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Domain generalization (DG) aims to learn a generalizable model from multiple
training domains such that it can perform well on unseen target domains. A popu-
lar strategy is to augment training data to benefit generalization through methods
such asMixup [1]. While the vanillaMixup can be directly applied, theoretical and
empirical investigations uncover several shortcomings that limit its performance.
Firstly, Mixup cannot effectively identify the domain and class information that can
be used for learning invariant representations. Secondly,Mixupmay introduce syn-
thetic noisy data points via random interpolation, which lowers its discrimination
capability. Based on the analysis, we propose a simple yet effective enhancement
for Mixup-based DG, namely domain-invariant Feature mIXup (FIX). It learns
domain-invariant representations for Mixup. To further enhance discrimination,
we leverage existing techniques to enlarge margins among classes to further pro-
pose the domain-invariant Feature MIXupwith Enhanced Discrimination (FIXED)
approach. We present theoretical insights about guarantees on its effectiveness. Ex-
tensive experiments on sevenpublic datasets across twomodalities including image
classification (Digits-DG, PACS, Office-Home) and time series (DSADS, PAMAP2,
UCI-HAR, and USC-HAD) demonstrate that our approach significantly outper-
forms nine state-of-the-art related methods, beating the best performing baseline
by 6.5% on average in terms of test accuracy. The code is available at https://
github.com/jindongwang/transferlearning/tree/master/code/deep/fixed.

1. Introduction
In recent years, deep learning has demonstrated useful capabilities and potential in many applica-
tion domains [2, 3]. However, the performance of deep neural nets often deteriorates significantly
when deployed on test data that exhibit different distributions from the training data. This is widely
recognized as the domain shift problem [4]. For instance, activity recognition models trained on the
data from adults are likely to fail when being tested on children’s activities, and the performance of
natural image classification models tends to perform poorly when tested on artistic paintings.
A common technique to address the problem is domain adaptation (DA) [5–7]. It learns to maxi-
mizemodel performance on a given target domainwith the help of labeled source domains by bridg-
ing the distribution gap. However, DA relies on target domains, which makes DA less applicable
in real-world scenarios that demand good generalization performance on unseen distributions. Do-
main generalization (DG) [8–10] has attracted increasing attention in recent years. DG aims to learn
a generalizable model that can perform well on unseen distributions after being trained on multi-
ple source domains. Existing work can be categorized into three types: 1) learn domain-invariant
representations [6, 11], 2) meta-learning [9, 12, 13], and 3) data augmentation-based DG [14, 15].
In this paper, we focus on data augmentation, specifically Mixup [1] which is a simple but effective
approach. Mixup generates new samples via linear interpolations between any two pairs of data.
It increases the quantity and diversity of training data to boost the generalization of deep nets [16].
Mixup can be used for domain generalization directly [17]. Recent works, such as FACT [18] and
MixStyle [14], have adapted it in computer vision tasks with application-specific knowledge. De-
spite the success ofMixup, an important research question remains open: Is there any versatileMixup
learning strategy for general domain generalization problems?
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Our specific interest is to enhance the capability of Mixup for general domain generalization based
on theoretical and empirical analysis of its current limitations. First, we notice that vanilla Mixup
cannot discern domain information and class information, which can negatively affect its perfor-
mance due to the entangled domain-class knowledge. Second, Mixup in DG can easily generate
synthetic noisy data points when two classes are close to each other. This reduces the discrimina-
tion of the classifier. We propose the domain-invariant Feature MIXup with Enhanced Discrimi-
nation (FIXED) approach, to address these limitations of Mixup. It incorporates domain-invariant
representation learning into Mixup, which enables the diverse data augmentation with useful in-
formation for the generalized model. Then, FIXED introduces a large margin to reduce synthetic
noisy data points in the interpolation process. It is a simple yet effective approach.
Through theoretical analysis, we present insights on the design rationale and superiority of FIXED.
Note that our FIXED is not limited to specific applications and can be applied to general classifi-
cation tasks, in contrast to existing Mixup methods which are designed for computer vision tasks
(e.g., [14, 18]). We have conducted extensive experiments on seven benchmarks across two modal-
ities: 1) image classification (image data) and 2) sensor-based human activity recognition (time
series data). The results demonstrate significant superiority of FIXED over nine state-of-the-art ap-
proaches, outperforming the best baseline by 6.5% in terms of average test accuracy on the domain
time series generalization task which is still in its infancy.
To summarize, our contributions are three-fold:

• Simple yet effective algorithm: For DG, we propose FIX to enhance the diversity of useful
information and implement FIXED by introducing the large margin to reduce synthetic
noisy data during Mixup. FIXED remains quite simple but effective.

• New theoretical insights: We offer theoretical insights from both the cover range and class
distance perspectives to explain the rationale behind our algorithm.

• Good Performance: We conduct comprehensive experiments on seven benchmarks across
two modalities: image classification (image) and sensor-based human activity recognition
(time series). Experimental results demonstrate the superiority of FIXED, especially with
6.5% improvements for domain generalization in time series which is still in infancy.

2. Preliminaries
We follow the definition in [10]. In domain generalization, we are givenM labeled source domains
S = {Si|i = 1, · · · ,M} and Si = {(xij , yij)}

ni
j=1 denotes the ith domain, where ni denotes the num-

ber of data in Si. The joint distributions between each pair of domains are different and denoted
as PiXY 6= PjXY , 1 ≤ i 6= j ≤ M . The goal of DG is to learn a robust and generalized predictive
function h : X → Y from theM training sources to achieve minimum prediction error on an unseen
test domain Stest with an unknown joint distribution (i.e., minh E(x,y)∈Stest [`(h(x), y)]). E is the ex-
pectation and `(·, ·) is the loss function. All domains, including the source domains and the unseen
target domains, have the same input and output spaces (i.e., X 1 = X 2 = · · · = XM = X T ∈ Rm).
X is the m-dimensional instance space and Y1 = Y2 = · · · = YM = YT = {1, 2, · · · ,K}. Y is the
label space andK is the number of classes.

2.1. Background
Data augmentation is a common technique to cope with DG. Among existing methods, Mixup [1]
is a popular data augmentation approach and has shown good performance in many fields. It con-
structs synthetic training samples based on two random data points:

λ ∼ Beta(α, α), x̃ = λxi + (1− λ)xj , ỹ = λyi + (1− λ)yj , (1)
where Beta(α, α) is the Beta distribution and α ∈ (0,∞) is a hyperparameter that controls the
strength of interpolation between feature-target pairs, recovering the ERM principle as α → 0.
Mixup extends the training distribution by incorporating the intuition that linear interpolations
of feature vectors should lead to linear interpolations of the associated targets into the training set.
As a powerful data augmentation technique, Mixup has played a vital role in enhancing sample
diversity in domain generalization problems [14, 17, 18].
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Figure 1: Toy examples to illustrate limitations of Mixup. Colors and shapes denote classes and
domains, respectively. (a) Mixup generates unrecognizable synthetic data. (b) Mixup with only
class information can mitigate such an issue. (c) Mixup tends to generate noisy data. (d) The large
margin can reduce generations of synthetic noisy data.

