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ABSTRACT

Discrete events within a continuous system cause discontinuities in its derivatives.
Given event specifications and state update functions, ODE solvers can integrate
until an event, apply the update function, and restart the integration process to
obtain a piecewise solution for the system. However, in many real-world scenarios,
the event specifications are not readily available or vary across different black-
box implementations. We present a method to learn the dynamics of a black-box
ODE implementation that uses abstract automata learning and Neural Event ODEs.
Without prior knowledge of the system, the method extracts the event specifica-
tions and state update functions and generates a high-coverage training dataset
through abstract automata learning. We learn interpretable models of a bounc-
ing ball’s Zeno behavior, the symmetry of heating and cooling processes with a
thermostat-controlled water heater, and a switching dynamical system without prior
knowledge of their underlying ODEs. Additionally, our approach introduces an
efficient training process for Neural Event ODEs that slices training trajectories
into temporally consecutive pairs within continuous dynamics. Both contributions
ensure well-posed initial values for each ODE slice. A proof-of-concept imple-
mentation captures event specifications in an interpretable automaton. It uses the
trajectories from automata learning to efficiently train a simple feed-forward neural
network by solving well-posed, single-step IVPs. During inference, the imple-
mentation detects the events and solves the IVP piecewise. Preliminary empirical
results show significant improvements in training time and computational resource
requirements while retaining all advantages of a piecewise solution.

1 INTRODUCTION

Ordinary Differential Equations (ODEs) are widely used to model continuous systems with discrete
events. Examples include collisions in physical systems, fast latent processes in biochemical pro-
cesses (Fröhlich et al., 2016), and discrete jumps or instantaneous dynamic switch in control theory
(Ackerson & Fu, 1970). In this context events are time instances at which the system’s dynamics are
not differentiable. By specifying an event, we can augment the numerical integration process to detect
events and terminate before discontinuities occur; e.g., (Hairer et al., 1993; Shampine & Thompson,
2000; Chen et al., 2021). Solving ODEs with discontinuities results in a piecewise solution that is
continuous at the event points (Hairer et al., 1993; Ruohonen, 1994).

For piecewise ODEs, we (i) solve the event detection problem (EDP) to detect discontinuities and
(ii) learn what happens at the discontinuities. Chen et al. (2018) introduced Neural ODEs (NODEs),
where a Neural Network (NN) replaces the ODE. Later, they introduced Neural Event ODEs to learn
piecewise ODEs by iteratively solving the EDP using predefined event and state update functions
(Chen et al., 2021). We enhance Neural Event ODEs with (i) automata learning to infer both event
and state update functions from system’s whose ODE is unknown to the learner (subsequently called
black-box ODEs), and (ii) a more efficient training process. Both enhancements ensure well-posed
initial value problems (IVPs) per piece.

ODEs with discontinuities are a subclass of Hybrid Automata (HA) that model systems exhibiting
both continuous and discrete behaviors (Henzinger, 1996; Poli et al., 2021). In HA, the continuous
dynamics are defined by ODEs, and the discrete dynamics and events are defined by jump transitions
between them (Henzinger, 1996; Shi & Morris, 2021). Bloem et al. (2020) showed that if the history
of computations is not conflicting, the L⋆ algorithm converges to an automaton. Otherwise, we can
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split the L⋆’s observation table and try to learn a set of automata. In the case of arithmetic black boxes
implementing ODEs, the conflicting history of computation arises if the black box is not a function or
does not satisfy the realizability conditions described in (Bloem et al., 2020). Following this principle,
our first contribution is an automata learning approach that infers the jumps and event specifications
from black-box piecewise ODEs.

The proposed automata learning approach yields a high-coverage dataset that captures all events
and their effects on the system. Aichernig et al. (2019) showed that such datasets are well-suited
to effectively learning surrogate models of hybrid systems. Our second contribution builds on our
first contribution and the work of Legaard et al. (2023), who proposed slicing the ground truth
trajectory into single-step pairs when training NODEs to ensure it is approximating the next state
from a valid previous one. Since the learned event specification slices the trajectory around events,
we can extend Legaard et al.’s approach to piecewise ODEs by removing training pairs with a
discontinuity between them from the training data. By training the Neural Event ODEs on state pairs
in parallel, we eliminate the need for iterating over continuous pieces and repetitive EDP solving.
We train the NN once and solve the EDP while learning the state update functions. One could use
our first contribution (i) to pre-slice ODEs to handle events with NODEs (Chen et al., 2018) and
LatentODEs (Rubanova et al., 2019), or (ii) to validate Neural Event ODEs and LatSegODEs (Shi
& Morris, 2021). However, this work mainly focuses on the explainability and applicability of our
first contribution to Neural Event ODEs, and we leave its applications, extensions, and numerical
comparisons to other methods for future work.

Suppose an ODE ẏ = f(t, y(t), ϕ), where y(t) is a continuous-time state, ẏ = dy/dt, f determines
how the state changes over time, and ϕ is a set of parameters to f . We denote by y(t; t0, y0), a
solution at time t with y(t0) = y0. Supposing an event at time te causes a discontinuity, then:

y(t; t0, y0) = y0 +

∫ te

t0

f (t, y(t; t0, y0), ϕ) dt+

∫ t

t+e

f (t, y(t; te, ye), ϕ) dt , (1)

where t+e is infinitesimally greater than time te and ye = y(te; t0, y0); for more details see (Hairer
et al., 1993; Shampine & Thompson, 2000). Meanwhile, the EDP is to find te for an event function
g(t, y(t), ψ) constrained to be zero at the event point and non-zero elsewhere. For k event functions
gj(t, y(t), ψj), an event occurs if the predicate below is satisfied for j < k and tje in the interval T:

∀y(t; t0, y0) ∃j, tje . gj(tje, y(t; t0, y0), ψj) = 0 . (2)

The solution to the EDP is the set {tje}. In well-posed and decidable IVPs, the EDP is solved with
the IVP using event detection algorithms during numerical integration to locate events and terminate
if need be (Hairer et al., 1993; Ruohonen, 1994; Shampine & Thompson, 2000; Chen et al., 2021).

The user specifies the events and how they affect the system. The event and state update functions
stem from these specifications. We can rewrite both functions as a logical formula over the state and
its derivatives. However, writing such functions requires understanding the system’s behavior and its
events, which is challenging when the system’s behavior is unknown (i.e., black box) or complex.

Finally, we chose the bouncing ball as our running example throughout the paper because it en-
compasses all crucial characteristics of a piecewise dynamical system, including the Zeno behavior,
where a system experiences infinite jumps within a finite time interval. This selection emphasizes our
method’s proficiency in demystifying sophisticated systems into interpretable models.

