compare critiques from Claude 4 Sonnet and ToolRM-Qwen3-
4B-Thinking-2507 on TRBenchBFCL pairwise test samples. In the case shown in Figure 13, ToolRM
accurately distinguishes correct from incorrect tool-call parameters without inducing “overthinking”
hallucinations when the user query plausibly maps to multiple candidate parameters. Another case,
shown in Figure 14, further demonstrates its tendency to ground analysis in contextual rationale
rather than engage in speculative, divergent reasoning. Moreover, as shown in Figure 15, ToolRM
adheres more closely to the evaluation criteria, preferring tool calls without redundant parameters.
Taken together, these behaviors enable ToolRM to deliver reliable critiques in tool-use scenarios.

A Case from TRBenchBFCL

…
<conversation_history>
[system]: # Tools …
<tools>
{"type": "function", "function": {"name": "add_mtnards_server", "description": "Registers a new MTNA Rich Data Services (RDS) server with the 
specified nickname and host within the environment, using the provided API key for authentication.", …}}}}

{"type": "function", "function": {"name": "list_servers", "description": "Retrieve a list of all the servers within the specified environment, optionally 
filtering by server type.", "parameters": {"type": "dict", "properties": {"server_type": {"type": "string", "description": "The type of servers to be listed. If 
not specified, all server types are included.", "enum": ["all", "graphql", "mtna", "openapi", "postgres", "rds", "sql"], "default": "all"}}, "required": []}}}
…
</tools>
…
[user]: Could you retrieve a list of all the MTNA Rich Data Services servers for me?
</conversation_history>

<current_response_1>
<tool_call>
{"name": "list_servers", "arguments": {"server_type": "mtna"}}
</tool_call>
</current_response_1>

Response from ToolRM Response from Claude-4-Sonnet

<think>
Okay, let's tackle this evaluation. So, the user is asking for a list of 
all MTNA Rich Data Services servers.
First, I need to check the available tools. The tools list has a 
function called list_servers which can take a server_type parameter. 
The possible server types include "mtna" as one of the options.
Looking at Response 1: They used list_servers with server_type
"mtna". That seems correct because the user is asking for MTNA 
Rich Data Services servers. MTNA probably stands for MTNA 
Rich Data Services, so the server_type should be "mtna".
Response 2: They used list_servers with server_type "rds". Wait, 
rds is another server type. The user is asking for MTNA servers, 
not RDS servers. So Response 2 is incorrect here. The tool 
parameter should be "mtna" to get MTNA servers, not "rds".
Also, checking the tools documentation: The list_servers function 
has a server_type enum that includes "mtna" and "rds" among 
others. So the correct server_type for MTNA Rich Data Services is 
"mtna".
Therefore, Response 1 is correct because it uses server_type "mtna", 
which matches the user's request. Response 2 uses "rds" which is 
wrong because the user is asking for MTNA servers, not RDS 
servers. So the superior response is Response 1.
</think>
<choice>
1
</choice>

Prompt of the Pairwise Critique Task

<think>
The user is asking for a list of all the MTNA Rich Data Services 
servers. 
Looking at the tools available, there's a `list_servers` function that can 
"Retrieve a list of all the servers within the specified environment, 
optionally filtering by server type."
The parameters show that `server_type` is an optional parameter with 
possible values: ["all", "graphql", "mtna", "openapi", "postgres", "rds", 
"sql"].
The user specifically asked for "MTNA Rich Data Services servers". 
Let me analyze this:
1. MTNA Rich Data Services - this seems to be a specific type of 
service
2. Looking at the `add_mtnards_server` function, it mentions 
"Registers a new MTNA Rich Data Services (RDS) server"
So MTNA Rich Data Services = RDS server type according to the 
function description.
Now let me look at the two responses:
Response 1: `{"name": "list_servers", "arguments": {"server_type": 
"mtna"}}`
Response 2: `{"name": "list_servers", "arguments": {"server_type": 
"rds"}}`
From the `add_mtnards_server` function description: "Registers a new 
MTNA Rich Data Services (RDS) server"
This clearly indicates that MTNA Rich Data Services servers are 
referred to as "rds" type servers in the system, not "mtna" type servers.
So Response 2 is correct - it uses "rds" as the server_type, which 
matches what the system calls MTNA Rich Data Services servers.
Response 1 uses "mtna" which doesn't appear to be the correct server 
type designation for MTNA Rich Data Services servers based on the 
function descriptions.
</think>
<choice>
2
</choice>

<current_response_2>
<tool_call>
{"name": "list_servers", "arguments": {"server_type": "rds"}}
</tool_call>
</current_response_2>

A Case from TRBenchBFCL

…
<conversation_history>
[system]: # Tools …
<tools>
{"type": "function", "function": {"name": "CustomDashboardsApi.get_custom_dashboards", "description": "Retrieves a list of custom dashboards that the 
user has access to, based on the provided query parameters.", "parameters": {"type": "dict", "required": ["query"], "properties": {"query": {"type": "string", 
"description": "A search query string to filter accessible dashboards. Supports logical operators and field-specific filtering."}, "pageSize": {"type": 
"integer", "description": "The number of dashboard entries to return per page.", "default": 10}, "page": {"type": "integer", "description": "The page number 
to retrieve, used for paginating through large sets of dashboard entries.", "default": 1}}}}}

{"type": "function", "function": {"name": "CustomDashboardsApi.get_custom_dashboard", "description": "Retrieve the details of a custom dashboard by 
its unique identifier.", "parameters": {"type": "dict", "required": ["customDashboardId"], "properties": {"customDashboardId": {"type": "string", 
"description": "The unique identifier of the custom dashboard to retrieve."}}}}}
…
</tools>
…
[user]: Get the dashboard for "dashing".
</conversation_history>

