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ABSTRACT

To address the global health threat of antimicrobial resistance, antimicrobial pep-
tides (AMPs) are being explored for their potent and promising ability to fight
resistant pathogens. While artificial intelligence (Al) is being employed to ad-
vance AMP discovery and design, most AMP design models struggle to balance
key goals like activity, toxicity, and novelty, using rigid or unclear scoring meth-
ods that make results hard to interpret and optimize. As the capabilities of Large
Language Models (LLMs) advance and evolve swiftly, we turn to Al multi-agent
collaboration based on such models (multi-agent LL.Ms), which show rapidly ris-
ing potential in complex scientific design scenarios. Based on this, we introduce
MAC-AMP, a closed-loop multi-agent collaboration (MAC) system for multi-
objective AMP design. The system implements a fully autonomous simulated
peer review-adaptive reinforcement learning framework that requires only a task
description and example dataset to design novel AMPs. The novelty of our work
lies in introducing a closed-loop multi-agent system for AMP design, with cross-
domain transferability, that supports multi-objective optimization while remaining
explainable rather than a ‘black box’. Experiments show that MAC-AMP outper-
forms other AMP generative models by effectively optimizing its AMPs for mul-
tiple key molecular properties, demonstrating exceptional results in antibacterial
activity, AMP likeliness, toxicity compliance, and structural reliability.

1 INTRODUCTION

Although new antibiotics are still being developed to treat bacterial infections, antimicrobial resis-
tance (AMR) remains a critical challenge, one that has caused a systemic crisis in global public
health. AMR occurs when bacteria evolve mechanisms that reduce or eliminate the effectiveness
of drugs designed to kill them, making bacterial infections harder to treat. In 2021 alone, bacte-
rial AMR directly caused approximately 1.14 million deaths and was associated with approximately
4.71 million deaths. In addition, it is estimated that between 2025 and 2050, AMR will directly lead
to over 39 million deaths across all ages and will be associated with 169 million deaths (Naghavi
et al.| [2024). Antimicrobial peptides (AMPs) are naturally occurring short chains of amino acids
that are part of the innate immune system and serve as the natural defence against a broad range
of microbes in many living organisms. They are being explored to combat AMR due to their im-
pressive properties, including broad-spectrum activity, diverse mechanisms of action, and higher
resistance barriers compared to traditional antibiotics. However, they still face bottlenecks such as
risk of toxicity and hemolysis, insufficient stability and bioavailability in vivo, and limitations in
manufacturability and cost (Bucataru & Ciobanasul 2024} Min et al.| [2024).

Recently, scientists have turned to artificial intelligence (AI) models to design AMPs. Over the past
couple of years, Al-driven AMP discovery has expanded from retrieval and screening to include
generation and optimization (Pirtskhalava et al.,|2021). Recent AMP generative and discriminative
models have achieved encouraging progress on public benchmarks, and some studies have validated
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several in vitro active candidates. However, most Al-driven AMP design models face limitations.
First, most optimize solely for activity, which tends to produce AMPs with undesirable molecular
properties, limited synthesizability, and restricted novelty (Van Oort et al., 2021} [Tucs et al.l 2020).
Those that employ multi-objective optimization are often unstable, as static weighting or threshold-
ing can cause reward hacking or diversity collapse (Abels et al., 2019)). In addition, their outputs are
usually scattered scores or text, which are hard to convert into clear, reproducible learning signals
for stable reinforcement-style optimization (Van Kempen et al., 2024} [Wu et al., [2022; |Guan et al.,
20235). To combat these gaps, multi-agent collaboration (MAC) systems are being explored. MAC
systems emphasize solving complex tasks through division of labour, communication, and collabo-
ration among interacting autonomous agents. Large Language Models (LLMs) are now being used
as flexible interfaces and reasoning agents within MAC systems, making LLM-based MAC systems
very popular. A review published in late 2024 on LLM-based MAC systems highlighted signifi-
cant advances in complex problem-solving and world simulation, demonstrating the effectiveness
of research frameworks in which collaborative agents interact to execute sophisticated scientific and
engineering workflows across diverse domains (Guo et al., |2024). However, a critical limitation
of current MAC systems is that their outputs are typically in the form of natural language or het-
erogeneous scores, lacking reproducible training signals suitable for model optimization. A recent
model, Eureka, has shown that LLMs that generate and self-improve their own reward code can sig-
nificantly boost reinforcement learning (RL) performance, but it has yet to be integrated into MAC
systems (Ma et al., 2023). In addition, recent LLM-based MAC systems are largely open-loop, as
they converse, call tools, and often involve human-in-the-loop operation (Wu et al.,|2024). As a re-
sult, downstream optimization often relies on trial-and-error prompt iteration or ad-hoc fine-tuning
rather than principled closed-loop learning (Song et al., [2024).

To address these gaps, we introduce MAC-AMP, the first closed-loop MAC system for AMP design.
Unlike prior AMP generators that treat design as a single-model sequence optimization task, we
recast AMP design as a coordinated multi-agent problem and propose a general, end-to-end path-
way that translates a user’s design request into novel, multi-objective—optimized AMPs. MAC-AMP
integrates four modules: (1) a Property Prediction module that applies specialized scoring tools to
evaluate AMPs on activity, safety, stability, and novelty; (2) an Al-Simulated Peer Review module,
in which specialized agents synthesize these evaluations into structured, multi-criteria consensus
rather than relying on isolated scalar scores; (3) an RL Refinement module that translates agent
consensus into machine-actionable reward functions, replacing free-text or ad hoc weighting heuris-
tics; and (4) a Peptide Generation module that closes the loop by dynamically and transparently
adapting the training objective during peptide design, enabling stable optimization under conflicting
biological constraints. The key architectural novelties of MAC-AMP are:

1. A fully autonomous, closed-loop multi-agent system that converts AMP-specific evaluations
into executable RL reward signals, which establishes a real-time feedback cycle for continuous
design, critique, and optimization.

2. Stepwise explainability and auditability via transparent logs, replay traces, and consensus-
aware decision tracking across all agents, overcoming black-box limitations of AI models, intro-
ducing explainability, and enabling error localization and systematic correction.

3. Native support for multi-objective AMP design, balancing antibacterial activity, structural
stability, toxicity, and other constraints through structured agent consensus rather than manual
or static weighting schemes.

4. A domain-agnostic framework that supports transferability beyond AMP generation.

Overall, MAC-AMP sets a new benchmark for generative AMP design, surpassing existing models
in antibacterial activity, toxicity reduction, and structural reliability while maintaining comparable
AMP-likeness. These results demonstrate that closed-loop, reward-driven MAC provides a scalable
and principled foundation for next-generation molecular design.

2 RELATED WORK

AMP Design Approaches. Traditional generative pipelines for AMP design have used adversar-
ial or diffusion models. Early Generative Adversarial Network (GAN) based systems demonstrated
feasibility for activity-based AMP generation, such as AMPGAN v2, which proposed a bidirectional
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conditional GAN to steer peptide properties and showed diverse, novel sequences under conditional
control (Van Oort et al., [2021). Recently, a diffusion model, Diff-AMP, unified diffusion-based
generation with identification, attribute prediction, and iterative optimization in a single framework
(Wang et al.| [2024a). LLM-based AMP design has also been gaining traction, such as AMP De-
signer, a foundation model which was able to design de novo AMPs with broad-spectrum Gram-
negative activity with a 94.4% success rate in vitro (Wang et al.| [2025). However, most of these
models rely on ad hoc filters or single model scores for selection, making multi-objective optimiza-
tion hard to implement, and leaving a gap between evaluation outputs and trainable optimization
signals that can robustly drive learning.

LLM Multi-Agent Collaboration Systems. LLM agents are being increasingly used in scientific
discovery and evaluation. For example, the Virtual Lab employed LLM-coordinated Al agents to
integrate computational protein structure prediction and modelling tools to design 92 novel SARS-
CoV-2 nanobodies (Swanson et al., |2025). In materials chemistry, the OSDA (organic structure-
directing agent) Agent combines an LLM with domain tools for the design of zeolite OSDAs (Hu
et al.| [2025). General-purpose multi-agent frameworks, such as CAMEL for role-playing-based
cooperation (L1 et al.| |2023) and AutoGen for multi-agent dialogue and orchestration (Wu et al.,
2024), have laid the groundwork for how agents collaborate and communicate to achieve common
goals, demonstrating that such interactive methods can enhance model performance and outcomes.
Multi-agent systems have also been explored for expert-like reviewing. For example, ReviewAgents
coordinates multiple LLM reviewer roles using a structured chain-of-thought dataset to generate
comments aligned with human judgments (Gao et al.|, [2025). However, while these multi-agent
pipelines show strong coordination internally, their outputs are mostly natural language narratives,
language-based sequences, or heterogeneous scores. There lacks a bridge between multi-agent con-
sensus and executable, auditable training signals for downstream optimization. In addition, many
MAC systems are open-loop, relying on human-in-the-loop orchestration and trial-and-error prompt-
ing or fine-tuning, which often yields a lot of non-executable outputs that are difficult to compile
into reusable training signals.

LLM-enhanced Reinforcement Learning and Automated Reward Design. At the same time,
there are studies exploring LLM use to guide RL. For example, RL from Al feedback (RLAIF) can
replace or supplement RL from human feedback (RLHF) and actually reports performance on par
with RLHF on PaLM 2 (Lee et al., 2024). Another example is Eureka, which uses coding-capable
LLMs to generate and iteratively improve reward code, outperforming expert-engineered rewards
on 83% of tested tasks (Ma et al., [2023). A recent survey on RL-enhanced LLMs summarizes RL’s
impressive performance in improving LLM capabilities (Wang et al.l [2024b). However, existing
approaches largely fail to integrate automated reward design with multi-agent consensus or domain-
specific evidence.

3 PROPOSED APPROACH

3.1 MAC-AMP FRAMEWORK

We created MAC-AMP, a closed-loop multi-agent collaboration (MAC) system, that is designed to
create novel AMPs optimized for multiple molecular properties. MAC-AMP executes the workflow
through six interconnected modules, beginning with an input module and concluding with an output
module. The only input required from the user is the target bacterium name and an example dataset
containing AMPs and their associated minimum inhibitory concentration (MIC) values, which re-
flects antibacterial activity. Figure[T]outlines the entire workflow, and it is explained in detail below.

3.1.1 PROPERTY PREDICTION MODULE

This module’s role is to predict various AMP properties and aggregate the results into a structured
record. To predict antibacterial activity, we developed a target-specific MIC predictor model. It is an
LLM-based regressor adapted from BERT AmPEP60 that fine-tunes ProtBERT via transfer learning
on the input dataset (8:1:1 train:validation:test split). For the remaining molecular properties, we
use existing property prediction tools. AMP likelihood is predicted by Macrel 1.5 (Santos-Junior
et al., [2020), toxicity scores by ToxinPred 3.0 (Rathore et al.| [2024), structural reliability scores by
OmegaFold vl (Wu et al., 2022) (EMBL-EBI AlphaFold Teaml 2025), physicochemical summaries
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Figure 1: MAC-AMP Framework. (a) Overview of the closed-loop workflow that iteratively guides
AMP design from input to output. (b) Schematic of the MAC-AMP pipeline, showing its modules
and their interactions.

by ProtParam in Biopython 1.85 (Cock et al.,|2009), and template similarity scores by Foldseek 10
(Van Kempen et al.| [2024). Foldseek 10 selects the 10 best-performing example AMPs from the
user-provided dataset (defined by the lowest MIC values) as structural templates and quantifies the
similarity between generated AMP candidates and these reference peptides. Each of the property
prediction tools is explained in more detail in Appendix [A] Outputs of this module are partitioned
into two categories: S, the explicit reward signal for activity; and V, the auxiliary evidence that
constrains generation. .S includes two items: the antibacterial activity score provided by the target-
specific MIC predictor (S,), and the AMP likelihood score (S3). V includes four items: toxicity
scores (V,), structural reliability scores (V}), physicochemical summaries (V.), and template sim-
ilarity scores (V). In the subsequent modules, different agents have different access privileges to
these results. To validate the components of this module, we performed ablation studies to assess
the necessity of each property prediction tool (Appendix [L.IJ), substitution analyses to validate the
ToxinPred 3.0 and MIC predictor (Appendix [M.4]and spectively), and Molecular Dynamics
(MD) simulations on a subset of MAC-AMP-generated AMPs to confirm using OmegaFold as a
structural reliability proxy (Appendix [I).

