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ABSTRACT

Modern vision models, such as Vision Transformers (ViTs), operate by decom-
posing images into local patches and aggregating their information for recogni-
tion. This process implicitly requires the model to not only identify the correct
local features but also to correctly understand how they are spatially composed.
However, this capacity for compositional reasoning is often fragile and biased.
We find that in numerous misclassification cases, the model correctly attends to
the right object parts, yet still yields an incorrect prediction.
This paper uncovers a surprising phenomenon: by simply permuting the arrange-
ment of these local patches—thereby preserving local features but destroying their
spatial composition—we can consistently correct these misclassifications.
We propose that this reveals the existence of “faulty compositional informa-
tion” within the model. The original patch arrangement may trigger this flawed
information, leading to failure. Our search for a corrective permutation, guided
by a genetic algorithm, effectively finds an arrangement that bypasses this faulty
information, forcing the model to rely on a more robust, non-compositional evi-
dence aggregation mechanism, akin to a sophisticated bag-of-words model. Our
work provides the first direct, operational tool to diagnose and understand compo-
sitional failures in vision models, highlighting a key challenge on the path toward
more robust visual reasoning.

1 INTRODUCTION

confidence: 0.1558
predict:bulbul

confidence: 0.9981
predict:chickadee

confidence: 0.5019
predict:chickadee

Figure 1: Grad-CAM visualization before and after PPS. (Left) The original misclassified image.
The model’s attention is already on the correct object (e.g., the chickadee). (Middle) The permuted
image found by PPS, which is correctly classified. The model’s attention remains focused on the
chickadee’s patches, despite their scrambled locations. (Right) The image is visually chaotic, but
the model still predicts the correct label and focus on the same part of the object as the former two,
which indicates that the error occurred in composing the features, not in identifying them.

Modern vision models, particularly Vision Transformers (ViTs), have achieved remarkable success
by processing images as sequences of patches. This paradigm implicitly requires models to perform
two fundamental tasks: first, to recognize the content of local patches (the “what”), and second, to
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understand their spatial arrangement to form a coherent whole (the “how”). This latter capability,
often referred to as compositional reasoning, is crucial for moving beyond simple texture recognition
towards a more human-like understanding of the visual world.

However, the nature and robustness of this compositional reasoning in deep models remain poorly
understood. We hypothesize that many classification errors are not failures of feature extraction, but
rather failures of composition. In these cases, the model attends to the right parts, yet is misled by a
brittle or spurious understanding of their spatial relationship—a classic example of shortcut learning
Geirhos et al. (2020); Lapuschkin et al. (2019); Steinmann et al. (2024). How can we verify this
hypothesis and systematically identify such compositional failures?

In this work, we uncover a startling and counter-intuitive phenomenon: for a significant number of
images misclassified by modern vision models, we can correct the prediction by simply shuffling the
order of their constituent patches. By employing a Genetic Algorithm (GA) to search over the vast
space of patch permutations, we find that it is almost always possible to discover a new arrangement
that guides the model to the correct answer. This happens despite the fact that the set of local features
remains identical to the original image; only their spatial context is altered.

This discovery provides the first direct evidence for what we term faulty compositional information.
We argue that for these failed predictions, the original patch arrangement activates a flawed reason-
ing path within the model, learned from statistical biases in the training data. Our Patch Permutation
Search (PPS) method effectively finds an “escape route”—a permutation that breaks these spurious
spatial dependencies. This forces the model to abandon its faulty compositional shortcuts and fall
back on a more robust, non-compositional evidence aggregation mechanism. In essence, our method
coerces the model into behaving like a sophisticated “bag-of-patches”, making the correct decision
based on the presence of sufficient local evidence, unburdened by misleading contextual cues.

Our contributions are threefold:

1. We are the first to identify and systematically quantify the “breaking-it-fixes-it” phe-
nomenon, demonstrating its prevalence on major benchmarks like ImageNet-1K.

2. We propose Patch Permutation Search (PPS) as a novel, model-agnostic diagnostic tool to
probe for and expose compositional failures and shortcut learning in vision models.

3. Through extensive analysis of internal representations, including heatmaps (Grad-CAM)
and feature space topology (t-SNE van der Maaten & Hinton (2008), linear probing Alain
& Bengio (2018)), we provide strong evidence for our “faulty compositional information”
hypothesis, shedding new light on the inner workings of deep vision models.