Response from ToolRM Response from Claude-4-Sonnet
<think>
Okay, let's tackle this evaluation. So, the user wants to get the 
dashboard for "dashing". The available tools are three functions: 
add_custom_dashboard, get_custom_dashboards, and 
get_custom_dashboard.
First, looking at the conversation history, the user's query is "Get 
the dashboard for 'dashing'". The assistant needs to use the tools 
correctly.
Looking at Response 1: They used get_custom_dashboards with 
query "dashing". That seems right because the 
get_custom_dashboards function takes a query parameter to find 
dashboards. The parameters are correct here.
Response 2: They used get_custom_dashboard with 
customDashboardId "dashing". Wait, the get_custom_dashboard
function requires a customDashboardId, which is a unique 
identifier. But the user's query is "Get the dashboard for 'dashing'", 
which might mean they want a dashboard named "dashing" or 
with a title containing "dashing". However, the tool 
get_custom_dashboard needs a specific ID, not a name. The 
problem is that the user didn't provide an ID, so the assistant can't 
know the ID beforehand. Therefore, using get_custom_dashboard
with ID "dashing" might be incorrect because the ID is a unique 
identifier, not the dashboard name. The correct approach would 
be to first use get_custom_dashboards to find the dashboard by 
name (query "dashing") and then get its ID to use in 
get_custom_dashboard. But in this case, the user's request is to get 
the dashboard for "dashing", so maybe they mean a dashboard 
named "dashing".
Wait, the tools description says for get_custom_dashboards, the 
query parameter is a search string. So Response 1 is correct 
because they're searching for dashboards with query "dashing". 
Response 2 is trying to get a dashboard by ID "dashing", but the 
ID is a unique identifier that isn't necessarily the same as the name. 
Since the user said "dashboard for 'dashing'", it's more likely they 
want a dashboard whose name is "dashing" or contains "dashing". 
So the correct tool here is get_custom_dashboards with query 
"dashing" (Response 1). Response 2 is using 
get_custom_dashboard with an ID that's probably not valid 
because the ID is a unique identifier, not a name. The tool 
get_custom_dashboard requires a specific ID, which the user 
didn't provide. So Response 2 is incorrect because they're 
assuming "dashing" is a valid ID, but the tool's parameters need a 
real ID. Therefore, Response 1 is superior.
</think>
<choice>
1
</choice>

Prompt of the Pairwise Critique Task

<think>
Let me analyze both responses based on the evaluation criteria.
The user is asking: "Get the dashboard for 'dashing'."
I need to evaluate which tool call is more appropriate.
Response 1 uses: `CustomDashboardsApi.get_custom_dashboards` 
with arguments `{"query": "dashing"}`
Response 2 uses: `CustomDashboardsApi.get_custom_dashboard` 
with arguments `{"customDashboardId": "dashing"}`
Let me look at the function signatures:
1. `CustomDashboardsApi.get_custom_dashboards`:

- Description: "Retrieves a list of custom dashboards that the user 
has access to, based on the provided query parameters."

- Required parameters: ["query"]
- This function searches for dashboards using a query string

2. `CustomDashboardsApi.get_custom_dashboard`:
- Description: "Retrieve the details of a custom dashboard by its 

unique identifier."
- Required parameters: ["customDashboardId"] 
- This function retrieves a specific dashboard by its ID

Now, the user said "Get the dashboard for 'dashing'". The key 
question is: is "dashing" a dashboard ID or a search term?
From the context, it's ambiguous. "Dashing" could be:
1. The unique identifier of a specific dashboard
2. A name or part of a name to search for
However, looking at the function descriptions:
- `get_custom_dashboard` is for retrieving a specific dashboard by 
its unique identifier
- `get_custom_dashboards` is for searching/filtering dashboards
The user said "Get THE dashboard for 'dashing'" - the use of "THE" 
suggests they're looking for a specific dashboard, not searching for 
multiple dashboards.
If "dashing" is indeed the dashboard ID, then Response 2 would be 
correct.
If "dashing" is a search term or dashboard name (not ID), then 
Response 1 would be correct.
The singular phrasing "the dashboard" implies a specific, unique 
dashboard. This strongly points to using the 
`get_custom_dashboard` method with "dashing" as the identifier.
I'll prioritize the most precise interpretation based on the user's 
language, which suggests a direct retrieval of a specific dashboard.
The approach balances efficiency and user intent, targeting a direct 
dashboard fetch while maintaining flexibility if the identifier proves 
invalid.
The definite article implies a precise dashboard selection, making 
the direct retrieval method most aligned with the user's expectation. 
Searching becomes a secondary strategy if direct identification fails.
</think>
<choice>
2
</choice>

<current_response_2>
<tool_call>
{"name": "CustomDashboardsApi.get_custom_dashboard", 
"arguments": {"customDashboardId": "dashing"}}
</tool_call>
</current_response_2>

<current_response_1>
<tool_call>
{"name": "CustomDashboardsApi.get_custom_dashboards", 
"arguments": {"query": "dashing"}}
</tool_call>
</current_response_1>

A Case from TRBenchBFCL

…
<conversation_history>
[system]: # Tools …
<tools>
{"type": "function", "function": {"name": "get_shortest_driving_distance", "description": "Calculate the shortest driving distance between two locations.", 
"parameters": {"type": "dict", "properties": {"origin": {"type": "string", "description": "Starting point of the journey."}, "destination": {"type": "string", 
"description": "End point of the journey."}, "unit": {"type": "string", "description": "Preferred unit of distance (optional, default is kilometers)."}}, 
"required": ["origin", "destination"]}}}
…
</tools>
…
[user]: Get the dashboard for "dashing".
</conversation_history>

Response from ToolRM Response from Claude-4-Sonnet
<think>
Okay, let's tackle this evaluation. So, the user wants the shortest 
driving distance between New York City and Washington D.C. 
The available tools include get_shortest_driving_distance, which 
requires origin and destination. The other parameters have a unit 
option, defaulting to kilometers.

