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ABSTRACT

Recent work has shown that state space models such as Mamba are significantly
worse than Transformers on recall-based tasks due to the fact that their state size
is constant with respect to their input sequence length. But in practice, state space
models have fairly large state sizes, and we conjecture that they should be able
to perform much better at these tasks than previously reported. We investigate
whether their poor copying and recall performance could be due in part to training
difficulties rather than fundamental capacity constraints. Based on observations
of their “attention” maps, we propose a structured initialization technique that
allows state space layers to more readily mimic self-attention. Across a variety of
architecture settings, our initialization makes it substantially easier for Mamba to
learn to copy and do associative recall from scratch.

1 INTRODUCTION

State Space Models (SSMs) show promise as a potential replacement for Transformers (Vaswani,
2017) with substantially lower inference costs (Gu & Dao, 2023; Dao & Gu, 2024). While Trans-
former memory grows linearly with the input sequence length, SSMs use only a constant amount,
compressing all the context into a fixed-size state. SSMs perform comparably to Transformers on a
variety of common benchmarks. However, recent research has highlighted a set of tasks on which
SSMs perform substantially worse than Transformers (Waleffe et al., 2024), particularly those in-
volving copying or recall (Jelassi et al., 2024; Arora et al., 2024). This is perhaps unsurprising, as it
is harder to recall from a compressed, fixed-size representation, particularly as its length grows.

Nevertheless, SSMs use relatively large state sizes in practice, and we wonder if their poor per-
formance on tasks such as copying could be due to training difficulties rather than fundamental
capacity constraints. We present a qualitative study of the failure modes of SSMs on the copying
task. In particular, we inspect the time-dependent linear transformation matrix of Mamba layers,
which is analogous to the attention map of self-attention layers. We compare these layers to their
counterparts in self-attention/Mamba hybrid architectures that successfully learn to copy, and based
on these comparisons, we propose a structured initialization technique that allows Mamba layers to
more readily mimic self-attention. Our technique makes use of the fact that state space layers can
be seen as a form of linear attention with a learnable, structured causal mask. We find evidence that
such linear-attention-like Mamba layers arise naturally after large-scale pretraining, suggesting that
this pattern may be fundamental to the recall abilities of SSMs.

The proposed mimetic initialization allows Mamba to quickly learn to copy and do associative
recall on up to 4× longer strings, and we show for the first time that SSMs can achieve 2×
length generalization or more. Mimetic initialization is essentially compute-free, but we show it
is comparable to pretraining in allowing Mamba to learn to copy and recall. Our work helps to
better understand the capacity of SSMs relative to Transformers in practice and can assist in further
studies of their capabilities, which may have been underestimated by previous research.

Related work Recently, Jelassi et al. (2024) did a thorough investigation of the ability of state
space models (in particular Mamba 1) to copy in comparison to Transformers. Their theoretical
results demonstrate that SSMs with a fixed state size have fundamentally limited copying capacity,
unlike Transformers which can strongly generalize. Empirically, they find that Transformers (espe-
cially with their proposed custom position embeddings) vastly outperform SSMs on copying, both
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(a) Training a Mamba with default initialization to copy.
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Learning to copy with mimetic init

(b) Mamba with mimetic initialization learns to use its attention-like abilities.

Figure 1: Mambas initialized with our technique learn to copy more effectively than those with
default initialization. We see evidence of copying ability in the Mamba attention maps; see Layer 1.

in terms of learning and length generalization. They note that in practice, SSMs may be better at
copying than expected due to their relatively large state sizes, but do not observe very good copying
performance in their experiments. Similarly, Arora et al. (2024) note that SSMs struggle on recall
tasks due to their limited state size. They propose an effective intervention in the form of interleaved
kernelized linear attention layers that boost recall performance. The second, improved version of
the Mamba architecture improves upon associative recall ability, although the authors note that this
task remains difficult for SSMs (Dao & Gu, 2024).