2.2. Limitations of Mixup-based DG
Although the vanillaMixupmethod can enhance data diversity, it fails to discernwhich features are
useful for training the model. It only increases the diversity of all features equally. In DG, it cannot
distinguish domain features and classification features, which results in the entanglement of do-
mains and classes. It is unclear which parts of the increased diversity are useful for matching the
categories. When incorrect matching between categories and features occurs, vanilla Mixup neg-
atively affects model performance due to the introduction of interfering information. Figure 1(a)
shows that vanilla Mixup directly mixes data without discerning classification and domain infor-
mation. When mixing data points with the cyan “+”s and blue “o”s (circled in red), the red square
data points are generated. Since the red square points are generated by two different classes, their
labels should be in between the two classes, which means these points should lie between the two
classes. However, as can be observed from Figure 1(a), the red squares almost completely overlap
with the blue“+”s, which means they prefer to be the blue class according to the locations. Mixed
domain information interferes with the matching of synthetic data points and synthetic labels. Not
only vanilla Mixup, but also some adapted Mixup variants (e.g., manifold Mixup [19] which mixes
in the hidden states) have the same limitation.
On the other hand, Mixup in DG is more likely to generate noisy synthetic data points [20]. Even
when samples from different classes in the same domain are away from each other, data points from
another domainwith different distributionsmay be close to a clusterwith a different category. When
two clusters are close to each other, noisy synthetic data points are more likely to be generated. As
shown in Figure 1(c), the blue cluster and the red cluster are very close. Noisy data points (e.g.,
the synthetic data points generated by the red “+”s and the blue “+”s) are generated with a high
probability by Mixup.

3. The Proposed FIXED Method
In this paper, we propose the domain-invariant Feature MIXup with Enhanced Discrimination
(FIXED) to address the aforementioned limitations of Mixup-based DG methods. The model ar-
chitecture of FIXED is illustrated in Figure 2. We introduce its two critical modules as follows.

3.1. FIX: Domain-invariant Feature MIXup
We first introduce domain-invariant feature Mixup to discern the domain and class information,
which is our main contribution. As suggested in [6], domain-invariant features contain more in-
formative knowledge for classification than raw data [1] or the manifold Mixup [19]. Such feature
Mixup is general and can be embedded inmany existingDGmethods. Let z be the domain-invariant
feature. Then, our approach can be formulated as:

λ ∼ Beta(α, α), z̃ = λzi + (1− λ)zj , ỹ = λyi + (1− λ)yj . (2)

Note that this is not the same as manifold Mixup [19] which operates on random layers and does
not involve domain-invariant feature learning. Although domain-invariant feature learning alone
brings about improvements for generalization, they usually lack diversity due to restrictions on the
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learning process. Therefore, increasing diversity of these features can make classification informa-
tion diverse and avoid entangling with useless domain information. Since the diversity of class
information is increased, the corresponding labels are also mixed for better matching, which is dif-
ferent from Mixstyle [14] and FACT [18]. As shown in Figure 1(b), when Mixup is performed on
domain-invariant features that have no interference from classification information, the diversity of
data is indeed enhanced with almost no unrecognizable synthetic data points being generated.

MixFea.
Net

Cls.
Net

Mix

Inv. Fea.

Large
Margin
Loss

GRL.
Cls.
Net

Figure 2: The network architecture of FIXED.

As shown in Figure 2, we adopt DANN [6] to
learn domain-invariant features for its popular-
ity and effectiveness. Nevertheless, FIX can also
work with other methods for domain-invariant
learning, which is shown in later experiments
in Sec. 5.42. The outputs of the bottleneck
layer are viewed as domain-invariant features.
TheMixup operation is performed on this layer.
Correspondingly, the class labels are alsomixed
to increase the diversity of data while domain
labels remain unchanged. Feature Mixup is
performed within each batch. Concretely, for
a batch of z, we shuffle its indices and obtain ẑ.
Then, z and ẑ are mixed to obtain z̃, which is used as the input for the subsequent layers. At the
same time, ỹ is generated accordingly.

3.2. Enhancing Discrimination
To further enhance discrimination, we introduce a large margin loss into Mixup just as in [20] to
complete the design of FIXED. We follow [21] to derive the large margin loss as:

`lm(h(xi), yi) = Gk 6=yi max{0, γ + dh,xi,{k,yi}sign(hk(xi)− hyi(xi)}, (3)
where `lm is large margin loss, G is an aggregation operator for the multi-class setting, and sign(·)
adjusts the polarity of the distance. hk : X → R generates a prediction score for classifying the input
vector x ∈ X to class k. γ is the distance to the boundary that we expect. dh,x,{k1,k2} is the distanceof a point x to the decision boundary of class i and j, which can be computed as:

dh,x,{k1,k2} = min
δ
||δ||p, s.t. hk1(x + δ) = hk2(x + δ), (4)

where || · ||p is lp norm. As shown in [21], Eq. (3) can be computed as:

Gk 6=yi max{0, γ +
hk (xi)− hyi (xi)

‖∇xhk (xi)−∇xhyi (xi)‖q
}, (5)

where q = p
p−1 . As shown in Figure 1(d), a large margin can reduce noisy synthetic data points to

enhance discrimination.

3.3. Summary
Combining the domain-invariant feature learning module and the large margin module, the objec-
tive function of FIXED can be formulated as:

minE(x1,y1),(x2,y2)∼PEλ∼Beta(α,α)[`lm(Gy(Mixλ(z1, z2)),Mixλ(y1, y2)) + `d(Gd(Rη(z1)), D)], (6)
where P denotes the distribution of all data. Mix(·, ·) is a Mixup function, z1 = Gf (x1), z2 = Gf (x2)
with Gf , Gy, Gd the feature net, classification layer, and discriminator, respectively. We perform
FIXED in batches. `d is the cross-entropy loss. Rη is the gradient reversal layer [6] and D is the
domain label. Note that DANN is only one possible option for domain-invariant learning. We show
that FIXED can work with CORAL [22] as an alternative implementation in Section 5.4.

