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Abstract

We aim to estimate the pose of dogs from videos using a temporal deep learning model as this can result in more accurate
pose predictions when temporary occlusions or substantial movements occur. Generally, deep learning models require a lot
of data to perform well. To our knowledge, public pose datasets containing videos of dogs are non existent. To solve this
problem, and avoid manually labelling videos as it can take a lot of time, we generated a synthetic dataset containing 500
videos of dogs performing different actions using Unity3D. Diversity is achieved by randomising parameters such as lighting,
backgrounds, camera parameters and the dog’s appearance and pose. We evaluate the quality of our synthetic dataset by
assessing the model’s capacity to generalise to real data. Usually, networks trained on synthetic data perform poorly when
evaluated on real data, this is due to the domain gap. As there was still a domain gap after improving the quality of the
synthetic dataset and inserting diversity, we bridged the domain gap by applying 2 different methods: fine-tuning and using a
mixed dataset to train the network. Additionally, we compare the model pre-trained on synthetic data with models pre-trained
on a real-world animal pose datasets. We demonstrate that using the synthetic dataset is beneficial for training models with
(small) real-world datasets. Furthermore, we show that pre-training the model with the synthetic dataset is the go to choice
rather than pre-training on real-world datasets for solving the pose estimation task from videos of dogs.

Keywords Animal pose estimation - Synthetic data - Domain adaptation - Temporal - Deep learning

1 Introduction

Globally, 33% of households own a dog which makes it man’s
best friend (from Knowledge, 2016). In general, dog own-
ers want good welfare for their dogs. They want to make
sure their dog has a suitable environment, diet, the ability to
interact with other animals, the ability to demonstrate nor-
mal behaviour patterns and protection from pain, suffering,
injury and disease. To address the last two needs, quantify-
ing canine locomotion and gait is essential to the diagnosis
of health conditions such as lameness. Traditionally marker
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based motion capture systems are used to evaluate the gait
of canines, however, due to the significant positive results in
both human and animal deep learning pose estimation meth-
ods over the past years, it is now possible to estimate the
pose of animals in a markerless manner. This not only opens
applications for veterinary science (Wang et al., 2021) but
also ecology (Tuia et al., 2022), robotics (Peng et al., 2020)
and entertainment (Luo et al., 2022).

With the exception of Liu et al. (2021) and Russello et
al. (2021), many previous animal pose estimation methods
(Graving et al., 2019; Nath et al., 2019; Pereira et al., 2018)
process video frames individually instead of sequences of
frames in an end-to-end manner. These methods ignore valu-
able temporal context which can lead to inaccurate pose
estimations in the event of substantial inter-frame movements
and temporary occlusions. Using temporal models could pro-
duce more accurate pose estimations from videos of animals
in the wild performing actions such as running and interact-
ing with their environment and other animals.

Deep learning methods need a lot of data to perform and
generalise well. While the total amount of animal data is
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increasing rapidly from, for example, camera traps, there is
still a lack of animal pose (video) datasets and to the best
of our knowledge there is no dataset that contains videos of
dogs with annotated pose. StanfordExtra (Biggs et al., 2020)
is the only large-scale publicly available dataset containing
individual images of dogs. Usually, to create a pose dataset,
humans are required to manually label a number of anatom-
ical features such as the skeleton joints on many frames of
videos. This can be labour-intensive, expensive and prone to
errors; particularly when creating datasets containing data of
dogs, as within the dog species there is a lot of variation. So,
for the model to be able to estimate the pose across different
breeds, there is a need for a large dataset with a lot of vari-
ation. To tackle the need for large datasets, several previous
methods generated synthetic data as training data as it comes
with benefits such as producing unlimited diverse data and
accurate labels.

In this paper we estimate the pose from videos of dogs
in the wild using temporal models. As there is a lack of dog
video pose datasets we generate a synthetic dataset by extend-
ing on the work of SyDog (Shooter et al., 2021). We produced
a synthetic dataset containing 500 videos of different dogs
performing different actions labelled with 2D keypoint coor-
dinates, bounding box coordinates and segmentation maps.
We evaluate the pose estimation models with a small real-
world dataset, which we called Dogio-11 and which was
produced for this work. Deep learning models trained on syn-
thetic data usually perform poorly when evaluated on real
data; this is due to the domain gap. To bridge the gap, we
initially tried to improve the quality of the synthetic data.
However, when evaluating on the real-data we demonstrated
that the domain gap still remained, therefore we applied two
different transfer-learning methods.

Summary of contribution is: (i) the generation of a
large-scale synthetic dataset containing 500 videos of dogs
performing different actions with labelled 2D ground truth
including bounding box coordinates, keypoint coordinates
and segmentation maps. (ii)) We demonstrate that it is essen-
tial to pre-train models to be able to train on small video
datasets (~1k frames). Additionally, we show that models
pre-trained on synthetic data perform better than models
pre-trained on large sized real-world datasets. The code and
dataset will be made available upon publication.

2 Related Work

Much research has looked into using synthetic data as train-
ing data for the following reasons. When creating datasets
there is a need to be aware of copyrights and when it comes
to humans, privacy. Additionally, manually creating datasets
can result in biased datasets and it can be time-consuming,
expensive and it can likely have more inaccurate annotations.
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2.1 Synthetic Data

The interest in generating and using synthetic data as training
data has started to grow since deep learning methods require
alarge amount of data. Synthetic data has been used for many
computer vision tasks such as estimating optical flow (Fis-
cher et al., 2015; Ilg et al., 2016), object detection (Borkman
et al., 2021; Kiefer et al., 2021), semantic and instance seg-
mentation (Chen et al., 2018; Gaidon et al., 2016; Park et al.,
2021), pose estimation (Chen et al., 2016; Varol et al., 2017)
and many more.

Different methods were used to generate computer vision
synthetic datasets such as pasting 3D assets onto a real back-
ground either in a realistic (Alhaija et al., 2017; Georgakis
et al., 2017) or unrealistic manner. Other methods reused 3D
environments/assets from games such as GTA V produced
by 3D artists (Hu et al., 2019; Hurl et al., 2019; Richter et al.,
2016). This inspired other work to use game engines such
as Unity 3D (Ebadi et al., 2021; Gonzilez et al., 2020) and
Unreal Engine (Qiu and Yuille, 2016; Tremblay et al., 2018)
to create synthetic datasets.