3.1.2 AI-SIMULATED PEER REVIEW MODULE

Motivated by committee-style deliberation in academic peer review, this module is a multi-agent
system that reviews the AMPs. The overall workflow is illustrated in Figure 2]and described below.

Reviewer Agents. The review committee consists of three independent Reviewer agents (GPT-5,
Gemini 2.5, and Perplexity), each with distinct background knowledge to ensure diverse evalua-
tions. Inspired by multi-criteria score panels in journal peer review, each Reviewer agent evaluates
candidates along four task-specific dimensions using a set of key criteria. This establishes a shared
evaluation space where opinions from different Reviewer agents can be aligned and aggregated into
a structured consensus. For AMP design, the four dimensions are efficiency (EFF), safety (SAFE),
developmental sequence structure (DevStruct), and originality (Orig). For different tasks, these
dimensions and criteria can be customized during a preparatory meeting, which is a one-on-one
session where a human expert and the agent define task-specific requirements, and register these
requirements as injectable knowledge (see Appendix [C.3).

To make free-text reviewing quantifiable, each dimension is associated with a weighted lexicon
subtable composed of Tags in the format I D(State, Weight). Here, I D denotes a key evaluation
criterion, and State is a discrete value. The determination of all Tags and their weights is designed
by the Reviewer agent and then reviewed and finalized under the supervision of experienced human
specialists during a preparatory meeting. The Tags are used to label Reviewer comments structurally
by encoding each State numerically (e.g., Low = -1, Medium = 0, High = 1). For each dimension,
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a Reviewer agent first provides a free-text comment and then self-annotates by selecting up to four
IDs from the lexicon subtable, creating a Tag for each, and assigning a confidence score, p. The
overall score for an AMP is computed by summing the weighted Tags scaled by the confidence
score. Each Reviewer agent outputs comments, Tags, and scores for all dimensions. To ensure that
the lexicon weights are decided appropriately by the agent, we performed substitution analysis to
test differing lexicon weights, detailed in Appendix [M.6

Area Chair Agent. The Area Chair agent processes and combines the outputs of the Reviewer
agents. First, it aggregates the results and drafts a meta-comment for each dimension based on the
individual reviews. It then groups Tags by the same I D and solves semantic conflicts (different
States assigned by Reviewer agents). For each dimension, it computes the mean Reviewer agent
score, estimates a divergence penalty based on discrepancies in State, and applies this penalty to
obtain a final dimension-level meta score. The module produces two outputs: a four-line delimited
meta-review text (1') and the average meta score (S;). Algorithm 1, detailed in Appendix [B-1] pro-
vides the full specification of the module. To validate the components of this module, we performed
ablation studies to assess the necessity of each Reviewer agent (Appendix and substitution
analyses to validate the Reviewer and Area Chair agents (Appendix [M.3).
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Figure 2: Overview of the Artificial Intelligence-simulated Peer Review module. Green text indi-
cates the injectable section, while the green boxes denote content obtained from the separate prepara-
tory meeting.

3.1.3 RL REFINEMENT AND PEPTIDE GENERATION MODULE

The outputs of the Property Prediction and Al-simulated Peer Review modules are fed into the RL
Refinement module, which converts them into trainable optimization signals to automatically shape
and adapt the reward function. The overall workflow is illustrated in Figure[3]and described in detail
below.

Candidate Reward Design. The RL Refinement module begins by cold-starting reward design
using evaluation results and consensus from a batch of example AMPs. At each stage, it reads
logs from the previous stage, including the current stage index, the reward function F', batch-level
explicit signals S = (S,, Sp, S.), and meta-review text T'. This information is first processed by the
Computer Science (CS)-based Reward Design agent, an Al expert focused on observable signals and
their mathematical properties. Guided by stage-specific prompts and constraints, this agent refines
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the reward function based on the CS-relevant data (signals S, previous reward function F', stage
information), intentionally ignoring the meta-review texts to maintain focus. Operating together, the
Biomedical-Based Reward Alignment agent, an expert in biomedical and AMP design, analyzes the
meta-review texts and integrates domain knowledge to propose alignment-oriented revisions to the
CS-based Reward Design agent’s candidate reward functions. This agent accesses only the meta-
review texts, avoiding distraction by non-biomedical signals. Candidate rewards are then filtered by
a rule-based validator for executability and constraint compliance, yielding a candidate set of three
reward functions.

Next, the module clones the Peptide Generation module into a sandbox, runs short simulated training
for each candidate reward function, and the RL Reward Decision agent selects the option with the
best overall performance via Pareto optimization. The chosen reward function and sandbox logs are
returned to the CS—Biomedical Reward Design agent team for further refinement. This inner loop
iterates three times.

To validate the components of this module, we performed ablation studies to assess the necessity of
each component, detailed in Appendix [L.3]

Peptide Generation Module. After the inner loop, the selected reward function is compiled into
a Proximal Policy Optimization (PPO) objective, which guides the Peptide Generation module
through AMP design. The generator, inherited from the AMP-Designer architecture (Wang et al.,
2023)), is a GPT-2 auto-regressive model with a trainable soft prompt that injects domain prior knowl-
edge. Generated AMPs are evaluated using the Property Prediction and Al-simulated Peer Review
modules, producing batch-level meta-review texts and scores. These evaluations are incorporated
into a reward-based PPO strategy to calculate the loss and update generator parameters every epoch.

Stage-Based Adaptive Optimization. A stage is defined as 15 epochs under the same reward
function and PPO strategy. At the end of each stage, the RL module aggregates all evaluation
logs and adaptively redesigns the reward, yielding an optimized PPO strategy for the next stage.
This adaptive redesign is repeated three times, allowing the reward function to co-evolve with real-
time feedback and multi-agent consensus. Algorithm 2, detailed in Appendix [B.2] provides the full
specification of the module. Although the number of epochs defining a stage can be adjusted, we
performed substitution analyses to evaluate the effects of increasing or decreasing the default (15
epochs), detailed in Appendix [M:1]
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Figure 3: Overview of the Reinforcement Learning Refinement module.

Communication Logs. Through every batch and training stage, communication among modules
primarily relies on reading and writing structured system logs. Each log contains six fields: Stage
Number (0, 1, 2, or IN, where I N denotes inner-loop sandbox logs), reward function (F’), Sy, Sp,
S. and T'. This structured logging ensures end-to-end auditability.

3.2 PROXIMAL PoOLICY OPTIMIZATION

In MAC-AMP, a PPO strategy is instantiated from the stage-selected reward and applied to update
the generation module in a sequence-level decision setting. Conditioned on a trainable soft prompt
and a partial prefix, the policy 7y auto-regressively generates a complete sequence § = (aq, ..., ar).
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The value network produces token-wise estimates, which are averaged across positions to yield the
sequence baseline V.

The standardized advantage is: ~
A =norm(R — V) (D

where R is the sequence-level reward for a sampled trajectory, V¢ is the sequence baseline obtained
by averaging the token-wise value predictions, and norm(-) denotes batch-wise standardization to
zero mean and unit variance.

The clipped surrogate loss is:
Lyoticy(0) = E[min(r(0)A, clip(r(0),1 —e,1 4+ €) A)] (2)

where r(6) is the probability ratio between the current policy and the reference policy for the sam-
pled action, € > 0 is the PPO clipping hyperparameter, clip(r(6),1 — ¢, 1 + €) clamps this ratio to
the interval [1 — €, 1 + €], and E[-] denotes expectation over sampled trajectories and time steps.

The value regression term is: B
Lvalue(¢) = E[(th - R)z] (3)

where Ly,e(¢) trains the value network by minimizing the mean-squared error between the pre-
dicted baseline V;; and the reward R.

The entropy regularization term is:
Lent (9) = Etegen [H(ﬂ—9(‘8t))] 4)

where s; is the decoder state at generation step ¢, mg (- | s¢) is the policy distribution over next tokens
at that step, H (-) is the Shannon entropy of this distribution, and E;cgen -] denotes averaging over
the generation time steps ¢t € gen.

The total loss is:
L= Lpolicy + Cvaalue - CeLent (5)

where ¢, > 0 and c. > 0 are scalar hyperparameters that weight the value regression and en-
tropy regularization terms, respectively. L is the overall training objective minimized during policy
updates.

The training is conducted in rounds. A batch of sequences is sampled, R, I_/¢, and A are computed,
and a single gradient update is performed on that batch.

In addition, a schema-driven prompting framework is incorporated to enable multi-agent collabo-
ration that is generalizable, transferable, and reusable across a wide range of applications and is
inspired by human organizational practices. The structural design of this collaboration framework
is described in Appendix [C]

To assess whether stage-wise RL in MAC-AMP remains stable during training and to verify that the
Reviewer agents do not induce feedback collapse, overfitting to internal Reviewer agent biases, or
reward hacking, additional analyses were conducted and are detailed in Appendix

4 EXPERIMENTS

4.1 AMP GENERATION TESTING

Bacterial Targets. AMP design performance was evaluated against five bacterial targets. First,
Escherichia coli (E. coli), which has been associated with multiple infections and diseases (e.g.,
urinary tract infections (Totsika et al.| 2012}, neonatal meningitis (Bonacorsi & Bingen| 2005)).
Four other ESKAPE pathogenic bacterial strains were also analyzed: Staphylococcus aureus (.
aureus), Pseudomonas aeruginosa (P. aeruginosa), Klebsiella pneumoniae (K. pneumoniae), and
Enterococcus faecium (E. faecium). ESKAPE pathogens are a group of bacteria that the World
Health Organization (WHO) and U.S. Centers for Disease Control and Prevention (CDC) flag as
major threats because they are leading causes of hospital-acquired infections and often display AMR
(Miller & Arias| 2024). Together, these targets also reflect diverse Gram staining profiles, as S.
aureus and E. faecium are Gram-positive, while the remaining are Gram-negative.
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Dataset Preparation & Pre-Processing. For each bacterial target, AMP sequences were collected
along with their corresponding MIC values. MIC represents the lowest concentration of a compound,
or in this case, AMP, that inhibits bacterial growth. This data was sourced from two public databases:
DBAASP v3 (Pirtskhalava et al., 2021 and dbAMP 3.0 (Yao et al., [2025). AMP sequences were
standardized by converting to uppercase, removing whitespace, and retaining only canonical [IUPAC
letters, and entries with non-standard residues were excluded. Duplicate sequences were removed,
and replicate MIC measurements for the same sequence were aggregated using the geometric mean
to obtain a single value. AMP sequences were represented in [IUPAC single-letter codes, and their
MIC values (ug/mL) were log10-transformed to serve as labels. The final datasets contained 3,818
AMP examples for E. coli, 2,644 for S. aureus, 2,458 for P. aeruginosa, 838 for K. pneumoniae, and
352 for E. faecium.

