
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ACCELERATING LARGE LANGUAGE MODEL INFER-
ENCE VIA SPECULATIVE DECODING WITH PROGRES-
SIVE TREE DRAFTING

Anonymous authors
Paper under double-blind review

ABSTRACT

The draft-then-verify decoding paradigm, introduced by speculative decoding
methods, has demonstrated remarkable performance in alleviating the memory-
bound bottleneck and accelerating the inference speed of Large Language Mod-
els (LLMs) while maintaining the quality of generated content. Recent studies
show that the intrinsic robustness of LLMs can be exploited in a training-free
and architecture-agnostic manner, suggesting that auxiliary models or structural
modifications are not strictly necessary for draft generation. However, existing
methods fail to fully leverage this robustness, leading to substantial redundant
and repeated computations. Building on this insight, we propose Progressive
Tree Drafting (PTD), a new inference acceleration strategy that further extends
this line of work. PTD organizes the drafting process into a progressively up-
dated tree structure, where controlled perturbations are injected to guide genera-
tion and a stepwise pruning mechanism enabling the model to produce coherent
yet diverse drafts at manageable computational cost. By efficiently coordinating
the drafting and verification stages, PTD achieves up to 2× decoding speedup
across different open-source models and benchmarks. Our code is available at
https://anonymous.4open.science/r/PTD-D354.

1 INTRODUCTION

Large language models(LLMs) leverage parallel training on extensive datasets to enhance both train-
ing efficiency and text generation capabilities. However, during the autoregressive decoding process,
tokens are generated sequentially, requiring all model parameters to be loaded into the on-chip buffer
at each decoding step. As a result, the inference process often becomes constrained by GPU band-
width, putting the inference system in a memory-bound state.

To address this issue, speculative decoding transforms the token-by-token decoding strategy into a
candidate parallel verification process, introducing a new draft-then-verify decoding paradigm. The
key to speculative decoding lies in obtaining high-quality drafts. A common approach to generating
drafts is to employ smaller and faster draft models that condition on the current context (Xia et al.,
2023; Leviathan et al., 2023; Chen et al., 2023; Miao et al., 2024; Yang et al., 2024). These methods
often incur significant communication overhead and require substantial training effort to obtain and
align the draft models. To mitigate this issue, some methods retrieve drafts from a pre-constructed
corpus (He et al., 2023; Yang et al., 2023) but often face a trade-off between contextual relevance
and generality. An alternative line of work leverages the target LLM itself to produce drafts. Some
works attempt to sample features from intermediate layers of the target model (Li et al., 2024a;b)
or modify the output layer (Cai et al., 2024; Stern et al., 2018; Li et al., 2025), enabling the LLM
to generate multiple drafts or decode multiple tokens within a single forward pass. However, these
methods require modifications to the model architecture and parameters, and often involve additional
training for the modifications.

In fact, owing to their large parameter scale and extensive training data, LLMs often maintain seman-
tic coherence even when the input is perturbed (Zhu et al., 2024; Gao et al., 2025). This phenomenon
offer us an opportunity to break the strict sequential dependency of autoregressive decoding. Self-
Draft (Gao et al., 2025) takes an initial step in this direction by adopting a multi-branch drafting

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

(a) (b)

Figure 1: A drafting example (a) and the branch similarity analysis (b) of Self-Draft (Gao et al.,
2025). Blue: proportion of steps with at least two branches above the similarity threshold; Orange:
overall proportion of such branches.

strategy that leverages LLM robustness to generate candidate drafts. Figure 1a presents a typical
drafting process of the Self-Draft, where different perturbations are introduced across branches to
promote diversity. However, our analysis of branch diversity reveals that the method still suffers
from excessively high similarity among branches. As shown in Figure 1b, more than half of the
decoding steps contain branches with over 80% similarity, leading to a substantial waste of compu-
tational resources.

To address this issue, we propose Progressive Tree Drafting (PTD), a novel training-free and
model-agnostic speculative decoding strategy. This approach modifies the decoding process by
introducing an additional drafting task guided by a progressive tree structure as an input perturba-
tion, thereby better leveraging the robustness of LLMs and eliminating the resource waste caused by
redundant drafting. Through the corresponding expansion and stepwise pruning algorithms, the tree
structure supports incremental expansion, prefix sharing, and adaptive pruning. These capabilities
not only enable coherent and diverse generation, but also facilitate computational reuse across de-
coding steps while keeping the additional overhead effectively controlled. Unlike other speculative
decoding methods, our approach requires neither auxiliary small models nor architectural modifica-
tions, making it readily applicable to most autoregressive LLMs.