In addition to the application of transfer-learning (Mathis
et al., 2018; Sanakoyeu et al., 2020; Yu et al., 2021) and
domain adaptation (Cao et al., 2019), synthetic data has
been used as training data (Bolafios et al., 2021; Zuffi et
al., 2016) to tackle the problem of the lack of animal pose
datasets. Mu et al. (2019) created a synthetic dataset includ-
ing images of different animals (10+). The poses of the
animal 3D models were varied using the pre-set animation
sequences that came with them. To insert diversity in the
dataset, the authors randomized lighting, textures and camera
viewpoints. ZooBuilder (Fangbemi et al., 2020) generated a
synthetic dataset containing 170k images of cougars by ren-
dering images of one cougar using 12 virtual cameras. They
used keyframe animations to obtain various poses and to add
more variation to the dataset they added real images into the
background. SyDog (Shooter et al., 2021) produced a syn-
thetic dataset containing 32k images of dogs using Unity3D.
The dataset was made varied by using different dog models
and adding different procedural textures to them. Addition-
ally, different images were sampled for the background and
ground geometry and similar to Mu et al. (2019) the lighting
conditions and camera viewpoints were randomized. While
previous work used a set of pre-set animations to obtain a
varied amount of poses, the authors of SyDog were able to
control the dog animations using keyboard inputs by lever-
aging the work from Zhang et al. (2018).

Our work extends on the work of SyDog, but instead
of generating synthetic images we generate sequences of
frames. Furthermore, we improve the quality of the 3D assets
and environment to increase realism and reduce the domain

gap.
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2.2 Training with Synthetic Data

While generating synthetic data comes with its benefits, using
it as training data can come with complexities, especially
when it comes to high-level computer vision tasks. Usually
when models are trained on synthetic data and evaluated on
real data, the models perform poorly and are not able to
generalise on the real data. This is called the domain gap
which is caused by the synthetic and real data distributions
being different. Previous work has attempted to bridge the
gap using domain randomization (Tobin et al., 2017) which
introduces enough diversity in the training data by randomis-
ing parameters in the simulator for the model to consider
the out of domain dataset as another variation at evaluation
time. Other methods proposed to refine the synthetic data
using Generative Adverserial Networks (GANSs) (Lee et al.,
2019). However, while this might improve the quality of the
data, it might not improve the performance of the models.
Hence, other methods proposed to apply domain-adaptation
to the features of the network, or the network itself. Recently,
instead of bridging the gap in later stages of the pipeline,
Wood et al. (2021) was able to solve face-related computer
vision in the wild tasks by training the network solely on
synthetic data. This was done by improving the quality of
the synthetic data. We decided to follow the same proce-
dure. Additionally, we have relied on domain randomization
to insert diversity into the dataset. In Sect.5 we demonstrate
that there is still a domain gap between the synthetic data and
real data, so we carried out different transfer-learning meth-
ods such as fine-tuning the networks trained on synthetic data
and training with a mixed dataset (synthetic and real data).

3 Data and Methods

In this section we discuss how we acquired the real-world
dataset (Sect. 3.1), generated the synthetic dataset (Sect. 3.2),
and how the datasets were split depending on what was eval-
uated.

3.1 Data Acquisition

Our method is evaluated on real-world data, which we
sourced from Pexels (Pexels, 2022) and the Youtube-8M
dataset (Abu-El-Haija et al., 2016). We acquired 14 videos
sampled at 25-30 fps and trimmed to 5- 6 s each. The videos
contain different types of dog breed, with different back-
grounds varying in lighting and camera viewpoint. The
videos were annotated with 33 body parts identical to the
keypoints labelled in the synthetic dataset. We used coco-
annotator (Brooks, 2018) to annotate our data. We tried to
label all the 33 keypoints. However, when there was uncer-

tainty we set the keypoint as invisible and did not annotate
it.

3.2 Data Generation

Our work is an extension of SyDog (Shooter et al., 2021),
however we modify the generator to synthesise sequences
of frames instead of individual frames. Additionally, we
improve the quality of the synthetic data by adding fur to
the 3D models and integrate the model into the background
using high dynamic range images (HDRIs).

3.2.1 Rendering

We generated synthetic videos using the game engine
Unity3D (Haas, 2014) and took advantage of the Unity Per-
ception package (Unity Technologies, 2020). The Perception
package enables fast and accurate generation of labelled data
and enables the effortless application of domain randomiza-
tion. On a Windows 10 machine with 2.60 GHz 6-Core Intel
Corei7, NVIDIA GeForce RTX 2070 with Max-Q Design we
generated 17,500 frames labelled with 2D bounding boxes,
33 keypoint labels and segmentation maps in approximately
45 min. This time included the time to write the data to disk.
The Perception package enabled us to randomise parameters
such as those of the camera. The camera was positioned at
various points around the dog, facing the dog’s body. The
focal length and aperture were varied to simulate various
cameras and lenses. Additionally, the yaw of the camera was
also randomised.

To light the scene we used one directional light, 2 point
lights and as in Wood et al. (2021), we made use of image-
based lighting with HDRIs to illuminate the 3D dog model
and provide us with a background. We randomised the angle
of the directional light by randomising the hour of the day,
day of the year and latitude of the light. Further, we ran-
domised the intensity and the temperature of the lights. We
recommend the reader to look at Table 11 for more details.
For each video we randomly sampled from a collection of
503 HDRIs (Zaal et al., n.d.). We split the HDRIs into a
training and test set.

3.2.2 Dog Appearance

We used 5 different 3D dog models which varied in
size (Fig.1). For the models to work properly with the
Al4Animation project (Zhang et al., 2018), used in this work,
the models needed to be the same scale and shape as the
default dog that came with the original project. Due to the
dogs not having a similar scale and shape to the default dog,
most of the 3D models failed to pose realistically when sit-
ting or lying down, however we chose to keep the models, as
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(a) Image of the 5 dog models without fur

(b) Image of the 5 dog models with fur

Fig.1 This figure shows the 5 dog models used in the synthetic generator. Best in colour (Color figure online)

Fig. 2 Examples of hand-painted textures by 3D artist (Color figure
online)

the failures were minor, in order to increase the diversity in
the dataset.