Target-Specific AMP Testing. E. coli, S. aureus, and P. aeruginosa were used to test target-specific
design tasks. In each test, one of the bacterial target datasets was provided by the user and passed
via the input module. During generation, the generation head produced 1,000 AMP candidates,
of which only the top 30 (ranked by predicted MIC) were retained for downstream performance
analysis. This procedure was repeated three times, resulting in a total of 90 AMPs.

Broad-Spectrum Activity Testing. To test the broad-spectrum activity of the generated AMPs, a
separate MIC predictor was trained for each bacterial strain, which was then used to evaluate the E.
coli—designed AMPs and assessed their generalization across species. Further analyses, including
evaluation with an external MIC predictor (APEX 1.1) and motif analysis of broad-spectrum AMPs,
are detailed in Appendix [F

Baseline Models. MAC-AMP was compared against two categories of generative baselines: LLM-
based and non-LLM traditional, as well as a real-world AMP dataset. The two LLM-based baselines
are AMP Designer and BroadAMP GPT. AMP-Designer is a comprehensive framework for AMP
design that integrates GPT, prompt tuning, contrastive learning, knowledge distillation, and RL
(Wang et al.| [2025). Broad AMP GPT employs transformer-based generation and deep learning-
guided screening for AMP design (Li et al) [2025). The two non-LLM-traditional baselines are
PepGAN and Diff-AMP. PepGAN is a GAN-based model based on LeakGAN, a state-of-the-art
sequence generator, but incorporates an activity predictor that is trained separately with positive
and negative examples together (Tucs et al., 2020). Diff-AMP is a diffusion-based model that,
alongside diffusion, employs pre-training and iterative optimization technologies to advance AMP
design (Wang et al., [2024a). Details on how baseline model testing was performed, and the real-
world AMP dataset was chosen, can be found in Appendix [E]

4.2 ENVIRONMENT DETAILS AND COMPUTATIONAL COSTS

Experiments were run in PyTorch on NVIDIA A100 GPUs. The AMP generator is a GPT-2 small
(12 layers, 12 heads, hidden size 768) augmented with a 10-token soft prompt, using a BERT-style
amino-acid tokenizer. During PPO, the policy is optimized and a GPT-2 value head with Adam (Ir
= 5e-5) and gradient-norm clipping at 1.0. The Peptide Generation module uses top-k = 50 / top-p
= 0.95 with temperature = 1.0.

To train MAC-AMP for AMP prediction on this environment, it took 47.61 GPU hours, 853 API
calls, 9106 MB of peak memory, and incurred a total API token cost of $36.56 USD.

4.3 RESULTS

Target-Specific AMP Testing. Across the three single-task bacterial targets (E. coli, S. aureus, and
P. aeruginosa), MAC-AMP consistently achieves the best antibacterial activity, toxicity, and struc-
tural reliability scores, as shown in Table[I] This proves that MAC-AMP enhances target-specific
efficacy, while imposing effective safety constraints that suppress potential toxicity and implement
effective assessments of structural and physicochemical properties that are leveraged to steer AMP
generation toward more stably foldable sequences with fewer structural hallucinations. Although
Broad AMP-GPT shows a slight advantage on AMP likelihood, it performs notably worse on toxicity
and structural reliability. This indicates that, without heavily sacrificing AMP discriminability, our
approach allocates optimization capacity to multiple objectives, ultimately delivering performance
that better aligns with real-world research and development needs.
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Table 1: Property scores of antimicrobial peptides (AMP) generated by MAC-AMP compared to

baseline models and real-world AMP datasets across bacterial species

Antibacterial AMP . . Structural
Model Activity (1) | Likelihood (1) | ToXicity (1) | pejiability (1)
Escherichia coli (E. coli)
MAC-AMP 0.943 £ 0.008 | 0.797 £0.012 | 0.154 £ 0.008 | 0.873 + 0.009
AMP-Designer 0.807 £0.021 | 0.811+£0.011 | 0.251 £0.024 | 0.817 £0.017
Broad AMP-GPT 0.831 £0.025 | 0.821+£0.018 | 0.246 +0.033 | 0.763 £0.023
PepGAN 0.823 £0.023 | 0.572+£0.035 | 0.247 £0.064 | 0.637 +£0.026
Diff-AMP 0.822 £0.006 | 0.554 +£0.036 | 0.235+0.072 | 0.752 +£0.020
Real-World- top K | 0.894 £0.014 | 0.807 £0.030 | 0.558 £0.068 | 0.846 + 0.022
Staphylococcus aureus (S. aureus)
MAC-AMP 0.931 £ 0.007 | 0.849 £0.008 | 0.137 £0.011 | 0.837 +0.009
AMP-Designer 0.809 £0.023 | 0.807£0.012 | 0.225+0.022 | 0.801 +£0.017
Broad AMP-GPT 0.823 £0.025 | 0.858 +£0.014 | 0.448 +£0.062 | 0.763 +0.025
PepGAN 0.901 £0.019 | 0.742+£0.014 | 0.231 £0.059 | 0.644 +0.021
Diff-AMP 0.926 £0.013 | 0.535+0.023 | 0.281 £0.130 | 0.764 +£0.023
Real-World- top K | 0.746 £ 0.033 | 0.742 £0.031 | 0.543 +0.070 | 0.769 +0.023
Pseudomonas aeruginosa (P. aeruginosa)
MAC-AMP 0.917 £ 0.008 | 0.851+£0.006 | 0.110 = 0.014 | 0.850 +0.010
AMP-Designer 0.839£0.018 | 0.816£0.011 | 0.243 +0.024 | 0.799 +£0.019
Broad AMP-GPT 0.842 +0.031 | 0.858 £0.014 | 0.449 £0.067 | 0.772 +0.022
PepGAN 0.912+£0.013 | 0.747£0.013 | 0.248 £0.056 | 0.664 +0.027
Diff-AMP 0.907 £0.006 | 0.594 £0.022 | 0.201 £0.072 | 0.766 +0.021
Real-World- top K | 0.802 £0.023 | 0.785+0.031 | 0.568 +0.064 | 0.820 +0.024

Broad-Spectrum Activity Testing. When evaluating the broad-spectrum potential of the anti-E.
coli AMPs, overall, MAC-AMP peptides showed the strongest generalization, achieving the high-
est antibacterial activity scores for more non—E. coli species than any other model (Table [2). E.
coli-specific AMPs show excellent generalization in other Gram-negative species (P. aeruginosa,
K. pneumoniae), indicating that the learned physicochemical patterns (e.g., cationic charge density,
hydrophobicity, appropriate length) transfer well across Gram-negative bacterial strains, likely due
to their shared outer membrane architecture. Interestingly, we also observe strong generalization to
E. faecium, a Gram-positive species, while S. aureus shows somewhat reduced activity. This sug-
gests that while cell envelope structure influences AMP susceptibility, our results demonstrate that
effective generalization is achievable across both Gram-negative and Gram-positive species. The
strong activity against E. faecium shows that Gram-positive classification doesn’t preclude broad-
spectrum efficacy. Species-specific factors may modulate activity levels (as seen with S. aureus), but
this simply indicates that some additional optimization or validation may be beneficial for certain
targets.

Table 2: Antibacterial activity scores of Escherichia coli-targeted antimicrobial peptides against
other bacterial strains

Model E.coli | S.aureus | P. aeruginosa | K. pneumoniae | E. faecium
MAC-AMP 0.94+0.01 | 0.81 £0.03 0.94 + 0.00 0.98 = 0.00 0.95 +£0.01
AMP-Designer 0.81 £0.02 | 0.81 £0.02 0.85+£0.01 0.96 £ 0.01 0.96 + 0.01
Broad AMP-GPT | 0.83 +£0.02 | 0.82 £0.03 0.87 £0.02 0.96 £ 0.01 0.97 £ 0.01
PepGAN 0.82+£0.02 | 0.89 £0.02 0.91+0.01 0.98 + 0.00 0.96 £ 0.01
Diff-AMP 0.82+0.01 | 0.91 £0.01 0.94 £0.01 0.98 £ 0.00 0.93 £ 0.01

Comparison of MAC-AMP and Real-World AMPs. In addition, using Uniform Manifold Ap-
proximation and Projection (UMAP), MAC-AMP candidate peptides for E. coli were projected
alongside the E. coli AMP training dataset (real-world AMPs) and a UniProt background set con-
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sisting of peptide sequences extracted from UniProtKB reference proteomes, used to represent the
broader space of naturally occurring peptides (Consortiuml, 2025)). Figure @ shows that MAC-AMP
candidates cluster within or along the edges of the blue density wells defined by real-world AMPs,
rather than being scattered across the broader UniProt space. This spatial alignment indicates that
MAC-AMP has learned AMP-like features while also populating multiple subregions of the “AMP
manifold”, balancing fidelity with exploration of underrepresented neighbourhoods that may yield
novel activity. Figure @b and Figure [ illustrate two MAC-AMP-generated AMPs for E. coli,
both of which display canonical AMP chemistries (e.g., Lys/Arg enrichment, aromatic/hydrophobic
residues such as Trp, Leu, Ile, and Val) consistent with electrostatic membrane association and am-
phipathic disruption. This supports our finding that MAC-AMP concentrates sampling in biophys-
ically plausible, E. coli-relevant regions of sequence space while maintaining chemotype diversity.
To further assess similarity, 2000 MAC-AMP-generated E. coli AMPs were compared against base-
line models and real-world AMPs in Appendix [K]
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Figure 4: (a) UMAP of the peptide chemical space for Escherichia coli (E. coli) inhibition. Gray
dots show UniProt peptides, orange dots show real-world E. coli AMPs, and red dots are MAC-AMP
candidate AMPs. Nested blue contours indicate increasing kernel density from these AMPs. (b,c)
Sequence diagrams of two example MAC-AMP designed E. coli AMPs.

The 90 generated anti-E. coli AMPs were evaluated for novelty, antibacterial motifs, and structural
stability in Appendices and[I] respectively. Also, The sequences and biophysical properties
of six MAC-AMP-generated E. coli AMPs are analyzed in Appendix [J} Finally, to evaluate MAC-
AMP’s cross-domain transferability, we tested it on an English table-to-text generation task, where
the model generates a one-sentence description from a table and highlighted cells. The details and
results are detailed in Appendix [N]

5 CONCLUSION

In conclusion, MAC-AMP is the first fully autonomous, closed-loop multi-agent system for AMP
design, reframing AMP generation as a coordinated multi-agent optimization problem. By trans-
lating structured consensus on activity, safety, stability, and novelty into executable reward sig-
nals, it enables stable, multi-objective optimization with full auditability. MAC-AMP surpasses
existing models in antibacterial potency, toxicity, and structural reliability while maintaining AMP-
likeness, exploring underrepresented yet biophysically plausible regions of sequence space. More
broadly, it provides a scalable, interpretable framework for next-generation molecular design. Lim-
itations and future directions are discussed in Appendix All code and data can be found at
https://github.com/CLMFAP/MAC-AMP_v1/l
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mary focus is accelerating AMP discovery, MAC-AMP could also be applied in broader biomedical
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ate ethical concerns associated with the development or use of this model. In particular, we have
considered the potential societal impacts of MAC-AMP and do not believe there are any concerns
at this time. MAC-AMP users must apply the model responsibly, ensure transparency regarding
its capabilities and limitations, and verify that any outputs are used safely and ethically. Finally, we
emphasize that MAC-AMP is intended as a research tool to augment human expertise, not to replace
critical scientific judgment. We encourage continued evaluation of potential risks and responsible
deployment.