Our work does not aim to improve model accuracy at inference time, but rather to provide a powerful
new lens through which to understand and diagnose a critical failure mode. It reveals that the path
to more robust visual intelligence lies not just in learning better features, but in learning to compose
them correctly.

2 RELATED WORK

The advent of Vision Transformers (ViT) Dosovitskiy et al. (2021) and similar architectures has
underscored the importance of patch order and Positional Embeddings (PE) for image understand-
ing, with improper handling leading to significant performance decline Wu et al. (2021); Chu et al.
(2023); Ren et al. (2023); Chowdhury et al. (2025); Xu et al. (2024); Jelassi et al. (2022). Beyond
PE, the academic community has explored patch arrangement in various contexts. Self-supervised
methods like “Jigsaw Puzzles” Chen et al. (2023) use patch order prediction as a pretext task for
learning a better visual spatial representation.

Recent studies shuffle patches or apply structural perturbations to assess model robustness or to in-
vestigate biases towards texture versus shape Brendel & Bethge (2019), typically focusing on the
resulting performance degradation or behavioral shifts. Naseer et al. (2021) systematically demon-
strated the superiority of the ViT under various interferences, especially in the case of large-scale
image occlusion, where its performance far exceeded that of CNN. Furthermore, they also found that
ViT is more inclined to make decisions based on the shape of the object rather than its texture. This
feature enables its off-the-shelf features to exhibit stronger generalization ability in various transfer
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learning tasks. Kutscher et al. (2025) points out that the performance of VIT-type models is highly
sensitive to the input order of patches. To solve this problem, they proposed the REOrder framework
to learn the optimal arrangement order of image blocks for a specific task.

Surprisingly, although modern architectures such as ViT have the ability to handle spatial informa-
tion through position encoding and self-attention mechanisms, a large number of studies have shown
that their actual behavioral patterns often degenerate into a “bag-of-words” pattern. Yuksekgonul
et al. (2022) pointed out that VLM exhibits the “bag-of-words” behavior when handling composi-
tional tasks. And One of the core motivations for the proposal of Li et al. (2023) is to overcome the
“bag-of-words” behavior of existing VLMS, which causes the model to be unable to construct words
that correctly represent visual entities and their relationships. ViTs does not presuppose any prior
knowledge about the structure of the image, but must learn all spatial relationships completely from
the data. This enables ViT to demonstrate extremely strong flexibility and performance when it has
a vast amount of training data, but it also means that the “spatial information” it learns is entirely
determined by the training data. These “bag-of-words” behavior indicates that if there is some false
and misleading spatial pattern in the data, the model may learn it as “wrong information”.

3 THE CORRECTIVE PERMUTATION

In this section, we introduce an intriguing phenomenon: for many such misclassified images, merely
rearranging the order of their constituent image patches can lead the same model to a correct classi-
fication, without any modification to model weights or patch content. This initial observation moti-
vates our in-depth investigation into how and why such structural input interventions can profoundly
alter model outputs.

Figure 2: Visualization of the Patch Permutation Search (PPS) process. The central plot shows
the minimization of the objective function value over 200 generations of a genetic algorithm. The
image on the left represents the initial state (Generation 0), where patches are in their original spatial
order, corresponding to a high cross-entropy value. The ground truth for this image is “tench”, but
the model gives a prediction of “bittern”. As the search progresses, the patch sequence is altered.
The middle image shows an intermediate state where the permutation is partially scrambled but
already sufficient for correct classification. The final image on the right depicts the converged
sequence, which is less human-interpretable.

3.1 PHENOMENON

This phenomenon is remarkably widespread. We posit that it exposes a critical vulnerability in
vision models: the learning of “faulty compositional information”. To probe this hypothesis, we
use a Genetic Algorithm (GA) Goldberg & Holland to discover “Corrective Permutations” for mis-
classified images. We argue that the original, “natural” patch order of these images activates a
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flawed compositional shortcut—a spurious rule based on patch co-occurrences seen during training
Geirhos et al. (2020). The corrective permutation found by our GA does not create a better signal;
rather, its primary function is to neutralize the misleading spatial cues. By shattering the faulty
compositional structure, it compels the model to abandon its shortcut and default to a more robust,
non-compositional evidence aggregation, effectively acting as a “bag-of-patches” to arrive at the
correct prediction.