Looking at Response 1: They called the function with origin and 
destination, no unit specified. That's correct because the tool's 
parameters say unit is optional with default kilometers. So that's 
valid.

Response 2: They added "unit": "miles". The tool's description 
says the unit is optional with default kilometers. So specifying 
miles is okay, but does the tool accept that? The tool's parameters 
say unit is optional, so it's valid. However, the user's query doesn't 
specify a unit, so the assistant should probably use the default. 
The tool's description says the default is kilometers, so maybe the 
assistant shouldn't change it unless needed. Since the user didn't 
ask for miles, Response 2 is adding an unnecessary parameter. 
That would be a redundancy. The evaluation criteria say to avoid 
unnecessary tool calls or parameters. So Response 2 has an extra 
parameter that's not needed, which is a drawback. Therefore, 
Response 1 is better because it doesn't add unnecessary info. The 
tool's parameters say unit is optional, but since the user didn't 
specify, the default is fine. So the superior response is Response 1.
</think>
<choice>
1
</choice>

Prompt of the Pairwise Critique Task

<think>
Let me analyze these two responses based on the evaluation criteria:
1. **Available tools must be fully and appropriately leveraged to 
meet the requirements.**
Both responses use the correct tool `get_shortest_driving_distance` 
which is appropriate for finding the shortest driving distance 
between two locations.
2. **Tool call names must be valid, correct, and complete.**
Both responses use the correct function name 
"get_shortest_driving_distance".
3. **Tool call arguments must be valid, correct, and complete.**
Let me check the function signature:
```
"parameters": {"type": "dict", "properties": {"origin": {"type": 
"string", "description": "Starting point of the journey."}, 
"destination": {"type": "string", "description": "End point of the 
journey."}, "unit": {"type": "string", "description": "Preferred unit of 
distance (optional, default is kilometers)."}}, "required": ["origin", 
"destination"]}
```
Response 1 arguments:
- "origin": "New York City" ✓
- "destination": "Washington D.C." ✓
- Missing "unit" parameter (but it's optional)

Response 2 arguments:
- "origin": "New York City" ✓
- "destination": "Washington D.C." ✓
- "unit": "miles" ✓

Both responses provide the required parameters. Response 2 also 
includes the optional "unit" parameter.
…
The key difference is that Response 2 includes the "unit" parameter 
set to "miles". Since the user asked for the distance between two US 
cities (New York City and Washington D.C.), it would be more 
natural and user-friendly to provide the result in miles rather than 
the default kilometers. While the "unit" parameter is optional, 
specifying "miles" would likely give a more useful result for 
someone asking about distances between US cities.

Response 2 demonstrates enhanced user-centricity by selecting miles 
as the distance unit, which aligns more naturally with US geographic 
conventions and user expectations.
</think>
<choice>
2
</choice>

<current_response_2>
<tool_call>
{"name": "get_shortest_driving_distance", "arguments": {"origin": 
"New York City", "destination": "Washington D.C.", "unit": "miles"}}
</tool_call>
</current_response_2>

<current_response_1>
<tool_call>
{"name": "get_shortest_driving_distance", "arguments": {"origin": 
"New York City", "destination": "Washington D.C."}}
</tool_call>
</current_response_1>

Figure 13: The case 1 from TRBenchBFCL, featuring responses from ToolRM and Claude 4 Sonnet.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

A Case from TRBenchBFCL

…
<conversation_history>
[system]: # Tools …
<tools>
{"type": "function", "function": {"name": "add_mtnards_server", "description": "Registers a new MTNA Rich Data Services (RDS) server with the 
specified nickname and host within the environment, using the provided API key for authentication.", …}}}}

{"type": "function", "function": {"name": "list_servers", "description": "Retrieve a list of all the servers within the specified environment, optionally 
filtering by server type.", "parameters": {"type": "dict", "properties": {"server_type": {"type": "string", "description": "The type of servers to be listed. If 
not specified, all server types are included.", "enum": ["all", "graphql", "mtna", "openapi", "postgres", "rds", "sql"], "default": "all"}}, "required": []}}}
…
</tools>
…
[user]: Could you retrieve a list of all the MTNA Rich Data Services servers for me?
</conversation_history>

<current_response_1>
<tool_call>
{"name": "list_servers", "arguments": {"server_type": "mtna"}}
</tool_call>
</current_response_1>

Response from ToolRM Response from Claude-4-Sonnet

<think>
Okay, let's tackle this evaluation. So, the user is asking for a list of 
all MTNA Rich Data Services servers.
First, I need to check the available tools. The tools list has a 
function called list_servers which can take a server_type parameter. 
The possible server types include "mtna" as one of the options.
Looking at Response 1: They used list_servers with server_type
"mtna". That seems correct because the user is asking for MTNA 
Rich Data Services servers. MTNA probably stands for MTNA 
Rich Data Services, so the server_type should be "mtna".
Response 2: They used list_servers with server_type "rds". Wait, 
rds is another server type. The user is asking for MTNA servers, 
not RDS servers. So Response 2 is incorrect here. The tool 
parameter should be "mtna" to get MTNA servers, not "rds".
Also, checking the tools documentation: The list_servers function 
has a server_type enum that includes "mtna" and "rds" among 
others. So the correct server_type for MTNA Rich Data Services is 
"mtna".
Therefore, Response 1 is correct because it uses server_type "mtna", 
which matches the user's request. Response 2 uses "rds" which is 
wrong because the user is asking for MTNA servers, not RDS 
servers. So the superior response is Response 1.
</think>
<choice>
1
</choice>