Initialization has been important for SSMs since their introduction to deep sequence modeling by Gu
et al. (2021); a structured initialization of the state matrix was crucial to the performance of these
earlier time-invariant SSMs (Gu et al., 2020; Gupta et al., 2022; Gu et al., 2022; Smith et al., 2023).
Our work further demonstrates the importance of initialization for SSMs, taking inspiration from
mimetic initialization (Trockman & Kolter, 2023; Trockman et al., 2022), which uses pretrained
models as case studies of good initialization. For example, previous work noted that self-attention
layers in pretrained Vision Transformers may try to imitate the local mixing ability of convolutions,
which is reflected in the correlations between query/key and value/projection weights; initializing
weights with statistical structure that mimics this pattern greatly improved trainability. We follow a
similar methodology to propose a novel mimetic initialization technique for state space layers based
on our observations that (1) these layers can represent linear attention, which can improve recall and
(2) they sometimes approximate linear attention in pretrained models.

2 PRELIMINARIES

Recently, state space models have become popular as a choice of token mixing layer, i.e., as a re-
placement for self-attention. We refer to layers that use state space models for this purpose as state
space layers. As it is common in the literature, with a slight abuse of definitions, we refer to architec-
tures like Mamba 1 & 2 that use state space layers only for sequence mixing as state space models.

State space models For a scalar sequence x ∈ RT, SSMs are linear recurrences of the form

ht+1 = Āht + B̄xt, yt = Cht, (1)

where ht ∈ RN is a hidden state, and Ā ∈ RN×N, B̄ ∈ RN×1, C ∈ R1×N are the state space model
parameters. The bar notation refers to the discretized form of the underlying parameters A and B,
as SSMs are traditionally continuous systems. Typically, some structure is imposed on Ā ∈ RN×N,
such as diagonal-plus-low-rank (S4), diagonal (Mamba), or scalar-times-identity (Mamba 2).

In contrast, selective SSMs such as the S6 layer in Mamba allow the parameters Āt, B̄t, Ct to vary
with time, i.e., depend on xt. The particular state space layer in Mamba operates on sequences of
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Figure 2: A hybrid Mamba architecture with one Self-Attention layer easily learns to copy. Dotted
lines: performance on training length (50), solid: 2× length generalization (100).

D-dimensional tokens X ∈ RD×T. Indexing tokens with t and channels with d, it computes

h(t+1),d = Ātdhtd + B̄tdXtd, ytd = Cthtd, (2)

where Ātd, B̄td, Ct depend on all channels of input xt, but with different discretization pa-
rameters ∆td, hence the dependence of Ātd and B̄td on d. Define the underlying parameters
WB ,WC ∈ RN×D, and A ∈ RD×N. Let W∆ ∈ RD×D be a rank-r matrix, and bias b∆ ∈ RD. Then the
continuous state space model parameters are computed as Bt = WT

BX:,t and Ct = WT
CX:,t. The

parameters of the discretized state space models are then computed as follows:

∆t,d = softplus(WT
∆dX:,t + b∆,d), Ātd = exp(Ad∆t,d), B̄td = Bt∆t,d. (3)

Please refer to Dao & Gu (2024) for a more detailed discussion on selective SSMs.

Matrix form of SSMs The operations of Eq. 3 can be written concisely in matrix form:

∆ := softplus (W∆X + b∆) ∈ RD×T (4)

B̄d := WBX ⊙ 1n∆d ∈ RN×T (5)

C := WCX ∈ RN×T (6)

Ād := exp
(
AT

d ∆d

)
∈ RN×T (7)

As noted first by Ali et al. (2024), the time-varying discrete recurrence ht+1 = Ātht + B̄txt, yt =
Cht can be unrolled and viewed as a matrix operation. Namely, channel d of the output of an
SSM layer, denoted with Yd ∈ RT, can be written as Yd := MdX , where Md ∈ RT×T is a matrix
transformation dependent on d. Each matrix Md represents a time-dependent linear transformation,
much like attention maps in self-attention. For i, j ∈ [T], the Md matrix of the Mamba state space
layer for channel d can be expressed as follows:

Md,i,j = CT
:,i

(
Πi

k=j+1diag(Ād,:,k)
)
B̄d,:,j × 1{i ≤ j}. (8)

As it will be useful later, we note that in practice, A is parameterized as A := − exp(Alog) with
Alog ∈ RD×N. The selective state space layer of Mamba 2 is broadly similar to that of Mamba 1;
it follows equations 4–7, but instead of having D different Ad and ∆d, it has H independent A and
∆, each of which are repeated D/H times to construct Ad and ∆d. Each of these H independent A
are parameterized as scalar-times-identity matrices, resulting in just H parameters. These H compo-
nents correspond to “heads”, leading to only H unique Ād and B̄d parameters, and only H “attention
matrices” Md (c.f. Eq. 8), as in multi-head attention.

