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Abstract

Low-rank adaptation (LoRA) is an efficient strategy for
adapting latent diffusion models (LDMs) on a private dataset
to generate specific images by minimizing the adaptation
loss. However, the LoRA-adapted LDMs are vulnerable to
membership inference (MI) attacks that can judge whether
a particular data point belongs to the private dataset, thus
leading to the privacy leakage. To defend against MI attacks,
we first propose a straightforward solution: Membership-
Privacy-preserving LORA (MP-LoRA). MP-LoRA is formu-
lated as a min-max optimization problem where a proxy at-
tack model is trained by maximizing its MI gain while the
LDM is adapted by minimizing the sum of the adaptation
loss and the MI gain of the proxy attack model. However,
we empirically find that MP-LoRA has the issue of unstable
optimization, and theoretically analyze that the potential rea-
son is the unconstrained local smoothness, which impedes the
privacy-preserving adaptation. To mitigate this issue, we fur-
ther propose a Stable Membership-Privacy-preserving LORA
(SMP-LoRA) that adapts the LDM by minimizing the ratio
of the adaptation loss to the MI gain. Besides, we theoreti-
cally prove that the local smoothness of SMP-LoRA can be
constrained by the gradient norm, leading to improved con-
vergence. Our experimental results corroborate that SMP-
LoRA can indeed defend against MI attacks and generate
high-quality images.

Code —
https://github.com/WilliamLUQO/StablePrivateLoRA

Extended version — https://arxiv.org/abs/2402.11989

1 Introduction

Generative diffusion models (Ho, Jain, and Abbeel 2020;
Song et al. 2021) are leading a revolution in Al-generated
content, renowned for their unique generation process and
fine-grained image synthesis capabilities. Notably, the La-
tent Diffusion Model (LDM) (Rombach et al. 2022; Podell
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et al. 2024) stands out by executing the diffusion process
in latent space, enhancing computational efficiency with-
out compromising image quality. Thus, LDMs can be ef-
ficiently adapted to generate previously unseen contents or
styles (Meng et al. 2022; Gal et al. 2023; Ruiz et al. 2023;
Zhang, Rao, and Agrawala 2023), thereby catalyzing a surge
across multiple fields, such as facial generation (Huang et al.
2023; Xu et al. 2024) and medicine (Kazerouni et al. 2022;
Shavlokhova et al. 2023).

Among various adaptation methods, Low-Rank Adap-
tation (LoRA) (Hu et al. 2022) is the superior strategy
for adapting LDMs by significantly reducing computational
resources while ensuring commendable performance with
great flexibility. Compared to the full fine-tuning method
which fine-tunes all parameters, LoORA optimizes the much
smaller low-rank matrices, making the training more effi-
cient and lowering the hardware requirements for adapting
LDMs (Hu et al. 2022). By performing the low-rank decom-
position of the transformer structure within the LDM, LoRA
offers performance comparable to fine-tuning all LDM pa-
rameters (Cuenca and Paul 2023). Moreover, LoRA allows
flexible sharing of a pre-trained LDM to build numerous
small LoRA modules for various tasks.

However, recent studies (Pang and Wang 2023; Pang et al.
2023; Dubinski et al. 2024) have pointed out that adapted
LDMs are facing the severe risk of privacy leakage. The
leakage primarily manifests in the vulnerability to Member-
ship Inference (MI) attacks (Shokri et al. 2017), which uti-
lize the model’s loss of a data point to differentiate whether
it is a member of the training dataset or not. As shown in Fig-
ure 1d, the LoRA-adapted LDM (red circle marker) exhibits
an incredibly high Attack Success Rate (ASR) of 82.27%.

To mitigate the issue of privacy leakage, we make the first
effort to propose a Membership-Privacy-preserving LoRA
(MP-LoRA) method, which is formulated as a min-max op-
timization problem. Specifically, in the inner maximization
step, a proxy attack model is trained to maximize its effec-
tiveness in inferring membership privacy which is quantita-
tively referred to as MI gain. In the outer minimization step,
the LDM is adapted by minimizing the sum of the adaptation
loss and the MI gain of the proxy attack model to enhance
the preservation of membership privacy.
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Figure 1: Figure la shows the trajectory of the training loss during the adaptation process via LoRA, MP-LoRA, and SMP-
LoRA on the Pokemon dataset. Figure 1b displays the mean and standard deviation of the gradient norms and Hessian norms
for MP-LoRA and SMP-LoRA throughout the training iterations. It also presents the Pearson correlation coefficients (PCC) and
p-values assessing their correlation. Note that each epoch contains 433 training iterations. Figures 1c and 1d demonstrate the
generated images and a comparison of evaluation metrics including FID Score and MI attack success rate (ASR). MP-LoRA
preserves membership privacy but compromises image generation capability. In contrast, SMP-LoRA effectively preserves
membership privacy while maintaining the quality of the generated image, demonstrating its effectiveness in defending against
MI attacks without significant loss of functionality. Extensive generated images are visualized in Appendix H of the extended

version (Luo et al. 2024).