A 3D artist hand painted most of the textures of the dogs
(Fig.2) in a realistic manner. In the final dataset, each 3D
model had 10 different textures to sample from. In addition to
the hand-painted textures we added fur to the models by using
the Fluffy Grooming Tool (Zeller, 2021). The tool has gravity,
wind, physics and colliders built in. However, to make the
fur tool work with the Perception package, we had to convert
the card-based fur into a 3D mesh. Unfortunately, this meant
we could not take advantage of the gravity, wind, physics or
colliders.

Initially, the 3D models were animated using the Al4
Animation project and 5 different animations could be
executed—walking, running, jumping, sitting and lying
down by manually pressing keyboard keys such as the
WASD-keys. We implemented a Perception Package Ran-
domizer to execute the animations automatically. The ani-
mations could be made repeatable by controlling the seed of
the randomizer.

3.2.3 Scene Background
As mentioned in Sect.3.2.1, we used HDRIs as background.

Initially, we generated a dataset with a clean background,
however we decided to also generate 3 additional synthetic
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datasets with different distractors/occluders in the back-
ground (Sect.5.6). The distractors we used were 119 3D
assets sourced from PolyHaven (Zaal et al., n.d.) which
included props, plants and tools. For each video, these 3D
assets were randomly positioned and rotated in 3D. Addi-
tionally, we sourced 3D human assets, including animations,
from Adobe (2022). These human assets were randomly
placed at different positions and rotated around the vertical
axis on the ground geometry in the scene and were assigned
arandom animation such as walking, jogging, talking on the
phone, breathing, clapping or waving.

3.2.4 Domain Randomization

We depended on domain randomization for the pose estima-
tion models trained on synthetic data to generalise to real
data. Parameters such as the type of fur, light conditions and
background are randomised to add variety into the synthetic
data. All the parameters in the synthetic dataset use a uniform
distribution. Usually, for datasets with individual images we
would randomise at each frame. But as we are generating
video frames, the simulation environment is set to randomise
at each iteration (video) instead of at each frame, therefore
we implemented the code in the OnlterationStart() function
instead of the OnUpdate() function (Fig. 11).

3.3 Architecture

We used the LSTM Pose Machine (Luo et al., 2017) architec-
ture, originally developed for human pose estimation which
is based on the convolutional pose machine network (Cao
et al., 2018). The authors converted a multi-stage CNN to a
Recurrent Neural Network (RNN). This allowed for placing
Long Short-Term memory units between frames, which in
turn made the network learn the temporal dependency among
video frames and capture the geometric relationships of joints
in time.
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3.4 Training Procedure

We implemented our approach using PyTorch Lightning
(Falcon et al., 2019). We extended the code from Ma (2018).
We ran the experiments using a Nvidia GeForce RTX 2080
Ti GPU and tracked the training progress using Tensorboard.
For all the experiments we defined the training loss as the
Mean Squared Error loss (MSE). We wanted to find the opti-
mal model for when training the models on real data in order
to make a fair comparison between the models trained with
synthetic data and models trained on real data. We found the
optimal model by searching through the hyper-parameters
space using the open source hyperparameter optimization
framework Optuna (Akiba et al., 2019). When training with
the synthetic dataset we set the length of the model to be
5 (ie. T = 5) and set the hyper-parameters as in Luo
et al. (2017), except that we set a batch-size to 2 instead
of 4.

4 Experiments and Evaluation
4.1 Experiments

We execute different experiments to evaluate the quality of
the synthetic data generated:

1. Train the network on real data only.

2. Train the network on synthetic data only.

3. Pre-train the network with synthetic data and then fine-
tune it with real data (Fine-tuning).

4. Train the network on synthetic data and real data (Mixed
training).

Furthermore, we evaluate if the model trained with syn-
thetic data is able to generalise to real data and to dog
breeds not seen by the model. Additionally, we compare
the performance of models pre-trained on different types of
datasets:

Synthetic dataset (SyDog-Video)
StanfordExtra (Biggs et al., 2020)
Animal Pose (Cao et al., 2019)
APT-36K (Yang et al., 2022)
ImageNet (Deng et al., 2009)

S

The model trained on ImageNet is modified as such: the fea-
ture extractors in the LSTM Pose Machine are replaced with
pre-trained ResNets on ImageNet.

Table 1 The 33 keypoints annotated

Index Synthetic Real Licw
0 Nose Top head 2
1 Chin Chin 1
2 L_eye Nose 3
3 R_eye L_eye 4
4 L_ear base R_eye 5
5 L_ear tip L_ear base 7
6 R_ear base R_ear base 6
7 R_ear tip L_ear tip 8
8 Head R_ear tip -1
9 Top head Top shoulders 0
10 Top shoulders Mid spine 9
11 L_shoulder Top hips 16
12 L_elbow Start tail 17
13 L_wrist Mid tail 18
14 LF_paw End tail 19
15 R_shoulder L_scapula 21
16 R_elbow L_shoulder 22
17 R_wrist L_elbow 23
18 RF_paw L_wrist 24
19 Mid spine LF_paw 10
20 Top hips R_scapula 11
21 Hips R_shoulder -1
22 Start tail R_elbow 12
23 Mid tail R_wrist 13
24 End tail RF_paw 14
25 L_hip L_hip 25
26 L_stiffle L_stiffle 26
27 L_ankle L_hock 27
28 LB_paw LB_paw 28
29 R_hip R_hip 29
30 R_stiffle R_stiffle 30
31 R_ankle R_hock 31
32 RB_paw RB_paw 32

Index refers to the keypoints order of the synthetic dataset. /,,.,, refers
to the new index of the Dogio-11 dataset. When 1., is -1 the keypoint
coordinates are set to invisible

L left, R right, LF left front, RF right front, LB left back, RB right back

4.2 Datasets
4.2.1 Dogio-11

Henceforth we refer to the real dataset as Dogio-11. To pro-
duce Dogio-11, we firstly modified the real dataset keypoints
to map to the keypoints of the synthetic dataset (Table 1).
The labelled dataset acquired in Sect.4.2 contains 14
videos of different breeds: Rottweiler (1 x), Labrador (1x),
Husky (1x), Border Collie (5x), German Shepherd (3x),
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Table 2 Number of training and test samples for the Dogio-11 dataset
(T=5)

Dataset Train Test (known) Test (unknown) Total

Dogio-11 155 155 96 406

Chihuahua (1 x), Miniature Pinscher (1 x) and Mountain Cur
(1x). Because we evaluate the models with within-domain
data and out-of-domain data, we produce a dataset called
Dogio-11 which contains 7 dog breeds (11 videos) for train-
ing and 1 dog breed for testing (3 videos). Similarly to
Russello et al. (2021), we split the videos into samples of
5 consecutive frames with no overlap. Instead of generating
the samples first, we initially split the videos into training
and test sets and then split the videos into samples. We refer
the reader to Table 2 to have a detailed overview of how we
generated and split the Dogio-11 dataset.