Mamba architecture Mamba 1 and 2 are prominent sequence modeling architectures that com-
bine selective state space layers (as the sequence mixer) with more standard layers. We describe
below the Mamba 1 block, and refer the reader to (Dao & Gu, 2024) for details on Mamba 2, which
are not essential to our work. Omitting the final LayerNorm, the Mamba block is a composition of
two sequence mixer layers (1D convolution and a selective SSM layer) a gated linear block:

W3{SSM [σ(DepthwiseConv1d(W1X))]⊙ σ(W2X)}+X, (9)

where σ is SiLU (Hendrycks & Gimpel, 2016). Mamba 2 simplifies this block, merging all projec-
tions into W1. For both, the convolution layer before the SSM will be considered in our initialization.
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Mamba attention maps Throughout this work, we visually inspect Md to better understand the
operation implemented by Mamba layers. However, it is infeasible to look at all D maps, and we
instead visualize and report the average over channels 1

D

∑D
d=1 Md, which we hereafter refer to as

the attention map of a Mamba layer. In practice, the inter-channel variation in maps is relatively
small, as the behavior of Md is dominated by B̄d and C. We also sometimes find it useful to inspect
the average attention mask 1

DN

∑D
d=1

∑N
n=1(Π

i
k=j+1diag(Ād,:,k))n,n to approximately determine

the effective receptive field of the Mamba layer (i.e., how far into the past it can look).

Copying task Most of our experiments focus on copying, a simple task where SSMs are known
to fall far behind Transformers. We train the model to predict the paste string given the copy string,
emitting a stop token at completion.

abcdefghijk︸ ︷︷ ︸
copy string

| abcde ?︸ ︷︷ ︸
paste string

· · ·□ (10)

Since Transformers cache the whole sequence, it is easy for them to learn the task and to generalize
far beyond the training length. However, since SSMs compress tokens into a fixed-size state, it is
hard for them to store and decode back long sequences. We consider copying sequences of varying
length and of different vocabulary size, drawing tokens uniformly at random. We also investigate
stack-order copying, where the paste string needs to be generated in the reverse order.

Multi-query associative recall Another synthetic task that has been shown to be an important
discriminator between Transformer and SSM abilities is multi-query associative recall, which tests
models’ ability to store and recall many key-value pairs. Transformers are well-suited for this task,
as they can implement induction heads easily (Olsson et al., 2022).

a1 b2 c3 d4︸ ︷︷ ︸
key−value pairs

| c3 b ?︸ ︷︷ ︸
queries

· · ·□ (11)

Similarly to copying, we investigate length generalization on multi-query associative recall. In our
implementation, each key may occur only once, i.e., it cannot be overwritten by later key/value pairs.

3 INITIALIZING STATE SPACE LAYERS TO BE MORE LIKE ATTENTION

To better understand why Mamba often fails to learn to copy, we start by examining a small model
trained to copy 50-character strings. In Figure 1a, we can see that Mamba plateaus. Visual inspection
of its attention maps reveals that it has probably failed to learn an interpretable copying operation.

Attention enables copying To explore what Mamba might be missing to allow it to copy, we
trained a hybrid eight-layer Mamba whose fourth layer is single-head self-attention. As shown in
Fig. 2, this one layer enables perfect copying performance, both on in-distribution length-50 strings
(dotted lines) and generalizing to length-100 strings (solid lines). The softmax attention head learns
a sharp “look-behind” operation, constructing the paste string by directly attending to the copy
string, likely exploiting an implicit position embedding learned by the preceding Mamba layers. We
propose two initialization changes that allow state space layers to better use their state capacity.

1. State space layers can be linear attention While there is likely more than one way to learn to
copy, we suspected that Mamba’s copying ability is tied to its ability to represent a similar operation
to the one in this self-attention layer. Notably, in Figure 1a, the Mamba layers tend to look only into
the recent past, while the self-attention layer in Figure 2 can attend all the way to the beginning of
the string. While SSMs cannot look arbitrarily far into the past because of their fixed state size, even
in the simplest time-invariant SSMs, the amount of history stored in the state is controlled by the
parameter A, whose initialization was crucial to the initial success of these models (Gu et al., 2021).