4. Analytical Evaluation
In this section, we offer theoretical analysis to shed light on the reasons behind the remarkable
performance of FIXED from two aspects: 1) distribution coverage and 2) inter-class distance.

2In the following, if there is no special note, FIX denotes FIX implemented with DANN.
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Figure 3: Toy examples of theoretical insights. (a) After the implicit shrinkage via Mixup, classes
(denoted by different colors) mix together, bringing difficulty to classification. Different shapes
denote domains. (b) FIXED enlarges the distribution cover range. Vertices represent distributions
while colored areas represent possible O in Prop. C.2 and O′ in Prop. 4.2.

4.1. Why Mixup is not Good Enough
Proposition 4.1. (modified from Theorem 1 in [23]). Let θ ∼ Beta[ 12 ,1](α, α) and j ∼ Unif([n]) be two
random variables with α > 0, n > 0, and let θ̄ = Eθθ. For any training set Sn, there exist two random
perturbations (δi, εi) with Eθ,jδi = Eθ,jεi = 0, i ∈ [n]. Denote εMixup the error of Mixup, we have

εMixup(h) =
1

n

n∑
i=1

Eθ,j`(h(x̃i), ỹi) =
1

n

n∑
i=1

Eθ,j`(h(x̄ + θ̄(xi − x̄) + δi), ȳ + θ̄(yi − ȳ) + εi). (7)

Note that θ̄ ∈ [1/2, 1]. FromEq. (7), we can see that the transformation from (xi, yi) to (x̃i, ỹi) shrinks
the inputs and the outputs towards their mean with perturbations. When there exist spurious rela-
tions induced by redundant domain information, it may bring confusion when performing Mixup,
which is demonstrated in Figure 3(a). Moreover, introducing the large margin can make classes far
from each other and thereby reduce confusion during Mixup.

4.2. FIXED has Larger Distribution Coverage
We derive our theory to prove that FIXED has a larger distribution coverage.
Proposition 4.2. Let X be a space and H be a class of hypotheses corresponding to this space. Let Q and
the collection {Pi}Mi=1 be distributions over X and let {φi}Mi=1 be a collection of non-negative coefficients with∑
i φi = 1. Let the object O′ be a set of distributions such that for every S ∈ O′ the following holds

dH∆H(
∑
i

φiPi,S) ≤ max
i,j

dH∆H(Pi,Pj). (8)

Then, for any h ∈ H,

εQ(h) ≤ λ′ +
∑
i

φiεPi
(h) +

1

2
min
S∈O′

dH∆H(S,Q) +
1

2
max
i,j

dH∆H(Pi,Pj) (9)

where λ′ is the error of an ideal joint hypothesis.
Proposition 4.3. Under the same conditions in 4.2,

O = {S|
∑
i

φidH∆H(Pi,S) ≤ max
i,j

dH∆H(Pi,Pj)}, (10)

O′ = {S|dH∆H(
∑
i

φiPi,S) ≤ max
i,j

dH∆H(Pi,Pj)}, (11)

we have
O ⊂ O′. (12)

From Prop. 4.2 and Prop. 4.33,O′ has a larger possible cover range thanO, which brings more diver-
sity. As shown in the right part of Figure 3(b), the red area is the possible increased area. Possible

3Proofs can be found in section C.2.
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areas contain distributions that may be in O(O′) while confirmed areas contain distributions that
must be in O(O′). It reveals that the area with a constant distance to purple lines and blue vertices
is larger than the area with the same distance to blue vertexes, where purple lines can be viewed as
Mixup of vertexes expressed as ∑i φiPi. Moreover, yellow areas may have a higher possibility to
satisfy Eq. (8) since the points in it have shorter distances from purple lines and blue vertices.

4.3. Insights from Inter-class and Intra-class Distances
Recently, it has come to researchers’ attention that just learning domain invariant featuresmay not be
enough for good generalization and discrimination, especially in the field of domain adaptation [13,
24]. A common approach to enhance generalization and discrimination is to enlarge the inter-class
distance and decrease the intra-class distance [25], which has already been utilized for domain
adaptation [26] and domain generalization [27]. From Eq. 7, feature Mixup can be perceived as
a tool to decrease the intra-class distance, while the large margin loss can enlarge the inter-class
distance. This indicates that FIXED enhances generalization and discrimination.

5. Experimental Evaluation
While most literature on DG evaluates the algorithms on image classification datasets, we perform
evaluations on both image classification and sensor-based human activity recognition (i.e., time
series) data. This can help study the generality of our method across multiple modalities.

5.1. Evaluation on Image Classification Datasets
5.1.1. Datasets

We adopt three popular DG benchmark datasets. (1) Digits-DG [28], which contains four digit
datasets including MNIST [29], MNIST-M [30], SVHN [31], SYN [29]. The four datasets differ
in font style, background, and image quality. Following [28], we select 600 images per class from
each dataset. (2) PACS [32], which is an object classification benchmark with four domains (i.e.,
photos, art-paintings, cartoons, sketches). There exist large discrepancies in image styles among
different domains. Each domain contains seven classes and there are 9,991 images in total. (3)
Office-Home [33], which is an object classification benchmark that contains four domains (i.e., Art,
Clipart, Product, Real-World). The domain shift comes from image styles and viewpoints. Each
domain contains 65 classes and there are 15,500 images in total.

5.1.2. Baselines and Implementation Details

For the experiments using ResNet-18, i.e., Office-Home and PACS datasets, and Digits-DG dataset
that uses DTN as the backbone following [34], we re-implement several recent strong comparison
methods by extending the DomainBed [35] codebase for fair study. For the algorithms that are not
implemented by ourselves, we copy their results from their papers when the settings are the same.
Our reproductions are marked with *. We select the best model via results on validation datasets.
Specifically, we split each source domain with a ratio of 8 : 2 for training and validation following
DomainBed and report average results of three trials4.

5.1.3. Results and Discussion

Table 1 shows the results on PACS, Office-Home, and Digits-DG datasets respectively where PACS
and Office-Home used ResNet-18. We observe that FIXED consistently outperforms all comparison
methods. For PACS, our method can have an over 1% improvement compared to the second-best
one. In an absolutely fair environment, our method can even achieve an over 3% improvement
compared to the methods with stars. 3% is a remarkable improvement since some methods, e.g.
DANN, only have slight improvements compared to ERM. Our method can also have over 1% and
0.3% improvements compared to the second-best ones for Office-Home and Digits-DG respectively.

4The ratio 8 : 2 is suggested by DomainBed for fairness. Several methods adopted 9 : 1which involves more
training data that are easier to perform better. In these cases, our method still outperforms them.