The main contributions of this paper are summarized as follows:

• First, we identify a key bottleneck in existing linear branch perturbation–based methods:
the draft module fails to ensure sufficient diversity, leading to substantial waste of compu-
tational resources.

• Second, we introduce the progressive tree drafting strategy, which perturbs the input pro-
gressively to generate diverse and coherent drafts, fully exploiting the robustness of LLMs
while significantly reducing redundancy computation.

• Finally, experimental results demonstrate that our method outperforms state-of-the-art ap-
proaches across various models and benchmarks, exhibiting strong acceleration capabilities
and adaptation.

The structure of this paper is as follows: First, we review related works, followed by a detailed de-
scription of the proposed method. Then, we present experimental results to validate its effectiveness.
Finally, we conclude the paper and discuss potential directions for future research.

2 RELATED WORKS

Speculative decoding has emerged as a promising approach for accelerating autoregressive genera-
tion in LLMs without compromising output quality. The core idea is to generate candidate tokens
and then verify these candidates using the full target LLM. This paradigm was first formalized by
Xia et al. (2023), and later extended in various directions. For instance, Leviathan et al. (2023) ap-

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

plied speculative decoding to Transformer-based models, demonstrating substantial speedups. Chen
et al. (2023) further refined this approach by introducing speculative sampling, which adds stochas-
ticity to candidate generation to increase diversity.

Subsequent efforts further optimized this paradigm. Recent works have extended the speculative
decoding paradigm to improve draft quality and verification efficiency. MCSD (Yang et al., 2024)
proposes decoding multiple candidate tokens at each step using a draft model, which are then verified
in parallel by the target model to increase acceptance rates. Ouroboros (Zhao et al., 2024) introduces
an additional candidate pool as a warm start to enhance the efficiency of the drafting model in
generating multiple candidate drafts. SpecInfer (Miao et al., 2024) further explores using multiple
draft models to generate diverse candidate sequences, which are merged before verification, also
aiming to boost acceptance.

The EAGLE series (Li et al., 2024a;b) departs from using traditional autoregressive draft models
and instead trains a prediction model that generates multiple future tokens conditioned on the hidden
states of the target model. This greatly reduces drafting time while maintaining semantic relevance.
In Judge Decoding (Bachmann et al., 2025), the authors introduce a learned judge head to relax the
strict alignment constraint during verification, allowing the target model to accept drafts that are not
fully aligned but still coherent. To further reduce the drafting cost and communication overhead
between models. REST (He et al., 2023) and LLMA (Yang et al., 2023) replace the drafting model
with a pre-constructed draft corpus, enabling retrieval-based draft generation with lower latency.

Furthermore, some works attempt to obtain drafts without relying on additional draft mod-
els or external corpora to further enhance the applicability of inference acceleration methods.
Draft&Verify (Zhang et al., 2023), LayerSkip (Elhoushi et al., 2024), and Kangaroo (Liu et al.,
2024) perform draft generation directly within the target LLM itself, leveraging intermediate layer
embeddings to train predictors for future tokens. Medusa (Cai et al., 2024) and Blockwise Decod-
ing (Stern et al., 2018) introduce additional output heads, each responsible for predicting several
future positions in parallel.

Some works go even further by modifying the decoding process to obtain drafts without any ad-
ditional training. LADE (Fu et al., 2024) adapts the Jacobi decoding algorithm for autoregres-
sive models, achieving inference acceleration without requiring external assistance or extra training.
Self-Draft (Gao et al., 2025) leverages the robustness of LLMs by multiple linear branches to extract
drafts, which are then validated for correctness, reducing reliance on separate draft models.

Figure 2: An overview of autoregressive decoding (a), vanilla speculative decoding (b), and PTD
(c).