Bouncing Ball 1. We can model a bouncing ball using an ODE of its height h(t) and velocity v(t):

f(t, ⟨h(t), v(t)⟩, {g, e}) :=


ḣ(t) = v(t)

v̇(t) = −g if h(t) > 0

v́(t) = −ev(t) if h(t) = 0

(3)

where g is the gravitational acceleration, e is the elastic coefficient of restitution, and v́(t) = v(t+).
This piecewise ODE is discontinuous at each bounce when h(t) = 0. We can specify this event and
its impact on the ball’s state by h(t) = 0 ∧ v(t) < 0 → v́(t) > 0 .

2 LEARNING EVENT SPECIFICATIONS USING AUTOMATA LEARNING

This section presents a method to learn event specifications from a black-box ODE. We use automata
learning to infer an abstract model of the ODE and learn the event specifications from it.
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Let Σ and Γ be two disjoint alphabets. A word υ over Σ is a string of symbols from Σ. A word ω
over Σ× Γ is a bi-word. A language over Σ× Γ is a bi-language. Given υ = σ1σ2 . . . σn in Σ∗ and
µ = γ1γ2 . . . γn in Γ∗, we define υ ⊕ µ = ⟨σ1, γ1⟩⟨σ2, γ2⟩ . . . ⟨σn, γn⟩. We denote the projection of
ω onto Σ by ΠΣ(ω) ∈ Σ∗. Thus, ΠΣ(L) = {ΠΣ(ω) | ω ∈ L} for a bi-language L. L is Σ-exhaustive
if ΠΣ(L) = Σ∗. L is Σ-prefix-closed if ΠΣ(L) is prefix-closed.
Definition 1 (Mealy Machine). This is a tuple M = ⟨Σ,Γ, Q, q0, δ, λ⟩, where Σ and Γ are finite
alphabets, Q is a finite state set, q0 ∈ Q is an initial state, δ : Q × Σ → Q and λ : Q × Σ → Γ
are the transition and output functions.We extend δ and λ to words as δ∗ : Q × Σ∗ → Q and
λ∗ : Q× Σ∗ → Γ∗ in the standard way. We define L(M) = {υ ⊕ µ | υ ∈ Σ∗, µ = λ∗(q0, υ)}.

A discriminating set E ⊆ Σ∗ distinguishes the states of an automaton by observing the automaton’s
output on these words. The Nerode congruency defines state set Q as the set of all states distinguished
by Σ∗, and is the basis of L⋆, an active automata learning algorithm (Angluin, 1987). Shahbaz & Groz
(2009) extended L⋆ to Mealy machines by learning E such that Q is the set of all states distinguished
by E, given the output function λ of M, based on the following lemma.
Lemma 1 (Shahbaz & Groz, 2009). Given M = ⟨Σ,Γ, Q, q0, δ, λ⟩, and two states q1, q2 ∈ Q, we
have that q1 = q2 iff λ∗(q1, υ) = λ∗(q2, υ) for υ ∈ Σ∗.

Given an M, a corresponding E ∈ Σ∗, and two states q1, q2 ∈ Q, we say that E distinguishes q1 and
q2 if ∃υ ∈ E : λ∗(q1, υ) ̸= λ∗(q2, υ). For more details on L⋆, see (Vaandrager, 2017; Fisman, 2018).

The Nerode congruency relation for bi-languages is defined as follows.
Definition 2 (Bloem et al., 2020). Given a Σ-exhaustive bi-language L, the relation υ1 ∼L υ2 for
υ1, υ2 ∈ Σ∗ is defined by:

(υ1 ∼L υ2) := (υ1 ⊕ µ1)· ω∈L iff (υ2 ⊕ µ2)· ω∈L for all µ1, µ2 ∈ ΠΓ(L), ω∈(Σ×Γ)∗

L⋆ and its extensions only terminate if the target language is over finite alphabets with finitely many
congruencies. Abstract automata learning extends L⋆ to learn an abstract model of target languages
over large or infinite alphabets, bounding the state-space of learned automata when dealing with
infinitely many congruencies; e.g., see (Aarts et al., 2012; Howar et al., 2011). It also learns a correct
transition function from finitely many congruencies over infinite alphabets; e.g., see (Mens & Maler,
2015; Maler & Mens, 2017; Drews & D’Antoni, 2017; Moerman et al., 2017). L⋆ has been extended
to black-boxes with timed behaviors; e.g., Mealy machines with timers (Vaandrager et al., 2023),
and timed automata (Tang et al., 2022; An et al., 2020). Our work differs as we abstract a function
of continuous time by projecting it onto a dense time domain. Abstraction handles large or infinite
alphabets obtained from the function’s domain and co-domain. We apply the abstraction layer to
the extension of L⋆ for Mealy machines (Shahbaz & Groz, 2009). This allows us to infer an abstract
model of the function and learn its event specifications.

2.1 LEARNING EVENT SPECIFICATIONS

By quantizing continuous time to dense time, we define an input exhaustive and prefix-closed
bi-language corresponding to a function of time that we can learn by automata learning.

2.1.1 A DENSE MODEL FOR FUNCTIONS OF CONTINUOUS TIME

In a continuous time interval T = [t0, tk], a time point is a real number t ∈ T, and a time sequence is
a sequence of time points wt = t0t1 . . . tn where ti < ti+1. The absolute difference between any
two tn, tm ∈ T, denoted by τ = |tm − tn|, is referred to as a timestep. Given a set of timesteps
T = {τ1, τ2, . . . , τn} where each τi ∈ R+ and t0 + τi ≤ tk, we define an ordered-set TT as all time
points in T using timesteps from the set T, as follows:

(TT, <) =
⋃

( {(t0 + nτ) for 0 ≤ n ≤ ⌊(tk − t0)÷ τ⌋} , < ) for τ ∈ T .

We denote T ∪ {0} as T. We define T∗ with respect to T as follows:

T∗
T =

{
τ1τ2 . . . τn | t0 +

∑n

i=1
τi ≤ tk for n ≥ 0

}
.

Given wτ = τ1τ2 . . . τn we use t0 + wτ to denote wt = t0t1 . . . tn such that ti>0 = ti−1 + τi.
For wτ = τ1τ2 . . . τn and w′

τ = τ ′1τ
′
2 . . . τ

′
m, we define wτ < w′

τ ⇐⇒ (
∑n

i=1 τi) < (
∑m

i=1 τ
′
i).

Finally, we define T∗
T as the set of all wt that can be generated from T∗

T as follows:
(T∗

T, <) = {t0 + wτ | wτ ∈ (T∗
T, <)} .
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Given f : T → R, we define fT : TT → R and generalize it to f∗T : T∗
T → R∗ as follows:

f∗(ϵ) = ϵ and f∗(t0t1 . . . tn) = f(t0) · f∗(t1 . . . tn) .
Accordingly, we define L(fT) as a set of timed words over TT × R as follows:

L(fT) = {t0t1 . . . tn ⊕ f∗(t0t1 . . . tn) | t0t1 . . . tn ∈ T∗
T} .