However, the vanilla MP-LoRA encounters an issue of
effective optimization of the training loss, as evidenced in
the orange dashed line of Figure la. We theoretically find
that during MP-LoRA, the local smoothness, quantified by
the Hessian norm (the norm of the Hessian matrix) (Bubeck
et al. 2015), is independent of and not bounded by the gra-
dient norm (see Proposition 1 for details). This indepen-
dence hinders the privacy-preserving adaptation of the MP-
LoRA (Zhang et al. 2019), thus impeding optimizing the
training loss. Besides, we empirically show that the correla-
tion between the Hessian norm and the gradient norm during
MP-LoRA is insignificant. This is manifested by the Pear-
son Correlation Coefficient (PCC) of 0.043 and the p-value
above 0.05, as shown in the upper panel of Figure 1b, which
corroborates our theoretical analyses.

To stabilize the optimization procedure of MP-LoRA,
we further propose a Stable Membership-Privacy-preserving
LoRA (SMP-LoRA) method, which incorporates the MI
gain into the denominator of the adaptation loss instead
of directly summing it. We theoretically demonstrate that
this modification ensures a positive correlation (see Propo-
sition 2 for details). Specifically, the local smoothness (that
is quantified by the Hessian norm) is positively correlated
with and upper bounded by the gradient norm during adapta-
tion, which can improve convergence. Furthermore, we em-

pirically corroborate that during SMP-LoRA, the Hessian
norm is positively correlated with the gradient norm, as ev-
idenced by the higher PCC (0.761) and the p-value of less
than 0.001 in the lower panel of Figure 1b. The constrained
local smoothness allows the SMP-LoRA to achieve better
optimization, as shown in the blue dash-dot line of Figure 1a.
To evaluate the performance of the SMP-LoRA, we con-
ducted adapting experiments using the Stable Diffusion
v1.5 (CompVis 2022) on the Pokemon (Pinkney 2022) and
CelebA (Liu et al. 2015) datasets, respectively. Figure 1d
shows that, although MP-LoRA (orange square marker)
lowers the ASR to near-random levels, it significantly de-
grades the image generation capability of LoRA, as ev-
idenced by a high FID score of 2.10 and the poor vi-
sual quality in Figure Ic. In contrast, the SMP-LoRA (blue
pentagon marker) effectively preserves membership privacy
without sacrificing generated image quality significantly, as
evidenced by its FID score of 0.32 and ASR of 51.97%.

2 Membership-Privacy-Preserving LoRA

In this section, we first use the min-max optimization to for-
mulate the learning objective of MP-LoRA. Then, we dis-
close the issue of unstable optimization of MP-LoRA. Fi-
nally, we propose the stable SMP-LoRA and its implemen-
tation.



A Vanilla Solution: MP-LoRA

Objective function. In MI attack, the conflicting objec-
tives of defenders and adversaries can be modelled as a pri-
vacy game (Shokri et al. 2012; Manshaei et al. 2013; Alvim
et al. 2017). Adversaries can adjust their attack models to
maximize MI gain against the target model, which requires
that the defense can anticipate and withstand the strongest
inference attacks. Consequently, the defender’s goal is to
enhance the preservation of membership privacy in worst-
case scenarios where the adversary achieves the maximum
MI gain while maintaining the model performance. Inspired
by Nasr, Shokri, and Houmansadr (2018), we propose MP-
LoRA to defend against MI attacks which is formulated as a
min-max optimization problem as follows:

{I’éll‘il} Eada(f§+BA7Dtr) +Amax G (hwaDa‘lXa f6_+BA) ’
s ——— w

Adaptation loss Lo .
P Membership inference gain
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where Laqa(fg1 B> Dir) refers to the adaptation loss for
the LDM with LoRA module f5, g on the training dataset
Dyy, hy, is the proxy attack model parameterized by w,
G (hw, Daux, fo4pa) Tepresents the MI gain of the proxy
attack model h,, on the auxiliary dataset D, .