3 METHOD

3.1 OVERVIEW OF TREE-DRAFT

Figure 2 presents a comparison of the progressive tree drafting inference method against autoregres-
sive decoding and vanilla speculative decoding. The conventional autoregressive decoding (Fig-
ure 2.a) process operates as follows. Given an input prompt consisting of t − 1 tokens, denoted as
X = [x1, x2, · · · , xt−1], the LLM computes the probability distribution of the next token, repre-

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

sented as P (yt|X). The next token xt is then sampled from this distribution using a strategy S, such
as greedy decoding, Top-K, or Top-P sampling. Once generated, xt is appended to X, forming an
updated input sequence, and the process iterates until completion. This decoding mechanism can be
formally expressed as:

xt = S(P (yt|X))

In speculative decoding (Figure 2.b), the majority of the autoregressive generation is handled by a
lightweight draft model, which reduces communication overhead, while the target model is respon-
sible for verifying the outputs in parallel. Our approach (Figure 2.c) reformulates the conventional
autoregressive decoding process into a progressive tree drafting and candidate tree verification pro-
cess. In the following content of this section, we will elaborate on each of these processes in detail.

3.2 PROGRESSIVE TREE DRAFTING

Figure 3: Illustration of progressive tree drafting and its corresponding attention mask, which is
determined by the deep first traversal.The nodes in the upper part of the figure represent tokens, and
the edges between nodes indicate the partial order relations among tokens. The numbers above the
attention mask matrix are the relative positions.

The progressive tree drafting decoding strategy leverages the context-relative and potentially usable
parse generated by the LLM under perturbation. Figure 3 shows an illustration of the initialization
and progressive updating of the progressive drafting tree. In the diagram, the blue nodes represent
the decoded tokens, while the gray nodes represent randomly initialized perturbation tokens, which
are used to initialize the progressive draft tree to ensure the draft content diversity as it grows. The
gradient green nodes illustrate the incremental expansion of the draft tree, and the connecting lines
between nodes denote partial order relationships, which represent the receptive field of each draft
token. We next provide a detailed description of the draft tree expansion process and the extraction
of draft sequences from it.

In decoder-only Transformer architectures, the attention mask is typically implemented as a lower
triangular matrix, ensuring that each token can only attend to preceding tokens in the sequence. To
enable large language models to reason correctly over more complex data structures, such as the
tree-structured inputs introduced in this work, the attention mask must be adapted accordingly.

Specifically, given a randomly initialized shallow tree T 0 = (V 0, E0), which V 0 means the random
initialized nodes and E0 are the edges between them. To ensure semantic consistency, each node in
the tree should be only aware of tokens that precede it along its branch and should remain unaware
of tokens from other branches. Formally, for each node v in the draft tree, we can determine its
aware nodes π(v) as:

π(v) = {v} ∪ π(P(v)),
where P(v) = {u ∈ V |(u, v) ∈ E}, stand for the parent node of the node v. We can also determine
the positional encoding of node v based on π(v).

Thus, the inference on the draft tree can be formulated as:

xt,D = S
(
P
(
yt,yT |[X;T i−1]

))
,

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

where D means all draft tokens that are generated by the draft tree T i−1. The main experiments in
this paper adopt a greedy strategy to obtain these tokens, and we also examine alternative approaches
in experiments. Then we can obtain the i-th progressive drafting tree T i by expanding the previous
iteration draft tree T i−1 based on D, that is:

V i = V i−1 ∪ {dv|∀v ∈ V i−1}

Ei = Ei−1 ∪ {(v, dv)|∀v ∈ V i−1}
where dv ∈ D is the draft token of node v under the current context with prefix πv .

Generally, the number of nodes in the draft tree ensures the diversity of the drafts it generates,
and the expansion process maintains the semantic coherence between the adjacent nodes in the
tree. However, the computational overhead introduced by the draft tree increases progressively as it
grows. Hence, it is necessary to impose constraints on its growth to prevent excessive size, which
could otherwise degrade the overall decoding speed.

Specifically, we constrain the size of the draft tree along two dimensions: width and depth. For
width, we limit the number of child nodes per node to prevent low-confidence draft tokens from
frequently altering the tree structure, which could compromise the overall quality and coherence of
the generated content by the draft tree.