Since L(fT) is exhaustive and prefix-closed, we model L(fT) using Mf = ⟨T,R,TT, t0, δ, λ⟩ with
δ(t, τ) = t + τ and λ(t, τ) = f(t + τ). Finally, if TT is finite, then Mf is a finite Mealy machine
that partitions L(fT) into finitely many congruencies. Depending on the quantization granularity, the
above construction can result in a huge state space for Mf , making it infeasible to learn.

2.1.2 ABSTRACTING FUNCTIONS OF DENSE TIME

By using predicates to partition the alphabets of Mf into finite subsets, we reduce Mf ’s state space
considerably. We define an abstraction layer for L(f), enabling efficient automata learning.

A predicate ϑ over rng(f) is a function ϑf : rng(f) → X, where X is a discrete finite domain. We
denote the domain of all predicates over rng(f) using Θf . We use ϑ as shorthand for ϑf when f is
clear from the context. Given a predicate ϑ, a sequence r0r1 . . . rn over rng(f), we define ϑ∗ by:

ϑ∗(ϵ) = ϵ and ϑ∗(r0r1 . . . rn) = ϑ(r0) · ϑ∗(r1 . . . rn) .
Similarly, given f : T → R, we generalize ϑ∗f over a sequence of time points t0t1 . . . tn as follows:

ϑ∗f (ϵ) = ϵ and ϑ∗f (t0t1 . . . tn) = ϑ(f(t0)) · ϑ∗f (t1 . . . tn) .
We define a predicate change detector ϱ : Θ× T∗

T → T as follows:

ϱ(ϑf , t0t1 . . . tn) =

{
ti if ∃i : ϑf (ti) ̸= ϑf (ti−1) and ∀j < i : ϑf (tj) = ϑf (tj−1)

t0 otherwise

That is, given wt = t0t1 . . . tn ∈ T∗
T and ϑ∗f (wt) = χ0χ1 . . .χn, we define ϱ(ϑf , wt) = ti where

χi−1 ̸= χi for the first time along ϑ∗f (wt); otherwise, ϱ(ϑf , wt) = t0. We extend ϱ to a set of
predicates Θ such that if any of the predicates in Θ changes, then ϱ(Θf , wt) = ϱ(ϑf , wt) as follows:

ϱ(Θf , t0t1 . . . tn) =


ϱ(ϑf , t0t1 . . . tn) if ∃ϑ ∈ Θ : ϱ(ϑf , t0t1 . . . tn) = ti

and ∀tj < ti,∀ϑ′∈Θ : ϱ(ϑ′f , t0t1 . . . tj) = t0
t0 otherwise

Definition 3 (Abstract Model of a Function of Continuous Time). Given f : T → R, a corresponding
Mf = ⟨T,R,TT, t0, δ, λ⟩ and two sets of input and output predicates over rng(f), denoted by Θ
and Ξ, we define an abstract model Af = ⟨Θ,Ξ,TT, t0,∆,Λ⟩ such that ∆ : TT × Θ → TT and
Λ : TT ×Θ → Xn with n = max(1, |Ξ|) are defined as follows:

∆(t, ϑ) =


ϱ(Ξλ ∪ {ϑλ}, t + wτ ) if ∃wτ ∈T∗

T : ϱ(Θλ ∪ Ξλ, t + wτ ) = δ∗(t, wτ ) and
∀w′

τ ∈T∗
T : w′

τ < wτ =⇒ ϱ(Θλ ∪ Ξλ, t + w′
τ ) = t

min(t + max(T∗
T), tk) otherwise

Λ(t, ϑ) =

{{ξ | ∀ξ ∈ Ξ : ξ(λ ◦∆(t, ϑ))} if Ξ ̸= ∅
ϑ(λ ◦∆(t, ϑ)) otherwise

Similarly, we extend ∆ and Λ to words over Θ and Ξ in the standard way, denoted by ∆∗ and Λ∗.

Notably, Af halts on events in Ξ while pursuing to detect events in Θ. That is, once learned, detected
events in Ξ determine the transitions of Af . Finally, Af has a considerably smaller state space.
Bouncing Ball 2. We implemented the learner using sympy (Meurer et al., 2017) and aalpy
(Muskardin et al., 2022). Given g = 9.81, e = 0.8, h0 = 10, and v0 = 0, the learner infers
the ball’s Af over T = [0, 13) with a finite set T. Initially, Θ = {v < 0, v = 0, v > 0} and Ξ = ∅.
A correct automaton is learned at t = 2.56 (refer to Fig. 1a and Fig. 1b). The learner marks detected
events along the h(t) and v(t) trajectories, effectively slicing them. To improve interpretability, we
redefine Θ = {sign(v)} and Ξ = {h < 0, h = 0, h > 0, v < 0, v = 0, v > 0}. The learning time
remains at t = 2.56. The learner yields Fig. 1c, revealing different stages along the ball’s trajectory:
free-fall transition q0 → q1, collision q1 → q2, rebound q2 → q3, rising q3 → q4, and the peak height
q4 → q0. However, it does not capture the ball’s resting state where both h and v are zero.

Zeno behavior. To capture the ball’s resting state, the learner learns the Zeno behavior of its ODE,
performing a conformance test until t = 12.60. Figure 1d depicts the automaton discarding the input
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labels for better readability. L⋆ unravels the previous Af nine times to state q45, where it detects a
free-fall, and collision q45 → q46 → q47. The ball’s height nears zero at t = 11.44 and remains until
it rests. The velocity changes until the final free-fall q74 → q75, where the ball rests.

0 1 2 3 4 5 6 7 8 9 10 11 12

−10

0

10
t = 2.56 t = 11.44

t ∈ [0, 12]

h
(t
)
/
v
(t
)

h(t) v(t) ĥ(t) v̂(t)

(a) The simulated ground truth vs. predicted dynamics of a bouncing ball until its resting state with a twin y-axis

q0 q1q2

{v(t)=0/0,

v(t)>0/0}
{v(t)=0/0,

v(t)<0/0}

{v(t)<0/0, v(t)>0/0}

v(t)<0/1

v(t)>0/0v(t)=0/1

(b) Af w/o output predicates

q0 q2

q1

q3q4

sign(v)/h > 0, v < 0 sign(v)/h = 0, v < 0

sign(v)/
h = 0, v > 0

sign(v)/
h > 0, v > 0

sign(v)/
h > 0, v = 0

(c) Af with output predicates

q0 q1 q2 q3 q4 · · ·

q47q48q49· · ·q73q74q75

h > 0,
v < 0

h = 0,
v < 0

h = 0,
v > 0

h > 0,
v > 0

h > 0,
v = 0

h = 0,
v < 0

h = 0,
v > 0

h ≈ 0,
v = 0

h ≈ 0,
v < 0

h ≈ 0,
v = 0

h ≈ 0,
v < 0

h = 0,
v > 0

h = 0,
v = 0

(d) Af capturing ball’s resting state (Zeno behavior)

Figure 1: Learned abstract models of the bouncing ball ODE

2.1.3 EVENT EXTRACTION AND SPECIFICATION LEARNING

Although Af captures the dynamics governing f , it is not easy to interpret. To address this issue, we
introduce a systematic approach that learns an explainable structure Sf resembling f ’s HA. Initially,
we extract significant events from Af , such as abrupt changes in f ’s trajectory or its rate of change.
These events are then used to learn an abstract event model Ef that slices f into pieces. Finally, the
revealed pieces are merged into similar locations, constructing Sf .