3.2 PROBLEM FORMULATION

We begin by formally defining the problem of finding a corrective patch permutation for a mis-
classified image. Our work primarily focuses on patch-based vision models, such as the Vision
Transformer (ViT) Dosovitskiy et al. (2021), but the formulation is generalizable to any architecture
that processes images as a collection of local regions.

Let f be a vision model that takes a sequence of N patches as input and outputs a vector of logits
over a set of classes C. The model first transforms an input image I ∈ RH×W×C into a spatially
ordered sequence of N flattened patch vectors. We denote this patch extraction and embedding
process as T (·):

Porig = T (I) = (p1, p2, . . . , pN ), (1)
where pi ∈ RD is the embedded vector for the i-th patch, typically arranged in a standard raster
scan order. The model’s prediction for this original sequence is given by:

ŷorig = argmax
c∈C

f(Porig)c, (2)

where f(Porig)c denotes the logit for class c.

We are interested in the specific set of images where the model fails. Let ytrue ∈ C be the ground-
truth label for image I . Our setup considers all samples for which the model’s initial prediction is
incorrect:

ŷorig ̸= ytrue. (3)

A patch permutation is a bijective function π : {1, . . . , N} → {1, . . . , N} that reorders the elements
of the original patch sequence. Applying a permutation π to Porig yields a new sequence Pπ:

Pπ = π(Porig) = (pπ(1), pπ(2), . . . , pπ(N)). (4)

Crucially, the set of local patch features {pi}Ni=1 remains identical; only their sequential order (i.e.,
their spatial context as interpreted by the model) is altered.

The core objective of our work is to investigate the existence and properties of a corrective permu-
tation, which we denote as π∗. A corrective permutation is any permutation that, when applied to
the patches of a misclassified image, successfully reverses the model’s prediction to the ground-truth
label. Formally, we seek to find a π∗ ∈ SN such that:

ŷπ∗ = argmax
c∈C

f(Pπ∗)c = ytrue, (5)

where SN is the set of all possible permutations of N elements.

The central challenge is the enormous size of the search space, |SN | = N !. For a standard ViT-
T/16 model processing a 224 × 224 image, N = 196, which makes an exhaustive search for π∗

computationally intractable. This motivates our choice of a heuristic search method, the Genetic
Algorithm, to efficiently navigate this combinatorial space.

3.3 PATCH PERMUTATION SEARCH VIA GENETIC ALGORITHM

Given a misclassified image I and a model f(·), our goal is to find a patch permutation π that
corrects the prediction, i.e., argmax f(π(I)) = ytrue. The search space for such permutations is
astronomical (N !, where N = 196 for a standard ViT), rendering exhaustive search computationally
infeasible. Furthermore, the discrete nature of the permutation operation makes the optimization
problem non-differentiable, precluding gradient-based methods. To effectively navigate this vast
combinatorial landscape, we propose Patch Permutation Search (PPS), a method based on a Genetic
Algorithm (GA). The experimental details are in the Appendix A.1. And the process of GA is shown
in Figure 2.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

4 EMPIRICAL STUDY: PROBING COMPOSITIONAL FAILURES

In this section, we present a series of empirical studies designed to dissect the patch permutation
phenomenon. Our investigation proceeds in three stages: first, we quantify the prevalence of this
phenomenon across standard benchmarks (Section 4.1). Second, we analyze the characteristics of
“corrective permutations” to understand what makes them effective (Section 4.2). Finally, we ex-
amine how these permutations impact the model’s internal representations to reveal the mechanism
behind the change in prediction (Section 4.3). Our primary models for analysis are DeiT-Tiny/16
Touvron et al. (2021) on ImageNet-1K Russakovsky et al. (2015).

4.1 GENERALITY AND QUANTIFICATION OF THE PHENOMENON

Question 1: How prevalent is this phenomenon? Can any misclassified image be corrected by
patch permutation?

To answer this, we first establish whether our observation is an isolated anecdote or a general
property of modern vision models. We conduct a large-scale experiment on the validation sets
of ImageNet-1K. We collect all images that are misclassified by a pre-trained DeiT-T/16 model
and apply our Patch Permutation Search (PPS) algorithm, implemented using a Genetic Algorithm
(GA), to each of them. The fitness function for the GA is defined as the softmax probability of the
ground-truth class.