Prompt of the Pairwise Critique Task

<think>
The user is asking for a list of all the MTNA Rich Data Services 
servers. 
Looking at the tools available, there's a `list_servers` function that can 
"Retrieve a list of all the servers within the specified environment, 
optionally filtering by server type."
The parameters show that `server_type` is an optional parameter with 
possible values: ["all", "graphql", "mtna", "openapi", "postgres", "rds", 
"sql"].
The user specifically asked for "MTNA Rich Data Services servers". 
Let me analyze this:
1. MTNA Rich Data Services - this seems to be a specific type of 
service
2. Looking at the `add_mtnards_server` function, it mentions 
"Registers a new MTNA Rich Data Services (RDS) server"
So MTNA Rich Data Services = RDS server type according to the 
function description.
Now let me look at the two responses:
Response 1: `{"name": "list_servers", "arguments": {"server_type": 
"mtna"}}`
Response 2: `{"name": "list_servers", "arguments": {"server_type": 
"rds"}}`
From the `add_mtnards_server` function description: "Registers a new 
MTNA Rich Data Services (RDS) server"
This clearly indicates that MTNA Rich Data Services servers are 
referred to as "rds" type servers in the system, not "mtna" type servers.
So Response 2 is correct - it uses "rds" as the server_type, which 
matches what the system calls MTNA Rich Data Services servers.
Response 1 uses "mtna" which doesn't appear to be the correct server 
type designation for MTNA Rich Data Services servers based on the 
function descriptions.
</think>
<choice>
2
</choice>

<current_response_2>
<tool_call>
{"name": "list_servers", "arguments": {"server_type": "rds"}}
</tool_call>
</current_response_2>

A Case from TRBenchBFCL

…
<conversation_history>
[system]: # Tools …
<tools>
{"type": "function", "function": {"name": "CustomDashboardsApi.get_custom_dashboards", "description": "Retrieves a list of custom dashboards that the 
user has access to, based on the provided query parameters.", "parameters": {"type": "dict", "required": ["query"], "properties": {"query": {"type": "string", 
"description": "A search query string to filter accessible dashboards. Supports logical operators and field-specific filtering."}, "pageSize": {"type": 
"integer", "description": "The number of dashboard entries to return per page.", "default": 10}, "page": {"type": "integer", "description": "The page number 
to retrieve, used for paginating through large sets of dashboard entries.", "default": 1}}}}}

{"type": "function", "function": {"name": "CustomDashboardsApi.get_custom_dashboard", "description": "Retrieve the details of a custom dashboard by 
its unique identifier.", "parameters": {"type": "dict", "required": ["customDashboardId"], "properties": {"customDashboardId": {"type": "string", 
"description": "The unique identifier of the custom dashboard to retrieve."}}}}}
…
</tools>
…
[user]: Get the dashboard for "dashing".
</conversation_history>

Response from ToolRM Response from Claude-4-Sonnet
<think>
Okay, let's tackle this evaluation. So, the user wants to get the 
dashboard for "dashing". The available tools are three functions: 
add_custom_dashboard, get_custom_dashboards, and 
get_custom_dashboard.
First, looking at the conversation history, the user's query is "Get 
the dashboard for 'dashing'". The assistant needs to use the tools 
correctly.
Looking at Response 1: They used get_custom_dashboards with 
query "dashing". That seems right because the 
get_custom_dashboards function takes a query parameter to find 
dashboards. The parameters are correct here.
Response 2: They used get_custom_dashboard with 
customDashboardId "dashing". Wait, the get_custom_dashboard
function requires a customDashboardId, which is a unique 
identifier. But the user's query is "Get the dashboard for 'dashing'", 
which might mean they want a dashboard named "dashing" or 
with a title containing "dashing". However, the tool 
get_custom_dashboard needs a specific ID, not a name. The 
problem is that the user didn't provide an ID, so the assistant can't 
know the ID beforehand. Therefore, using get_custom_dashboard
with ID "dashing" might be incorrect because the ID is a unique 
identifier, not the dashboard name. The correct approach would 
be to first use get_custom_dashboards to find the dashboard by 
name (query "dashing") and then get its ID to use in 
get_custom_dashboard. But in this case, the user's request is to get 
the dashboard for "dashing", so maybe they mean a dashboard 
named "dashing".
Wait, the tools description says for get_custom_dashboards, the 
query parameter is a search string. So Response 1 is correct 
because they're searching for dashboards with query "dashing". 
Response 2 is trying to get a dashboard by ID "dashing", but the 
ID is a unique identifier that isn't necessarily the same as the name. 
Since the user said "dashboard for 'dashing'", it's more likely they 
want a dashboard whose name is "dashing" or contains "dashing". 
So the correct tool here is get_custom_dashboards with query 
"dashing" (Response 1). Response 2 is using 
get_custom_dashboard with an ID that's probably not valid 
because the ID is a unique identifier, not a name. The tool 
get_custom_dashboard requires a specific ID, which the user 
didn't provide. So Response 2 is incorrect because they're 
assuming "dashing" is a valid ID, but the tool's parameters need a 
real ID. Therefore, Response 1 is superior.
</think>
<choice>
1
</choice>

Prompt of the Pairwise Critique Task

<think>
Let me analyze both responses based on the evaluation criteria.
The user is asking: "Get the dashboard for 'dashing'."
I need to evaluate which tool call is more appropriate.
Response 1 uses: `CustomDashboardsApi.get_custom_dashboards` 
with arguments `{"query": "dashing"}`
Response 2 uses: `CustomDashboardsApi.get_custom_dashboard` 
with arguments `{"customDashboardId": "dashing"}`
Let me look at the function signatures:
1. `CustomDashboardsApi.get_custom_dashboards`:

- Description: "Retrieves a list of custom dashboards that the user 
has access to, based on the provided query parameters."