For depth, we adopt a stepping mechanism to regulate the expansion of the tree. As illustrated in
Figure 3, when the immediate sub-tree Ts of the root r exceeds a predefined depth threshold, only
the earliest-added child node and its descendants are retained. This retained branch is then treated
as the new sub-tree replacing Ts, while all other branches are pruned. This inheritance mechanism
helps preserve the semantic coherence and contextual relevance of the draft tree.

Through progressive updates and a stepping mechanism, the draft tree enables the extraction of draft
content based on the current context and perturbations of the draft tree. Specifically, any subtree T ′

in the draft tree T i will be merged with the cached candidate tree T that shares the same root node
value. We define the following recursive merging functionM for any two trees T and T ′ with same
root r:

M(T, T ′) =

{
(V ∪ v,E ∪ (r, v)) ,∀v ∈ σ(T ′)− σ(T)

M(Tv, T
′
v),∀v ∈ σ(T ′) ∩ σ(T)

,

where σ(T) means the direct child nodes of the root r of tree T , and Tv is the subtree with root of v
in tree T .

3.3 CANDIDATE VERIFICATION

Alongside the autoregressive decoding process and the drafting process, a candidate tree valida-
tion process is concurrently executed during the forward pass. Given the partially decoded token
sequence X, we retrieve corresponding drafts from the draft pool, forming the candidate tree CX.

To verify this candidate tree, we apply the same attention mask and positional encoding strategy as
used in the drafting process. Consequently, after a forward pass through the LLM, each node in CX
produces a verification token conditioned on its prefix. Together with the autoregressive decoding
process and the progressive tree drafting process, we formulate the overall model forward process
as follows:

xt,D,V = S
(
P (yt,yT ,yC |[X;T i−1; CX])

)
,

where V denotes the verification tokens that are generated by each node and its prefix in the candidate
tree.

Finally, the accepted tokens X′ can be obtained by identifying all eligible edges E in the candi-
date tree. Under the greedy decoding strategy, the verification tokens V for all nodes VCX

of the
candidate tree CX are selected based on the model’s highest-probability predictions. Eligible edges
are identified recursively by verifying whether a node’s verification token appears among its child
nodes. That is:

E = {(n,Vn)|Vn ∈ σ(n),∀n ∈ VCX
}.

For the sampling decoding strategy, we determine whether each token is accepted using a without-
replacement sampling method based on normalized probabilities, following an approach similar to

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

LADE (Fu et al., 2024) and SpecInfer (Miao et al., 2024). Specifically, starting from the root node
of the candidate draft tree, the LLM produces a probability distribution Pv over the next token at
each node v. Each node may have multiple successor nodes [c1, c2, ..., ck], and a sampling process
is iteratively applied to these k candidates.

At each iteration, a random number r ∼ U(0, 1) is drawn, and the candidates are traversed in order.
If r ≤ Pi, the candidate ci is selected, and the edge between ci and its parent node is marked
as eligible and appended to the eligible edge set E . If not, Pi is set to zero, and the remaining
probabilities are renormalized. This process continues until a candidate satisfies r ≤ Pi, ensuring
that the final selection remains faithful to the original distribution. We provide the PTD decoding
strategy algorithm and the formal proof of the consistency of the decoding distribution under this
candidate tree sampling strategy in Appendices A, B and C.

The final accepted sequence is the path formed by eligible edges starting from the root node n0.
That is,

X′ = (n0, n1, ...nk,Vnk
)

where ∀i < k, (ni, ni+1) ∈ E and X′ are the tokens we decoded in a single model forward pass.

4 EXPERIMENTS

4.1 SETTINGS

Benchmarks. We selected various benchmark datasets to evaluate the performance of our decoding
method across different scenarios. First, we used MT-Bench (Zheng et al., 2023) to assess the
overall effectiveness of our approach. This benchmark comprises eight distinct types of tasks, each
comprising 10 test problems. Additionally, we randomly sampled 100 questions from the GSM-
8k (Cobbe et al., 2021) dataset to evaluate our method’s performance in mathematical problem-
solving tasks. For code completion evaluation, we sampled 100 problems from the test set of the
MBPP (Austin et al., 2021) dataset and used the entire HumanEval (Chen et al., 2021) dataset.