6



Table 1: The results on PACS, Office-Home, and Digits-DG. The bold items are the best results.
PACS Office-Home

Method A C P S AVG Method A C P R AVG
ERM* 77 74.53 95.51 77.86 81.22 ERM* 58.63 47.95 72.22 73.03 62.96
DANN* [6] 78.71 75.3 94.01 77.83 81.46 DANN* [6] 57.73 44.42 71.95 72.5 61.65
CORAL* [22] 77.78 77.05 92.63 80.55 82 CORAL* [22] 58.76 48.75 72.34 73.63 63.37
Mixup* [1] 79.1 73.46 94.49 76.71 80.94 MMD-AAE [11] 56.5 47.3 72.1 74.8 62.7
MetaReg [12] 83.7 77.2 95.5 70.3 81.7 Mixup* [1] 55.79 47.88 71.95 72.83 62.11
Jigen [36] 79.42 75.25 96.03 71.35 80.51 Jigen [36] 53.04 47.51 71.47 72.79 61.2
Epi-FCR [37] 82.1 77 93.9 73 81.5 MIX-ALL* [17] 56.08 46.9 72.07 73.93 62.24
GroupDRO* [38] 76.03 76.07 91.2 79.05 80.59 GroupDRO* [38] 57.6 48.77 71.53 73.17 62.77
RSC* [39] 79.74 76.11 95.57 76.64 82.01 RSC* [39] 58.96 49.16 72.54 74.16 63.7
MIX-ALL* [17] 80.66 73.85 93.83 76.05 81.1 ANDMask* [40] 56.74 45.86 70.67 73.19 61.61
L2A-OT [41] 83.3 78.2 96.2 73.6 82.8 SagNet [42] 60.2 45.38 70.42 73.38 62.34
MMLD [43] 81.28 77.16 96.09 72.29 81.83 Ours 61.06 50.08 73.39 74.45 64.75
DDAIG [28] 84.2 78.1 95.3 74.7 83.1 Digits-DG
SNR [44] 80.3 78.2 94.5 74.1 81.8 Method MNIST MNIST-M SVHN SYN AVG
EISNet [45] 81.89 76.44 95.93 74.33 82.15 ERM* 97.55 55.52 59.98 89.25 75.58
CSD [46] 78.9 75.8 94.1 76.7 81.4 DANN* [6] 97.77 55.62 61.85 89.37 76.15
InfoDrop [47] 80.27 76.54 96.11 76.38 82.33 CORAL* [22] 97.62 57.68 57.82 90.12 75.81
ANDMask* [40] 76.22 73.81 91.56 78.06 79.91 MMD-AAE [11] 96.5 58.4 65 78.4 74.6
CuMix [48] 82.3 76.5 95.1 72.6 81.6 Mixup* [1] 97.5 57.95 54.75 89.8 75
StableNet [49] 81.74 79.91 96.53 80.5 84.69 Jigen [36] 96.5 61.4 63.7 74 73.9
MixStyle [14] 84.1 78.8 96.1 75.9 83.7 GroupDRO* [38] 97.48 53.47 55.63 92.15 74.68
SagNet [42] 83.58 77.66 95.47 76.3 83.25 RSC* [39] 97.78 56.27 62.38 89.25 76.42
MatchDG [50] 79.77 80.03 95.93 77.11 83.21 MIX-ALL* [17] 96.23 59.28 54.73 83.57 73.45
L2D [51] 81.44 79.56 95.51 80.58 84.27 MixStyle [14] 96.5 63.5 64.7 81.2 76.5
SFA [52] 81.2 77.8 93.9 73.7 81.7 ANDMask* [40] 96.85 56 59.47 88.17 75.12
Ours 84.23 78.8 96.37 83.54 85.74 Ours 97.67 56.72 64.17 88.73 76.82

We observe more insightful conclusions. (1) Vanilla Mixup even performs worse than ERM on
some benchmarks, which illustrates that mixed domain information interfaces performance seri-
ously. (2) There are small performance gaps among different methods on some benchmarks, e.g.
Office-Home; and even ERM can achieve acceptable results. It is caused because there are few differ-
ences among different domains (Office-Home) or some other reasons. (3) Different domain splits
are important for DG. For example, in Digits-DG, MixStyle shows a significant improvement on the
second task. Even Jigen performs better than all other methods. Hence, it is important to perform
several random trials to record the average performance.

5.2. Evaluation on Human Activity Recognition
5.2.1. Datasets and Settings

We evaluate our method on several DG benchmarks with three different settings on human activity
recognition. Four datasets are used: UCI daily and sports dataset (DSADS) [53], USC-SIPI hu-
man activity dataset (USC-HAD) [54], UCI human activity recognition using smartphones data set
(UCI-HAR) [55], and PAMAP2 physical activity monitoring dataset (PAMAP2) [56]. We mainly
use the sliding window technique to preprocess data. We constructed three settings for extensive
evaluations of our method: (1) Cross-Person: This setting utilizes USC-HAD dataset and 14 per-
sons are divided into four groups. Each domain contains 12 classes. Each sample has two sensors
with six dimensions. (2) Cross-Position: This setting utilizes DSADS dataset and data from each
position corresponds to a different domain. There are 19 classes in total. Each sample contains three
sensors with nine dimensions. (3) Cross-Dataset: This setting utilizes all four datasets, and each
dataset corresponds to a different domain. Data of six common classes, including walking, walk-
ing upstairs, walking downstairs, sitting, standing, and laying, are selected. We choose two sensors
from each dataset that belong to the same position. Data is down-sampled to ensure the dimensions
of data in different datasets same. It is easy to see that cross-dataset setting is more challenging than
the other two since it contains more diversity.