- Required parameters: ["query"]
- This function searches for dashboards using a query string

2. `CustomDashboardsApi.get_custom_dashboard`:
- Description: "Retrieve the details of a custom dashboard by its 

unique identifier."
- Required parameters: ["customDashboardId"] 
- This function retrieves a specific dashboard by its ID

Now, the user said "Get the dashboard for 'dashing'". The key 
question is: is "dashing" a dashboard ID or a search term?
From the context, it's ambiguous. "Dashing" could be:
1. The unique identifier of a specific dashboard
2. A name or part of a name to search for
However, looking at the function descriptions:
- `get_custom_dashboard` is for retrieving a specific dashboard by 
its unique identifier
- `get_custom_dashboards` is for searching/filtering dashboards
The user said "Get THE dashboard for 'dashing'" - the use of "THE" 
suggests they're looking for a specific dashboard, not searching for 
multiple dashboards.
If "dashing" is indeed the dashboard ID, then Response 2 would be 
correct.
If "dashing" is a search term or dashboard name (not ID), then 
Response 1 would be correct.
The singular phrasing "the dashboard" implies a specific, unique 
dashboard. This strongly points to using the 
`get_custom_dashboard` method with "dashing" as the identifier.
I'll prioritize the most precise interpretation based on the user's 
language, which suggests a direct retrieval of a specific dashboard.
The approach balances efficiency and user intent, targeting a direct 
dashboard fetch while maintaining flexibility if the identifier proves 
invalid.
The definite article implies a precise dashboard selection, making 
the direct retrieval method most aligned with the user's expectation. 
Searching becomes a secondary strategy if direct identification fails.
</think>
<choice>
2
</choice>

<current_response_2>
<tool_call>
{"name": "CustomDashboardsApi.get_custom_dashboard", 
"arguments": {"customDashboardId": "dashing"}}
</tool_call>
</current_response_2>

<current_response_1>
<tool_call>
{"name": "CustomDashboardsApi.get_custom_dashboards", 
"arguments": {"query": "dashing"}}
</tool_call>
</current_response_1>

A Case from TRBenchBFCL

…
<conversation_history>
[system]: # Tools …
<tools>
{"type": "function", "function": {"name": "get_shortest_driving_distance", "description": "Calculate the shortest driving distance between two locations.", 
"parameters": {"type": "dict", "properties": {"origin": {"type": "string", "description": "Starting point of the journey."}, "destination": {"type": "string", 
"description": "End point of the journey."}, "unit": {"type": "string", "description": "Preferred unit of distance (optional, default is kilometers)."}}, 
"required": ["origin", "destination"]}}}
…
</tools>
…
[user]: Get the dashboard for "dashing".
</conversation_history>

Response from ToolRM Response from Claude-4-Sonnet
<think>
Okay, let's tackle this evaluation. So, the user wants the shortest 
driving distance between New York City and Washington D.C. 
The available tools include get_shortest_driving_distance, which 
requires origin and destination. The other parameters have a unit 
option, defaulting to kilometers.

Looking at Response 1: They called the function with origin and 
destination, no unit specified. That's correct because the tool's 
parameters say unit is optional with default kilometers. So that's 
valid.

Response 2: They added "unit": "miles". The tool's description 
says the unit is optional with default kilometers. So specifying 
miles is okay, but does the tool accept that? The tool's parameters 
say unit is optional, so it's valid. However, the user's query doesn't 
specify a unit, so the assistant should probably use the default. 
The tool's description says the default is kilometers, so maybe the 
assistant shouldn't change it unless needed. Since the user didn't 
ask for miles, Response 2 is adding an unnecessary parameter. 
That would be a redundancy. The evaluation criteria say to avoid 
unnecessary tool calls or parameters. So Response 2 has an extra 
parameter that's not needed, which is a drawback. Therefore, 
Response 1 is better because it doesn't add unnecessary info. The 
tool's parameters say unit is optional, but since the user didn't 
specify, the default is fine. So the superior response is Response 1.
</think>
<choice>
1
</choice>

Prompt of the Pairwise Critique Task

<think>
Let me analyze these two responses based on the evaluation criteria:
1. **Available tools must be fully and appropriately leveraged to 
meet the requirements.**
Both responses use the correct tool `get_shortest_driving_distance` 
which is appropriate for finding the shortest driving distance 
between two locations.
2. **Tool call names must be valid, correct, and complete.**
Both responses use the correct function name 
"get_shortest_driving_distance".
3. **Tool call arguments must be valid, correct, and complete.**
Let me check the function signature:
```
"parameters": {"type": "dict", "properties": {"origin": {"type": 
"string", "description": "Starting point of the journey."}, 
"destination": {"type": "string", "description": "End point of the 
journey."}, "unit": {"type": "string", "description": "Preferred unit of 
distance (optional, default is kilometers)."}}, "required": ["origin", 
"destination"]}
```
Response 1 arguments:
- "origin": "New York City" ✓
- "destination": "Washington D.C." ✓
- Missing "unit" parameter (but it's optional)

Response 2 arguments:
- "origin": "New York City" ✓
- "destination": "Washington D.C." ✓
- "unit": "miles" ✓

Both responses provide the required parameters. Response 2 also 
includes the optional "unit" parameter.
…
The key difference is that Response 2 includes the "unit" parameter 
set to "miles". Since the user asked for the distance between two US 
cities (New York City and Washington D.C.), it would be more 
natural and user-friendly to provide the result in miles rather than 
the default kilometers. While the "unit" parameter is optional, 
specifying "miles" would likely give a more useful result for 
someone asking about distances between US cities.