We use Dogio-11 to evaluate the model’s generalisation
capacity to unseen frame sequences with known types of dog
breeds (known), and to unseen types of dog breeds (unkown).
As mentioned earlier we split the dataset into 11 training
videos and 3 testing videos. We then sampled the videos into
sequences, and took a subset of 50% of random training sam-
ples to use for training—the other 50% was used for testing
the within-domain robustness. The 3 testing videos, which
were used to see whether the models generalised across dif-
ferent type of breeds, were sampled into sequences of 5
frames with no overlap and this produced a total of 96 sam-
ples.

4.2.2 SyDog-Video

From now on we refer to the synthetic dataset as SyDog-
Video. We produce a dataset including 500 synthetic videos
of 175 frames (87,500 frames). This dataset included images
with an HDRI and a ground geometry (floor/terrain) but did
not contain any videos with distractors/occluders such as
3D assets or 3D people. However, in Sect.5.5 we assess the
importance of adding distractors in the background.

To validate the network’s performance on the synthetic
dataset, we withhold one type of dog breed of the dataset.
We split the dataset based on the type of dog breed. We use 4
dogs for training and 1 dog for testing. Additionally, the test
dataset contains backgrounds that do not occur in the training
dataset. Please refer to Table 3 for an overview of the number
of training and test samples of SyDog-Video.

To establish the network’s performance is attributed to
its acquisition of temporal information rather than the sheer
scale of the synthetic video dataset, we conducted an experi-
ment involving pre-training the network with a non-temporal
variant of the synthetic video dataset. Consequently, the input
to the network consisted of a sequence comprising identical
frames.
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4.2.3 Animal Pose Datasets

We use the following animal pose datasets including images
of animals/dogs to train the network and compare the models
with the models (pre-)trained on synthetic data. We follow
the same procedure as in Luo et al. (2017) where we build a
single image model from the LSTM Pose Machine network.
The single image model has the same structure, however, at
each stage the input is the same image instead of different
frames.

The StanfordExtra dataset (Biggs et al., 2020) is a large-
scale dataset containing 12k images of 120 different dog
breeds based on the Stanford Dogs dataset (Khosla et al.,
2011). To train the network we split the data according to
the split provided on the StanfordExtra paper (54:32:14). We
evaluate the models on the StanfordExtra test dataset for val-
idation. Additionally, the StanfordExtra dataset is used to
create a mixed training dataset.

The Animal Pose dataset (Cao et al., 2019) is also used for
training the networks and to be able to compare these net-
works with the models trained on synthetic data. The dataset
contains more than 4k images of dogs, cats, horses, cows and
sheep. Instead of using only the subset of images that contain
only a single subject such as in Mathis et al. (2019) from the
original dataset, we crop each image based on the bounding
box coordinates which result in us having a single animal in
the image. We use 80% of the dataset for training and 20%
of the dataset for testing.

The APT-36K (Yang et al., 2022) is used for training the
networks and be able to compare with the network pre-trained
on synthetic data. Initially, the dataset comprised 36,000
labeled images featuring a diverse range of animals. Rec-
ognizing the value of temporal information, we performed
pre-processing on the dataset to generate sequences, allowing
us to leverage this temporal aspect. As a result, we obtained
a final set of 3,774 sequences. The dataset was divided into
training and testing sets, with 80% allocated for training pur-
poses and the remaining 20% utilized for testing.

As mentioned in Sect.4.1 we evaluate the models trained
on the animal datasets with the Dogio-11 test datasets before
and after fine-tuning the models. 155 frames out of 410
frames (37.80%) are categorized as challenging cases due
to factors like temporal occlusion or including substantial
movements. In Sect.5.4, we analyze and compare the per-
formance on these challenging cases with that of the easier
cases, as well as the overall test set.

4.3 Evaluation Metric

The Percentage of Detected Joints (PDJ) is used to evaluate
the pose estimation model. The PDJ metric expresses the per-
centage of correct keypoints, where a predicted keypoint is
considered correct if its distance to the ground-truth keypoint
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Table 3 Number of training and

test samples for SyDog-Video Dataset Train Test (known) Test (unknown) Total

(T=5) SyDog-Video 14,000 N/A 3500 17,500

is smaller than a fraction of the bounding box diagonal. For ~ Table4 Results on the different SyDog-Video test datasets

example, PDJ@0.1 is the percentage of the keypoints within Type of test set PDJ@0.1 1 MPJPE |

the threshold of 10 percent of the bounding box diagonal.

In the equation below d; represents the length of the bound- ~ Dog2 85.77 0.11

ing box diagonal of data/subject i which is calculated from  Lab 75.69 0.15

ground-truth. py and t; are the predicted and ground-truth ~ Pug 75.17 0.17

location of keypoint k. And finally, ® represents the propor-  Pitbull 78.11 0.16

tional threshold. Wolf 72.24 0.17
Average 77.40 0.15

PDI@O = - EN: (Ipk = tell — d; * ©) (1)
- o _ .
N Pk k i

i=1

where 0 (x) = 1 when x < 0 and o(x) = O otherwise.
We set the threshold to 0.1. Additionally, the Mean per Joint
Position Error (MPJPE) metric is also used to evaluate the
pose estimation model. It measures the mean of the euclidean
distance between the predicted and ground-truth keypoints.

N
1
MPJPE=N_EIIIPk—tkII (@)
=

The MPJPE metric is normalised with respect to the length
of the bounding box diagonal.

5 Results and Discussion

In this work we evaluate the use of the synthetic video dataset
we generated called SyDog-Video.

5.1 Models Trained Solely on Real Data

To be able to fairly compare the models trained on synthetic
data with the models trained on real data, we augmented the
appearance (converting to grayscale, sensor noise, brightness
and contrast) and geometric properties of the data (rotations,
random cropping).

In spite of the fact that we tried to find the optimal model
(Sect.3.4) and augmented the training data, the models were
not able to learn. This is most likely due to the small training
dataset (115 samples) and inconsistent 2D ground truth.