5.2.2. Baselines and Implementation Details

For all three settings, we reproduce eight state-of-the-art baselines by ourselves. In addition, for
cross-person onUSC-HAD,we add the results of GILE [57] obtained from results via their code. For
each benchmark, we randomly split each source domain into 80% for training and 20% for validation.
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Table 2: Results on HAR benchmarks. The bold and underline mean the best and second-best.
Source Target ERM* DANN* [6] CORAL* [22] ANDMask* [40] GroupDRO* [38] RSC* [39] Mixup* [1] MIX-ALL* [17] GILE [57] FIXED

X-
Pe

rs
on

1,2,3 0 80.98 81.22 78.82 79.88 80.12 81.88 79.98 78.44 78.00 84.73
0,2,3 1 57.75 57.88 58.93 55.32 55.51 57.94 64.14 59.32 62.00 67.90
0,1,3 2 74.03 76.69 75.02 74.47 74.69 73.39 74.32 72.96 77.00 79.21
0,1,2 3 65.86 70.72 53.72 65.04 59.97 65.13 61.28 63.46 63.00 74.47
AVG - 69.66 71.63 66.62 68.68 67.57 69.59 69.93 68.54 70.00 76.58
Source Target ERM* DANN* [6] CORAL* [22] ANDMask* [40] GroupDRO* [38] RSC* [39] Mixup* [1] MIX-ALL* [17] - FIXED

X-
Po

sit
io
n 1,2,3,4 0 41.52 45.45 33.22 47.51 27.12 46.56 48.77 40.1 - 49.57

0,2,3,4 1 26.73 25.36 25.18 31.06 26.66 27.37 34.19 31.16 - 35.64
0,1,3,4 2 35.81 38.06 25.81 39.17 24.34 35.93 37.49 41.16 - 40.44
0,1,2,4 3 21.45 28.89 22.32 30.22 18.39 27.04 29.50 30.56 - 33.00
0,1,2,3 4 27.28 25.05 20.64 29.90 24.82 29.82 29.95 29.31 - 33.22
AVG - 30.56 32.56 25.43 35.57 24.27 33.34 35.98 34.46 - 38.37
Source Target ERM* DANN* [6] CORAL* [22] ANDMask* [40] GroupDRO* [38] RSC* [39] Mixup [1] MIX-ALL* [17] - FIXED

X-
Da

ta
se
t 1,2,3 0 26.35 29.73 39.46 41.66 51.41 33.10 37.35 31.01 - 46.73

0,2,3 1 29.58 45.33 41.82 33.83 36.74 39.70 47.39 38.42 - 53.28
0,1,3 2 44.44 46.06 39.10 43.22 33.20 45.28 40.24 37.52 - 46.15
0,1,2 3 32.93 43.84 36.61 40.17 33.80 45.94 23.12 22.8 - 53.67
AVG - 33.32 41.24 39.25 39.72 38.79 41.01 37.03 32.44 - 49.96

- AVG - 44.51 48.48 43.77 47.99 43.54 47.98 47.65 45.15 - 54.97

5.2.3. Results and Discussion
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Figure 4: Ablation study of FIXED.

The results on time series are presented in Ta-
ble 2. Overall, our method has an improvement
of 6.5% average accuracy than the second-best
method on average of these three settings. This
demonstrates generalization capability across
different tasks of our method. These settings
represent DG scenarios of different difficulties
(e.g., cross-dataset is much more difficult than cross-person), thus they can thoroughly reflect the
performance of all methods in different situations. As shown in Table 2, some methods deteriorate
seriously for these three HAR benchmarks while our method achieves the best average accuracy on
average and performs best almost on every task. The results are consistent with image datasets. To
sum up, our method is effective in both image and time series datasets, indicating that it is a general
approach for domain generalization.

5.3. Qualitative Analysis
5.3.1. Ablation Study

Table 3: Ablation study of FIXED (PACS) to show
the improvement on large margin loss.
ALG A C P S AVG
ERM 77.00 74.53 95.51 77.86 81.22
ERM+Margin 81.98 74.87 96.17 76.81 82.46
DANN 78.71 75.30 94.01 77.83 81.46
DANN+Margin 82.52 76.62 95.57 78.49 83.30
Mixup 79.10 73.46 94.49 76.71 80.94
Mixup+Margin 82.81 74.23 94.91 81.32 83.32
Ours 84.23 78.8 96.37 83.54 85.74

We report our ablation study in Figure 4. Com-
pared with vanilla Mixup, Manifold Mixup
shows slight improvements. It is caused by
the reason that the model trained with cate-
gories as goals is biased towards containing
more classification information in the deeper
layers5. It proves our motivation of domain-
invariant Mixup from another view. Compared with Manifold Mixup, it is obvious that directly
using Mixup on domain-invariant features has a remarkable improvement, which demonstrates
that increasing the diversity of useful information for model training is able to bring benefits. In ad-
dition, we present results on large margin with existing methods in Table 3 After introducing large
margin, there are extra improvements compared with domain-invariant Manifold Mixup. These
experiments demonstrate that the two components are both effective.

5.3.2. Visualization Study

We present visualization results to show the rationale of our method. As shown in Figure 5(a), the
same class in different domains has different distributions with ERM (data points with the same
color and different shapes locate in different places), which is just like Figure 1(a). Moreover, some
classes are close to each other, which is like Figure 1(c). If we do nothing for these situations, syn-
thetic noisy points will be generated as mentioned above. Even if vanilla Mixup or Manifold Mixup

5We try our best to performManifoldMixup in the deeper layers, which leads to remarkable improvements
compared to Vanilla Mixup, but it is still worse than ours.
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is used, the above issues cannot be solved (see Figure 5(b) and Figure 5(c) respectively). With do-
main invariant features, FIXED can reduce the influence generated by redundant domain informa-
tion (Figure 5(d)) while it can enhance discrimination. Overall, with both considerations, FIXED
achieves the best visualization effects in Figure 5(f) where two problems have been relieved to a
certain degree and thus leads to the best performance in Figure 4.

(a) ERM (b) Mixup (c) [19] (d) Invar. fea. (e) Large margin (f) Our method
Figure 5: Visualization of the t-SNE embeddings of learned feature spaces for PACS with differ-
ent methods. Different colors correspond to different classes and different shapes correspond to
different domains. Best viewed in color and zoom in.
5.4. More Analysis
5.4.1. Extensibility

To demonstrate that FIX is extensible, we replace the adversarial learning module in FIX with
CORAL loss [22] to learn domain-invariant features. For better comparison, we do not use large
margin and we denote it as FIX-CORAL. We compare it with CORAL and Vanilla Mixup on two
benchmarks: Office-Home and Cross-Person. From Figure 6(a) and Figure 6(b), we can see FIX-
CORAL achieves the best results on both benchmarks compared with CORAL and vanilla Mixup,
which demonstrates FIXED is a general approach for domain generation. In addition, in Figure 6(a),
it can be observed that FIX-CORALwithout largemargin loss almost achieves the sameperformance
as FIXEDwith large margin loss. It may be caused by that CORAL performs better than adversarial
training on Office-Home (rf. Table 1), thereby obtaining improved domain-invariant features.
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Figure 6: Figure 6(a)-6(b) are results of FIXED with CORAL extension while Figure 6(c)-6(d) are
results on cross-person HAR and PACS with three trials to show the robustness of our algorithm.