Response 2 demonstrates enhanced user-centricity by selecting miles 
as the distance unit, which aligns more naturally with US geographic 
conventions and user expectations.
</think>
<choice>
2
</choice>

<current_response_2>
<tool_call>
{"name": "get_shortest_driving_distance", "arguments": {"origin": 
"New York City", "destination": "Washington D.C.", "unit": "miles"}}
</tool_call>
</current_response_2>

<current_response_1>
<tool_call>
{"name": "get_shortest_driving_distance", "arguments": {"origin": 
"New York City", "destination": "Washington D.C."}}
</tool_call>
</current_response_1>

Figure 14: The case 2 from TRBenchBFCL, featuring responses from ToolRM and Claude 4 Sonnet.

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

A Case from TRBenchBFCL

…
<conversation_history>
[system]: # Tools …
<tools>
{"type": "function", "function": {"name": "add_mtnards_server", "description": "Registers a new MTNA Rich Data Services (RDS) server with the 
specified nickname and host within the environment, using the provided API key for authentication.", …}}}}

{"type": "function", "function": {"name": "list_servers", "description": "Retrieve a list of all the servers within the specified environment, optionally 
filtering by server type.", "parameters": {"type": "dict", "properties": {"server_type": {"type": "string", "description": "The type of servers to be listed. If 
not specified, all server types are included.", "enum": ["all", "graphql", "mtna", "openapi", "postgres", "rds", "sql"], "default": "all"}}, "required": []}}}
…
</tools>
…
[user]: Could you retrieve a list of all the MTNA Rich Data Services servers for me?
</conversation_history>

<current_response_1>
<tool_call>
{"name": "list_servers", "arguments": {"server_type": "mtna"}}
</tool_call>
</current_response_1>

Response from ToolRM Response from Claude-4-Sonnet

<think>
Okay, let's tackle this evaluation. So, the user is asking for a list of 
all MTNA Rich Data Services servers.
First, I need to check the available tools. The tools list has a 
function called list_servers which can take a server_type parameter. 
The possible server types include "mtna" as one of the options.
Looking at Response 1: They used list_servers with server_type
"mtna". That seems correct because the user is asking for MTNA 
Rich Data Services servers. MTNA probably stands for MTNA 
Rich Data Services, so the server_type should be "mtna".
Response 2: They used list_servers with server_type "rds". Wait, 
rds is another server type. The user is asking for MTNA servers, 
not RDS servers. So Response 2 is incorrect here. The tool 
parameter should be "mtna" to get MTNA servers, not "rds".
Also, checking the tools documentation: The list_servers function 
has a server_type enum that includes "mtna" and "rds" among 
others. So the correct server_type for MTNA Rich Data Services is 
"mtna".
Therefore, Response 1 is correct because it uses server_type "mtna", 
which matches the user's request. Response 2 uses "rds" which is 
wrong because the user is asking for MTNA servers, not RDS 
servers. So the superior response is Response 1.
</think>
<choice>
1
</choice>

Prompt of the Pairwise Critique Task

<think>
The user is asking for a list of all the MTNA Rich Data Services 
servers. 
Looking at the tools available, there's a `list_servers` function that can 
"Retrieve a list of all the servers within the specified environment, 
optionally filtering by server type."
The parameters show that `server_type` is an optional parameter with 
possible values: ["all", "graphql", "mtna", "openapi", "postgres", "rds", 
"sql"].
The user specifically asked for "MTNA Rich Data Services servers". 
Let me analyze this:
1. MTNA Rich Data Services - this seems to be a specific type of 
service
2. Looking at the `add_mtnards_server` function, it mentions 
"Registers a new MTNA Rich Data Services (RDS) server"
So MTNA Rich Data Services = RDS server type according to the 
function description.
Now let me look at the two responses:
Response 1: `{"name": "list_servers", "arguments": {"server_type": 
"mtna"}}`
Response 2: `{"name": "list_servers", "arguments": {"server_type": 
"rds"}}`
From the `add_mtnards_server` function description: "Registers a new 
MTNA Rich Data Services (RDS) server"
This clearly indicates that MTNA Rich Data Services servers are 
referred to as "rds" type servers in the system, not "mtna" type servers.
So Response 2 is correct - it uses "rds" as the server_type, which 
matches what the system calls MTNA Rich Data Services servers.
Response 1 uses "mtna" which doesn't appear to be the correct server 
type designation for MTNA Rich Data Services servers based on the 
function descriptions.
</think>
<choice>
2
</choice>

<current_response_2>
<tool_call>
{"name": "list_servers", "arguments": {"server_type": "rds"}}
</tool_call>
</current_response_2>

A Case from TRBenchBFCL

…
<conversation_history>
[system]: # Tools …
<tools>
{"type": "function", "function": {"name": "CustomDashboardsApi.get_custom_dashboards", "description": "Retrieves a list of custom dashboards that the 
user has access to, based on the provided query parameters.", "parameters": {"type": "dict", "required": ["query"], "properties": {"query": {"type": "string", 
"description": "A search query string to filter accessible dashboards. Supports logical operators and field-specific filtering."}, "pageSize": {"type": 
"integer", "description": "The number of dashboard entries to return per page.", "default": 10}, "page": {"type": "integer", "description": "The page number 
to retrieve, used for paginating through large sets of dashboard entries.", "default": 1}}}}}