Our findings are definitive: the phenomenon is remarkably general. For nearly 100% of the misclas-
sified samples in both datasets, our PPS method is able to find at least one patch permutation that
results in a correct prediction. The analysis, therefore, focuses on quantifying the computational
effort required to discover such corrective permutations. As shown in Figure 3, most of the images
can be corrected within a few generations of the GA, while few require a more extensive search.
This suggests that for most classification errors, the necessary local features for a correct prediction
are already present within the image; it is their original spatial composition that misleads the model.
We can quantify the search effort required for each misclassified image I by its corrective generation
number, g∗(I), defined as the first generation in which a corrective permutation π∗ is found:

g∗(I) = min{g ≥ 0 | ∃π∗ ∈ Populationg s.t. argmax f(π∗(I)) = ytrue} (6)

The histogram in Figure 3 plots the empirical distribution of g∗(I), where the height of a bar at gen-
eration g is the count of images |{I | g∗(I) = g}|. The strong left skew of this distribution provides
a quantitative probe for “faulty compositional information,” indicating that the model’s failures are
often caused by fragile spatial dependencies that are easily bypassed, rather than a fundamental lack
of discriminative features.

4.2 CHARACTERISTICS OF CORRECTIVE PERMUTATIONS

Question 2: What are the common properties of patch permutations that correct misclassifi-
cations?

Having established the phenomenon’s prevalence, we now investigate the nature of these corrective
permutations. Are they random, or do they follow specific patterns? Our core hypothesis is that
these permutations succeed not by creating a new, meaningful structure, but by destroying a specific,
misleading one. They force the model to abandon its reliance on faulty compositional shortcuts and
resort to a more robust aggregation of local evidence.

Attention remains on the salient object. We use Grad-CAM Selvaraju et al. (2019) to visualize the
model’s attention before and after permutation. As illustrated in Figure 1, we consistently observe
that for many original misclassified images, the model is already attending to the correct object’s
patches. After PPS finds a corrective permutation, the resulting Grad-CAM shows that the model’s
attention remains focused on the very same object parts, even though they are now spatially dis-
jointed. This provides strong evidence that the model’s failure was not one of localization, but of
compositional reasoning. The permutation effectively isolates the local evidence from its misleading
context. See more examples in Appendix A.3.1.

Targeted disruption of distractors. We uncover a more striking pattern when dealing with images
containing multiple objects, especially in cases of label ambiguity or error Northcutt et al.. Consider
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Figure 3: Prevalency of Class-Correcting Patch Permutations. Histogram depicting the number
of successful generations—across a subset of misclassified ImageNet images runs—in which the
genetic algorithm discovered a patch permutation that corrected the Vision Transformer’s initial
misclassification. Each bar represents how frequently a valid solution emerged at a given generation,
illustrating the difficulty of the combinatorial search: valid solutions are rare in early generations
and only gradually become more consistently attainable as evolution progresses.

the example in Figure 2, where an image contains a bittern holding a tench, but the ground-truth
label is “tench”. The model initially predicts “bittern”. After applying PPS, the discovered per-
mutation exhibits a remarkable property: it selectively scrambles the patches corresponding to the
bird, effectively shattering its spatial structure, while leaving patches of the fish relatively intact.
This suggests that PPS does not just randomly shuffle, but actively learns to dismantle the spatial
information of distractor objects that contribute to the incorrect prediction.

Initialization of GA search matters. We also observe that the search process itself provides in-
sights. When the GA population is initialized with the original image sequence, it tends to find
solutions faster and these solutions are often visually closer to the original image. Conversely,
initializing with completely random permutations also finds solutions, but they are typically more
chaotic and take longer to converge, just like the right image shown in Figure 1. It looks as if the
model is forced to process the images with the behavior of ”bag of words”. This suggests the exis-
tence of multiple “solution basins” in the permutation space—some involving minor perturbations
to break a specific shortcut, and others requiring a complete tear-down of spatial structure.

4.3 IMPACT ON INTERNAL REPRESENTATIONS

Question 3: How does patch order mechanistically alter the model’s internal representations
to change the prediction?