8 REPRODUCIBILITY STATEMENT

We have made multiple efforts to ensure reproducibility throughout our study. We have included
extensive details in the main manuscript and additional sections in our Appendix that provide algo-
rithms and more in-depth explanations of the theoretical concepts.

The complete description of the data processing steps and sources of data is detailed in Sec-
tion The exact tools used in our Property Prediction module are detailed in Appendix
The algorithms for our Al-simulated Peer Review and RL Refinements modules are detailed in
Appendix [B] The theory behind our proximal policy optimization and structural design of MAC
is detailed in Section and Appendix [C] respectively. We have included the exact details of
our baseline model training steps in Appendix We have also released all code and data at
https://github.com/CLMFAP/MAC-AMP_v1/. By providing source code, comprehensive
details on the methodology, algorithms, training environment, hyperparameters, and data processing,
we commit to fully transparent and reproducible research.
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A PROPERTY PREDICTION MODULE TOOLS

ToxinPred 3.0. ToxinPred 3.0 is a sequence-based general toxicity predictor for peptides that out-
puts a probability between 0 and 1, where higher values indicate higher toxicity risk (Rathore et al.,
2024).

OmegaFold vl. OmegaFold is a computational tool that predicts the 3D structure of a protein
directly from its amino acid sequence. Along with the predicted structure, it provides a pLDDT
score for each residue, which ranges from O to 1, as a structural reliability indicator, where higher
values indicate higher confidence (Wu et al.,|2022; EMBL-EBI AlphaFold Team, |[2025]).

Biopython 1.85. Biopython contains a collection of Python tools for bioinformatics, from which
the ProtParam module is used for physicochemical profiling. This module outputs a concise text
summary of sequence properties such as length, molecular weight, theoretical isoelectric point, and
Grand Average of Hydropathy (GRAVY) (Cock et al., 2009).

Foldseek 10. Foldseek 10 is a structure and sequence alignment tool that computes similarity be-
tween protein structure sets (including peptide sequences), and reports a normalized similarity score
between 0 and 1, where a higher score indicates greater similarity (Van Kempen et al., [2024).

Macrel 1.5. Macrel 1.5 is a sequence-based AMP classifier that outputs an AMP likelihood score
between O and 1, where higher values indicate a higher predicted probability of being an AMP
(Santos-Junior et al., |2020).

Target -Specific MIC Predictor. We designed an LLM-based regressor, adapted from BERT Am-
PEP60 (Cai et al.|, 2025)), that fine-tunes ProtBERT via transfer learning (Elnaggar et al., 2022) to
predict target-specific MIC values for AMP sequences. In our system, it is automatically trained for
each target using the user-provided, real-world AMP dataset. The raw output is the MIC (ug/mL),
representing the minimum concentration that inhibits visible growth (Kowalska-Krochmal & Dudek-
Wicher, 2021). To make it compatible with a higher-is-better RL reward, the MIC is transformed
using a sigmoid-shaped function into an antibacterial activity score between 0 and 1, inclusive.
Higher scores correspond to lower MIC values, which reflect stronger target-specific activity.
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B ALGORITHMS

B.1 AI-SIMULATED PEER REVIEW MODULE ALGORITHM

Algorithm 1 Al-Simulated Peer Review module Algorithm

1: function REVIEWMODULE(batch, lexicons, signmap)
2 for r € {R1, R2, R3} do

3 R][r] + RUNREVIEWER(r, batch, lexicons)

4: end for

5: AC + AGGREGATEBYAC(R, signmap)

6: S < COMPUTESCORES(R, AC)

7 return AC, S

8: end function

9: function RUNREVIEWER(r, batch, lexicons)
10: fora € {Eff, Safe, DevStruct,Orig} do

11: comment[a] < generate < 1500 chars based on analysis of (S, V)

12: tags|a] < select < 4 (id, state, p) via lezicons; p € {1.00,0.85,0.60,0.40}
13: scorela] < > w(id, state) - p over tags|al

14: end for

15: return {comment, tags, score}

16: end function

17: function AGGREGATEBYAC(R, signmap)
18: fora € {Eff, Safe, DevStruct,Orig} do

19: metala) + concise summary of agreements based on all comment][a]

20: G <+ group all reviewers’ tags by id

21: Dist[a] < sorted signs from signmap for ids with > 2 hits; keep all-zero

22: Numla] + |Dist[a]| > number of ids with overlapped states

23: end for
24: return {meta, G, Dist, Num}
25: end function

26: function COMPUTESCORES(R, AC)
27: fora € {Eff,Safe, DevStruct,Orig} do

28: Sla] < mean(score[a] over reviewers)

29: d_list + []

30: for each (id, S) in Dist[a] do > S is tuple of signs, e.g. (—1,—1,1) or (0, 0)
31 if max(|S|) = 0 then > all-zero special case
32: dad <+ 0

33: else

34: d_id < 1 — |mean(S)|

35: end if

36: if d_id = 0 then

37: continue

38: end if

39: append(d_list, d_id)

40: end for

41: Dila] < mean(d_list) if d_list # () else 0

42: 7[a] <= clipyg 6,10 (1 — 0.6 - D[al)

43: meta[a] < ~[a] - S[a]

44: end for

45: overall < mean(meta[a] over aspects)

46: return {S, D, v, meta}, overall
47: end function
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B.2 REINFORCEMENT LEARNING REFINEMENT MODULE ALGORITHM

Algorithm 2 Reinforcement Learning Refinement module Algorithm

1: candidates < 3 > number of candidate reward functions per inner loop
2: inner_rounds - 3 > sandbox optimize rounds
3: dialog-max < 4 > agent < critical review turns
4: u_sandbox < 5 > sandbox updates per candidate
5: u_outer < 15 > outer training updates per stage
6: stages + {1,2,3} > exploration — balance — convergence

7: function RLMODULE(gen_model, reviewer_module)

8: out < init_cold_start(reviewer_module)

9: for s € stages do
10: f* < run_inner_loop(gen-model, out, s)
11: out < run_outer_train(gen_model, fx*, s, reviewer_module, out)
12: end for
13: return out

14: end function

15: function RUN_INNER_LOOP(gen_model, out, stage_id)

16: snap + snapshot(gen_model)

17: for r € {1..inner_rounds} do

18: c<+ ||

19: for k € {1..candidates} do

20: f < co_design(out, stage_id)
21: if f # None then

22: c.append(f)

23: end if

24: end for

25: logs « run_sandbox(snap, ¢, u_sandbox)
26: m < rl_decision_select(logs)
27: f_best, 1_best « ¢[m], logs[m)]

28: feedback _to_agents(f_best, 1_best)
29: snap < restore(snap)

30: end for

31: return f_best

32: end function

33: function CO_DESIGN(out, stage_id)
34: p < agent_propose(out, stage _id)
35: for ¢ € {1..dialog-maz} do

36: pass, cmts < critical _review(p, out, stage_id)
37: if pass = true then

38: break

39: end if

40: p < agent_revise(p, cmis)

41: end for

42: if ~rule_validate(p) then

43: return None

44: end if

45: return p

46: end function
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47: function RUN_SANDBOX(snap, cand_set, u)
48: logs < {}
49: for each f € cand_set do

50: m <« clone(snap)

51: for u; € {1..u} do

52: r + train_step(m, f)

53: t < reviewer_module_eval(m)

54: append_inside_log(logs[f], stage="in", f, , t)
55: end for

56: end for

57: return logs

58: end function

59: function RL_DECISION_SELECT(logs)
60: winner < argmaz_by_rules(logs)
61: return winner

62: end function

63: function RUN_OUTER_TRAIN(gen-model, f, s, reviewer_module, out)
64: for u; € {1..u_outer} do

65: r < train_step(gen-model, f)

66: t < reviewer_module_eval(gen_-model)
67: write_outside_logs(out, stage=s, f, 1, t)

63: end for

69: return out

70: end function

71: function WRITE_OUTSIDE_LOGS(out, stage, f, 1, t)
72: append(out.agent, record(stage, f, r.sa, r.sb, r.sc))
73: append(out.critical, record(stage, t))

74: end function

C DETAILS REGARDING STRUCTURAL DESIGN OF MULTI-AGENT
COLLABORATION

This section outlines the overarching design principles that govern all agent-based modules and the
agents within them. Adherence to these structured rules ensures that each agent consistently fulfills
its designated role and that inter-agent communication and collaboration remain accurate, stable,
and effective.

Inspired by human organizational practices, the MAC framework formalizes roles, operating pro-
cedures, and human onboarding practices into a unified structure, enabling agents to coordinate
reliably without altering team composition or core methodology. It comprises three components:
(1) a role-based agent profile (representing role establishment) that anchors identity and responsi-
bility; (2) a role-bound operating contract (representing operating manual) specifying standardized
input/output formats, workflow steps, startup commands, and reserved slots for additional infor-
mation; and (3) an knowledge injection (representing human onboarding practice) via preparatory-
meeting decisions. When pivoting to a new task, only the injectable content is updated while profiles
and contracts remain unchanged, and inter-agent communication occurs via role-dependent access
to local and global logs, ensuring structured, stable collaboration.

C.1 ROLE-BASED AGENT PROFILE

We define the role-based agent profile as the long-lived professional identity of a single agent that
specifies who the agent is, what competencies it commands, what outcomes it pursues, and where
its responsibility boundaries lie. The profile remains invariant across tasks and domains, enabling
the accumulation of role experience. For this part, we adopt the four-anchor specification: Title,
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Expertise, Goal, and Role as introduced by the AI Virtual Lab (Swanson et al. 2025)), explained
below:

Title: A concise, professional, and task agnostic position name that precisely denotes the agent’s
occupational identity.

Expertise: A brief description of the core disciplinary knowledge and methodological capabilities
the position relies on, emphasizing a stable competence scope and toolbox.

Goal: A results-oriented statement of the agent’s success criteria and optimization target while
avoiding overlap with other positions.

Role: A clear charter of responsibility boundaries and decision authority within the collaboration
pipeline, together with the obligations and principles that govern interaction with other positions.

C.2 SCHEMA-DRIVEN SYSTEM PROMPTS

For a single agent, the core elements consist of four parts: Base Model, Parameter Settings, User
Prompt, and System Prompt. Base Model refers to the API service on which the agent relies and
determines differences in its default knowledge background and working style. Parameter Settings
are used to adjust the agent’s behaviour. User Prompt exists as dialogue and is typically used for
intra-team communications in the framework. Inter-team communications are performed by reading
logs via injecting local or global log entries into the corresponding section in the System Prompt
of the agent under access control. System Prompt is the primary design target and implements
the three-part abstraction: role-based agent profile, role-bound operating contract, and injectable
section. We adopt a schema-driven approach to modularize the System Prompt and refine it into the
following sections:

Agent Definition: Insert the agent’s role-based agent profile here.

Input Format: The first part of the role-bound operating contract, declaring the input structures that
the agent may receive. When multiple inputs are required simultaneously, list different input types
on separate lines. Common inputs include dialogue history from the User Prompt and log entries
injected into the System Prompt.

Workflow: The second part of the role-bound operating contract, providing a role-based general
workflow guideline.

Output Format: The third part of the role-bound operating contract, declaring the agent’s output
format so that free-text responses are constrained to a fixed structure and can be written to logs.

Startup Command: The standard command that requests the agent to start working.

Injectable Section: Used for task-specific knowledge customization and injection as a functional
unit. When needed, inter-team meeting logs or other multi-source inputs can also be injected here.