5.2 Models Trained Solely on Synthetic Data

Table4 presents the accuracy of the models on various
types of SyDog-Video test datasets. These datasets consist

Note that the synthetic test sequences contains backgrounds and a dog
type that the model had not seen while training

Table 5 Results on the Dogio-11 test datasets before fine-tuning

Type of test data PDJ@0.1 ¢ MPIJPE |
Dogio-11 (known) 43.07 0.41
Dogio-11 (unknown) 37.36 0.58

It is demonstrated that the model performs poorly when evaluated on
real data (domain gap)

of sequences featuring unseen backgrounds and dogs to the
network. To ensure comprehensive evaluation, we employed
a leave-one-out cross validation approach due to the test set
containing only one dog breed. This involved training the net-
works on distinct training datasets, excluding one dog breed
each time, and subsequently averaging the obtained results.
Our analysis of Table 4 leads us to the conclusion that there is
a significant importance associated with maintaining diver-
sity in the shape and size of dogs. The models are evaluated
in terms of their ability to generalise to real data (Table5).
The results show that there is still a large domain gap. We
address this by fine-tuning the models using the Dogio-11
training dataset and by training the network with a mixed
dataset. Both these methods succeed in bridging the domain
gap which we discuss in Sect.5.3.

Figure 3 illustrates qualitative results on the synthetic test
dataset. Note that the test samples contain only unseen dog
breeds and unseen background images.

5.3 Transfer-Learning Results

As illustrated in Sect.5.2 the models trained on synthetic
data perform poorly when evaluated on real data. This is
due to the domain gap. However, these models do perform
better than the models trained solely on real data. We aim to
bridge the domain gap by applying transfer-learning methods
such as fine-tuning and training the models with a mixed
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Fig.3 Samples of the SyDog-Video test dataset. The test dataset contains dog breeds that the network had never seen, including backgrounds. The
ground truth is coloured in green and the model predictions are coloured in blue (Color figure online)

Table 6 Results on the Dogio-11 test datasets after the application of transfer-learning methods

Training strategy PDJ@0.1; 1 MPIJPE;, | PDJ@0.1, ¢ MPJPE, |
Before fine-tuning (trained on SyDog-Video) 43.07 0.41 37.36 0.58
Fine-tuning 77.76 0.16 41.78 0.44
Mixed dataset 68.82 0.21 37.29 0.46

The bold means the best performance

It is illustrated that pre-training the network results in better performance than using a mixed dataset for training. The subscript k and u indicate
to the known and unknown Dogio-11 test datasets. The performance of the model is evaluated using the percentage of detected joints (PDJ) with a
threshold set to 10% of length of the bounding box diagonal and the mean per joint per error (MPJPE) which is normalised w.r.t. the length of the

ground truth bounding box diagonal

training dataset (synthetic + real samples). As mentioned in
Sect.4.2.3 we used the StanfordExtra dataset to create the
mixed training dataset. Table 6 compares the accuracy of the
model when fine-tuned to the model that is trained with the
mixed dataset. It is illustrated that fine-tuning the network
results in better performance than using a mixed dataset for
training.

Figure 4 illustrates qualitative results from samples of the
known Dogio-11 test dataset before and after fine-tuning the
network. We do not show results from the unknown test
dataset because the network was not able to generalise well
to new dog breeds due to the Dogio-11 training dataset size
being extremely small (115 samples).

As the Dogio-11 training dataset size is extremely small
we also decided to fine-tune the network, pre-trained on the
SyDog-Video dataset, on larger real-world datasets. Fine-
tuning on these datasets and evaluating on the Dogio-11
test datasets yielded unsatisfactory results due to the differ-
ent data distributions (Table 8). Consequently, an additional
round of fine-tuning was applied using the Dogio-11 training
set. Moving forward, our analysis will focus on contrasting
the performance of networks that underwent dual fine-tuning
(Table 8) with the networks pre-trained on different datasets
(synthetic and real) and fine-tuned only once (Table 7).
The performance of the networks fine-tuned twice exhib-
ited improved performance on the unknown Dogio-11 test
set, which shows that the networks’ ability to generalise
increased. Conversely, fine-tuning the network on the Stan-
ford Extra dataset and then on the Dogio-11 training set led to
reduced performance on the known Dogio-11 test set. This
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is most likely due to the frame-based nature of the Stan-
ford Extra dataset, likely causing the loss of temporal context
that was initially beneficial. There was a slight yet marginal
increase in the PCK performance of the network that under-
went two rounds of fine-tuning, with the first round utilizing
the Animal Pose dataset, accompanied by a slight decrease in
MPIJPE performance on the known Dogio-11 test set. While
the image datasets are larger than the Dogio-11 training set,
this underlines that the network unlearns the temporal context
when fine-tuning the network with an image dataset instead
of video dataset. Lastly, fine-tuning the network on the APT-
35K video dataset followed by fine-tuning on the Dogio-11
training set resulted in an increase of 11.6 units in PCK
on the known Dogio-11 test set. This highlights the effec-
tiveness of using real-world video datasets for fine-tuning
rather than just image-based datasets. While the last variation
demonstrates an enhanced performance of the network, it is
important to emphasize that the optimal results are achieved
by the network pre-trained on the SyDog-Video training set
and fine-tuned only once on the Dogio-11 training set.

5.4 Pre-trained on Different Datasets

In this section we discuss the accuracy of the LSTM Pose
Machine pre-trained with different types of datasets (syn-
thetic and real) mentioned in Sect. 4.1.