Function Events. A function event is characterized by a sign change along two consecutive transitions
of a loop-free path in Af . That is, if y(qi) and y(qi+1) satisfy the same predicates and ẏ(qi) and
ẏ(qi+1) satisfy predicates suggesting an abrupt sign change, then an event occurs at qi, which we can
describe by predicates in {ϑi} ∪ Ξi where ∆(qi, ϑ

i) = qi+1 and Λ(qi, ϑ
i) = Ξi.

Gradient Events. An acceleration or deceleration in y’s rate of changes can be detected by inspecting
three consecutive transitions of a loop-free path in Af . A gradient event is a pairwise sign change
between ẏ(qi−1), ẏ(qi), and ẏ(qi+1). For systems demonstrating periodic or oscillatory events, we
require that y(qi−1) and y(qi+1) satisfy the same predicates. Predicates along three transitions that
are satisfied by the values of y(qi) and ẏ(qi) specify the gradient event.

Abstract Event Models. An abstract event model Ef is a Mealy machine whose inputs are event
predicates. While learning Ef , the Mf is unraveled to a state where either an event occurs or some
output predicates are satisfied. Event transitions slice f into pieces, and output transitions capture the
dynamics of each piece. Finally, we use a look-ahead mechanism, that extends the abstraction layer
without affecting the L⋆ algorithm (Vaandrager et al., 2023), to determine the state updates of event
transitions (i.e., the ODE’s behavior after an event).

Event Specifications. To merge f ’s pieces revealed by Ef into Sf locations and turn Ef ’s output
transitions into Sf ’s location invariants, we enumerate paths to each event transition from the initial
state of Ef and define a corresponding location in Sf for each path. The output predicates along each
path define location invariants in Sf . Jump conditions are defined using immediate event predicates
reached by the path leading to a destination location in Sf , which is recursively constructed by
considering the Ef ’s destination as a new initial state. The process repeats until all paths are exhausted.

5



Under review as a conference paper at ICLR 2024

Bouncing Ball 3. From the abstract model of the bouncing ball in Figs. 1b and 1c, we extracted:

1. h = 0 merges the impact and rebound stages q1 → q2 → q3, specifying the bounce event.
2. h > 0 ∧ v = 0 specifies the peak height at q4 → q0, between the rising and free fall stages.

Learning with Θ={h = 0} yields Ef in Fig. 2a, where q0 → q1 signifies the bounce event with a
state update v́ > 0, originating from a look-ahead mapper. The transition q1 → q0 encapsulates both
the rising and free fall stages. Despite the input h = 0 for q1 → q0, the output is h > 0∧ v > 0, as ∆
employs Ξ to determine the subsequent state. When an input predicate ϑ triggers the mapper, the next
state is determined by observations satisfying Ξ ∪ {ϑ} while seeking a solution to ϑ. Consequently,
the ball exits q0 with negative velocity but enters with positive velocity, indicating a missing peak
height event, which is captured by the gradient event h > 0 ∧ v = 0 → v́ < 0. Redefining
Θ = {h = 0∧ v < 0, h > 0∧ v = 0} yields Ef shown in Fig. 2b, whose transitions correspond to the
free fall stage q0 → q1, bounce event q1 → q2, rising stage q2 → q3, and peak height event q3 → q0.

From the abstract event models of the bouncing ball in Figs. 2a and 2b, we construct the event
specifications in Figs. 2d and 2e. Each location’s invariants are defined using blue self-loops. For
instance, the invariant of q0 + q1 in Fig. 2e is h > 0 ∧ v < 0, the output of q0 → q1 in Fig. 2b. Red
self-loops are added to ensure input completeness and to represent invalid behavior.

Zeno behavior. To model the ball’s resting state, we execute the learner using function events
(excluding gradient events) and request a conformance test until t = 12.60. The Ef depicted in Fig. 2c
captures the ball’s resting state in q19 through the self-loop h = 0 ∧ v = 0. In this Ef , q0 → q1 is
initiated by the bounce event h = 0, and q1 → q2 represents the continuous progression of the ball’s
height, followed by another bounce event q2 → q3. The Sf depicted in Fig. 2f begins at a location
corresponding to q0 with a jump corresponding to the bounce event q0 → q1 to a location merging
{q1 + q2}. The location q0 in Sf does not allow for a rising stage, as for the ball to rise, it must
bounce first. The Sf captures ten bounces until the ball rests in q19 with the invariant h = 0 ∧ v = 0.

q0 q1

h = 0 /
h = 0 ∧ v < 0 → v́ > 0

h = 0 /
h > 0 ∧ v > 0

(a) Ef w/o gradient event

q0 q2

q1

q3

⋆/ h > 0 ∧ v < 0
{h = 0 ∧ v < 0, h > 0 ∧ v = 0} /

h = 0 ∧ v < 0 → v́ > 0

⋆/ h > 0 ∧ v > 0{h > 0 ∧ v = 0, h > 0 ∧ v = 0} /

h > 0 ∧ v = 0 → v́ < 0

(b) Ef with gradient event

q0 q1 q2 . . . q19h = 0 ∧ v < 0
→ v́ > 0 h > 0 ∧ v > 0

h = 0 ∧ v < 0
→ v́ > 0

h = 0 ∧ v < 0
→ v́ = 0

h = 0∧
v = 0

(c) Ef capturing ball’s resting state w/o gradient event

q0, q1

h = 0 ∧ v < 0 → v́ > 0

h > 0

h < 0

(d) Sf w/o first derivative event

q0, q1 q2, q3

h = 0 ∧ v < 0 → v́ > 0

h > 0 ∧ v = 0 → v́ < 0

h > 0 ∧ v < 0

h < 0 ∨ v > 0

h > 0 ∧ v > 0

h ≤ 0 ∨ v < 0

(e) Sf with first derivative event

q0 q1, q2 . . . q19h = 0 ∧ v < 0
→ v́ > 0

h = 0 ∧ v < 0
→ v́ > 0

h = 0 ∧ v < 0
→ v́ = 0

h > 0 ∧ v ≤ 0

h < 0 ∨ v > 0

h > 0

h < 0

h = 0 ∧ v = 0

h ̸= 0 ∨ v ̸= 0

(f) Sf capturing ball’s resting state w/o first derivative event

Figure 2: Learned event specifications of the bouncing ball ODE using learned abstract models

Appendix A.1 demonstrates how specification learning generalizes to multi-variable systems such as
Switching Linear Dynamical Systems (SLDSs).