Therein, the inner maximization aims to search for the
most effective proxy attack model h,, for a given adapted
LDM f5,pa via maximizing the MI gain. The outer mini-
mization, conversely, searches for the LDM fp, g that can
best preserve membership privacy under the strong proxy
attack model h,, while being able to adapt on the training
dataset.

Updating the proxy attack model in inner maximization.
The proxy attack model h,, equipped with white-box access
to the target LDM f5, g4, aims to infer whether a specific
image-text pair (z,y) is from the training dataset Dy, for
adapting the target LDM f5, g 4. The model achieves this
by constructing an auxiliary dataset D,,, which consists
of half of the member data from D, denoted as D, and

aux?
an equal amount of local non-member data D} . Using the
auxiliary dataset D,,x, h,, trains a binary classifier based on
the adaptation loss of the target LDM f5, g4 to predict the
probability of (z,y) for being a member of the Dy,. Con-
sequently, the MI gain of h,, can be quantified based on its

performance on the D, as follows:
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In the inner maximization, the proxy attack model opti-
mizes the parameters w by maximizing the MI gain, i.e.,
mBX G (huM Daux7 f§+BA) .

Adapting the LDM in outer minimization. MP-LoRA
optimizes the LDM by directly minimizing a weighted sum

of the MI gain for the h,, and the adaptation loss, which
enables it to adapt to the training data and protect the pri-
vate information of the training dataset simultaneously. To
be specific, the training loss of MP-LoRA is formulated as

Lpy, = Lada(fé.t,-BAa D) + A - G(hy, Dy, fé+BA)a 3)

where A € R controls the importance of optimizing the
adaptation loss versus protecting membership privacy. In the
outer minimization of MP-LoRA, the parameters B and A
is updated by minimizing the Lpy, i.e., {I];li[il Lp1,.

’

MP-LoRA is realized by one step of inner maximization
to obtain a power proxy attack model by maximizing the MI
gain in Equation (2) and one step of outer minimization to
update A and B by minimizing the training loss in Equa-
tion (3). The algorithm of MP-LoRA is shown in Algorithm
2 (Appendix A of the extended version (Luo et al. 2024)).

Unstable Issue of MP-LoRA

In this subsection, we theoretically demonstrate that the con-
vergence for MP-LoRA cannot be guaranteed due to uncon-
strained local smoothness. Then we validate the theoretical
analyses with empirical evidence.

Definition 1 (Relaxed Smoothness Condition from Zhang
et al. (2019)). A second order differentiable function f is
(Lo, L1)-smooth if

IV2f(@)]| < Lo+ L[V f(2)]- 4)

Lemma 1 (Zhang et al. (2019)). Let f be a second-order
differentiable function and (Lo, L1)-smooth. If the local
smoothness, quantified by the Hessian norm (the norm of
the Hessian matrix), is positively correlated with the gra-
dient norm (i.e., L1 > 0), then the gradient norm upper
bounds the local smoothness, facilitating faster convergence
and increasing the likelihood of converging to an optimal
solution.

Proposition 1. MP-LoRA does not satisfy the positive cor-
relation as described in Lemma 1, therefore the convergence
cannot be guaranteed and the model may settle at a subop-
timal solution.

Proof. We establish the Relaxed Smoothness Condition for
MP-LoRA as follows:

0 Lp1, OLpr,
< Lo+ Li|| =+
aQLada 62G
where LO = || OBAZ2 || + )\HMH, Ll = 0, (5)

in which £,q4, represents the adaptation loss and G repre-
sents the MI gain. The detailed derivation is presented in
Appendix B of the extended version (Luo et al. 2024). The
value of L; being zero indicates that the Hessian norm is
independent of and not bounded by the gradient norm, sug-
gesting that the local smoothness is unconstrained. O

Next, we provide empirical evidence to support our theo-
retical analyses. We tracked the gradient norm and the Hes-
sian norm of the training loss at each training iteration, and



calculated their Pearson Correlation coefficient (PCC) and
p-value as shown in Figure 1b. The details for calculating
the gradient norm and the Hessian norm can be found in
Appendix C. In Figure 1b, the low PPC of 0.043 for MP-
LoRA suggests a very weak correlation between the Hessian
norm and the gradient norm. Additionally, with the p-value
of 0.052, there is insufficient evidence to reject the hypothe-
sis of no correlation. This indicates that the Hessian norm is
unbounded, implying that the local smoothness, quantified
by the Hessian norm (Bubeck et al. 2015), is unconstrained.
Such unconstrained local smoothness leads to the unstable
optimization issue in MP-LoRA, and even to the failure of
adaptation, as evidenced in the orange dashed line of Fig-
ure la and the poor visual quality of the generated images in
Figure lc.