Baselines. We adopt the autoregressive decoding (AR) method, the speculative decoding
(SpeDe) (Leviathan et al., 2023) method (with the draft model of LLaMA-68M (Miao et al., 2024)).
Lookahead Decoding (LADE) (Fu et al., 2024) and Self-Draft (Gao et al., 2025) (without pre-built
cache) method, which requires neither an auxiliary model nor additional training, as our baselines,
all parameters of this method are set with default values.

Models. We selected the LLaMA2-7B/13B-Chat (L-7B/13B) and Qwen2.5-7B/14B/32B-Instruct
(Q-7B/14B/32B) models for general generation tasks (MT-Bench) and mathematical reasoning
(GSM-100), while CodeLLaMA-7B/13B-Instruct (CL-7B/13B) models were used for code gen-
eration tasks (HumanEval, MBPP-100).

Metrics. We evaluate decoding strategies using five metrics: throughput (TP), decoding efficiency
(DE), hit rate (HR), accept length (AL), and computational overhead. TP measures tokens generated
per second. Computational overhead is the average extra tokens decoded per step during drafting
(Dft) and verification (Ver). DE measures generated tokens per forward pass, influenced by HR and
AL, which reflect the diversity and coherence of the draft, respectively. The relationship among DE,
AL, and HR can be expressed by the following equation:

DE = HR · AL + (1− HR).

All experiments were conducted on NVIDIA L20 GPUs (48 GB RAM) using BF16 precision to
enhance computational efficiency. Inference was performed consistently with a batch size of one
throughout. Unless otherwise specified, all draft tokens are obtained using the greedy method.

4.2 RESULTS

4.2.1 MAIN RESULTS

Table 1 presents the throughput improvements achieved by different methods on different bench-
marks under the sampling decoding strategy, and we also provided the greedy decoding strategy in
Appendix E. We set the maximum depth of the draft tree to 6 and the maximum number of children

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Benchmark Model AR SpeDe LADE Self-Draft PTD
TP(Std) TP(Std) Imp. TP(Std) Imp. TP(Std) Imp. TP(Std) Imp.

MT-Bench

L-7B 39±3.9 52±7.0 32% 58±9.8 49% 60±12.1 54% 65±11.1 66%
L-13B 24±1.7 36±5.8 39% 33±4.9 39% 37±6.6 54% 40±5.8 65%
Q-7B 36±4.3 \ \ 51±8.8 43% 53±12.5 48% 61±15.4 71%
Q-14B 20±1.9 \ \ 29±5.0 45% 30±6.6 52% 35±7.6 76%
Q-32B 10±0.6 \ \ 16±3.0 56% 16±3.3 63% 19±3.9 86%

GSM-100

L-7B 43±0.9 58±4.7 35% 73±5.6 68% 74±6.2 70% 82±7.5 88%
L-13B 26±0.4 36±2.9 39% 41±3.3 59% 44±4.5 72% 48±4.2 86%
Q-7B 39±1.9 \ \ 61±6.3 55% 61±7.4 56% 73±13.3 87%
Q-14B 22±0.5 \ \ 34±3.8 59% 35±4.2 63% 41±5.9 92%
Q-32B 10±0.2 \ \ 18±1.5 76% 19±1.6 84% 23±2.1 118%

HumanEval CL-7B 42±1.6 \ \ 61±5.7 45% 68±7.4 61% 71±7.4 70%
CL-13B 25±0.7 \ \ 36±4.6 45% 42±5.4 68% 43±5.6 73%

MBPP-100 CL-7B 44±0.8 \ \ 75±7.5 70% 82±6.7 87% 90±8.9 105%
CL-13B 26±0.3 \ \ 43±4.1 65% 49±4.3 90% 54±5.4 107%

Table 1: Throughput and Improvement (Imp.) under sample decoding(temperature=0.5) for PTD,
Auto-Regressive decoding (AR), the vanilla Speculative Decoding (SpeDe) using a LLaMA-
68M (Miao et al., 2024) draft model, Lookahead decoding (LADE) (Fu et al., 2024), and Self-
Draft (Gao et al., 2025).

L-7
B
L-1

3B Q-7
B
Q-1

4B
Q-3

2B L-7
B
L-1

3B Q-7
B
Q-1

4B
Q-3

2B
CL-

7B
CL-

13B CL-
7B
CL-

13B
1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

3.00

DE

MT-Bench GSM-100 HumanEval MBPP-100

LADE
Self-Draft
PTD

(a) Decoding Efficiency(DE) comparison by method.