2.2 WELL-POSEDNESS OF THE EVENT SPECIFICATION LEARNING

Given a piecewise ODE f(t, y(t), ϕ) and an event function g(t, y(t), ψ), the isolate occurrence of
the event at te slices f into two segments fL, fR. Shampine & Thompson (2000) showed that, if
y0 is well-posed when solving f on a time interval T = [t0, tk], then small changes in y0 result in
small changes in y(t ≤ te; t0, y0). That is, the solution to fL varies slightly w.r.t. variations in t0 and
y0 (Coddington & Levinson, 1984). Solving fR on the remaining interval (te, tk] with a perturbed
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initial value y(t > te; te, ye) is a well-posed problem only if te is a simple root. By repeating the
argument, the solution to fR is also well-posed w.r.t. variations in te and ye. The same applies to
several well-separated events in an interval T. For more details, see (Shampine & Thompson, 2000).

Based on this principle, event specification learning reduces to inferring Af for a given f(t, y(t), ϕ).
The abstraction from Mf to Af is based on an event detection algorithm for Runge-Kutta method
(Hairer et al., 1993, Algorithm 6.4, p. 195). However, instead of a sign change detector, we use ∆
as defined in Definition 3. Given a well-posed y0, and an input predicate ϑ, the ∆ simulates Mf

through TT until a predicate in Θ ∪ Ξ is satisfied, or it reaches t0 +max(T∗
T, <). If we consider

each occurrence of ϑ ∈ Θ along the f ’s trajectory as an event, then Ξ is not necessary for learning Af .
For simplicity, we first describe the case of Ξ = ∅: In case of an event, Mf has reached the smallest
te = δ∗(t0, wτ ) that satisfies ϱ(Θλ, t0 +wτ ) = te for some wτ ∈ T∗

T. If ϱ(ϑλ, t0 +wτ ) = te, then
te is an isolated occurrence of ϑ that slices f into fL, fR with te being the start of fR and λ(te) being
a well-posed initial value for fR. For the case of Ξ ̸= ∅, if we have that ϱ(Ξλ, t0 + wτ ) = te for
some wτ ∈ T∗

T, then ∆ slices f into fL and fR regardless of ϑ with λ(te) being a well-posed initial
value for fR at te = ∆(t0, ϑ). Conversely, if ϱ(Θλ, t0 + wτ ) = te, we have the above case. This
procedure conforms to k event detection predicate shown in Eq. (2).

Given a query υ ∈ Θ∗, the ∆ iteratively slices f ; i.e., ∆∗(t0, υ). That is, for the first step of ∆∗(t0, υ)
slices f and thereupon it iteratively slices the last fR by simulating Mf through TT until an isolated
occurrence of ϑn at position n+ 1 along υ or an isolate occurrence of a ξ ∈ Ξ. Finally, Af returns
Λ∗(t0, υ) as the answer to υ. If no predicate is satisfied along f ’s trajectory, then Mf is simulated
through TT until t0 +max(T∗

T, <) and f will not be sliced. This is however not a problem as we
require Θ and Ξ to be an over-approximation of the possible changes in the f ’s trajectory. On the
other hand, over-approximating events will not affect the correctness of ODE’s solution, for each
slice of f is a well-posed IVP and the solution to f is continuous w.r.t. variations in t0 and y0; see
above discussion. This ensures the abstraction layer treats single-piece ODEs correctly.

3 LEARNING PIECEWISE DYNAMICS

In NODEs (Chen et al., 2018), we train a NN denoted by N (t, y(t), ϕ) on trajectories from the
black box ODE of interest. Dealing with piecewise ODEs, it is beneficial to train N on continuous
trajectories in between discontinuities. Thus, N avoids learning a solution that fits both the continuous
dynamics and the discontinuities. However, this implies that we need to use other mechanisms to
(i) solve the EDP and (ii) learn the instantaneous state update functions. In this section, we study how
to efficiently train NODEs to learn both mechanisms.

3.1 LEARNING CONTINUOUS DYNAMICS

Given an initial y0 and a time step τ , we denote ti = t0 + iτ and yi = y(ti). Suppose a NN denoted
as N : T×rng(y)×dom(ϕ) → rng(ẏ) such that ẏi = N (ti, yi−1, ϕ). Starting with ŷ0 = y0, we can
predict the next states through the recursive invocation of N ; that is, ŷi>0 = ŷi−1 +

∫
N (ti, ŷi−1, ϕ).

In this setup, except y0, a well-posed initial value while inferring the next state is not guaranteed
and the error accumulates over time. N generally tries to compensate for this error, from a future
state ŷi onwards, with a series of incorrect and error rectifying mappings; see (Legaard et al., 2023).
Alternatively, given a ground truth trajectory, Legaard et al. (2023) proposed to train N on single-step
pairs. Given y0 and a time step τ , we have ŷi>0 = yi−1 +

∫
N (ti, yi−1, ϕ). This effectively makes

ŷi a function of yi−1 which is guaranteed to be a well-posed initial value. Moreover, by avoiding
recursive invocations, we can train N in parallel on multiple single-step pairs. Since this approach
still invokes an ODE solver on single-step pairs, extending it to variable time steps is straightforward.

3.2 LEARNING INSTANTANEOUS STATE UPDATES

However, the above training approach is not directly applicable to piecewise ODEs. Suppose an event
occurs at te causing an instantaneous change in the state from ye to ýe. Then, N must learn two
different mappings: (i) continuous dynamics ŷe+1 = ýe +

∫
N (te, ýe, ϕ), and (ii) instantaneous state

update function (i.e. ye → ýe). Since ye and ýe are of different dynamics, it is difficult to generalize
N ’s mapping over both dynamics. Chen et al. (2021) proposed to learn these mappings separately.
By eliminating successive pairs crossing a discontinuity, we can apply single-step training. This
modified method retains the well-posedness of the automata-generated training data; see Section 2.2.
After learning the continuous dynamics and receiving state updates from the event specification, we
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must learn an exact mapping for instantaneous state update functions. This is achieved by training a
nonlinear transformation U(t, y(t), ψ) derived from the event specification. Training U reduces to
learning the parameters ψ from trajectories between pairs crossing discontinuities.

Bouncing Ball 4 (Learning Piecewise Dynamics). N (t, y(t), ϕ) has three fully connected layers of
64 units with GELU activation. For the optimizer, we use Adam with a learning rate of 0.001. We
derive the instantaneous state update function as velocity’s sign inversion from the event specification.
To estimate e in Eq. (3), we use a trainable non-linear transformation U(t, y(t), ψ) with a sigmoid
activation. We use Xavier initializer for N , and pytorch’s default initializer for U .