We demonstrate using Table 7 that the model pre-trained
with synthetic data is robust on within-domain test data, how-
ever, performs poorly when tested on out-of-domain data.
In spite of the model not being able to generalise to novel
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Before fine-tuning

After fine-tuning

Fig.4 Samples of known Dogio-11 test dataset before and after fine-tuning the network. The test dataset contains unseen frames from known dog
breeds. The ground truth is coloured in green and the model predictions are coloured in blue (Color figure online)

Table 7 Results on the
Dogio-11 test datasets from
models pre-trained on different
types of datasets (SyDog-Video
(NoTemp), SyDog-Video,
StanfordExtra, Animal Pose,
APT-36K) and then fine-tuned
with the Dogio-11 training
dataset

Table 8 Results on the
Dogio-11 test datasets of the
network pre-trained on
SyDog-Video dataset followed
by fine-tuning on real-world
datasets. The subscript k and u
indicate to the known and
unknown Dogio-11 test datasets

dog breeds, it performs better than the models pre-trained on
the real-world datasets. We expect that adding more diverse
videos into the Dogio-11 training dataset would help the net-
work to generalise to unseen dog breeds. We expect that the

Dataset Own test dataset Dogio-11 test datasets

PDJ@0.1 MPJPE PDJ; @0.1 PDJ, @0.1 MPJPE; MPJPE,
SyDog-Video(NoTemp) 92.06 0.07 63.35 27.63 0.23 0.51
SyDog-Video 97.44 0.04 77.76 41.78 0.16 0.44
StanfordExtra 62.34 0.22 73.02 24.34 0.19 0.52
Animal Pose 66.06 0.17 74.03 25.99 0.15 0.51
APT-36K 65.47 0.15 60.84 27.04 0.29 0.30

The SyDog-Video (NoTemp) refers to the non-temporal version of the SyDog-Video dataset. The values under
the Own test dataset indicate the accuracy of the model when evaluated on the test dataset of the dataset it
was trained on. Bold values show the best accuracy. The subscript k£ and u indicate to the known and unknown
Dogio-11 test datasets. The performance of the model is evaluated using the percentage of detected joints
(PDJ) with a threshold set to 10% of length of the bounding box diagonal and the mean per joint per error
(MPJPE) which is normalised w.r.t. the length of the ground truth bounding box diagonal

PDJ; @0.1 PDJ, @0.1 MPIJPE,, MPIPE,

Dataset Fine-tuned on real-world datasets

StanfordExtra 35.27 12.85 0.50 0.83
Animal Pose 14.11 4.34 0.86 1.62
APT-36K 47.18 28.33 0.30 0.36
Dataset Fine-tuned on real-world datasets + Dogio-11

StanfordExtra 59.75 47.18 0.38 0.38
Animal Pose 74.99 58.72 0.20 0.21
APT-36K 72.44 58.38 0.16 0.18

reason the model pre-trained on the SyDog-Video dataset per-
forms better than the models pre-trained on the real-world
animal pose datasets is due to the model learning the tem-
poral context as the SyDog-Video dataset contains sequences
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Frame #1 Frame #6

by s .‘4,

Ours

AnimalPose StanfordExtra

APT-36K

Frame #11

Frame #16 Frame #21

v ¥ ’ W B, §

Fig.5 Image sequences with ground truth and pose predictions of fine-tuned neural network pre-trained on different training datasets. The ground
truth is coloured in green and the model predictions are coloured in pink (Color figure online)

of frames and the real-world animal pose datasets do not. It
could be argued that increasing the size of the real-world ani-
mal pose datasets to the same size of SyDog-Video dataset
could outperform the model pre-trained on synthetic data.
However, labelling real-world images can take a lot of time
and it can be expensive. Additionally, it can also be argued
that because the model trained on SyDog-Video performed
better on its own test dataset, it performed better when fine-
tuned. The better performance was most probably due to the
more accurate 2D ground truth keypoints than the real-world
animal pose datasets. SyDog-Video contained all 33 keypoint
coordinates, even when they were considered invisible, while
the real-world animal pose datasets contained only visible
keypoint coordinates. It is noticed that the model pre-trained
on the Animal Pose dataset achieves a slightly better per-
formance than the model pre-trained with the StanfordExtra
dataset. This is most likely due to the Animal Pose dataset
having more similar keypoints with the Dogio-11 dataset
than the StanfordExtra dataset with the Dogio-11 dataset.
Another reason could be that the Animal Pose dataset has
a different number of animal species, which increases the
diversity of the dataset. We also fine-tuned the model pre-
trained on ImageNet. However, due to the Dogio-11 training
dataset being so small and the model not being pre-trained
on the pose estimation task, the model was not able to learn
(Table 8).

@ Springer

Figure 5 shows image sequences with the ground truth and
predicted pose predictions of the model pre-trained on differ-
ent datasets and then fine-tuned with the Dogio-11 training
dataset. We can deduce from the figure that the pose predic-
tions from the model pre-trained on the synthetic dataset is
more consistent than the models pre-trained on the real-world
datasets. For example, the model pre-trained on the synthetic
data predicts the joint coordinates for the right front leg in the
first 4 columns in a consistent manner, while the static mod-
els pre-trained on the real-world animal pose datasets have
more difficulties in doing so. While it is less obvious, the
same reasoning counts for the tail. Through the presentation
of Table 7, we demonstrate that the superior performance of
the model pre-trained on synthetic data can be attributed to its
ability to effectively capture and learn the temporal context
inherent in the synthetic video training dataset. Figures 6 and
7 demonstrates the performance of the fine-tuned network
pre-trained on diverse datasets when faced challenging tasks
such as temporal occlusion or when motion blur occurs which
indicates to significant movements. These figures reveal that
the pose predictions from the network pre-trained with our
synthetic dataset exhibit higher consistency in challenging
scenes compared to the network pre-trained on real-world
datasets. In addition to the qualitative results, we substantiate
our findings with quantitative analysis presented in Table9.
This comprehensive comparison assesses the performance
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Frame #3 Frame #5

Frame #1

StanfordExtra

AnimalPose

APT-36K

Fig. 6 Samples of frames of dogs executing substantial movements
with ground truth (green) and pose predictions (pink) of fine-tuned
neural network pre-trained on different training datasets (Color figure
online)

of networks pre-trained on various datasets across different
test distributions, including challenging, easy, and test sets.
Notably, our results clearly demonstrate that pre-training the
network using our synthetic video dataset consistently out-
performs the network pre-trained on real datasets across all
test sets. Furthermore, the performance of the network pre-
trained on synthetic data indicates versatility in handling
different levels of difficulty within the task.

5.5 Are Distractors Important?

As mentioned in Sect.4.2.2, we assess the importance of
distractors in the background of synthetic images (Fig. 8).
We define distractors as 3D objects or people which might or
might not occlude the dog. We generate 4 different datasets
which are similar to the original synthetic dataset, SyDog-
Video. The datasets differ in backgrounds. To compare the
datasets we keep the same seed across datasets, however the
seed varies with respect to the type of dog (Table 12). This
means that all randomizers are deterministic across datasets,
but non-deterministic for each type of dataset. The following
datasets are described in more detail:

AnimalPose StanfordExtra Ours

APT-36K

Fig.7 Samples depicting frames of dogs exhibiting temporal occlusion,
showcasing ground truth (green) and pose predictions (pink) generated
by a fine-tuned neural network pre-trained on various training datasets
(Color figure online)

e w(ith)_assets: contains static 3D assets in the back-
ground.

e w(ith)_people: contains 3D people performing an action
such as walking in the background.

e w(ith)_assetsPlusPeople: contains static 3D assets and
dynamic people in the background.

e w(ith)o(out)_groundplane: is identical to the SyDog-
Video dataset but with no ground geometry.