Finally, we move from external observations to the model’s internals. We analyze the final [CLS]
token representation, which aggregates information from all patches and is fed to the classification
head. We aim to understand how PPS alters this representation to make it “correctable.”

Qualitative analysis via t-SNE. We use t-SNE to visualize the [CLS] token embeddings of images
in different states: (1) original misclassified, (2) randomly permuted, and (3) PPS-corrected. As
shown in Figure 4, the representations for PPS-corrected images form distinct clusters. Notably,
solutions found from an original-image initialization often lie in the feature space as “neighbors”
to the original misclassified point, suggesting a subtle refinement of the representation. In contrast,
solutions from random initializations can be located in a completely different region of the space, in-
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dicating that PPS can discover entirely new, effective reasoning paths. More comprehensive analysis
can be found in Appendix A.3.2.
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(a) t-SNE embedding space for the [CLS] tokens

(b) Original misclassified image:
Person handling fish, represent-
ing the blue point in (a)

(c) PPS corrected image : rep-
resenting an instance of the red
points in (a)

(d) Randomly permutated image:
representing an instance of green
points in (a)

Figure 4: Analysis of PPS correction for a misclassified image. (a) t-SNE reveals distinct clusters
of original misclassified embeddings (blue), randomly permuted images (green), and PPS-corrected
embeddings (red). (b) Original misclassified image. (c) PPS correction with original-sequence
initialization preserves spatial coherence. (d) Random initialization leads to fragmented patch ar-
rangements, demonstrating the critical role of initialization strategy in effective correction.

Quantitative analysis via Linear Probing. To quantify the quality of these representations, we
perform a linear probing experiment. We freeze the DeiT backbone and train a linear classifier on
the [CLS] token embeddings. We test the separability of features from three groups of images, all
of which are originally misclassified (their baseline accuracy is 0%). The results, summarized in
Table 1, are striking. The representations of randomly permuted images show a modest increase in
linear separability (about 30% accuracy). This suggests that simply breaking the original structure
can sometimes resolve conflicting signals. However, the representations generated by our PPS-
corrected images are almost perfectly linearly separable, achieving nearly 99% accuracy.

This result provides the strongest evidence for our hypothesis. PPS is not merely finding a brittle
decision boundary crossing; it is actively reshaping the internal feature representation into one that
is far more semantically coherent and robustly separable. The model is guided to a region in the
latent space where the evidence for the correct class is overwhelming and unambiguous, a state it
could not reach with the original, misleading spatial arrangement.
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Table 1: Linear probing accuracy on DeiT-T/16 [CLS] token representations. We train a linear
classifier on features from images that were originally misclassified by the full model. The dramatic
increase in accuracy for PPS-corrected images shows they are represented in a much more linearly
separable way.

Image Representation Source Linear Probe Accuracy

Original (Misclassified) Images 0% (by definition)
Randomly Permuted Images 30.05%
PPS-Corrected Images 98.45%

5 DISCUSSION AND IMPLICATIONS

Our empirical results demonstrate that for a vast majority of misclassified images, a “correct” pre-
diction is hiding in plain sight, accessible by merely re-arranging image patches. This finding has
profound implications for how we understand and evaluate modern vision models.

5.1 A GENERAL PHENOMENON BEYOND VISION TRANSFORMERS

Is this a ViT-specific artifact? A natural question is whether our findings are unique to the Vision
Transformer architecture, perhaps stemming from a vulnerability in its position embedding or self-
attention mechanisms. To investigate this, we replicated our experiments on a standard ResNet-
based CNN architecture He et al. (2015). We partitioned the input image into a grid of patches and
treated them as a sequence, feeding them to the CNN. We observed the exact same phenomenon: for
misclassified images, a Genetic Algorithm could find permutations of these patches that corrected
the model’s prediction.

This crucial result indicates that the issue is not tied to a specific architectural component like po-
sition embeddings. Rather, it points to a more fundamental weakness in how deep neural networks
learn to aggregate spatial evidence. Both convolutional and self-attention layers are designed to
build hierarchies of features based on local correlations. Our work suggests that in doing so, they
often learn brittle, spurious compositional rules that constitute a form of spatial shortcut learning.