Consequently, we focus on the state matrix A, which controls the “receptive field” of the state space
layer. Note in Eq. 8 that if Ād ≈ 1, then Md,i,j ≈ CT

:,iB̄d,:,j . That is, the state space layer’s attention
map resembles a product of queries and keys. The only inter-channel variation in this equation
is from ∆d in Eq. 5, so that if ∆d ≈ 1 then B̄d ≈ WBX , which results in M = XTWT

CWBX ,
which is simple linear attention before applying the causal mask. Thus, if we set parameters so

4
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Figure 3: Testing the four components of our initialization on Mamba 1 & 2 for 10 seeds.

that ∆d, Ād = 1, the state space transformation is the same for every channel, and it is simple
(non-kernelized) linear attention with head dimension N and no value/projection matrices:

∆d, Ād ≈ 1 =⇒ Y ≈ X · tril
(
XTWT

CWBX
)
∈ RD×T. (12)

However, both Ād and ∆d are parameterized and input-dependent, so we cannot directly set them
to one. We use details of the Mamba implementation: To make Ād = exp(AT

d ∆d) ≈ 1, we
parameterize A = − exp(−cAlog), which is nearly 0 for large c, making AT

d ∆d ≈ 0 in Eq. 7. We
choose c from {2, 4, 8}. We then set W∆ ≈ 0 and b∆ = softplus−1(1) ≈ 0.54 in Eq. 4 so ∆d ≈ 1.
This makes the state space layer close to its linear attention counterpart at initialization.

2. Correlated tokens should attend to each other Having shown that state space layers can
mimic linear attention, we now try to make them mimic attention layers that can copy, such as the
one in Fig. 2, which implements a look-behind operation. We focus on a single linear attention/state
space layer, assuming the layers before it learned a representation amenable to copying. Consider
a copying example of length n, where we have already copied k < n of the D-dim. tokens past the
delimiter x∥ and want to copy the (k+1)st one: X = (x1, · · · , xn, x∥, x1, · · · , xk) ∈ R(n+k+1)×D.
We assume that preceding layers f have learned to superimpose a position embedding as follows:

f(X) = (x1 + p1, · · · , xn + pn, x∥ + p1, x1 + p2, · · · , xk + pk+1) = X + P ∈ R(n+k+1)×D,

so that token with index k in the paste string will attend to token k + 1 in the copy string because
(xi+1 + pi+1)

T (xi + pi+1) > 0, assuming xT
i+1xi, x

T
j pj ≈ 0 (uncorrelated) and pTj pj = 1 (cor-

related). That is, f(X)T f(X) ≈ PTP will have similar structure to that in Fig. 2. In this case,
copying behavior will arise in our state space/linear attention layer if PTWT

CWBP ≈ PTP , i.e.,
when WT

CWB ≈ I . Since WC ,WB are low rank (N < D), their product cannot be exactly the iden-
tity; using the fact that random Gaussian matrices are semi-orthogonal, we could set WC := WB

to get WT
CWB ≈ I . Initializing the queries and keys to be correlated was also noted by Trock-

man & Kolter (2023), who suggest these weights should not be strictly equal, so we instead set
WC := 1

2 (W
′
C + WB). In summary, assuming the model has learned a useful correlation struc-

ture between tokens, setting WT
CWB ≈ I ensures this structure can be leveraged by attention. For

similar reasons, we experiment with initializing the convolution in Mamba layers to the identity.

Initialization Purpose

A ≈ 1 Approximate
linear attn∆ ≈ 1

WT
C WB ≈ I Encourage

recallConv1d ≈ I

Which of these components matter? In Fig. 3, we investigate the in-
teraction of these four possible mimetic initialization components, dis-
playing all sixteen possible off/on combinations. We investigate copying
on 50-long strings and generalizing to 100- and 300-long strings for a 24-
layer Mamba with hidden size 1024 as in Jelassi et al. (2024). For the A
and ∆ initializations, we fix c = 8 and b∆ = 0.54. For Mamba 1, we
see that there is only a significant effect when setting A ≈ 1, with no apparent benefit to setting
∆ ≈ 1; while setting WT

CWB ≈ 1 has only a tiny effect, using identity convolution initialization
seems somewhat harmful.
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Figure 4: Mimetically initialized Mamba layers learn similar operations to Self-Attention layers in
the same location naturally with no additional supervision on several tasks. Dotted lines: accuracy
at training length (50), solid lines: generalizing to length 100.