{"type": "function", "function": {"name": "CustomDashboardsApi.get_custom_dashboard", "description": "Retrieve the details of a custom dashboard by 
its unique identifier.", "parameters": {"type": "dict", "required": ["customDashboardId"], "properties": {"customDashboardId": {"type": "string", 
"description": "The unique identifier of the custom dashboard to retrieve."}}}}}
…
</tools>
…
[user]: Get the dashboard for "dashing".
</conversation_history>

Response from ToolRM Response from Claude-4-Sonnet
<think>
Okay, let's tackle this evaluation. So, the user wants to get the 
dashboard for "dashing". The available tools are three functions: 
add_custom_dashboard, get_custom_dashboards, and 
get_custom_dashboard.
First, looking at the conversation history, the user's query is "Get 
the dashboard for 'dashing'". The assistant needs to use the tools 
correctly.
Looking at Response 1: They used get_custom_dashboards with 
query "dashing". That seems right because the 
get_custom_dashboards function takes a query parameter to find 
dashboards. The parameters are correct here.
Response 2: They used get_custom_dashboard with 
customDashboardId "dashing". Wait, the get_custom_dashboard
function requires a customDashboardId, which is a unique 
identifier. But the user's query is "Get the dashboard for 'dashing'", 
which might mean they want a dashboard named "dashing" or 
with a title containing "dashing". However, the tool 
get_custom_dashboard needs a specific ID, not a name. The 
problem is that the user didn't provide an ID, so the assistant can't 
know the ID beforehand. Therefore, using get_custom_dashboard
with ID "dashing" might be incorrect because the ID is a unique 
identifier, not the dashboard name. The correct approach would 
be to first use get_custom_dashboards to find the dashboard by 
name (query "dashing") and then get its ID to use in 
get_custom_dashboard. But in this case, the user's request is to get 
the dashboard for "dashing", so maybe they mean a dashboard 
named "dashing".
Wait, the tools description says for get_custom_dashboards, the 
query parameter is a search string. So Response 1 is correct 
because they're searching for dashboards with query "dashing". 
Response 2 is trying to get a dashboard by ID "dashing", but the 
ID is a unique identifier that isn't necessarily the same as the name. 
Since the user said "dashboard for 'dashing'", it's more likely they 
want a dashboard whose name is "dashing" or contains "dashing". 
So the correct tool here is get_custom_dashboards with query 
"dashing" (Response 1). Response 2 is using 
get_custom_dashboard with an ID that's probably not valid 
because the ID is a unique identifier, not a name. The tool 
get_custom_dashboard requires a specific ID, which the user 
didn't provide. So Response 2 is incorrect because they're 
assuming "dashing" is a valid ID, but the tool's parameters need a 
real ID. Therefore, Response 1 is superior.
</think>
<choice>
1
</choice>

Prompt of the Pairwise Critique Task

<think>
Let me analyze both responses based on the evaluation criteria.
The user is asking: "Get the dashboard for 'dashing'."
I need to evaluate which tool call is more appropriate.
Response 1 uses: `CustomDashboardsApi.get_custom_dashboards` 
with arguments `{"query": "dashing"}`
Response 2 uses: `CustomDashboardsApi.get_custom_dashboard` 
with arguments `{"customDashboardId": "dashing"}`
Let me look at the function signatures:
1. `CustomDashboardsApi.get_custom_dashboards`:

- Description: "Retrieves a list of custom dashboards that the user 
has access to, based on the provided query parameters."

- Required parameters: ["query"]
- This function searches for dashboards using a query string

2. `CustomDashboardsApi.get_custom_dashboard`:
- Description: "Retrieve the details of a custom dashboard by its 

unique identifier."
- Required parameters: ["customDashboardId"] 
- This function retrieves a specific dashboard by its ID

Now, the user said "Get the dashboard for 'dashing'". The key 
question is: is "dashing" a dashboard ID or a search term?
From the context, it's ambiguous. "Dashing" could be:
1. The unique identifier of a specific dashboard
2. A name or part of a name to search for
However, looking at the function descriptions:
- `get_custom_dashboard` is for retrieving a specific dashboard by 
its unique identifier
- `get_custom_dashboards` is for searching/filtering dashboards
The user said "Get THE dashboard for 'dashing'" - the use of "THE" 
suggests they're looking for a specific dashboard, not searching for 
multiple dashboards.
If "dashing" is indeed the dashboard ID, then Response 2 would be 
correct.
If "dashing" is a search term or dashboard name (not ID), then 
Response 1 would be correct.
The singular phrasing "the dashboard" implies a specific, unique 
dashboard. This strongly points to using the 
`get_custom_dashboard` method with "dashing" as the identifier.
I'll prioritize the most precise interpretation based on the user's 
language, which suggests a direct retrieval of a specific dashboard.
The approach balances efficiency and user intent, targeting a direct 
dashboard fetch while maintaining flexibility if the identifier proves 
invalid.
The definite article implies a precise dashboard selection, making 
the direct retrieval method most aligned with the user's expectation. 
Searching becomes a secondary strategy if direct identification fails.
</think>
<choice>
2
</choice>

<current_response_2>
<tool_call>
{"name": "CustomDashboardsApi.get_custom_dashboard", 
"arguments": {"customDashboardId": "dashing"}}
</tool_call>
</current_response_2>