5.4.2. Robustness

Our method involves Mixup strategy and random domain splits which may introduce instabilities.
In this section, we evaluate its robustness. Figure 6(c) and Figure 6(d) demonstrate that ourmethod
is robust against random seeds and different domain splits in several trials. This implies that our
method can be easily applied to real applications.

6. Conclusions and Future Work
In this paper, we proposed FIXED, a general approach for domain generalization. FIXED performs
Mixup on domain-invariant features to increase diversity by discerning domain and class infor-
mation. To mitigate the noisy synthetic data problem in Mixup, we introduced the large margin
loss. FIXED can be embedded in many existing DG methods, and we presented implementations
based on DANN and CORAL. We provided theoretical insights to our algorithm. Extensive exper-
iments on seven datasets across two modalities demonstrated that FIXED yielded SOTA results on
all datasets. In the future, we plan to incorporate our approach into representation learning and
meta-learning DG methods to improve performance and deploy it on more applications.
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A. Broader Impact Concerns
FIXED introduces innovative data augmentation techniques to enhance machine learning model
robustness and generalization. However, we must consider its real-world implications, including
data privacy issues, potential biases from training data, and fairness concerns in model outcomes.
Evaluating its benefits in diverse real-world scenarios and addressing its susceptibility to adversar-
ial attacks are essential. By holistically assessing these concerns, we aim to ensure the responsible
and ethical application of FIXED, maximizing its positive impact while minimizing adverse conse-
quences.

B. Related Work

B.1. Domain Generalization
DG aims to learn amodel from single ormultiple source domains to generalize well to unseen target
domains. According to [10], existing DG methods can be divided into three groups: 1) representa-
tion learning [44, 58, 59], 2) learning strategy [60, 61], and 3) data manipulation [28, 62–64].
Representation learning is one of the most common approaches for domain adaptation and domain
generalization. Since DG can be viewed as an extension of DA, many traditional DAmethods can be
applied to DG [6, 11, 22]. Domain-adversarial neural network (DANN) [6] learns domain-invariant
features via adversarial training of the generator and the discriminator. The discriminator aims to
distinguish the domains, while the generator aims to fool the discriminator to learn domain invari-
ant feature representations. Deep Coral [22] learns a nonlinear transformation that aligns correla-
tions of layer activations in deep neural networks. MMD-AAE [11] imposes the Maximum Mean
Discrepancy (MMD) measure to align the distributions among different domains, and matches the
aligned distribution to an arbitrary prior distribution via adversarial feature learning. These meth-
ods all attempt to learn feature representations that are supposed to be universal to the seen source
domains, and are expected to generalize well on the target domain. There are also other methods
for domain-invariant learning on DG [50, 65]. Recent research works point out that just learning
domain-invariant feature representation may be not enough for DA [66] and DG [13]. Therefore,
[13] proposed a novel theoretically sound framework - mDSDI - to further capture the usefulness
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of domain-specific information. The proposed FIXED method is another approach to exploit addi-
tional information beyond the domain-invariant feature representation.
Learning strategy is another group for DG approaches. In this group, methods focus on exploit-
ing the general learning strategy to enhance model generalization capability. MLDG [9] proposed
a model agnostic training procedure for DG that simulates train/test domain shift during training
by synthesizing virtual testing domains within each mini-batch. The meta-optimization objective
requires that steps to improve training domain performance must also improve test domain perfor-
mance. Fish [61] utilizes an inter-domain gradient matching objective that targets domain gener-
alization by maximizing the inner product between gradients from different domains. By forcing
the gradient direction to be invariant for different domains, it can be generalized to unseen targets.
Similar to Fish, [67] conjectured that conflicting gradients within each mini-batch contain informa-
tion specific to the individual domains which are irrelevant to others when training with multiple
domains. It characterizes the conflicting gradients and devises novel gradient agreement strategies
based on gradient surgery to alleviate such disagreements to improve generalization.
The data manipulation group of approaches is the most closely related to our work. Thus, we elab-
orate on it in the next subsection.

B.2. Data Augmentation and Mixup for DG

Data augmentation is used in DG through either domain randomization [68], self-supervised learn-
ing (e.g., JiGen [36]), adversarial augmentation (e.g., CrossGrad [69]), or Mixup [1]. In [68], an
approach for domain randomization and pyramid consistency is proposed to learn a model with
high generalizability. In particular, it randomizes the synthetic images with the styles of real images
in terms of visual appearance using auxiliary datasets. JeGen [36] learns the semantic labels in a
supervised fashion, and broadens its understanding of the data by learning from self-supervised
signals to solve a jigsaw puzzle on the same images. This helps the network to learn the concepts of
spatial correlation while acting as a regularizer for the classification task. CrossGrad [69] trains a
label and a domain classifier in parallel on examples perturbed by loss gradients of each other’s ob-
jectives. Recently, SFA [52], a simple feature augmentation method, attempts to perturb the feature
embedding with Gaussian noise during training.
Mixup [1] is a simple but effective technique to increase data diversity. It extends the training distri-
bution by incorporating the intuition that linear interpolations of feature vectors shall lead to linear
interpolations of the associated targets. There are several variants of Mixup. Manifold Mixup [19]
is designed to encourage neural networks to predict less confidently on interpolations of hidden
representations, which leverages semantic interpolations as additional training signals. Note that
manifold Mixup is a common approach while both the vanilla Mixup and FIX can be regarded as
specific implementations of manifold Mixup for different purposes. CutMix [70] replaces the re-
moved regions with a patch from another image and mixes the ground truth labels proportionally
to the number of pixels of combined images. Puzzle Mix [71] explicitly utilizes the saliency in-
formation and the underlying statistics of the natural examples to prevent misleading supervisory
signals.
Since Mixup is a natural way for data augmentation, many variants of Mixup have been proposed
for DA andDG. Recent works [72, 73] use the vanillaMixupmethod for domain adaptationwithout
modification. DM-ADA [72], a Mixup-based method for DA, utilizes domain mixup on the pixel
level and the feature level to improve model robustness. It guarantees domain-invariance in a more
continuous latent space, and guides the domain discriminator to judge sample difference between
the source and target domains. Mixstyle [14] increases the image style information to enhance
the diversity of domains without changing classification labels. FACT [18] mixes the amplitude
spectrum of images after Fourier transform to force the model to capture phase information. Wang
et al. [17] mixes up samples in multiple domains with two different sampling strategies.
Existing methods generally ignore the domain-invariant features and discrimination of Mixup. In
addition, they are designed for specific tasks and need to be modified for each application domain.
FIXED can address these limitations.
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C. Analytical Evaluation

C.1. Background
For a distribution Pwith an ideal binary labeling function h∗ and a hypothesis h, we define the error
εP(h) in accordance with [74] as:

εP(h) = Ex∼P|h(x)− h∗(x)|. (13)
The error of Mixup is given as [23]:

εMixup(h) =
1

n2

n∑
i=1

n∑
j=1

Eλ`(h(λxi + (1− λ)xj), λyi + (1− λ)yj), (14)

where λ ∼ Beta(α, α) and n is the number of data samples.
We also give the definition of H-divergence in accordance with [74]. Given two distributions P,Q
over a space X and a hypothesis classH,

dH(P,Q) = 2 sup
h∈H
|PrP(Ih)− PrQ(Ih)|, (15)

where Ih = {x ∈ X |h(x) = 1}. We often consider theH∆H-divergence in [74]where the symmetric
difference hypothesis class H∆H is the set of functions characterized by disagreements between
hypotheses.
For any n ∈ N, [n] = {1, · · · , n} is the set of nonzero integers up to n. For any α, β > 0, [a, b] ⊂ [0, 1],
Beta[a,b](α, β) denotes the truncated Beta distribution on [a, b]. j ∼ Unif([n]) represents uniform
random sampling.
Theorem C.1. (Theorem 2.1 in [75], modified from Theorem 2 in [74]). Let X be a space andH be a class
of hypotheses corresponding to this space. Suppose P and Q are distributions over X . Then, for any h ∈ H,
the following holds

εQ(h) ≤ λ′′ + εP(h) +
1

2
dH∆H(Q,P) (16)

with λ′′ the error of an ideal joint hypothesis for Q and P.

Theorem C.1 provides an upper bound on the target-error. λ′′ is a property of the dataset and
hypothesis class and is often ignored. Theorem C.1 demonstrates the necessity to learn domain
invariant features.
Proposition C.2. (Proposition 3.1 in [75], modified from Proposition 2 in [76]). Let X be a space and H
be a class of hypotheses corresponding to this space. Let Q and the collection {Pi}Mi=1 be distributions over
X and let {φi}Mi=1 be a collection of non-negative coefficient with

∑
i φi = 1. Let the object O be a set of

distributions such that for every S ∈ O the following holds∑
i

φidH∆H(Pi,S) ≤ max
i,j

dH∆H(Pi,Pj). (17)

Then, for any h ∈ H,

εQ(h) ≤ λφ +
∑
i

φiεPi
(h) +

1

2
min
S∈O

dH∆H(S,Q) +
1

2
max
i,j

dH∆H(Pi,Pj) (18)

where λφ =
∑
i φiλi and each λi is the error of an ideal joint hypothesis for Q and Pi.

Proposition C.2 gives an upper bound for domain generalization. In the right-hand side of Eq. 18,
the first term can be ignored and the second term is a convex combination of the source errors. The
third term demonstrates the importance of diverse source distributions so that the unseen target Q
might be near O while the final term is a maximum over the source-source divergences. As shown
in Figure 3(b), the area with yellow and green is the possible O.
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C.2. FIXED has Larger Distribution Coverage
We provide proofs of propositions here.
Proposition C.3. Let X be a space and H be a class of hypotheses corresponding to this space. Let Q and
the collection {Pi}Mi=1 be distributions over X and let {φi}Mi=1 be a collection of non-negative coefficient with∑
i φi = 1. Let the object O′ be a set of distributions such that for every S ∈ O′ the following holds

dH∆H(
∑
i

φiPi,S) ≤ max
i,j

dH∆H(Pi,Pj). (19)

Then, for any h ∈ H,

εQ(h) ≤ λ′ +
∑
i

φiεPi
(h) +

1

2
min
S∈O′

dH∆H(S,Q) +
1

2
max
i,j

dH∆H(Pi,Pj) (20)

where λ′ is the error of an ideal joint hypothesis.

Proof. On one hand, with Theorem C.1, we have

εQ(h) ≤ λ1 + εS(h) +
1

2
dH∆H(S,Q),∀h ∈ H,∀S ∈ O′. (21)

On the other hand, with Theorem C.1, we have

εS(h) ≤ λ2 + ε∑
i φiPi

(h) +
1

2
dH∆H(

∑
i

φiPi,S),∀h ∈ H. (22)

Since ε∑
i φiPi

(h) =
∑
i φiεPi(h), and dH∆H(

∑
i φiPi,S) ≤ maxi,j dH∆H(Pi,Pj), we have

εQ(h) ≤ λ′ +
∑
i

φiεPi(h) +
1

2
dH∆H(S,Q) +

1

2
max
i,j

dH∆H(
∑
i

φiPi,S),∀h ∈ H,∀S ∈ O′. (23)

Eq. (23) for all S ∈ O′ holds. Proof ends.
Proposition C.4. Under the same conditions in C.3,

O = {S|
∑
i

φidH∆H(Pi,S) ≤ max
i,j

dH∆H(Pi,Pj)}, (24)

O′ = {S|dH∆H(
∑
i

φiPi,S) ≤ max
i,j

dH∆H(Pi,Pj)}, (25)

we have
O ⊂ O′. (26)

Proof. On one hand, for any S ∈ O, we have∑
i

φidH∆H(Pi,S) ≤ max
i,j

dH∆H(Pi,Pj). (27)

On the other hand, with the triangle inequality, we have
dH∆H(

∑
i

φiPi,S) ≤
∑
i

φidH∆H(Pi,S). (28)

Combining these two inequalities, we have
dH∆H(

∑
i

φiPi,S) ≤ max
i,j

dH∆H(Pi,Pj). (29)

Therefore, S ∈ O′. Proof completed.
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D. Methodology

D.1. Comparisons to other methods
VanillaMixup [1]mixes all information including domains and classes for inputs but it only consid-
ers the outputs from classes, which leads to terrible virtual points. To make mixed inputs/features
consistent with mixed outputs, FIXED generates new samples in domain-invariant features that are
learned by DANN [30] or CORAL [22]. Different from MixStyle [14] and FACT [18] where more
domains are generated, FIXED focuses on domain-invariant features and endeavors to make these
features more diversified and discriminative.

D.2. Novelty
FIXED is a combination of several existing algorithms, which is not our original creation. Our nov-
elty lies in analyzing the drawbacks of existing Mixup-based approaches and proposing a simple
and effective remedy to solve them. That being said, combining existing parts is easy, but under-
standing their limitations to know why is the main thing. Therefore, this paper can be considered
as an "insight" paper rather than one claiming advance of new algorithms.
Tomake it simple, our novelty lies in using a simple, theoretically grounded, and effective approach
to solve domain generalization problems. Now we articulate these novelties in more detail. a) In
our method, Mixup is performed in specific-designed parts for domain generalization, which is
totally different from Mixup [1], LISA [64], SDMix [20], and some other strategies designed for
DG. Extensive experiments and ablation analysis prove the superiority of this design. b) We find
the limitations of vanilla Mixup when meeting DG and introduce large margin loss to solve the
issues, which is ignored in existing DGmethods. And experimental results prove the effectiveness.
It is not a simple combination but a specific target solution. c) Besides empirical results, we also
provide novel theoretical insights to support our motivation and the proposed method.