5.2 PATCH PERMUTATION SEARCH AS A DIAGNOSTIC TOOL

We do not propose PPS as a method for improving inference-time accuracy due to its computational
cost. Instead, its primary value lies in its role as a powerful diagnostic tool to probe the compo-
sitional reasoning of any patch-based vision model. It opens up new avenues for model and data
analysis:

Model Auditing and Robustness Evaluation. PPS can be used to quantify a model’s reliance on
fragile spatial cues. Given two models with similar overall accuracy, the model for which PPS can
correct a higher fraction of errors is likely the one relying more heavily on non-robust compositional
shortcuts. This provides a new, targeted metric for evaluating model robustness that complements
traditional approaches like adversarial attacks or out-of-distribution testing.

Dataset Analysis and Anomaly Detection. Our “bird-and-fish” case study (Figure 2) highlights
a fascinating application: using PPS to debug datasets. The targeted scrambling of the “bird” (the
distractor) to achieve the correct “fish” label suggests that PPS can automatically identify and isolate
parts of an image that are in conflict with the ground-truth label. This could be used to flag images
with potential multi-label situations, incorrect labels, or other dataset artifacts that might confuse a
model during training.
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5.3 LIMITATIONS AND FUTURE WORK

Our work opens several exciting directions for future research. While PPS is an effective probe, it
is currently a post-hoc analysis tool. A key future direction is to leverage these insights to build
inherently more robust models. This could take several forms:

• Adversarial Training: One could formulate a training objective where the model is en-
couraged to be invariant to permutations that do not destroy the core object, effectively
performing a form of “compositional adversarial training.”

• Regularization: Can we design a regularization term that explicitly penalizes over-reliance
on specific, rigid spatial configurations?

• Architectural Innovations: Our findings motivate the development of new architectures
that better disentangle the representation of “what” (local content) from “how” (spatial
composition), potentially through modular or neuro-symbolic approaches.

Furthermore, extending this probe to other vision tasks like object detection or segmentation could
yield valuable insights into their respective failure modes.

6 CONCLUSION

In this paper, we introduced and systematically studied a counter-intuitive yet widespread phe-
nomenon in modern vision models: the ability to correct a misclassification by simply shuffling
the image patches. We have shown that this is not an anomaly but a systematic behavior that reveals
a critical vulnerability we term faulty compositional information. Our findings suggest that many
classification errors are not due to a failure in recognizing local features, but a failure in correctly
composing them, often because the model has latched onto brittle spatial shortcuts.

We proposed the Patch Permutation Search (PPS) not as a performance-enhancing trick, but as the
first direct, operational tool to diagnose these compositional failures. By analyzing the effects of PPS
through heatmap visualizations and internal representation analysis, we provided strong evidence
that it works by breaking flawed spatial dependencies and forcing the model into a more robust,
non-compositional mode of evidence aggregation. Ultimately, our work provides a new lens for
understanding the complex inner workings of deep vision systems and underscores a key challenge
on the path toward more robust and generalizable visual intelligence: learning not just what to see,
but how to see it.
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A APPENDIX

A.1 GENETIC ALGORITHM SETUP

A GA is a population-based metaheuristic inspired by natural selection, well-suited for this task. We
define the core components of our GA as follows:

Chromosome and Population Each individual solution in the population, or chromosome, is
represented as a permutation π of the patch indices, i.e., a sequence of unique integers from
{0, 1, . . . , N − 1}. A population consists of a fixed number of such chromosomes.

Fitness Function The objective is to find a permutation that leads to a correct and confident pre-
diction. We define the fitness of a chromosome π as the cross-entropy loss between the model’s
prediction for the permuted image π(I) and the ground-truth label ytrue. The GA’s objective is to
minimize this fitness score:

Fitness(π) = LCE(f(π(I)), ytrue) (7)

A lower fitness value indicates that the corresponding patch permutation brings the model’s output
closer to the true label.

Genetic Operators The evolution process is driven by selection, crossover, and mutation. In each
generation, a portion of the population with the best fitness scores is selected as parents. New
offspring are generated using:

• Crossover: We employ Partially-Mapped Crossover (PMX), a standard operator for
permutation-based chromosomes that ensures the offspring are valid permutations.

• Mutation: A swap mutation is applied, which randomly selects two indices in the chromo-
some and swaps their values.

Additionally, we incorporate elitism, where a small fraction of the best-performing individuals from
the current generation are directly carried over to the next, ensuring that the best-found solution is
never lost. The specific hyperparameters used for our GA are detailed in Table 2.