Using the dataset we generate while learning Sf , we train N on 3169 single-step continuous pairs
from the interval T = [0, 10.43] for 5000 epochs. Then we freeze N and train U on data points from
eight event locations, i.e. slices that go over the discontinuities, for 2000 epochs. The slices around
the event locations contain 3, 4, 5, 6, 8, 11, 15, and 21 data points. For both networks, we use MAPE
as the training loss and MSE as the validation loss. We deliberately chose MSE for validation to
highlight the outlier predictions, making the validation loss significantly higher than the training loss.

For validation, we only provide the model with y0 = 10m at t0 and T = {0.01}. We predict the
ball’s trajectory until it rests, i.e., T = [0, 12). The baseline is a ground truth sampled from the black
box ODE with T = {0.01}. Running experiments with five random seeds resulted in an average loss
of 1.14m2 ± 0.05m2. Figure 1a already shows a predicted trajectory vs. the ground truth.

On Importance of Hyperparameters. The architecture and activation function can significantly
impact the performance. Given such a shallow architecture for N , we expect the performance to be
sensitive to the number of units in each layer. Reducing layer units to 32 results in an average loss
of 1.26m2 ± 1.05m2, which is expected for such a small network. Reducing the number of hidden
layers in N to two results in an average loss of 1.49m2 ± 0.76m2. Substituting GELU with ReLU
in N results in an average loss of 1.05m2 ± 0.44m2 showing no significant difference.

Example (Thermostat-Controlled Storage-Tank Water Heater). The thermostat turns the heater
on when the water temperature reaches a set point Ton = 45 ◦C, and turns it off upon reaching
Toff = 100 ◦C. The specification learning process is similar to that of the bouncing ball. Assuming
the initial temperature T0 = Ton, the Sf is shown in Fig. 3a. This Sf comprises a range-based
predicate, i.e., T ∈ [Ton, Toff], demonstrating that we can specify more complex events, such as
threshold crossings, common in control systems. Another application of range-based predicates
is to specify the guard conditions; e.g., dealing with noisy variables in real-world systems. See
Appendix A.2 for the ODE, the NN architectures, the training setup, and hyperparameter tuning.

For validation, we only provide the model with T0 = T−
on at t0, T = {5}, and predict the system’s

dynamics within T = [0, 4500]. The validation baseline is a trajectory sampled from the black box
ODE with T = {5}. Running the experiments with five random seeds resulted in an average loss of
0.00027± 6.860× 10−6. Figure 3b shows a predicted trajectory vs. the ground truth.

q0, q1T0 < Ton q2, q3

T > Toff ∧ Ṫ > 0 → Ṫ ′ < 0

T < Ton ∧ Ṫ < 0 → Ṫ ′ > 0

T ∈ [Ton, Toff] ∧ Ṫ > 0

T < Ton ∨ Ṫ ≤ 0

T ∈ [Ton, Toff] ∧ Ṫ < 0

T > Toff ∨ Ṫ ≥ 0

(a) The Sf with blue self-loops defining location invariants, and red self-loops revealing invalid behaviors.

0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500
40
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80
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t ∈ [0, 4500]
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−0.1

0

0.1

0.2

Ṫ
(t
)

T (t) Ṫ (t) T̂ (t) ˆ̇T (t)

(b) The ground truth vs. the predicted dynamics of the storage-tank water heater with thermostat control

Figure 3: Learning the storage-tank water heater with thermostat control.
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4 RELATED WORK

Despite accurate results, Neural Event ODEs require extensive prior knowledge about the events
and are computationally costly due to repetitive EDP solving on the ODE’s complete trajectory.
Our enhanced variation does not require prior knowledge about the events and solves the EDP on a
subset of the training data only if it is required while learning the parameters of the instantaneous
state update function. Not having to solve the EDP and using a single-step training method to learn
the continuous dynamics significantly reduces the computational cost of our approach. Finally, we
provide an automaton that helps users interpret the system’s dynamics.

Simultaneously, Shi & Morris (2021) proposed LatSegODEs, using a changepoint detector (e.g.
PELT by Killick et al., 2012), to slice the ODE’s trajectory and learn its piecewise dynamics
by LatentODEs. LatentODEs (Rubanova et al., 2019), model the latent dynamics of irregularly
sampled time series by combining NODEs with Variational Auto Encoders (VAEs) (Kingma &
Welling, 2014). Subsequently, LatSegODEs require simple dynamics within each piece for accurate
latent space construction. Moreover, constructing a latent space can reduce interpretability due to
complex transformations for high-dimensional spaces or the potential loss of essential data in lower
dimensions. Our approach differs from LatSegODEs in (i) our approach is more interpretable as it
does not construct a latent space and (ii) we do not require a changepoint detector to solve the EDP.

Following the same line of research, Poli et al. (2021) proposed Neural Hybrid Automata (NHA) to
model Stochastic Hybrid Systems (SHSs) without prior knowledge of dynamic pieces and events.
NHA comprise three modules: (i) a dynamic module, (ii) a discrete latent selector module, and
(iii) an event module. The dynamic module is a NODE modeling the continuous dynamics in each
SHS mode. The discrete latent selector uses a Normalizing Flow Network (NFN) by Durkan et al.
(2019), that given SHS’s current mode, identifies a corresponding latent state. Once the latent state
is identified, the event module detects an event occurrence and its instantaneous effect on the SHS,
updating its mode and the latent state. The precision of the discrete latent selector is enhanced by the
accurate modeling of latent states distribution by NFNs, offering better guarantees for transitioning
between piecewise dynamics than VAEs-based methods like LatSegODEs. However, due to their
complexity, NHA are less interpretable compared to our approach.

5 CONCLUSION & FUTURE WORK

This paper presents a hybrid comprehensive approach for inferring an interpretable specification
of a system showing piecewise dynamics. We used automata learning to infer an abstract model
of a possibly black-box system’s behavior and a neural network to learn its continuous dynamics.
Automata learning is polynomial in the size of inputs and the number of congruency classes in the
target language. Specification learning is of polynomial complexity in the number of input predicates,
and congruent events. This is affordable for many real-world systems and allows us to learn an
interpretable model of their behavior without prior knowledge.

Next, we demonstrated a more effective training scheme for NNs learning continuous dynamics in
the presence of discontinuities that we can extend to other methods such as NODEs and LatentODEs.
We should note that we ensured the IVP’s well-posedness during automata learning and neural
network training, making our approach theoretically sound. Through a step-by-step analysis using
the bouncing ball, we demonstrated that our approach can efficiently learn interpretable models of
piecewise dynamics with significantly fewer data points and computational resources compared to
current state-of-the-art methods. Experimental results on the water heater and the SLDS showed that
our approach can learn explainable specifications of complex systems with piecewise dynamics.