Figure 9 shows a bar plot of the accuracy of the models
pre-trained with different types of synthetic datasets and then
fine-tuned on the Dogio-11 training dataset. Additionally, it
shows the accuracy of the model when it was trained with
a mixed dataset. The model was evaluated on both Dogio-
11 test datasets. Recall that one test dataset contains unseen
frames of known dogs (known) and the other test dataset
contains frames of an unseen dog breed (unkown). For the
unknown test dataset. The blue coloured bars show the results
on the known test dataset and the green coloured bars show
the results on the unknown test dataset. It is demonstrated
that the model pre-trained with the dataset without ground
plane, outperforms the models trained on the other synthetic
datasets. It is also shown that adding 3D people to the syn-
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Table 9 Quantitative results of

the network trained Dataset Challenge Easy Test

1¢ network pre-tramed on PDI; @0.1 MPJPE;  PDJ;@0.1 MPJPE,  PDJ;@0.1 MPJPE;
different datasets. Comparing
the performance of the network  qupoo video  70.51 0.14 81.49 0.13 7176 0.16
on challenging cases
(Challenge), easier cases (Easy)  StanfordExtra 42.00 0.40 69.75 0.24 73.02 0.19
and the overall Dogio-11 known Animal Pose 47.39 0.31 69.58 0.20 74.03 0.15
test set (Test) APT-36K 54.65 0.20 62.20 0.19 60.84 0.29

Fig. 8 The same image sample across different datasets: clean_plate (SyDog-Video), w_assets, w_people, w_assetsPlusPeople. The red arrows

indicate either 3D assets or 3D people (Color figure online)

= known - finetune = known - mixed = unknown - finetune - unknown - mixed

79.94
77.76

80
71.49
68.82
60
48
41.78
20
0

SyDog-Video wo_groundplane

PDJ@0.1
8

Fig. 9 Bar graph: comparison of the accuracy (PDJ@0.1) of model
pre-trained on synthetic data with different backgrounds and fine-tuned
with the Dogio-11 training dataset. Additionally, it also shows the accu-
racy of the model when trained on a mixed training dataset. The model

thetic dataset increases the performance of the model when
fine-tuned. Itis again deduced that we get a better accuracy of
the model when fine-tuning rather than using a mixed dataset.
While adding 3D assets or both 3D assets and people does
not help the model’s performance when training with a mixed
dataset.
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74.09

69.99 70.23
|| 38.9 39.76

w_assets

79.24

74.14
70.99

W_people w_assetsPlusPeople

was evaluated on both Dogio-11 test datasets. The unkown test dataset
contains frames of an unseen dog breed and the known test dataset con-
tains unseen frames of dogs that the network has already seen (Color
figure online)

5.6 Ablation

Firstly, we analyse how the synthetic dataset size influenced
the model’s performance after fine-tuning. The model, which
was pre-trained on the SyDog-Video training dataset with-
out ground geometry, is evaluated on both the Dogio-11
test datasets. Figure 10 demonstrates that the model’s perfor-
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© PDJ@0.1 (unknown) ® PDJ@0.1 (known)
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Fig. 10 The model’s accuracy (PDJ@0.1) versus the size of the syn-
thetic training data. The model was pre-trained on the SyDog-Video
dataset but without groundplane. The model’s accuracy increases until
it decreases or plateaus (Color figure online)

mance increases with the number of the synthetic training
samples, before it decreases after 7700 samples. For the
known test dataset, the model’s performance also increases
until it plateaus at around 7700 samples. It can be also con-
cluded, that with 140 synthetic training samples the network
achieves similar performance levels to the models trained
with the real-world animal pose datasets: StanfordExtra (6k
training samples) and Animal Pose dataset (3k training sam-
ples).

Moreover, we show the importance of data augmentation
when training models on synthetic data and follow a similar
procedure as in Wood et al. (2021). We train the models with
(1) no augmentation, (2) appearance augmentation, and (3)
full augmentation which includes appearance and geomet-
ric augmentations such as rotations. Table 10 demonstrates
that augmenting the dataset increases the model’s perfor-
mance. Applying appearance and geometric augmentations
increases the model’s performance, however, the model per-
forms best when applying appearance augmentations solely
on the synthetic dataset. We also assessed the effect of adding
fur to the 3D dog model. Table 10 shows that not adding fur
actually increased the model’s performance. We believe that
the properties of the fur might not have been realistic enough
and we think we could improve it by using generative adver-
sarial networks such as in Bolafos et al. (2021).

6 Conclusion

We generated a synthetic dataset, called SyDog-Video, con-
taining image sequences of dogs to solve the problem of the
lack of pose datasets and to avoid the need to manually label
videos as it can be time consuming, costly and be prone to
labelling errors. We trained a temporal deep learning model
(LSTM Pose Machine) to estimate the pose of dogs from
videos as it can result in more accurate pose predictions
compared to static deep learning models when temporary
occlusions or substantial movements occur. The dataset was
made diverse by randomising parameters such as the lighting,
backgrounds, camera parameters, and the dog’s appearance
and pose. We initially aimed to bridge the the domain gap by
improving the quality of the synthetic dataset. However, the
domain gap still remained and therefore we applied 2 differ-
ent transfer-learning methods: fine-tuning and using a mixed
dataset to train the network.

To the best of our knowledge, there are no publicly avail-
able datasets containing videos of dogs with annotated pose
data, therefore to evaluate our method we manufactured a
real-world pose dataset containing dogs called Dogio-11.
To label ~1k frames with 2D bounding box and 33 key-
point coordinates was time consuming and the LSTM Pose
Machine network was not able to learn when trained with it
due its small training set size (115 samples) and inconsis-
tent labelling. We demonstrate the necessity of pre-training
networks in order for the network to effectively learn from a
limited training data.