L-7
B

L-1
3B Q-7

B
Q-1

4B
Q-3

2B L-7
B

L-1
3B Q-7

B
Q-1

4B
Q-3

2B
CL-

7B
CL-

13B CL-
7B
CL-

13B
1.0

1.5

2.0

2.5

3.0

3.5

AL

MT-Bench GSM-100 HumanEval MBPP-100

LADE
Self-Draft
PTD

(b) Accept Length(AL) comparison by method.

L-7
B

L-1
3B Q-7

B
Q-1

4B
Q-3

2B L-7
B

L-1
3B Q-7

B
Q-1

4B
Q-3

2B
CL-

7B
CL-

13B CL-
7B
CL-

13B
0.0

0.2

0.4

0.6

0.8

1.0

HR

MT-Bench GSM-100 HumanEval MBPP-100

LADE
Self-Draft
PTD

(c) Hit Rate(HR) comparison by method.

L-7
B

L-1
3B Q-7

B
Q-1

4B
Q-3

2B L-7
B

L-1
3B Q-7

B
Q-1

4B
Q-3

2B
CL-

7B
CL-

13B CL-
7B

CL-
13B

0

20

40

60

80

Ov
er

he
ad

 (D
ft

+
Ve

r)

MT-Bench GSM-100 HumanEval MBPP-100

LADE (Ver)
LADE (Dft)

Self-Draft (Ver)
Self-Draft (Dft)

PTD (Ver)
PTD (Dft)

(d) Dft&Ver comparison by method.

Figure 4: Draft content quality analysis.

per node to 4, which will be further discussed in the next section. As can be observed, compared
to existing inference acceleration techniques, our proposed PTD method consistently achieves more
significant speedups across various tasks and models. Notably, our method achieves more substantial
improvements on the mathematical reasoning benchmark, GSM-100, and the Python coding bench-
mark, MBPP-100. This is because the tasks in both benchmarks are well-defined, and the search
space for generation is relatively small. As a result, our drafting strategy can produce coherent drafts
with high coverage, leading to significant acceleration in reasoning.

Figure 4 provides a more in-depth analysis of decoding efficiency(DE), hit rate(HR), candidate draft
acceptance length(AL), and overhead(Dft/Ver), which reveals the underlying causes of speed dif-
ferences among the methods. The DE metric reflects overall decoding efficiency, consisting of two
components: Accept Length and Hit Rate. On this metric, PTD demonstrates a comprehensive ad-
vantage. More specifically, although our method lags slightly behind Self-Draft in Hit Rate—mainly

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Figure 5: The impact of the maximum number
of child nodes (top) and maximum depth (bot-
tom) of the draft tree on throughput, hit rate, and
accept length (offset by -2 for visualization) of
LLaMA-7b on MT-Bench.

Figure 6: Draft efficiency for LLaMA-7b(top)
and LLaMA-13b(bottom) LADE and PTD on
MT-bench.

because Self-Draft leverages additional external corpora to improve its hit probability—it achieves
a significant lead in Accept Length. This indicates that the drafts generated by PTD are of higher
quality and exhibit much stronger contextual coherence compared to those from Self-Draft. At the
same time, the additional overhead of PTD is comparable to that of Self-Draft and generally superior
to LADE, implying that PTD does not introduce noticeable forward latency during model inference.

4.2.2 DRAFT TREE ANALYSIS

A key factor influencing the performance of our approach is the overhead introduced by the drafting
tree. To control its complexity, we constrain the number of child nodes and the overall depth of the
tree. In this section, we analyze how these two parameters affect the acceleration performance and
determine their optimal configuration.

We first evaluate the impact of the maximum number of child nodes on the acceleration performance.
In this experiment, the maximum depth of the drafting tree is fixed at 6, and the maximum number
of child nodes per node is varied. As shown in the top part of Figure 5, increasing the child node
limit initially leads to improvements in both draft hit rate and accepted length, which then plateau.
Meanwhile, the overall decoding speed increases at first but eventually decreases. This is because the
benefit gained from a larger drafting tree can no longer offset the additional computational overhead
it introduces, resulting in a decline in overall decoding throughput.