Initialization Strategies The initial population critically influences the search trajectory. We ex-
plore two distinct strategies to understand its impact:

• Identity Initialization: The entire initial population is seeded with the original patch se-
quence, πorig = (0, 1, . . . , N − 1). This strategy initiates the search from the vicinity of
the original image configuration, exploring permutations that are structurally “close” to the
original.

• Random Initialization: The population is initialized with completely random permuta-
tions. This encourages a broader, more exploratory search across the entire permutation
space, without any bias from the original spatial layout.

As we will demonstrate in our experiments, these two strategies converge to solutions with remark-
ably different characteristics. Identity-initialized searches often yield minimally perturbed, visually
recognizable images, whereas random-initialized searches converge to highly chaotic and indeci-
pherable patch arrangements.
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Early Stopping Criterion A key aspect of our experimental design is the inclusion of an early
stopping mechanism. While we set a maximum of 500 generations for the search, the process for
any given image is terminated as soon as a permutation π is found for which the model’s top-1
prediction, argmax f(π(I)), matches the ground-truth label ytrue. This allows us to not only find
a corrective permutation but also to measure the search efficiency, i.e., the number of generations
required to fix the prediction. As shown in our results (Figure 3), this early stopping is triggered
for nearly all samples, often well before the maximum generation limit is reached, highlighting the
widespread accessibility of these corrective solutions in the search space.

Table 2: Hyperparameters for the Genetic Algorithm used in Patch Permutation Search (PPS).

Parameter Value

Max Iterations 500
Population Size 500
Parents Portion 0.3
Crossover Probability 0.8
Crossover Type PMX
Mutation Probability 0.8
Mutation Type Swap
Elitism Ratio 0.01

A.2 LINEAR PROBING SETUP

• Datasets: Our primary experimental platform is ImageNet-1K. Images (224 × 224) are
divided into N = 196 non-overlapping 16× 16 patches.

• Models: We evaluate two distinct architectures: Vision Transformer (DeiT-T) and a Con-
volutional Neural Network (ResNet-18). All models are pre-trained on ImageNet-1K.

– Training Data: Linear probes are trained using features before the linear classifica-
tion head generated from three types of sequences: Features from the original image
patch sequence, Features from randomly shuffled patch sequences and features from
image patches reordered by corrective permutation.

– Hyperparameters: Training involved 60 epochs, a learning rate of 1 × 10−3, the
AdamW optimizer, and a batch size of 128. The dataset was split into an 80% training
set and a 20% test set.

We not only apply linear probing on ViT, but also on ResNet:

Table 3: Linear probing accuracy on ResNet-18 last layer token representations. We train a
linear classifier on features from images that were originally misclassified by the full model. The
dramatic increase in accuracy for PPS-corrected images shows they are represented in a much more
linearly separable way.

Image Representation Source Linear Probe Accuracy

Original (Misclassified) Images 0% (by definition)
Randomly Permuted Images 22.37%
PPS-Corrected Images 78.29%

From this, it can be seen that ResNet did not achieve the same high accuracy as ViT Table 1 on lin-
ear probing. In contrast, the design philosophy of ResNet (and all CNNs) is built upon strong, fixed
spatial inductive biases. The essence of the convolution operation is to process spatially adjacent
local regions, gradually expanding the receptive field through layered stacking. Its entire workflow
heavily relies on the spatial continuity and locality of input features. When PPS feeds a spatially
fragmented sequence to ResNet, it directly violates the model’s most fundamental working assump-
tion. The convolutional kernels cannot effectively integrate information by crossing non-adjacent
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blocks, even if these blocks are semantically related. Therefore, although the 78.29% accuracy sug-
gests that the model can still benefit from semantically clustered low-level features (such as color
and texture), its inherent spatial dependency limits its ability to learn high-level global features from
this “disordered” input.

A.3 MORE ON VISUALIZATION

This section provides additional visualizations to supplement the empirical findings presented in
the main paper. These examples further illustrate the key phenomena of attention stability, internal
representation shifts, and the evolutionary search process.