For future work, we first aim to incorporate changepoint detection into the automata learning process
to augment the predicate change detector. Next, we aim to complement NODEs and LatentODEs
with our specification learning approach and perform a thorough numerical comparison with other
methods like Neural Event ODEs and LatSegODEs. Applying our approach to LatSegODEs (Shi
& Morris, 2021) results in a latent event specification whose conformance check against the event
specification of the original system possibly verifies the correctness of the latent space construction.
We can also apply our approach to learn interpretable models of physical systems with decomposable
dynamics through a compositional approach to automata learning introduced in (Moerman, 2018).
This would allow us to apply our approach to large-scale systems with multiple trajectories.
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A LEANING PHYSICAL SYSTEMS

A.1 A SWITCHING LINEAR DYNAMICAL SYSTEM

Chen et al. (2021) showed how to learn Switching Linear Dynamical Systems (SLDSs) using
Neural Event ODEs. SLDSs are of particular interest for extracting interpretable models from
physical systems (Ackerson & Fu, 1970; Chang & Athans, 1978), neuroscience (Linderman et al.,
2017) or finance (Fox et al., 2008). Although Neural Event ODEs successfully model SLDSs, training
them requires the underlying ODE to be known apriori. Using our proposed event specification
learning approach, we can learn an explainable model from a black-box SLDS without knowing
its ODE. Let us look at the following example. Consider a black-box system that implements the
following ODE:

f(t, x(t), ϕ) =


ẋ = xA+

[
0 2

]
if x1 ≥ 2

ẋ =
[
−1 −1

]
if x0 ≥ 2 ∧ x1 < 2

ẋ =
[
−1 +1

]
if x0 < 2 ∧ x1 < 2

with A =

[
0 1
−1 0

]
, (4)

whereA is called a rotation matrix, x ∈ R2 such that x = [x0 x1] with the initial value x0 = [0 0].
In the following, we show how to learn the event specification of the SLDS and explain its behavior
from its black-box implementation without prior knowledge of its ODE.

A.1.1 EVENT SPECIFICATION

We define Σ = {sign(ẋ)} and Γ = {xi ≥ 2, xi < 2, ẋi < 0, ẋi = 0, ẋi > 0}1i=0 where sign(ẋ)
return a vector of signs of ẋ. Figure 4a shows the learned abstract function Af of the SLDS. Inspecting
the Af , we can extract the following events:

1. x0 < 2 ∧ x1 ≥ 2 with state update ẋ0 < 0 → ẋ′0 > 0

2. x0 ≥ 2 ∧ x1 ≥ 2 with state update ẋ1 > 0 → ẋ′1 < 0

3. x0 ≥ 2 ∧ x1 < 2 with state update ẋ0 > 0 → ẋ′0 < 0

4. x0 < 2 ∧ x1 < 2 with state update ẋ1 < 0 → ẋ′1 > 0

Updating Σ, learning the abstract event model yields the Ef shown in Fig. 4b. In the Ef , the transitions
s0 → s1 → s2 of the Af are combined into q0 → q1 with a dynamic update ẋ0 < 0 → ẋ′0 > 0. Next,
s2 → s3 → s4 from the Af are merged into q1 → q2 with a dynamic update ẋ1 > 0 → ẋ′1 < 0.
Similarly, s4 → s5 → s6 and s6 → s7 → s0 are merged into q2 → q3 and q3 → q0 respectively. The
learned Ef yields the Sf shown in Fig. 4c that conforms to the definition of SLDS’s ODE. Of note, the
initial value x0 = [0 0] determines the initial location q0 of the Sf . For example if x0 = [−2 2],
the Sf would start at q1. Finally, we claim the Sf provides an intuitive explanation of the SLDS’s
behavior regardless of whether or not its ODE is known.

A.1.2 EXPLAINABILITY

Although Eq. (4) has three cases defining the SLDS, our method discovers four locations given the
explored trajectory in Fig. 4d. The locations of the learned Sf correspond to the regions of the SLDS’s
trajectory in Fig. 4d. The invariant of q0 is x0 < 2 ∧ x1 < 2 ∧ ẋ0 < 0 ∧ ẋ1 > 0, aligning with the
third case of Eq. (4). Initially, the SLDS is in the region corresponding to q0 in Fig. 4d and stays
there with x0 linearly decreasing and x1 increasing until x1 ≥ 2. Then, according to the first case
of Eq. (4), the SLDS starts its rotation and the Sf jumps to q1 with ẋ0 < 0 → ẋ′0 > 0. The SLDS
remains in the q1 region until the progress of x forms an arc reaching x0 ≥ 2, causing Sf to transit
to q2, which is also governed by the first case of Eq. (4). In q2 the rotation of x causes a decrease
in x1 forming an arc that reaches x1 < 2 in the corresponding region of Fig. 4d, at which point
the Sf jumps to q3 with ẋ0 > 0 → ẋ′0 < 0. Like q0, the values of x0 and x1 progress linearly and
proportionally, keeping the Sf in q3 until x0 < 2 and the Sf jumps to q0 with ẋ1 < 0 → ẋ′1 > 0.

The Sf ’s locations and transitions are learned through a change detector that monitors alterations in
the signs of ẋ along the given trajectory. This learning process can identify the x0 and x1 values that
trigger changes in the SLDS’s behavior. For instance, if the SLDS initiates rotation when x1 ≥ α,
evaluating x1 during the s1 → s2 transition of the Af reveals α = 2.

A.1.3 LEARNING PIECEWISE DYNAMICS

For an example of how to use the learned event specification Sf to model the the continuous dynamics
using Neural Event ODEs, we refer the reader to (Chen et al., 2021).
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s0x =
[
0 0