C.3 KNOWLEDGE INJECTION VIA PREPARATORY MEETINGS

We introduce a general, transferable knowledge-injection design that treats task intent as an inter-
changeable specification, decoupling domain guidance from the core role to enable rapid cross-task
adaptation while preserving reproducibility. The two main parts of the knowledge-injection design
are described below:

Preparatory Meeting: For a task in a new domain, a preparatory meeting is held between a human
expert and the corresponding agent before deployment. During the meeting, the agent retains only
its role-based profile, with the role-bound operating contract temporarily left empty. The human
expert describes the new task’s specific process requirements and, together with the agent, drafts a
detailed plan as the meeting output.

Knowledge Injection: The finalized content from the preparatory meeting is written into the agent’s
System Prompt under the Injectable Section as the task-specific knowledge and preferences required
for subsequent execution. The role-based profile and the role-bound operating contract remain un-
changed.
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D EMPIRICAL ANALYSIS OF REWARD VARIANCE AND CLOSED-LOOP
STABILITY

To assess whether stage-wise RL in MAC-AMP remains stable throughout training and to verify that
the multi-agent evaluators do not induce feedback collapse, overfitting to internal Reviewer agent
biases, or reward hacking, the reward—episode trajectories were analyzed across all three RL stages.
This analysis tracked the total reward as well as its components (S, antibacterial activity score; S,
AMP likelihood score; and S., average meta score) over training episodes and examined how each
term evolved relative to the others. In addition, the variance band of the total reward was evaluated
over time and compared against the component-wise trajectories. This allowed detection of potential
reward-hacking signatures, such as one sub-term being pushed to an extreme while others degrade,
as well as signs of Reviewer agent-signal collapse or instability in the closed-loop feedback.

In Figure[AT] the trajectories of S,, Sp, and S display the intended stage-specific behaviour. In the
early stage, after an initial drop when the reward is reset, the policy primarily increases Sy, reflecting
an exploration-oriented focus on AMP-likeness. In the mid stage, once S, and .S, have stabilized
at reasonable levels, the system increases S., which aggregates multi-agent assessments involving
toxicity, structural reliability, and other constraints. In the final stage, after constraint-related signals
plateau, optimization shifts toward further elevating S, to enhance predicted antibacterial activity.

Across all stages, the total reward rises without any indication of reward hacking. There are no tra-
jectories in which total reward increases by sharply degrading one component while over-optimizing
another. Instead, the three reward components co-evolve in a manner consistent with the intended
stage-wise objectives. Likewise, the variance band of the total reward does not collapse, indicating
that the stage-wise reward structure acts as an implicit regularizer that prevents any single objective
from being disproportionately exploited within the current three-stage training horizon.
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Figure Al: Three-stage reward—episode learning curves for MAC-AMP. The curves illustrate how
the total reward and its components (S, antibacterial activity score; Sp, AMP likelihood score; and
S, average meta score) evolve during (a) the early stage, (b) the middle stage, and (c) the late stage.
The light blue area indicates the moving variance of the total reward.

E BASELINE MODELS TRAINING

For all generative baselines, a unified protocol is used to generate AMPs for each target organism:
each model independently generates 1,000 candidate AMPs, evaluates them with the same target-
specific MIC predictor to obtain an antibacterial activity prediction score, where a higher score
indicates a lower predicted MIC value, and then selects the top-k (k=30) from that batch as the rep-
resentative set for the run. Each model is run three times with different random seeds, yielding 3x30
representative sequences for evaluation and statistical analysis. De-duplication is performed across
runs and across models using 100% sequence identity. For the real-world dataset, for each target,
the data is de-duplicated, randomly split into three equal parts, and within each part, sequences are
ranked by experimentally measured MIC values from low to high, selecting the top-k (k=30) as that
part’s representative set. This produces 3x30 real-world sequences per target, matching the batch
structure of the generative baselines and enabling a fair comparison.
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F INDEPENDENT VALIDATION OF MAC-AMP—-GENERATED E. coli PEPTIDES

F.1 INDEPENDENT TESTING OF MAC-AMP GENERATED ANTI-E. coli AMP ACTIVITY

To further validate the 90 MAC-AMP-generated anti-E. coli AMPs, an external MIC predictor,
APEX 1.1, was used. APEX is an ensemble deep-learning model that combines a peptide-sequence
encoder with neural predictors of antimicrobial activity 2024). It was first applied to
assess whether each peptide is predicted to be active against at least one of three E. coli strains: E.
coli ATCC 11775, E. coli AIC221, and E. coli AIC222. Of the 90 AMPs, 85 were predicted to be
active against all three E. coli strains and 5 were predicted to be active against two of the three E.
coli strains. Being active was defined as having an MIC < 128 gmol1~%, as defined in
(2024).

F.2 INDEPENDENT TESTING OF MAC-AMP GENERATED ANTI-E. coli AMP
BROAD-SPECTRUM ACTIVITY

APEX 1.1 was then used to evaluate broad-spectrum activity across additional clinically rele-
vant pathogens, including Acinetobacter baumannii (ATCC 19606), Klebsiella pneumoniae (ATCC
13883), Pseudomonas aeruginosa (PAO1 and PA14), Staphylococcus aureus (ATCC 12600 and
BAA-1556), and vancomycin-resistant Enterococcus faecium (ATCC 700221). These strains cover
major ESKAPE pathogens. As shown in Figure [A2] many of the generated AMPs exhibit low MIC
values across multiple species, indicating broad-spectrum antimicrobial potential.
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Figure A2: Predicted Minimum Inhibitory Concentrations (MICs) of the top 90 MAC-AMP-
generated anti-Escherichia coli (E. coli) peptides against E. coli strains and ESKAPE pathogens
using APEX 1.1.
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F.3 BROAD-SPECTRUM MOTIF ANALYSIS OF MAC-AMP GENERATED ANTI-E. coli AMPS

Using a MIC cutoff of < 128 pmol L~ to define activity (Wan et al.,|2024), the results from broad-
spectrum testing with APEX were binarized into active versus inactive for each strain. Among
the top 90 MAC-AMP—generated anti-E. coli AMPs, 36 (40%) were classified as broad-spectrum,
defined as exhibiting activity against at least one strain of each of the five additional ESKAPE
pathogens (A. baumannii, K. pneumoniae, P. aeruginosa, S. aureus, E. faecium).

For these broad-spectrum AMPs, motif analysis was subsequently performed to investigate poten-
tial sequence features underlying their broad-spectrum activity. Motif analysis was performed us-
ing MEME 5.5.8 (Bailey et al., |2009) in protein mode under the zero-or-one-occurrence (ZOOPS)
model, searching for up to 10 motifs with widths ranging from 3-10 amino acids, using dataset-
derived background amino-acid frequencies, Dirichlet mixture priors, and default EM optimization
parameters to identify statistically enriched motifs across the AMP set. FIMO 5.5.8 (Grant et al.|
2011) was then used to scan all AMP sequences for motif occurrences using the MEME-generated
motif file, with a p-value threshold of 1 x 10~ and default settings.

The top ten most frequent motifs identified across the broad-spectrum AMPs are shown in Figure[AJ]
From this, two particularly notable conserved motifs were identified: KFLKGA and WLLGKW.
The KFLKGA motif, although not experimentally validated in the literature exactly, exhibits an
alternating pattern of cationic (K) and hydrophobic (F, L, A) residues characteristic of amphipathic
AMPs and fits the cationic—hydrophobic pattern typical of cationic AMPs. Similarly, the WLLGKW
motif follows the same fundamental design principles, featuring a central lysine (K) residue flanked
by hydrophobic tryptophan (W) and leucine (L) residues that create an amphipathic structure. The
two tryptophan residues are particularly significant, as their large aromatic structures preferentially
position at the membrane-water interface, potentially enhancing membrane-disrupting activity. Both
motifs are expected to assist the AMPs in targeting bacteria through the characteristic two-step
mechanism: initial electrostatic attraction between the cationic lysine residues of the AMP and the
negatively charged bacterial membrane surface, followed by hydrophobic insertion of tryptophan
and leucine residues into the lipid bilayer. The resulting membrane perturbation and disruption lead
to bacterial cell death (Hollmann et al., 2016; Yeaman & Yount, |2003). Overall, this goes to show
that there is the potential that the alternating cationic and hydrophobic pattern contributes to the
broad-spectrum activity of the generated broad-spectrum AMPs.

KFLKGA 32

WLLGKW 10

LIIKIIKRLW

Motif

MRWARW

G

FGL

DFL

ILGE

5 10 15 20 25 30
Number of Occurrences

Figure A3: Frequency of the top ten motifs identified in broad-spectrum MAC-AMP—generated
anti-Escherichia coli antimicrobial peptides.
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G NOVELTY OF E. coli AMPS GENERATED BY MAC-AMP

To ensure novelty, sequence similarity was quantified between the MAC-AMP-generated E. coli
AMPs and the E. coli AMPs in our training dataset (3,818 experimentally validated AMPs from
DBAASP v3 and dbAMP 3.0). The Needleman-Wunsch global alignment algorithm implemented
in Biopython 1.8.6 was used with default parameters. For each pairwise comparison, similarity was
calculated by normalizing the alignment score to the length of the longer peptide in the pair.

Because each generated peptide required comparison against thousands of database sequences, we
report, for each generated AMP, the highest and average similarity score observed across all compar-
isons. As shown in Figure[A4] the generated AMPs only show a maximum similarity score of 84.6%
to existing AMPs, indicating that even the most similar generated AMPs retain approximately 15%
sequence divergence. On average, their similarity to the training dataset sits around 27%, indicat-
ing substantial sequence-level differences from known AMPs. Thus, the generated AMPs exhibit
consistently low similarity to known AMPs, indicating high sequence-level novelty.
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Figure A4: Distribution of (a) average and (b) highest normalized Needleman—Wunsch global-
alignment similarity scores for the top 90 MAC-AMP—generated anti-Escherichia coli (E. coli) an-
timicrobial peptides (AMPs), evaluated against an external dataset of real-world E. coli AMPs.

The internal similarity among the 90 MAC-AMP-generated E. coli AMPs are also assessed using
the same alignment procedure described above. Pairwise global alignments were computed for all
combinations of generated AMPs, and similarity scores were normalized by division of the maxi-
mum sequence length. As shown in Figure [A3] internal similarity across the generated set remains
low, indicating that MAC-AMP produces a diverse set of AMP sequences rather than minor varia-
tions of a few amino acids.

H PRESENCE OF ANTIBACTERIAL ACTIVITY RELATED MOTIFS IN E. coli
AMPS GENERATED BY MAC-AMP

To further validate the MAC-AMP results in silico, the top 90 anti-E. coli AMPs generated by MAC-
AMP were analyzed for the presence of motifs experimentally associated with antibacterial activity,
particularly against E. coli.

A search was conducted for the Cholesterol-Recognizing Amino-Acid Consensus (CRAC) motif
and its reverse (CARC), which interact with cholesterol in cell membranes, influence cholesterol-
dependent cellular processes, and modulate membrane permeability and stability. CRAC motifs may
contribute to antimicrobial activity by sequestering cholesterol or sterol-like lipids, disrupting mem-
brane organization, and forming pores in bacterial membranes. CRAC-containing peptides have
demonstrated activity against E. coli in previous studies, with CRAC motifs appearing necessary
for this effect (Koksharova et al},[2022). Within the generated AMPs, 8 of 90 contained CRAC or
CARC motifs, providing additional evidence for activity against E. coli.
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Figure AS: Normalized Needleman-Wunsch global-alignment—based similarity scores between top
90 anti-Escherichia coli generated antimicrobial peptides by MAC-AMP.