Further, we demonstrate that pre-training the network with
the SyDog-Video dataset outperforms the models that were
trained with real-world animal pose datasets. This is most
likely due to the model learning the temporal context of the
synthetic videos, as the models trained on the real-world ani-
mal pose dataset are single image models instead of temporal
models. And because the SyDog-Video dataset was automati-
cally and accurately labelled even when some keypoints were
considered invisible to the human eyes, while the keypoint
coordinates in the real-world animal pose dataset that were
considered invisible were not annotated.

Table 10 Results on the
Dogio-11 test datasets after

fine-tuning the network that was
pre-trained on the synthetic
dataset augmented in different
ways Full augmentation

Type of augmentation PDJ@0.1; 1 MPIPE; | PDJ@0.1, MPIPE, |
No augmentation 73.63 0.16 32.34 0.63
Appearance augmentation 78.67 0.13 39.67 0.44

71.76 0.16 38.04 0.44
No fur + full augmentation 80.53 38.04 0.12 0.45

Bold values indicate the best accuracy. The subscript k£ and u indicate to the known and unknown Dogio-11
test datasets. The performance of the model is evaluated using the percentage of detected joints (PDJ) with a
threshold set to 10% of length of the bounding box diagonal and the mean per joint per error (MPJPE) which

is normalised w.r.t. the length of the ground truth bounding box diagonal
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Due to the small scale of the Dogio-11 training set, the net-
work pre-trained on the synthetic dataset, was fine-tuned on
larger real-world datasets either including images or videos
and evaluated on the Dogio-11 test sets. After the initial
fine-tuning the networks resulted in poor performance on
the Dogio-11 tests sets due to the different data distributions.
To address this, a second round of fine-tuning was conducted
using the Dogio-11 training set. This second round of fine-
tuning demonstrated an increase in the networks’ ability to
generalize. While the image-based datasets are larger than the
Dogio-11 training set, the optimal performance of the net-
works is achieved through fine-tuning with video datasets,
harnessing the inherent temporal information, as opposed
to relying on image-based datasets. While fine-tuning the
network, initially pre-trained on synthetic data, twice with
real-world video datasets yields improvements in pose esti-
mation on the Dogio-11 test set, the most optimal results are
achieved by fine-tuning the network pre-trained on synthetic
data with the Dogio-11 training set only once.

We also show that adding a certain type of distractors to
the background of synthetic images helps the performance of
the model depending on the transfer-learning method. And
illustrate that the size of the synthetic dataset can improve the
model’s performance up to a certain point, beyond that point
the accuracy of the model plateaus or decreases. Finally, we
demonstrate that augmenting the synthetic dataset at training
time increases the performance of the model.

To conclude, using our synthetic video dataset, SyDog-
Video as a training set is beneficial for pre-training a temporal
model. This temporal model can later be fine-tune with a
(small) real-world pose video dataset as it is faster to gen-
erate a large-scale synthetic dataset, it is more cost effective
and the labels are produced more consistently than labelling
real-world videos. Pre-training the model with SyDog-Video
results in more accurate pose predictions when fine-tuned
and evaluated with real-world (small sized) pose datasets.

Limitations the network is not able to generalise to real
data before fine-tuning and across new dog breeds before
and after fine-tuning. We believe that increasing the diversity
in the synthetic dataset by increasing the number of breeds
and further improving its photorealism will increase the per-
formance of the model when evaluated on real data and on
videos of new dog breeds.
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Appendix A Data Generation

Figure 11 shows a diagram visualising the sequence of
operations run by typical simulation scenario in the Unity
Perception package. Table 11 demonstrates the parameters
chosen to randomise in the synthetic data generator made in
Unity3D.

Scenario Lifecycle ( Soanaro OnAwake) )

( Randomizer.OnAwake() )

C Scenario. isScenariuReadyToStarl )

Scenario.! OnConrguratlonImpon() )

C
( Scenario. OnSlarl() )
C

RandomlzerOnScenancSlarl() )

Iteration Loop

( Randomizer.OnlterationStart() )

Frame Update Loop
( Randomizer.OnUpdate() )

i |
( Scenario.islterationComplete )
T

( Randomizer.OnlterationEnd() )

( Scenario.isScenarioComplete )

(Randomlzer 0nScenanoCcmplete()>

( Scenario.OnComplete() )

Idle Loop
C Scenario.Onldle() )

( Scenario.Reset()

Fig.11 diagram visualizing the sequence of operations run by a typical
simulation scenario. Image source Unity Technologies (2020) (Color
figure online)
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Table 11 Domain randomization parameters in our data generator

Category Randomizer Parameters Distribution
3D objects Background object placement Object placement Cartesian[Uniform(— 100,100), Uniform(— 2,2),
Uniform(— 10,10)]
Separation distance Cartesian[Constant(5), Constant(5), Constant(5)]
Object rotation Euler[Uniform(0,360), Uniform(0,360),
Uniform(0,360)]
Object scale range Cartesian[Uniform(1,3), Uniform(1,3), Uniform(1,3)]
Background people placement People placement Cartesian[Uniform(-35,35), Uniform(— 1,1),
Uniform(—5,5)]
Separation distance Cartesian[Constant(5), Constant(5), Constant(5)]
People rotation Euler[0, Uniform(0, 360), 0]
People animation Idle animation A set of FBX animation clips?
Moving animation P(enabled) = 0.5, P(disabled) = 0.5
Dog animation Sequence of actions List of actions shuffled
Textures Material material A set of texture assets®
Lights Sun angle hour Uniform(0, 24)
Day of the year Uniform(0, 365)
Latitude Uniform(— 90, 90)
Sky Train hdri’s A set of hdri’s (402)*
val hdri’s A set of hdri’s (101)?
Light intensity and temperature  Intensity Uniform(366, 80,000)
Temperature Uniform (1500, 20,000)
Camera Camera Focal length Uniform(50, 125)
Aperature Uniform(0.7f, 35.0f)
Yaw Uniform(— 100, 160)

Post-Processing ~ Post process volume

Chromatic aberration intensity

Uniform(0.0f, 0.8f)

#Each sample of this set is uniformly sampled

Appendix B Ablation

Table 12 shows the seed set in the synthetic data generator
for every different type of dog.

Table 12 The seed values change with respect to the type of dog within
a dataset but not across the types of datasets

Dog type Seed

Dogl (medium) 150,495
Dog2 (medium) 654,321
Dog3 (small) 123,456
Dog4 (medium) 654,123
Dog5 (small) 123,654
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