A.3.1 GRAD-CAM

To further illustrate the findings from Section 4.2, Figure 5 provides additional examples of Grad-
CAM visualizations. These examples reinforce the observation that the model’s attention is often
correctly localized on the salient object even when the final prediction is wrong. In each pair, the
top row shows the original misclassified image, and the bottom row shows a PPS-corrected version.
Despite the radical scrambling of patches, the model’s attention (heatmaps) remains consistently
focused on the same set of patches belonging to the target object. This provides strong evidence
that the initial error was compositional—a failure to interpret the spatial arrangement of correctly
identified features—rather than a failure of feature localization itself.

stingray

tiger shark

tiger shark

electric ray

bustard kite bullfrog

ostrich house finch americanalligator

Figure 5: Additional Grad-CAM Examples. The top row of each pair shows the original mis-
classified image and the model’s prediction. The bottom row shows the image after a corrective
permutation has been applied, leading to the correct prediction (the ground truth). The model’s at-
tention remains fixed on the key object’s patches throughout.

A.3.2 MORE VISUALIZATION ON [CLS] TOKEN

We expand upon the analysis of internal representations presented in Section 4.3. Figure 6 presents
additional t-SNE visualizations and corresponding cosine similarity distributions for the [CLS] token
embeddings of several misclassified images.

The left column (t-SNE plots) consistently demonstrates the geometric separation in the feature
space: the original misclassified embedding (blue) is distinct from the cloud of random permutations
(green), while the PPS-corrected embeddings (red) form a tight, separate cluster. This shows that
corrective permutations are not random but belong to a specific, structured region of the permutation
space.

The right column quantifies the relationships within the feature space. It plots the distribution of
cosine similarities calculated between the [CLS] token of the original misclassified image and two
other sets of embeddings: those from PPS-corrected images (red) and those from randomly per-
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Figure 6: Additional t-SNE and Cosine Similarity Visualizations of [CLS] Token Embeddings.
Each row corresponds to a single misclassified image. (Left) t-SNE plots showing original (blue
star), randomly permuted (green cloud), and PPS-corrected (red cloud) embeddings. (Right) His-
tograms show the cosine similarity of PPS-corrected (red) and randomly permuted (green) embed-
dings relative to the original embedding. The PPS-corrected solutions are significantly more similar
to the original than random permutations are.

muted images (green). Let vorig, vpps, and vrand be the [CLS] token representations for the original,
a PPS-corrected, and a randomly permuted image, respectively. The histogram visualizes two dis-
tributions of cosine similarities: the similarity between PPS-corrected and original embeddings,
{cos(vpps, vorig)}, shown in red, and the similarity between randomly permuted and original embed-
dings, {cos(vrand, vorig)}, shown in green.
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The consistent rightward shift of the red distribution indicates that, on average, the representations
of corrective permutations are much more similar to the original representation than those of random
permutations. The observation can be expressed as:

Eπpps∼PPS[cos(vpps, vorig)] ≫ Eπrand∼Uniform[cos(vrand, vorig)]

This implies that while random permutations push the image’s representation to a distant, unrelated
region of the latent space, PPS finds corrective solutions whose representations remain relatively
close to the original. It suggests that PPS is not finding an arbitrary path to a correct classification
but is instead performing a targeted “nudge” on the feature vector. It preserves much of the core
feature information from the original image while subtly altering it just enough to escape the pull of
the incorrect class and move into the basin of attraction for the correct one.

A.3.3 PATCH PERMUTATION SEARCH PATH

To visualize the optimization process of the Patch Permutation Search, Figure 7 tracks the evolution
of the model’s heatmap over several generations of the genetic algorithm. Each row corresponds
to a different misclassified image, progressing from an early generation (left) towards a converged,
corrective permutation (right).

The key insight from these trajectories is that the model’s focus, as indicated by Grad-CAM, is
established on the correct object early in the search and remains remarkably stable throughout the
optimization. The GA is not helping the model find the object; the model has already found it.
Instead, the GA’s role is to discover a patch arrangement that dismantles the misleading spatial
context, allowing the already-localized features to be aggregated in a way that leads to a correct
classification. This dynamic view of the search process further reinforces our central hypothesis
about faulty compositional information.

Figure 7: Evolution of Grad-CAM Attention During Patch Permutation Search. Each row
tracks the attention map for a single image across different generations of the GA (progressing left
to right). The heatmaps consistently highlight the core object, demonstrating that the model’s focus
on discriminative regions is preserved even as the spatial structure is radically altered by the search
algorithm.
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