For Mamba 2, we see a similar advantage to using A ≈ 1 initialization, and a advantage to
WT

CWB ≈ 1 even without A ≈ 1, and the two interact to create even better models. Adding
identity convolution initialization leads to much better performance still, reaching 100% accuracy in
many cases. The positive interaction between A ≈ 1 and WT

CWB ≈ 1 and identity convolution is
especially apparent for 300-long strings.

The difference in the best initialization strategy for the two architectures is likely explained by
the removal of linear blocks after the convolutional layer in Mamba 2, as well as the addition of
multiple state space heads. Unless otherwise noted, we use the observations above to determine our
initialization strategy depending on the Mamba version: For Mamba 1, we use A,∆ ≈ 1,WT

CWB ≈
I , and for Mamba 2 we add identity convolution initialization.

4 STATE SPACE MODELS WANT TO BE TRANSFORMERS:
MIMETIC INITIALIZATION LETS THEM GET CLOSER

Mimetic initialization leads to immediate and significant improvements in copying ability. In
Fig. 1b, we can see that mimetic initialization allows a small 4-layer Mamba to learn to copy strings
with twice the training length with reasonable accuracy in just a few hundred steps, which is far
better than the tens of thousands of steps reported in previous work (Jelassi et al., 2024). Note that
mimetic initialization leads to Mamba learning a state space layer whose attention map replicates
the structure of that of self-attention in Fig 2; i.e., this layer has learned to (continue to) implement
linear attention. Mimetic initialization allows Mamba to quickly learn to copy from scratch.

One mimetic init is all you need? We continue our investigation of using mimetic initialization to
help Mamba learn recall tasks: Given our observations that a single self-attention layer is sufficient
to learn these tasks to high fidelity, and that a single Mamba layer can roughly approximate this
attention, we use mimetic init for just one layer in the same position (Layer 4) of an 8-layer Mamba.
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Figure 5: Simple linear attention underperforms Mamba even for very high head dimension, espe-
cially at generalization. Dotted lines: accuracy at length 100, solid: at length 200; train length: 50.

In addition to copying (Fig. 2), we present results for additional three synthetic tasks in Fig. 4. First,
we investigate copying in stack order, as unpacking the compressed string in most-recently-added or-
der is potentially easier for SSMs. Unlike normal copying, baseline Mamba is able to fit to the train-
ing length, but it fails to generalize. Mamba with mimetic init fits the training length much faster and
generalizes better, while the self-attention hybrid generalizes nearly immediately. The story is simi-
lar for multi-query associative recall – mimetic initialization leads to rapid learning and generaliza-
tion to twice the length. We also consider the sorting task, where tokens are sampled without replace-
ment from a vocab of size 512. Surprisingly, Mamba with mimetic init does even better than self-
attention. Mimetic initialization results in large improvements for all synthetic tasks considered.

Is Mamba with mimetic init just linear attention? In Figures 2 & 4, notice that the mimetic
initialized Mamba layer tends to mimic the corresponding self-attention layer in the hybrid model;
the resemblance is clear for copying in normal and stack order. For associative recall, it is less
clear, but the Mamba layer looks significantly more like it could implement a induction-head-like
function than typical Mamba layers. Similarly, the interpretation is unclear for sorting, but the
overall structure matches. At a high level, it seems like Mamba attempts to learn an approximation
to self-attention, but has much less capacity and sharpness. Consequently, we ask if our initialization
merely turns state space layers into single-head linear attention layers.

In Figure 5, we present an ablation study where we replace the target Mamba layer in our copying
experiment with simple causal linear attention with various head dimensions. According to Eq. 12,
we may expect mimetic init to make Mamba layers equivalent to unkernelized linear attention lay-
ers with head dimension equal to the state dimension. Consequently, we compare Mamba with state
size 32 to linear attention with head dimension 32, which comes relatively close. We plot gener-
alization to 2× and 4×-length in Fig. 5, as the difference for fitting to the training length is small.
Nonetheless, Mamba still performs somewhat better than linear attention. Linear attention perfor-
mance depends on the head dimension, with dimension 8 severely underperforming Mamba and
dimension 1024 barely exceeding the performance of 32. In contrast, doubling the state dimension
of Mamba to 64 substantially improves generalization performance. We visualize the difference in
attention maps for the two operations; we can see that Mamba’s is perhaps sharper/more consistent
like that of self-attention. Combined with better performance on copying, we conclude that mimetic
init Mamba layers are not just linear attention, but rather a related and superior (for this task) non-
linear operation. The correlation between this “sharpness” and linear attention performance has been
exploited by recent work (Zhang et al.).