]
s1 s2 s3

s4s5s6s7

⋆ / x0 < 2 ∧ x1 ≥ 2,

ẋ0 < 0 ∧ ẋ1 > 0

⋆ / x0 < 2 ∧ x1 ≥ 2,

ẋ0 > 0 ∧ ẋ1 > 0

⋆ / x0 ≥ 2 ∧ x1 ≥ 2,

ẋ0 > 0 ∧ ẋ1 > 0 ⋆ / x0 ≥ 2 ∧ x1 ≥ 2,

ẋ0 > 0 ∧ ẋ1 < 0⋆ / x0 ≥ 2 ∧ x1 < 2,

ẋ0 > 0 ∧ ẋ1 < 0

⋆ / x0 ≥ 2 ∧ x1 < 2,

ẋ0 < 0 ∧ ẋ1 < 0

⋆ / x0 < 2 ∧ x1 < 2,

ẋ0 < 0 ∧ ẋ1 < 0

⋆ / x0 < 2 ∧ x1 < 2,

ẋ0 < 0 ∧ ẋ1 > 0

(a) Af of the SLDS

q0x =
[
0 0

]
q2

q1

q3

⋆ / x0 < 2 ∧ x1 ≥ 2,

ẋ0 < 0 ∧ ẋ1 > 0 → ẋ′
0 > 0

⋆ / x0 ≥ 2 ∧ x1 ≥ 2,

ẋ0 > 0 ∧ ẋ1 > 0 → ẋ′
1 < 0

⋆ / x0 ≥ 2 ∧ x1 < 2,

ẋ0 > 0 ∧ ẋ1 < 0 → ẋ′
0 < 0

⋆ / x0 < 2 ∧ x1 < 2,

ẋ0 < 0 ∧ ẋ1 < 0 → ẋ′
1 > 0

(b) Ef of the SLDS

q0 q1

q2q3

x0 < 2 ∧ x1 ≥ 2 ∧ ẋ0 < 0
∧ ẋ1 > 0 → ẋ′0 > 0

x0 ≥ 2 ∧ x1 ≥ 2 ∧ ẋ0 > 0 ∧ ẋ1 > 0 → ẋ′1 < 0
x0 ≥ 2 ∧ x1 < 2 ∧ ẋ0 > 0

∧ ẋ1 < 0 → ẋ0 < 0

x0 < 2 ∧ x1 < 2 ∧ ẋ0 < 0 ∧ ẋ1 < 0 → ẋ′1 > 0

x0 < 2 ∧ x1 < 2 ∧ ẋ0 < 0 ∧ ẋ1 > 0 x0 < 2 ∧ x1 ≥ 2 ∧ ẋ0 > 0 ∧ ẋ1 > 0

x0 ≥ 2 ∧ x1 ≥ 2 ∧ ẋ0 > 0 ∧ ẋ1 < 0x0 ≥ 2 ∧ x1 < 2 ∧ ẋ0 < 0 ∧ ẋ1 < 0

x0 ≥ 2 ∨ ẋ0 ≥ 0 ∨ ẋ1 ≤ 0 x1 < 2 ∨ ẋ0 ≤ 0 ∨ ẋ1 ≤ 0

x0 < 2 ∨ ẋ0 ≤ 0 ∨ ẋ1 ≥ 0x1 ≥ 2 ∨ ẋ0 ≥ 0 ∨ ẋ1 ≥ 0

(c) The Sf with blue self-loops defining location invariants, and red self-loops revealing invalid behaviors.

−2 0 2 4 6

−2

0

2

4

q0

q1 q2

q3

x0(t)

x
1
(t
)

(d) Explored trajectory of the SLDS with dynamic regions labeled to correspond to locations of the Sf .

Figure 4: Learning an event specification of the SLDS.
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A.2 A THERMOSTAT CONTROLLED STORAGE-TANK WATER HEATER

The storage tank water heater with an autonomous thermostat forms a piecewise ODE with two
events: (i) the heater turns on when the water temperature falls below Ton, and (ii) it turns off when
the temperature rises above Toff. Given parameters P (heater’s power), U (heat transfer coefficient),
m (water mass), Cp (water’s specific heat capacity), and Tamb (ambient temperature), we define
ϕ = {P,U,m,Cp, Tamb, Ton, Toff} and the ODE using T (t) as the water temperature:

f(t, T (t), ϕ) =

{
Ṫ = P /mCp + ℓ(T) if T < Ton

Ṫ = ℓ(T ) if T > Toff
with ℓ(T ) :=−U(T − Tamb)/mCp ,

where ℓ(T ) is the heat loss function. We deliberately chose such a thermostat system as its dynamics
are complex enough to challenge ML methods. More specifically, the ODE slice for T < Ton
resembles the reverse of the slice for T > Toff. This observation reflects the underlying physical
principles governing the heating and cooling processes. However, this physical principle can be
unintuitive for NODEs to learn (Ott et al., 2023) since the ODE is not straightforwardly symmetric
as it does not satisfy the symmetry condition f(t, T (t), ϕ) = f(−t, T (−t), ϕ) for all t. Finally,
discussing the Lie group of symmetries of the ODE is beyond the scope of this paper.

A.2.1 EVENT SPECIFICATION

We define Σ = {sign(Ṫ )} and Γ = {T < Ton, T > Toff, T ∈ [Ton, Toff], Ṫ < 0, Ṫ > 0} as the
input and output alphabets, respectively. Figure 5a shows the learned abstract function Af of the
thermostat. Inspecting the Af , we can see a clear separation of the two events; the locations q0 and q1
correspond to the heater being on, and q2 and q3 correspond to the heater being off. Learning with
Σ = {T < Ton, T > Toff} yields the abstract event model Ef with an identical structure, as shown in
Fig. 5b. Applying the event specification construction on the Ef yields the Sf shown in Fig. 3a.

q0T0 < Ton q2

q1

q3

⋆ / T ∈ [Ton, Toff],

Ṫ > 0

⋆ / T > Toff,

Ṫ > 0

⋆ / T ∈ [Ton, Toff],

Ṫ < 0

⋆ / T < Ton,

Ṫ < 0

(a) Af of the thermostat

q0T0 < Ton q2

q1

q3

⋆ / T ∈ [Ton, Toff],

Ṫ > 0

T > Toff / T > Toff,

Ṫ > 0 → Ṫ < 0

⋆ / T ∈ [Ton, Toff],

Ṫ < 0

T < Ton / T < Ton,

Ṫ < 0 → Ṫ ′ > 0

(b) Ef of the thermostat

Figure 5: Learning the event specification of the thermostat.

This example shows we can use range-based predicates, i.e., T ∈ [Ton, Toff]. Such capability lets
us easily specify more complex events, such as threshold crossings, common in control systems.
Another application of range-based predicates is to specify the guard conditions in case of dealing
with noisy variables in real-world systems.

A.2.2 LEARNING PIECEWISE DYNAMICS

To learn the piecewise dynamics, we convert the learned Sf to a NHA with two networks Non and
Noff modeling dynamics of the heater when it is on and off, respectively. Both N are feed-forward
NNs with five hidden layers of 64 units and a GELU activation function. Additionally, we use two
networks Uon and Uoff to update Ṫ (t) as the Sf suggests. Both U are feed-forward NNs with five
hidden layers of 512, 128, 64, 32 units, respectively. We learn a task-specific ParametricGELU
activation function for U using the approach in (Basirat & Roth, 2018; 2019). We use pytorch’s
default initializer, an Adam optimizer with a learning rate of 0.001, and a Huber loss function. We
simultanenously train Non and Noff for 2000 epochs on continuous single-step pairs. Subsequently,
we train Uon and Uoff for 100 epochs on slices of 121 samples around the events.

On Importance of Hyperparameters. Reducing the number of hidden layers in N to three results
in an average loss of 0.060± 0.08. Reducing the number of units in each layer to 32 results in an
average loss of 0.0003± 1.7× 10−9. Substituting the GELU with Mish (Misra, 2020) in N results
in an average loss of 0.0003± 0.0001 showing no significant difference.
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