Stabilizing MP-LoRA

To mitigate the aforementioned optimization issue of MP-
LoRA, we propose SMP-LoRA by incorporating the MI
gain into the denominator of the adaptation loss. The ob-
jective function of SMP-LoRA is formulated as follows:

. ['ada(féJrBAa Dtr)
min
{BA} \ 1 — AmaxG (hw Daux, f§+BA)

(6

To optimize Equation (6), SMP-LoRA targets to minimize
the following training loss function, i.e.,

Lada(foiBa> Dir)
1= A-G (hw, Der, fgrpa) + 0

where 0 is a stabilizer with a small value such as le — 5.
This prevents the denominator from approaching zero and
ensures stable calculation.

The implementation of SMP-LoRA is detailed in Algo-
rithm 1. At each training step, SMP-LoRA will first update
the proxy attack model by maximizing the MI gain and then
update the LDM by minimizing the training loss Lgpr,.

(N

Lspr, =

Proposition 2. SMP-LoRA satisfies the positive correlation
as described in Lemma 1, thus promoting faster conver-
gence, and the model is more likely to converge to an optimal
solution.

Proof. We establish the Relaxed Smoothness Condition for
SMP-LoRA as follows:

0 Lspr, / ;1 OLsPL
< hdadsite)
where = OLada v=2A oG
T OBA’ T TOBA’
Ly L P ey ALy OG
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Please refer to Appendix B of the extended version (Luo
et al. 2024) for detailed derivation. The value of L} being
greater than zero indicates that the Hessian norm is pos-
itively correlated with and upper bounded by the gradient
norm, suggesting that the gradient norm constrains the local
smoothness during adaptation. O

Algorithm 1: Stable Membership-Privacy-preserving LoRA

Input: Training dataset Dy, for adaptation process, Auxil-
iary dataset Dyyx = Diy U Dot a pre-trained LDM fy, a
proxy attack model h,, parameterized by w, learning rate 7
and 7

Output: a SMP-LoRA for LDMs

1: Perform low-rank decomposition on fy to obtain f5, g
(B and A are trainable LoRA modules)
2: for each epoch do

3 for each training iteration do

4 Sample batches S™ and S™ from D}, and D%
5: Calculate the MI gain G* on S™ U S™™

6: Update the parameters w < w + 11 - V,G*.

7: Sample a fresh batch from Dy,

8 Calculate the training loss £* = Lgpr,

9 Update parameters A < A —15-VaL*and B +

B — 1o - VB L™, respectively

10:  end for
11: end for

Subsequently, we further corroborate our theoretical anal-
yses with the following empirical evidence. Compared to
MP-LoRA’s insignificant correlation, SMP-LoRA demon-
strates a strong positive correlation between the Hessian
norm and the gradient norm, evidenced by the PCC of 0.761
and the p-value less than 0.001 in the lower panel of Fig-
ure 1b. This indicates that the Hessian norm, which repre-
sents the local smoothness, is upper bounded by the gradient
norm, resulting in lower mean (0.105) and standard devia-
tion (0.253) than MP-LoRA. Consequently, the constrained
local smoothness mitigates the issue of unstable optimiza-
tion and enables the SMP-LoRA to converge to a more opti-
mal solution, as demonstrated by the progressively decreas-
ing training loss shown in the blue dash-dot line of Figure 1a
and the superior performance on both FID and ASR metrics
illustrated by the blue pentagon marker in Figure 1d.

Notably, SMP-LoRA also exhibits lower mean and stan-
dard deviation of the gradient norm compared to MP-LoRA.
We provide further empirical analysis in Appendix D of the
extended version (Luo et al. 2024).

3 Conclusion

In this paper, we proposed Membership-Privacy-preserving
LoRA (MP-LoRA), a method based on low-rank adapta-
tion (LoRA) for adapting latent diffusion models (LDMs),
while mitigating the risk of privacy leakage. We first high-
lighted the unstable issue in MP-LoRA. Directly mini-
mizing the sum of the adaptation loss and MI gain can
lead to unconstrained local smoothness, which results in
unstable optimization. To mitigate this issue, we further
proposed a Stable Membership-Privacy-preserving LoRA
(SMP-LoRA) method, which constrains the local smooth-
ness through the gradient norm to improve convergence. De-
tailed theoretical analyses and comprehensive empirical re-
sults demonstrate that the SMP-LoRA can effectively pre-
serve membership privacy against MI attacks and generate
high-quality images.
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