Another example searched for was proline-rich AMPs (PR-AMPs), which are AMPs with an unusu-
ally high content of proline residues and a net cationic charge derived mainly from arginine residues.
These peptides have been shown in the literature to demonstrate antibacterial activity. Two AMPs
from the generated sequence set are proline-rich: KRRWRPLPPPPRRPFFRP and RPRFPPRYP-
PRLYPPVRP. Based on the literature, these peptides likely exhibit anti-E. coli activity due to their
characteristic proline-rich and arginine-rich composition, a hallmark of PR-AMPs that selectively
target Gram-negative bacteria. The first AMP (KRRWRPLPPPPRRPFFRP) contains an N-terminal
arginine-rich region, which has been shown to influence antimicrobial activity, along with multiple
proline residues arranged in patterns similar to functional PR-AMP fragments. The second AMP
(RPRFPPRYPPRLYPPVRP) displays repeating Pro-Arg motifs (particularly PRP sequences) that
are characteristic of active PR-AMPs (Scocchi et al, 201T).

Overall, this provides some evidence into the mechanisms and validity of the AMPs designed by
MAC-AMP to target E. coli in silico.

I GENERAL STRUCTURAL STABILITY OF E. coli AMPS GENERATED BY
MAC-AMP

OmegaFold pLDDT is used as a structural reliability proxy to guide MAC-AMP during peptide
generation. To confirm that MAC-AMP produces generally stable peptides and that OmegaFold
pLDDT is a reliable proxy, molecular dynamics (MD) simulations were performed on a subset
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of randomly chosen E. coli AMPs from the top 90 candidates generated by MAC-AMP to assess
general structural stability.

MD simulations were performed using OpenMM 8.4.0 (Eastman et al.,[2024) to assess the structural
stability of the generated AMP structures. Input Protein Data Bank (PDB) files were first processed
using PDBFixer 1.12 to add missing residues, missing heavy atoms, and hydrogens at pH 7.0. Each
prepared structure was then solvated in a TIP3P water box with 0.8 nm padding and 0.15 M ionic
strength using the AMBERI14 force field. The systems were energy-minimized, followed by 3 ns of
NPT equilibration at 300 K and 1 bar using a Langevin integrator with a 2 fs timestep and a Monte
Carlo barostat. Production MD simulations were conducted for 100 ns with coordinates saved every
1 ps. Backbone Root Mean Square Deviation (RMSD) values were calculated using MDTraj 1.11
(McGibbon et al., [2015), which measures the average distance between the backbone atoms of a
peptide structure over time compared to the initial structure. General conditions were used to simply
assess the reliability of OmegaFold to guide the design of AMPs with structural reliability.

Table|A 1{shows that the mean RMSD lies around 2-4 Afor the AMPs generated by MAC-AMP. This
shows that the AMPs designed by MAC-AMPs demonstrate general structural stability and also that
using OmegaFold pLDDT as a proxy to guide the generation of AMPs is acceptable.

Table Al: Backbone root mean square deviation (RMSD) of molecular dynamics simulations of
MAC-AMP-generated anti-Escherichia coli antimicrobial peptides (AMPs) (mean + standard devi-
ation)

AMP | RMSD (A) AMP | RMSD (A) AMP | RMSD (A) AMP | RMSD (A)
1 222 +0.79 17 | 3.18+1.49 33 [ 2350+0.79 49 [ 257+067
2 2.93 +0.97 18 | 2.25+0.94 34 | 3.66+0.64 50 | 2.09+0.72
3 216+ 1.12 19 | 1.61+0.38 35 | 2.68+1.00 51 | 2.61+0.70
4 3.40 +1.85 20 | 3.27+0.86 36 | 1.88+0.48 52 | 4.68 +1.20
5 2.17 +£0.68 21 | 2.17+0.64 37 | 3.65+1.25 53 | 3.63+1.84
6 2.66 +0.53 22 | 142+0.54 38 | 3.70+1.23 54 | 2.51+0.49
7 4.04 +1.61 23 | 332+0.62 39 | 3.07+0.98 55 | 3.85+0.83
8 291 +0.55 24 | 1.73£0.57 40 | 3.53+1.00 56 | 2.54+0.81
9 2.66 +0.51 25 | 1.85+0.65 41 | 223+1.14 57 | 4.59+091
10 | 2.87+0.72 26 | 2.50+0.63 42 | 3.26+1.45 58 | 1.68 £0.70
11 | 3.63+0.88 27 | 3.15+0.71 43 | 2.67 +1.38 59 | 2.81+0.91
12 | 2.85+0.65 28 | 2.70+0.86 44 | 438 +0.81 60 | 1.91+0.49
13 | 3.84+1.29 29 | 1.80+0.64 45 | 2.23+0.65 61 | 2.65+0.69
14 | 2.87+0.45 30 | 1.79+1.04 46 | 4.00 +1.03 62 | 1.63+0.68
15 | 496+1.19 31 | 1.51+0.79 47 | 3.79+1.46 63 | 3.47+0.80
16 | 2.91+0.99 32 | 321+1.31 48 | 2.32+1.15 64 | 3.36+0.84

J  SEQUENCE-LEVEL AND BIOPHYSICAL PROPERTIES OF E. coli AMPS
GENERATED BY MAC-AMP

Here, sequence-level (Table [AZ)) and biophysical (Table [A3)) features are summarized for six gen-
erated AMPs by MAC-AMP for E. coli inhibition. In Table the Length column indicates the
number of residues in the peptide sequence. The K/R Fraction column reports the fraction of lysine
(K) and arginine (R) residues. The K/R Fraction Positions column shows the positions of K and R
residues within each sequence. The Identity Fraction gives the proportion of residues identical to
the reference template sequence used during generation. In Table[A3] GRAVY represents the Grand
Average of Hydropathy, quantifying the overall hydrophobicity of the peptide sequence. Hydropho-
bic Moment («-helix) measures the a-helical amphipathicity, indicating the degree of segregation
between hydrophobic and hydrophilic faces when the peptide adopts an a-helical conformation. Net
Charge at pH 7 indicates the total charge of the peptide under physiological conditions. pl gives the
isoelectric point, which is the pH at which the peptide carries no net charge.

The generated peptides exhibit key characteristics associated with antimicrobial activity: moderate
to high cationic character (K/R fractions of 0.32-0.41, net charges of +6 to +9), balanced to mod-
erately high hydrophobicity (GRAVY values of 0.16-0.57), and moderate to strong amphipathicity
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(hydrophobic moments of 0.38-0.73). Notably, all sequences maintain high pl values (11.25-12.97),
ensuring they remain positively charged under physiological conditions, which facilitates electro-
static interaction with negatively charged bacterial membranes. The identity fractions (0.50-0.60)
indicate that MAC-AMP modified 40-50% of residues relative to template sequences to optimize
antimicrobial properties.

Table A2: Summary of sequence-level features for six generated antimicrobial peptides by MAC-
AMP for Escherichia coli

Sequence Length K/R K/R F.r.a ction Ident-i ty
Fraction Positions Fraction
FRVFGFIAKKVKKLVKKI 18 0.389 1,8,9,11,12,15,16 0.556
VRGGAIKKIAKILAKLLAR 19 0.316 1,6,7,10,14,18 0.579
VGLVKKWFKSVIKKVAKS 18 0.333 4,58,12,13,16 0.500
RIFKFLKRAFGIIGLFKRRIKS 22 0.364 0,3,6,7,16,17,18,20 0.500
KIWKLLKKVLAKVAK 15 0.400 0,3,6,7,11,14 0.600
IIGKLVLKKVGKIIKKILKKKA 22 0.409 3,7,8,11,14,15,18,19,20 0.500

Table A3: Summary of biophysical properties for six generated antimicrobial peptides by MAC-
AMP for Escherichia coli

Sequence GRAVY 1\1/{[{) ;Egg:: 0:::5( Net Charge,n; pl

FRVFGFIAKKVKKLVKKI 0.406 0.734 7 11.95
VRGGAIKKIAKILAKLLAR 0.574 0.375 6 12.52
VGLVKKWFKSVIKKVAKS 0.189 0.546 6 11.25
RIFKFLKRAFGIIGLFKRRIKS 0.155 0.578 8 12.97
KIWKLLKKVLAKVAK 0.240 0.721 6 11.25
IIGKLVLKKVGKIKKILKKKA 0.373 0.427 9 11.45

K COMPARATIVE ANALYSIS OF SEQUENCE AND BIOPHYSICAL PROPERTIES
OF E. coli AMPS GENERATED BY MAC-AMP vs. BASELINE MODELS

To evaluate sequence and biophysical properties, 2,000 random AMPs were generated by MAC-
AMP for E. coli and compared with equal-sized sets from baseline models and the training dataset
of experimentally validated E. coli AMPs (Figure [AG). Overall, MAC-AMP generates AMPs with
distributions similar to experimentally validated anti-E. coli AMPs while showing enhanced op-
timization for key properties associated with antimicrobial activity. In Figure [AGp, MAC-AMP’s
amino acid composition shows elevated K/R and L/I, consistent with cationic, amphipathic a-
helices, while remaining broadly similar to real AMPs. Figure [A6p illustrates that MAC-AMP
peptides peak at a global charge of +5-7 at pH 7.4, reflecting a design preference for increased
membrane interaction. GRAVY distributions (Figure [A6L) indicate moderate hydrophobicity (me-
dian ~0 to +0.5), slightly more hydrophobic than natural AMPs, which may enhance membrane
insertion potential while maintaining solubility. Predicted helix fractions (Figure [A6[) are slightly
elevated (~0.45-0.5), supporting formation of stable amphipathic helices. Sequence lengths (Fig-
ure [AGg) are predominantly 17-20 aa, well within the typical 10-40 aa AMP range. Also, Eisen-
berg hydrophobic moments (Figure [A6) are highest among all models (~0.55 median), producing
well-defined amphipathic faces without extreme hydrophobic clustering, which could lead to aggre-
gation or reduced solubility. Finally, the instability index (Figure [A6g) and global hydrophilicity
(Figure[A6h) distributions are comparable to experimentally validated AMPs, indicating that MAC-
AMP maintains stability and solubility profiles consistent with functional peptides. Collectively,
this indicates that MAC-AMP maintains the statistical fidelity of natural AMPs while optimizing
charge, amphipathicity, and helicity to favour membrane-active designs.
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Figure A6: Comparative distributions of sequence and biophysical properties across 2000 random
antimicrobial peptides (AMPs) generated by MAC-AMP, five baseline models, and a real-world
AMP dataset targeting Escherichia coli. (a) Amino-acid composition of AMPs, normalized to per-
model fractions. (b) Global charge at pH 7.4 for all AMPs. (c) Grand Average of Hydropathy
(GRAVY) of AMPs, representing overall hydrophobicity. (d) Predicted helix fraction of AMPs, in-
dicating their propensity to adopt a-helical structure. (¢) AMPs length in amino acids. (f) Eisenberg
hydrophobic moment of AMPs, reflecting amphipathicity. (g) Instability index of AMPs, estimating
their predicted stability. (h) Global hydrophobicity of AMPs.

L  ABLATION STUDIES

L.1 ABLATION STUDIES ON PROPERTY PREDICTION MODULE

Ablation studies were conducted on the Property Prediction module by comparing MAC-AMP to
versions where each of the following additional objectives was removed in the Property Prediction
module: Toxicity (V,), Structural Reliability (1}), and AMP Likelihood (Sp).