5 FURTHER EXPERIMENTS ON MIMETIC INITIALIZATION

Mimetic initialization improves the recall abilities of Mamba 1 and 2 over a variety of architecture
settings and sequence lengths. For all Mamba 1 experiments, we use state size 32, though we explore
different state sizes for Mamba 2, which has state size 128 unless otherwise noted. For Mamba 2, we
use head dimension 64 for all experiments. All trials are for 5000 steps unless otherwise noted, and
we swept over a small set of learning rates; our training pipeline is taken from Jelassi et al. (2024).
Note: While mimetic initialization has a strong effect size for Mamba 1, the architecture generally
struggles to copy for larger vocab sizes in the training lengths studied, so we present Mamba 2
results for most larger-scale experiments in the paper. Error bars are computed over five seeds.
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Figure 6: Mamba 2 with mimetic init can learn to copy even for large vocabulary sizes.

0 50 100 150 200 250 300
Eval. @ Length

0.0

0.2

0.4

0.6

0.8

1.0

Ch
ar

. A
cc

ur
ac

y

Train
Length

Baseline
State Dim

4
8
16
32
64
128
256
512

0 50 100 150 200 250 300
Eval. @ Length

Train
Length

Mimetic Init
State Dim

4
8
16
32
64
128
256
512

Mamba 2 :  Copying Generalization (Embed Size = 1024, Layers = 4)

(a) State size vs. evaluation length

2 3 4 5 6 7 8 9
log2  State Size

0

50

100

150

200

M
ax

 G
en

. L
en

gt
h

Train Length

Mamba 2 :  State Size vs. Copying Generalization
Vocab Size: 1024

Mimetic Init Baseline
(b) State size vs. max > 99% gen. length

Figure 7: Mimetic initialization allows for better use of the state size for copying; capacity grows
roughly linearly with state size, compared to almost not at all with default init.

Vocabulary sizes The larger the vocabulary, the more bits it should take to encode content of
a token to enable copying, and the harder it may be to memorize and copy the sequence. While
the previous work on copying focused on small vocabularies, we showcase the ability of mimetic
init to improve copying even for large vocabularies in Fig. 6. For Mamba 1, mimetic init allows
decent copying performance up until a point, and then degrades. In contrast, baseline never learns to
generalize. For Mamba 2, mimetic init enables consistent 2× length generalization across sequence
lengths, preventing the degradation with vocab size demonstrated by the baseline.

State dimension The copying ability of Mamba should be directly related to its state size, accord-
ing to Jelassi et al. (2024). This allows Mamba to more easily approximate self-attention-like maps,
as we saw earlier. We show this is indeed the case in Fig. 7a. Indeed, for baseline Mamba 2, perfect
copying at training length 50 is only possible for sufficiently large state size. However, if we use
mimetic initialization, the additional capacity from the state size is much more efficiently used, and
generalization (measured with the area under the curve) is far stronger – N = 32 with mimetic init
achieves performance comparable to N = 512 with baseline init, a 16× improvement in the use of
capacity. We show another view on this data in Fig. 7b; generalization length hardly grows with the
log of the state size using baseline initialization, while it grows linearly only after using mimetic
initialization. Mimetic init allows Mamba 2 to get closer to its true compression/copying capacity.

Architecture size In Figure 8, we investigate mimetic init over different Mamba sizes (dimension,
layers). Surprisingly, a mere two layers seems to be sufficient, with deeper networks improving
generalization beyond 2× length. With embedding size 1024, Mamba 2 can copy very well for a
variety of depths; for multi-query associative recall, slightly deeper networks seem preferable. In
almost all cases, mimetic initialization leads to superior generalization performance.