<current_response_1>
<tool_call>
{"name": "CustomDashboardsApi.get_custom_dashboards", 
"arguments": {"query": "dashing"}}
</tool_call>
</current_response_1>

A Case from TRBenchBFCL

…
<conversation_history>
[system]: # Tools …
<tools>
{"type": "function", "function": {"name": "get_shortest_driving_distance", "description": "Calculate the shortest driving distance between two locations.", 
"parameters": {"type": "dict", "properties": {"origin": {"type": "string", "description": "Starting point of the journey."}, "destination": {"type": "string", 
"description": "End point of the journey."}, "unit": {"type": "string", "description": "Preferred unit of distance (optional, default is kilometers)."}}, 
"required": ["origin", "destination"]}}}
…
</tools>
…
[user]: Find the shortest driving distance between New York City and Washington D.C.
</conversation_history>

Response from ToolRM Response from Claude-4-Sonnet
<think>
Okay, let's tackle this evaluation. So, the user wants the shortest 
driving distance between New York City and Washington D.C. 
The available tools include get_shortest_driving_distance, which 
requires origin and destination. The other parameters have a unit 
option, defaulting to kilometers.

Looking at Response 1: They called the function with origin and 
destination, no unit specified. That's correct because the tool's 
parameters say unit is optional with default kilometers. So that's 
valid.

Response 2: They added "unit": "miles". The tool's description 
says the unit is optional with default kilometers. So specifying 
miles is okay, but does the tool accept that? The tool's parameters 
say unit is optional, so it's valid. However, the user's query doesn't 
specify a unit, so the assistant should probably use the default. 
The tool's description says the default is kilometers, so maybe the 
assistant shouldn't change it unless needed. Since the user didn't 
ask for miles, Response 2 is adding an unnecessary parameter. 
That would be a redundancy. The evaluation criteria say to avoid 
unnecessary tool calls or parameters. So Response 2 has an extra 
parameter that's not needed, which is a drawback. Therefore, 
Response 1 is better because it doesn't add unnecessary info. The 
tool's parameters say unit is optional, but since the user didn't 
specify, the default is fine. So the superior response is Response 1.
</think>
<choice>
1
</choice>

Prompt of the Pairwise Critique Task

<think>
Let me analyze these two responses based on the evaluation criteria:
1. **Available tools must be fully and appropriately leveraged to 
meet the requirements.**
Both responses use the correct tool `get_shortest_driving_distance` 
which is appropriate for finding the shortest driving distance 
between two locations.
2. **Tool call names must be valid, correct, and complete.**
Both responses use the correct function name 
"get_shortest_driving_distance".
3. **Tool call arguments must be valid, correct, and complete.**
Let me check the function signature:
```
"parameters": {"type": "dict", "properties": {"origin": {"type": 
"string", "description": "Starting point of the journey."}, 
"destination": {"type": "string", "description": "End point of the 
journey."}, "unit": {"type": "string", "description": "Preferred unit 
of distance (optional, default is kilometers)."}}, "required": 
["origin", "destination"]}
```
Response 1 arguments:
- "origin": "New York City" ✓
- "destination": "Washington D.C." ✓
- Missing "unit" parameter (but it's optional)

Response 2 arguments:
- "origin": "New York City" ✓
- "destination": "Washington D.C." ✓
- "unit": "miles" ✓
Both responses provide the required parameters. Response 2 also 
includes the optional "unit" parameter.
4. **Fabrication, including the creation of information or 
knowledge not provided by the user, conflicting with user input, or 
not derived from the tools, must be penalized.**
Neither response fabricates information. Both are making 
appropriate tool calls.
5. **Repetitive or unnecessary tool calls must be penalized.**
Neither response makes repetitive or unnecessary calls.
6. **Excessive or unnecessary requests for user clarification beyond 
what is essential must be penalized.**
Neither response requests clarification.
The key difference is that Response 2 includes the "unit" parameter 
set to "miles". Since the user asked for the distance between two US 
cities (New York City and Washington D.C.), it would be more 
natural and user-friendly to provide the result in miles rather than 
the default kilometers. While the "unit" parameter is optional, 
specifying "miles" would likely give a more useful result for 
someone asking about distances between US cities.
Response 2 demonstrates enhanced user-centricity by selecting miles 
as the distance unit, which aligns more naturally with US 
geographic conventions and user expectations.
</think>
<choice>
2
</choice>

<current_response_2>
<tool_call>
{"name": "get_shortest_driving_distance", "arguments": {"origin": 
"New York City", "destination": "Washington D.C.", "unit": "miles"}}
</tool_call>
</current_response_2>

<current_response_1>
<tool_call>
{"name": "get_shortest_driving_distance", "arguments": {"origin": 
"New York City", "destination": "Washington D.C."}}
</tool_call>
</current_response_1>

Figure 15: The case 3 from TRBenchBFCL, featuring responses from ToolRM and Claude 4 Sonnet.

25


	Introduction
	Methodology
	Trajectory Preparation
	Preference Data Construction
	Model Training

	Experiments
	Do ToolRM Provide Precise Rewards?
	Do ToolRM Help with Inference-Time Scaling?
	Do Critiques Improve Model Self-Correction?
	Ablation Studies
	Impact of Data Scaling on ToolRM

	Related Work
	Conclusion
	The Use of Large Language Models
	Full Related Work
	Tool Learning in the Era of LLMs
	Evaluation of LLM Tool-Use
	Reward Modeling of Human Preferences

	Experiment Details
	Model Training
	Benchmark Implementation

	The Balanced Multi-Dimensional Sampling Algorithm
	Example of Tool-Use Task Trajectory
	Prompting Templates
	Case Studies