The performance metrics of the generated AMPs by each variant compared to MAC-AMP are sum-
marized in Table [A4] The computational costs were also measured via GPU hours, total number of
API calls, peak memory usage in MB, and API costs, shown in Figure [A7] As expected, although
computational costs drop when multiple objectives are removed, it comes at the cost of performance.
When each or a combination of objectives is removed, the model can optimize for the remaining ob-
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jectives (instead of having to balance all three), so it produces slightly higher performance metrics
for those optimized remaining objectives at the cost of the other objectives. The slight increase noted
in the optimized objectives when others are dropped is not worth the trade-off of the multi-objective
optimization. Overall, MAC-AMP can effectively optimize AMP generation for multiple objectives
at once when all components are included.

Table A4: Ablation studies of the Property Prediction module: property scores of antimicrobial pep-
tides generated by MAC-AMP and its variants. Here, V,, denotes the toxicity predictor (ToxinPred
3.0), V, the structural-reliability property predictor (OmegaFold v1), and S; the AMP-likelihood
predictor (Macrel 1.5).

Antibacterial AMP .. Structural
Model Activity (1) | Likelihood (1) | 10Xty (1) | Reliability (1)
MAC-AMP | 0.943 £ 0.008 | 0.797 £ 0.012 | 0.154 = 0.008 | 0.873 = 0.000
Drop_V, 0.904 + 0.028 | 0.799+0.009 | 0.157 +0.021 | 0.818 + 0.012
Drop_V, 0.946 + 0.045 | 0.782+0.016 | 0.231 +0.028 | 0.799 + 0.017
Drop_S;, 0.923 +0.037 | 0.742+0.006 | 0.164+ 0.010 | 0.830 + 0.014
Drop V, Vi | 0.904+0.043 | 0.764+0.023 | 0.183+ 0.016 | 0.758 = 0.015
Drop_Vy_S, | 0.889 & 0.040 | 0.745+0.035 | 0.134+ 0.087 | 0.763 = 0.017
Drop_V, S, | 0.933+0.021 | 0.735+0.010 | 0.255+ 0.024 | 0.836 %+ 0.019
Drop_V, Vi, S, | 0.866 & 0.044 | 0.729+0.024 | 0.212+ 0.045 | 0.742 + 0.031
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Figure A7: Ablation studies of the Property Prediction module. (a) API costs for each ablation
model, broken down by the percentage contribution of each Reviewer Agent: GPT-5, Perplexity,
and Gemini 2.5. (b) GPU hours, total number of API calls (further separated into percentages from
the Reinforcement Learning Refinement module versus the Artificial Intelligence-simulated Peer
Reviewer module), and peak memory usage (MB) for each ablation model. Here, V, denotes the
toxicity predictor (ToxinPred 3.0), V, the structural-reliability property predictor (OmegaFold v1),
and Sj, the AMP-likelihood predictor (Macrel 1.5).

L.2 ABLATION STUDIES ON AI-SIMULATED PEER REVIEW MODULE

Ablation studies were conducted on the contribution of the Al-simulated Peer Review module by
comparing MAC-AMP to versions where each of the Reviewer agents was removed in the Al-
simulated Peer Review module. As shown in Table [A3] the Al-Simulated Peer Review module
is key to achieving a balanced multi-objective outcome. When all Reviewer agents are removed,
and only RL with handcrafted rewards is retained, all four metrics deteriorate. The three Reviewer
agents have distinct roles and counterbalance one another. GPT-5 (RA1) functions as the gatekeeper
of safety and discriminability. When GPT-5 is included, toxicity scores decrease and AMP scores
remain high, although antibacterial activity and structural reliability scores are slightly reduced.
Conversely, removing GPT-5 produces candidates that appear more potent but exhibit increased
toxicity and reduced stability. Perplexity (RA2) acts as the primary driver of potency. Removing
Perplexity reduces all four metrics, whereas using Perplexity alone increases antibacterial activity
scores but leads to lower AMP scores, higher toxicity, and weaker structural stability, indicating a
unilateral bias when applied in isolation. Gemini 2.5 (RA3) primarily mediates the synergy between
structural reliability and potency. Removing Gemini 2.5 results in a pronounced decline in structural
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reliability, while using Gemini 2.5 alone fails to balance safety and overall performance. Together,
the three Reviewer agents form a closed loop: Perplexity pushes sequences into the effective region,
GPT-5 pulls risk back into a controllable range, and Gemini 2.5 improves foldability, ultimately
delivering the most balanced results across all four metrics.

Table A5: Ablation studies of the Al-simulated Peer Review module: property scores of antimi-
crobial peptides generated by MAC-AMP and its variants. Here, RA1 denotes Reviewer agent 1

(GPT-5), RA2 the Reviewer agent 2 (Perplexity), and RA3 the Reviewer agent 3 (Gemini 2.5)

Antibacterial AMP .. Structural
Model Activity (1) | Likelihood (1) | 10Xty (1) | Reliability (1)
MAC-AMP 0.943 + 0.008 | 0.797 +0.012 | 0.154 + 0.008 | 0.873 + 0.009
w/o RA3 0.857 +0.016 | 0.840 +0.008 | 0.133 +0.023 | 0.731 + 0.017
wlo RA2 0.884 +0.015 | 0.780 +0.008 | 0.164 + 0.023 | 0.734 + 0.021
wilo RAI 0.953 + 0.010 | 0.742+0.016 | 0.181 +0.019 | 0.783 + 0.017
wio RA2 +RA3 | 0.870 + 0.013 | 0.806 + 0.006 | 0.130 = 0.015 | 0.740 + 0.011
wlo RA1L +RA3 | 0.979 + 0.010 | 0.700 + 0.019 | 0.185 + 0.019 | 0.758 + 0.015
w/o RAT +RA2 | 0.938 & 0.011 | 0.795 + 0.008 | 0.195 + 0.013 | 0.862 + 0.013
wio All Review | 0.825+0.016 | 0.627+0.014 | 0.448 +0.051 | 0.831 + 0.012

L.3 ABLATION STUDIES ON REINFORCEMENT LEARNING REFINEMENT MODULE

Ablation studies were conducted on the contribution of the RL Refinement module by comparing
MAC-AMP to versions where the RL Reward Decision agent and/or Adaptive Optimization were
removed or replaced with human-designed RL, where the reward and PPO code were designed by a
human expert. In this set of RL module ablations, MAC-AMP, with both the RL Reward Decision
agent and Adaptive Optimization, achieves the most balanced performance across all metrics (Ta-
ble[A6). In more detail, without the RL Reward Decision agent, all property metrics drop except for
structural reliability, which slightly increases, leading to a clear safety degradation. Without adaptive
optimization, antibacterial activity superficially increases while all other properties drop, reflecting
overexploitation under a fixed-reward and PPO strategy. As such, it is clear that the stagewise up-
dates act as regularization and calibration, preventing the search from being pulled too hard by one
specific objective. Without either, performance degrades across the board except for toxicity, likely
because the static reward places a heavy penalty on toxicity. In short, the RL. Reward Decision agent
determines whether the right trade-off was chosen, and Adaptive Optimization determines whether
it is stable. Both are indispensable for reaching a balanced multi-objective optimum.

Table A6: Ablation studies of the Reinforcement Learning Refinement module: property scores of
antimicrobial peptides generated by MAC-AMP and its variants

Antibacterial AMP . . Structural

Model Activity (1) | Likelihood (1) | 1o¥icity (1) | peyiability (1)
MAC-AMP 0.943 £ 0.008 | 0.797 £ 0.012 | 0.154 = 0.008 | 0.873 £ 0.009
ng“e'g;“t RL Decision | 935 4 0011 | 0791 +0.013 | 0.260 +0.022 | 0.879 - 0.010
g‘“?o‘.‘t Adaptive 0.955 -+ 0.003 | 0.752 4 0.005 | 0.279 + 0.006 | 0.869 + 0.013

ptimization
Without RL Decision
Agent & Adaptive 0.818 + 0.021 | 0.737 +0.009 | 0.200 = 0.022 | 0.768 + 0.020
Optimization
Replaced by
HumanDesigned RL | 0-900£0.014 | 0.776£0.009 | 0.175£0.018 | 0759 £0.015
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M SUBSTITUTION ANALYSES

To validate our model’s performance, substitution analyses were conducted where different com-
ponents of our model framework were swapped, and computational costs and/or performance were
evaluated in comparison to the original framework. For each analysis, downstream performance was
measured via the generated AMPs’ antibacterial activity, AMP likelihood, toxicity and structural re-
liability. When computational costs were calculated, GPU hours, total number of API calls (broken
down by the percentage coming from the RL Refinement module versus the Al-simulated Peer Re-
view module), peak memory usage, and API costs (broken down by the percentage contributed by
each Reviewer agent) were noted.

M.1 SUBSTITUTION ANALYSIS ON NUMBER OF EXTERNAL RL TRAINING EPOCHS

In MAC-AMP, the RL Refinement module is trained for 15 epochs by default. To evaluate the effect
of training duration, the number of epochs was reduced to 10 and increased to 20, and computational
costs are reported in Figure Training for 15 epochs incurs only an additional $0.46 USD com-
pared to 10 epochs, whereas increasing to 20 epochs raises API costs by $5.62 USD. GPU hours
increase with the number of epochs, while peak memory usage remains largely unchanged. To note,
MAC-AMP allows users to choose their desired number of external RL training epochs depending
on their preferred balance between accuracy and computational cost.
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= API Calls (RL Module)
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Figure A8: Substitution analyses on the number of Reinforcement Learning module training epochs.
(a) API costs for each substitution variant, broken down by the percentage contribution of each Re-
viewer Agent: GPT-5, Perplexity, and Gemini 2.5. (b) GPU hours, total number of API calls (further
separated into percentages from the Reinforcement Learning module versus the Al-simulated Peer
Review module), and peak memory usage (MB) for each substitution variant.

M.2 SUBSTITUTION ANALYSIS ON MAXIMUM GENERATED PEPTIDE LENGTH
In MAC-AMP, the default maximum peptide length is 32, reflecting a focus on designing short
AMPs. The effects of lowering the maximum length to 20 and 26 or increasing it to 39 were

explored, and as shown in Figure [A9] the computational costs due to differences in peptide length
are negligible, so sequence length does not have a significant impact on computational costs.

33



Published as a conference paper at ICLR 2026

- GPU Hours
= API Calls (RL Module)
8000 API Calls (Reviewer Module)

= Peak Memory (MB)

Cost (USD)

Figure A9: Substitution analyses on the maximum length of generated peptides. (a) API costs for
each substitution variant, broken down by the percentage contribution of each Reviewer Agent:
GPT-5, Perplexity, and Gemini 2.5. (b) GPU hours, total number of API calls (further separated into
percentages from the Reinforcement Learning module versus the Artificial Intelligence-simulated
Peer Review module), and peak memory usage (MB) for each substitution variant.

M.3 SUBSTITUTION ANALYSIS ON AI-SIMULATED PEER REVIEW MODULE AGENTS

MAC-AMP currently uses GPT-5, Perplexity, and Gemini 2.5 as Reviewer agents and the Area Chair
agent. To evaluate cost differences, the agents were replaced with locally deployed small models in
four configurations: RA_AC_Llama, in which all Reviewer agents and the Area Chair agent in the
Peer Review module were replaced with Llama 3.1 8B (Grattafiori & Dubeyl[2024); RA_AC_Qwen,
in which all Reviewer agents and the Area Chair agent were replaced with Qwen 2.5 7B-instruct
(Qwen et al 2024); RA_API_AC_Qwen, in which only the Area Chair agent was replaced with
Qwen; and RA_Qwen_AC_API, in which only the Reviewer agents were replaced with Qwen. As
shown in Table [A7} MAC-AMP achieves the most favourable balance across all evaluated metrics,
particularly excelling in toxicity (0.154) and AMP likelihood (0.797), while maintaining competitive
antibacterial activity and structural reliability. Variants that obtain higher antibacterial activity or
structural reliability do so at the cost of substantially increased toxicity (2-3x worse) and reduced
AMP likelihood. Because all objectives are jointly prioritized, the MAC-AMP agents represent
the most effective choice overall. Although MAC-AMP incurs the highest API and computational
costs (with the exception of peak memory), as shown in Figure[AT0] performance is prioritized over
computational efficiency in this work, and the resulting costs remain acceptable for the intended use.
Therefore, MAC-AMP remains the preferred configuration.