Sequence length Mimetic initialization lets us nearly perfectly fit to the training length even for
longer strings for both copying and multiquery associative recall (Fig. 9). While baseline tends to
struggle to learn to copy even 1000-long strings, mimetic initialization allows fitting to around 4000-
long strings. For MQAR, baseline breaks down around 900-long strings, while mimetic initialization
allows fitting to 1800-long or more. The benefits apply for better generalization as well, though
Mamba still cannot strongly generalize to much longer strings than trained on.
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Figure 8: Mimetic initialization vs. Mamba 1/2 architecture sizes.
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Figure 9: Mimetic init lets us nearly perfectly fit in-distribution even for long sequences on copying
(left) and MQAR (right), and also boosts generalization performance (1024-dim 2-layer Mamba 2).

6 COMPARING MIMETIC INITIALIZATION TO PRETRAINING

Mimetic init mimics benefits of pretraining We hypothesized that Mamba’s difficulty in copying
may be an optimization issue rather than fundamental capacity limitations. That is, a Mamba that
was first pretrained on a general text corpus may be a better representation of true copying abilities;
i.e., one should never train from scratch (Amos et al., 2023). In Fig. 10, we see that finetuning
a pretrained 130M Mamba to copy or do associative recall on 50-character strings results in good
generalization, but training from scratch with mimetic init achieves similar results. Note that the pre-
trained Mamba had a much longer (> 1k) training length than our from-scratch trials. Considering
this, our mimetic init results get impressively close (esp. for shorter strings; dotted lines).

Localizing the benefit of pretrained weights Based on our linear attention observations, the
copying abilities of a pretrained Mamba may be localized to a few layers, so we explore the capabil-
ities of individual layers: We use a pretrained teacher Mamba with layers Ti : i ∈ [L], and then train
L student Mambas where each of the Sj : j ∈ [M ] layers is initialized with Sj := Ti for i ∈ [L]. In
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Figure 10: Pretrained 768-dim. 24-layer Mamba 1 vs. from-scratch training (w/ mimetic init).
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Figure 11: The copying ability of a pretrained Mamba may be attributable to a fraction of its layers.

this case, L = 48 and M = 12. Using these pretrained weights can make it much easier to learn to
copy (Fig. 11a), but the effect size stands out for some particular layers, such as T31.

We inspected the weights and attention maps of these layers to see what might be behind the im-
proved performance; see some examples in Fig. 11b. Some layers such as T31 look like our mimetic
initialized layers, with nearly all-ones average attention masks, correlated WC ,WB weights, and
lower diagonal structure, similarly to self-attention layers in hybrid Mambas earlier. That is, the
structure our initialization provides seems to arise naturally in Mambas trained on sufficiently large
and varied corpora, and may be fundamental to Mamba’s copying and recall abilities.

7 CONCLUSION

We presented mimetic initialization for state space layers, a simple and closed-form technique to
greatly improve the copying and recall abilities of state space models. Mimetic initialization makes
state space layers mimic linear attention at initialization time, and also mimics the structure of state
space layers that contribute to copying and recall abilities in pretrained models. Our technique allows
to estimate capabilities of SSMs more accurately, which have been alternatively over- and under-
estimated in the literature (Jelassi et al., 2024; Waleffe et al., 2024). Using a better initialization
such as ours may assist in developing new architectures starting from a smaller scale, allowing for
better predictions of their full-scale performance, as is often done in practice in testbeds (Poli et al.,
2024). From a theoretical perspective, our particular construction may provide insights into the
tradeoffs between state space layers and attention, and may help to study the recall vs. non-recall
capabilities of state space layers. Improving the ability of state space layers to approximate attention
has already been noted in followup work to the original Mamba architecture (Dao & Gu, 2024), and
our initialization supports this concept. More broadly and together with previous work on mimetic
initialization, our work helps to better understand pretraining, to some extent disentangling its dual
purposes of storing knowledge and serving as a good initialization.
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8 REPRODUCIBILITY STATEMENT

We have provided all the necessary details to reproduce our findings in the main text. All exper-
iments were done with multiple random seeds, reporting the average and error bars. We swept
learning rates over {0.001, 0.0005, 0.0001}. We used the code from Jelassi et al. (2024), found
at https://github.com/sjelassi/transformers_ssm_copy, and used pretrained
weights from https://huggingface.co/state-spaces/mamba-130m and https:
//huggingface.co/state-spaces/mamba-370m in some experiments. For multiquery
associative recall, we used code from https://github.com/HazyResearch/zoology.
On two A100 GPUs, most training runs take around 30-60m to complete, with longer training times
for very deep models or those trained on very long sequences. Source code will be released after
publication.
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