D.3. Limitation
Although FIXED has solved parts of the issues of vanilla Mixup, it still suffers from some other
problems. For example, FIXED is not parameter-free, i.e., one should tune its hyperparameters to
achieve the best performance, which is the common approach of deep learning algorithms. Then,
while it can be perfectly applied to classification-based problems, more work should be done w.r.t.
regression or forecasting problems since the prediction labels should be dealt with. Moreover, in
Sec.6 of the main paper, we also provide some possible directions to make FIXED more complete.

D.4. More discussion
Occasionally, more specific and diversified extracted features can bring better performance, which
means that both domain and class information can work in the IID situation. For example, features
learned from A+P can work well on A or P in PACS. Some existing features endeavor to combine
these two parts of information for personalization [13]. However, in the OOD setting, domain-
related information often interferes with models’ capability on unseen targets where different dis-
tributions exist [58].

E. Experimental Details

E.1. Dataset details
The statistical information of each dataset is presented in Table 4 and Table 5 respectively.
UCI daily and sports dataset (DSADS) consists of 19 activities collected from 8 subjects wearing
body-worn sensors on 5 body parts. USC-SIPI human activity dataset (USC-HAD) is composed
of 14 subjects (7 male, 7 female, aged from 21 to 49) executing 12 activities with a sensor tied
on the front right hip. UCI human activity recognition using a smartphone data set (UCI-HAR)
is collected by 30 subjects performing 6 daily living activities with a waist-mounted smartphone.
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Table 4: Information on visual datasets.
Dataset Domain Names Domain Class Samples of each domain Total Samples

Digits-DG (M,MM,SVN,SYHN) 4 10 (600;600;600;600) 2,400
PACS (A,C,P,S) 4 7 (2,048;2,344;1,670;3,929) 9,991

Office-Home (A,C,P,R) 4 65 (2,427;4,365;4,439;4,357) 15,588

Table 5: Information on HAR datasets.
Dataset Subjuects Sensors Classes Samples
DSADS 8 3 19 1,140,000

USC-HAD 14 2 12 5,441,000
UCI-HAR 30 2 6 1,310,000
PAMAP 9 3 18 3,850,505

Table 6: Information on HAR in three settings.
Setting Domain Sensor Class Samples of each domain Total Samples
X-Person 4 2 12 (1,401,400;1,478,000;1,522,800;1,038,800) 5,441,000
X-Position 5 3 19 (1,140,000)*5 5,700,000
X-Dataset 4 2 6 (672,000;810,550;514,950;470,850) 2,468,350
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Figure 7: Parameter sensitivity analysis.

PAMAP2 physical activity monitoring dataset (PAMAP2) contains data of 18 different physical ac-
tivities, performed by 9 subjects wearing 3 sensors.

E.2. Details of settings on HAR
The information on three settings on HAR is shown in Table 6.

E.3. Implementation details on HAR
We used different architectures for activity recognition. The network contains two blocks, where
each has one convolution layer, one pool layer, and one batch normalization layer. A single fully-
connected layer is used as the bottleneck block while another fully-connected layer serves as the
classifier. In each step, each domain selects 32 samples. The maximum training epoch is set to
150. For all methods except GILE, the Adam optimizer with a learning rate 10−2 and weight decay
5× 10−4 is used. We tune hyperparameters for each method and select their best results to report.
We report average results of three trials.

E.4. Parameter Sensitivity Analysis
There are mainly four hyperparameters in our method: α for Beta distribution in Mixup, η for the
weight of adversarial learning, γ for the required distance to boundaries in Eq. (5), and top k for
the aggregation class number in Eq. (5). We evaluate the parameter sensitivity of our method in
Figure 7 where we change one parameter and fix the other to record the results. From these results,
we can see that our method achieves better performance in a wide range, demonstrating that our
method is not sensitive to hyperparameter choices. We also note that η for DANN is a bit sensitive

19



Figure 8: Parameter sensitivity analysis (2 variables).

and may need attention in real applications. We add more sensitivity analysis with two variables,
i.e. η and γ, in Figure 8. From the figure, we can see that ours performs better than ERM (77%)
in a wide range. Different combinations can lead to different performances but too large η leads to
worse performance.

E.5. Time complexity
For computational demands, FIXED consumes similar costs to ERM and Mixup. For behavior un-
der varied conditions, we have provided some comparisons in Table 7, and we will emphasize the
stable performance of FIXED compared to other methods. Table 7 shows the time costs of different
methods. We can see that Mixup even costs more time FIXED since it performs mix operations in
the input space.

Table 7: Time Complexity.

Methods ERM Mixup FIXED
Time (s) 4776 5522 4940

20


	.  Introduction
	.  Preliminaries
	.  Background
	.  Limitations of Mixup-based DG

	.  The Proposed FIXED Method
	.  FIX: Domain-invariant Feature MIXup
	.  Enhancing Discrimination
	.  Summary

	.  Analytical Evaluation
	.  Why Mixup is not Good Enough
	.  FIXED has Larger Distribution Coverage
	.  Insights from Inter-class and Intra-class Distances

	.  Experimental Evaluation
	.  Evaluation on Image Classification Datasets
	.  Datasets
	.  Baselines and Implementation Details
	.  Results and Discussion

	.  Evaluation on Human Activity Recognition
	.  Datasets and Settings
	.  Baselines and Implementation Details
	.  Results and Discussion

	.  Qualitative Analysis
	.  Ablation Study
	.  Visualization Study

	.  More Analysis
	.  Extensibility
	.  Robustness


	.  Conclusions and Future Work
	.  Broader Impact Concerns
	.  Related Work
	.  Domain Generalization
	.  Data Augmentation and Mixup for DG

	.  Analytical Evaluation
	.  Background
	.  FIXED has Larger Distribution Coverage

	.  Methodology
	.  Comparisons to other methods
	.  Novelty
	.  Limitation
	.  More discussion

	.  Experimental Details
	.  Dataset details
	.  Details of settings on HAR
	.  Implementation details on HAR
	.  Parameter Sensitivity Analysis
	.  Time complexity