Table A7: Substitution analyses on the Artificial Intelligence-simulated Peer Review Module
Agents: property scores of antimicrobial peptides generated by MAC-AMP and its variants.
RA_AC Llama: all Reviewer agents (RA) and the Area Chair (AC) agent are replaced with
Llama 3.1 8B, RA_AC_Qwen: all RA and the AC agent are replaced with Qwen 2.5 7B-instruct,
RA_API_AC_Qwen: only the AC agent was replaced with Qwen, RA_Qwen_AC_API: only the RA
are replaced with Qwen

Antibacterial AMP .. Structural
Model Activity (1) | Likelihood (1) | roXicity () | peyiability (1)
MAC-AMP 0.043 £ 0.008 | 0.797 £0.012 | 0.154 £0.008 | 0.873 % 0.009
RA_AC_Llama 0.944 +0.007 | 0.713+0.012 | 0.201 +0.020 | 0.896 + 0.012
RA_AC_Qwen 0.949 + 0.009 | 0.683 +0.010 | 0.308 +0.013 | 0.913 + 0.016
RA_API AC Qwen | 0.865+0.014 | 0.783+0.011 | 0.206 = 0.013 | 0.863 + 0.007
RA_Qwen AC_API | 0.835+0.023 | 0.734 +0.017 | 0.211 +0.030 | 0.854 + 0.015
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Figure A10: Substitution analyses on the Al-simulated Peer Review Module Agents. (a) API costs
for each comparative model, broken down by the percentage contribution of each Reviewer Agent:
GPT-5, Perplexity, and Gemini 2.5. (b) GPU hours, total number of API calls (further separated into
percentages from the Reinforcement Learning module versus the Artificial Intelligence-simulated
Peer Review module), and peak memory usage (MB) for each comparative model.

M.4 SUBSTITUTION ANALYSIS ON TOXICITY PROPERTY PREDICTION MODEL

For MAC-AMP, ToxinPred 3.0 is used as the toxicity property prediction model. At the time of
ToxinPred 3.0’s release, it remained one of the top general toxicity prediction models. CAPTP was
tested as an alternative to determine whether ToxinPred 3.0 is the superior choice. CAPTP is a deep
learning model that combines convolutional and self-attention mechanisms, using convolutional lay-
ers to extract local sequence motifs, self-attention layers to capture long-range dependencies across
the peptide, and fully connected layers to integrate these learned features for highly accurate toxicity

prediction (Tfao et al}, 2024).

ToxinPred 3.0 and CAPTP were both evaluated on an independent dataset originally used to test
ToxinPred 3.0, ensuring that none of the compounds overlapped with the training sets of either
model. As detailed in Table[A8] ToxinPred 3.0 outperforms CAPTP.

Table A8: Performance comparison between ToxinPred 3.0 and CAPTP

Predictor | Accuracy | Weighted Precision | Weighted Recall | Weighted Fl-score
ToxinPred 3.0 0.828 0.849 0.828 0.828
CAPTP 0.770 0.787 0.77 0.770

M.5 SUBSTITUTION ANALYSIS ON MIC PROPERTY PREDICTION MODEL

For MAC-AMP, we designed an LLM-based regressor (MAC-AMP MIC Predictor), adapted from
BERT AmPEP60 2025), that fine-tunes ProtBERT via transfer learning
to predict species-specific MIC values for AMP sequences. The designed MIC prediction
model was compared to APEX 1.1, an ensemble of deep-learning networks that uses a peptide-
sequence encoder coupled with neural predictors of antimicrobial activity [2024).

Both models were evaluated on a collection of 157 AMPs targeting E. coli ATCC 11775, E. coli
AIC221, and/or E. coli AIC222 from DBAASP v3, after removing duplicates and any overlap with
our training dataset. As shown in Table[A9} our predictor outperforms APEX. Therefore, using our
self-trained MIC predictor within the framework is the optimal choice.

Table A9: Performance comparison between MAC-AMP MIC Predictor and APEX 1.1

Predictor | R* | Pearsonr | Spearman p
MAC-AMP MIC Predictor | 0.572 0.758 0.724
APEX 1.1 0.546 0.728 0.607
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M.6 SUBSTITUTION ANALYSIS ON LEXICON WEIGHTS

The lexicon weights in the weight-tagging map of the Al-simulated Peer Review module are deter-
mined by the agent itself during a preparatory meeting with a human expert, subject to constraints
such as restricting the possible distribution of each dimensional score (summary of weights) to the
range [—1, 1]. This process occurred prior to training and established the injectable knowledge for
the model.

Substitution analyses were performed to evaluate the change in performance metrics when the lexi-
con weights decided by the model are offset by 0.1. As shown in Table decreasing the lexicon
weights by 0.1 resulted in a slight negative impact on performance, whereas increasing the weights
by 0.1 caused a steep decline. Overall, the weights determined during the human expert—agent
preparatory meeting remain reliable and efficient.

Table A10: Substitution analyses on the lexicon weights: property scores of antimicrobial peptides
generated by MAC-AMP and its variants

Model ‘ Antibacterial ‘ AMP Toxicity (|) ‘ Struc.t.ural
Activity (1) Likelihood () Reliability (1)
MAC-AMP 0.943 +-0.008 | 0.797 +0.012 | 0.154 4+ 0.008 | 0.873 & 0.009
Lexicon Weight + 0.1 | 0.878 +0.023 | 0.794 £+ 0.009 | 0.156 +0.012 | 0.836 +0.013
Lexicon Weight - 0.1 | 0.938 +0.019 | 0.804 £0.006 | 0.171+0.012 | 0.871 +0.013

N CROSS-DOMAIN TRANSFERABILITY

One of MAC-AMP’s biggest novelties is its setup for cross-domain transferability. To test its po-
tential beyond AMP design, the MAC-AMP framework was applied for an English table-to-text
generation task, where, given a table and a set of highlighted table cells, the model has to produce a
one-sentence description. To test this task, a subset of the ToTTo dataset was used, an open-domain
English table-to-text dataset with training examples of Wikipedia tables, highlighted table cells, and
one-sentence descriptions (Parikh et al.,|2020). For this preliminary study, a randomly sampled sub-
set of 30,000 training examples (approximately 25% of the full dataset of 120,761 sequences) was
used.

In transferring MAC-AMP to the ToTTo table-to-text benchmark, the multi-agent architecture, log-
ging scheme, and PPO training code remain unchanged, and only minimal domain-specific substitu-
tions are applied. The Property Prediction module no longer queries molecular predictors; instead,
each candidate description was evaluated using the official ToTTo scripts to obtain PARENT and
BLEU scores, which are linearly normalized and used as S, and .S}, within the RL pipeline. Ad-
ditional statistics, such as table coverage, proportion of unsupported tokens, and length ratio, are
computed and exposed to the Al-simulated Peer Review module as V-style auxiliary evidence. The
module continues to operate over the four dimensions (Eff / Safe / DevStruct / Orig), but their
semantics are redefined for text generation. Eff denotes task effectiveness and content adequacy
(coverage of highlighted cells and correctness of expressed facts). Safe denotes factual safety (ab-
sence of hallucinations or contradictions relative to the table). DevStruct denotes linguistic quality
and structural coherence (grammaticality, fluency, and Wikipedia-like discourse organization). Orig
denotes stylistic diversity and generalization (faithful yet varied paraphrasing rather than verbatim
copying). Based on these redefinitions, a new weighted lexicon is constructed for each dimension,
while the original tagging mechanism and scoring procedure remain unmodified.

In the RL Refinement and Peptide Generation modules, the peptide generator is replaced by a T5-
small encoder—decoder model. The reward-design and alignment agents receive updated prompts
describing PARENT/BLEU and the redefined four dimensions, but still emit TorchScript reward
functions, F'(S,, Sy, S:) € [0, 1], which are consumed by the same PPO strategy to update the
generator.

Due to time limitations, only a minimal evaluation was conducted in which both the T5-based base-
line and the multi-agent—optimized generator were run under identical default settings. This pro-
vides an initial assessment of cross-domain applicability, while more extensive experiments and
task-specific optimizations are left for future work.
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For this experiment, results were analyzed from three perspectives. “Overall” refers to the average
score over the entire test set. The “Overlap” subset consists of examples whose source tables also
appear in the training set but with different subsets of highlighted cells, reflecting performance on
tables the model has seen before. The “Non-overlap” subset contains examples whose source tables
never appear in the training data, testing generalization to completely unseen tables.

Three automatic evaluation metrics were used: BLEU, PARENT, and BLEURT. BLEU is a tradi-
tional n-gram overlap metric that measures similarity between the generated sentence and the refer-
ence at the word level(Papineni et al.l [2002). PARENT is specifically designed for table- or data-
to-text generation, assessing how well the generated text covers the correct table cells and whether
it hallucinates content not present in the table (Dhingra et al., [2019). BLEURT is a learned metric
based on a finetuned pre-trained language model that leverages semantic representations and hu-
man ratings to evaluate adequacy and fluency, and is more tolerant of paraphrases than pure n-gram
overlap metrics (Sellam et al., [2020).

The results, shown in Table |AT1] demonstrate cross-domain applicability of the closed-loop multi-
agent plus adaptive reward design framework while restricting modifications to lightweight tool-
and lexicon-level adaptations for the ToTTo task.

Table A11: Comparison of the TS5 baseline and T5-based MAC-AMP agent framework for the
English table-to-text generation task

Data Subset Model BLEU | PARENT | BLEURT
Overall T5 Baseline 44.6 56.0 0.179
T5-based MAC-AMP 46.2 58.0 0.208
Overlap TS5 Baseline 52.6 60.7 0.311
T5-based MAC-AMP 54.1 62.4 0.338
Non-Overlap TS5 Baseline 36.8 51.4 0.051
T5-based MAC-AMP 38.5 53.7 0.083

O LIMITATIONS AND FUTURE WORK

Our work demonstrates significant advances in AMP drug design and discovery, as well as in LLM-
based MAC systems. However, certain limitations remain. First, sensitivity to evaluators and out-of-
distribution (OOD) drift persists as our framework is still influenced by the robustness of upstream
evaluators and by distributional shifts. The generator can explore sequence space beyond the train-
ing distribution, and multi-agent consensus can unintentionally imprint systematic biases onto the
reward landscape. Future work will investigate OOD-aware reward specification and adaptively cal-
ibrated lexicon weights to enhance robustness. A second limitation concerns closed-loop incentives
and exploration diversity. By compiling multi-agent consensus into executable rewards and updating
them in a closed loop, multi-objective progress is stabilized, but over long horizons, this approach
may favour signals that are easiest to optimize and agree upon, thereby narrowing exploratory di-
versity. To address this, future work will explore cross-module calibration and diversity-preserving
constraints to mitigate incentive drift, preserve exploration breadth, and improve cross-scenario con-
sistency.

P USE OF LARGE LANGUAGE MODELS

We acknowledge the use of large language models as a writing assistant in the preparation of this
manuscript. Specifically, it was used to help polish the language and writing for flow and clarity. All
research ideation, code development and execution, as well as initial drafting and section formatting,
were carried out by the authors.
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