Based on the previous results, we analyze the impact of varying the drafting tree depth by fixing
the maximum number of child nodes per node at 4 and gradually increasing the tree depth limit.
As shown in the bottom part of Figure 5, throughput also exhibits a rise-then-fall trend due to the
overhead of deeper trees. The accepted length, however, shows a steady increase. This suggests
that increasing the tree depth moderately can improve the coherence of generated drafts, thereby
allowing longer segments to be accepted when a draft is successfully matched. In contrast, the
hit rate remains relatively stable, with no clear trend, indicating that the depth of the tree has no
significant correlation with the hit rate.

Overall, the experimental results show that our method demonstrates a significant improvement in
decoding acceleration across a wide range of tree depth and child number settings, exhibiting strong
robustness. Based on the results, in this paper, unless otherwise specified, we set the child number
to 4 and the maximum tree depth to 6.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

4.2.3 DRAFT EFFICIENCY

Additionally, we analyzed the drafting efficiency of our method, especially comparing its inference
acceleration performance with LADE under the same computational overhead introduced by the
drafting and verification phases. As shown in Figure 6, we can observe that our method outperforms
LADE overall, achieving a decoding speed improvement comparable to that of LADE with only
about half of the additional computational overhead for the 7B model, and only one-third of the
additional overhead for the 13B models, respectively. Even with little additional overhead, our ap-
proach achieves significant acceleration, demonstrating the efficiency and advantages of our drafting
method compared to LADE in large-scale inference services.

Figure 7: Sample-based tree updating method. Figure 8: Run time analysis for Qwen models.

4.2.4 SAMPLE STRATEGY FOR THE DRAFT TREE EXPANSION

We also analyzed the impact of draft tree expansion under different sampling strategies. Specifically,
in addition to the previously discussed greedy method, we further analyzed the top-k and top-p sam-
pling methods. We first obtain the top-k or top-p distribution for each node, then we sample draft
tokens according to their corresponding probabilities and extend the draft tree. Figure 7 shows the
results of LLaMA-13b on MT-Bench. Regarding the sampling strategy, we observed that the over-
head is larger than that of the greedy strategy (top-k with k = 1) on average. This is because under
these decoding strategies, the draft tree tends to exhibit greater diversity and uncertainty, which leads
to faster tree growth. However, the increased overhead did not bring significant improvements in
decoding throughput and efficiency.

4.2.5 OVERHEAD ANALYSIS

Compared to autoregressive decoding, PTD introduces the following additional overhead. Before
the model’s forward pass, we need to retrieve the candidate tree. During the forward pass, we per-
form parallel inference to generate additional draft tokens and verification results. After the forward
pass, the candidate pool and draft tree need to be updated. Figure 8 shows the comparison between
autoregressive decoding and PTD with different model sizes. Compared to autoregressive meth-
ods, the PTD method incurs the most significant additional computational overhead in the model’s
forward pass. This is because we need to perform extra inference on both the draft tree and the
candidate tree, but the overhead of updating and retrieving is negligible.

5 CONCLUSION

In this paper, we introduce the Progressive Tree Drafting method for LLM inference acceleration. By
incorporating incremental expansion and stepwise pruning mechanisms, our approach ensures both
the coherence and diversity of drafts while effectively controlling additional overhead, thereby sig-
nificantly improving overall inference speed. There are also several avenues for further optimization.
First, although tree-based perturbations can reduce overhead to some extent via prefix sharing, there
exist more dense and semantically structured perturbation methods—such as semantic graphs—that
we could leverage in the future for more guided and efficient draft generation. Furthermore, the draft
generation process proposed in this paper remains tightly coupled with the decoding process, which
may incur excessive overhead when dealing with long texts. Therefore, future work will focus on
decoupling these two processes to enhance overall system efficiency.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This work focuses on algorithmic improvements to the efficiency of large language model inference
through speculative decoding. Our study does not involve human subjects, private or sensitive data,
or the release of new datasets. All experiments are conducted on publicly available, widely adopted
open-source models and benchmarks, ensuring reproducibility and transparency.

LLM USAGE STATEMENT

Large language models (LLMs) were used in this work solely as a writing assistance tool, specif-
ically to refine the fluency and clarity of the manuscript text. They were not involved in research
ideation, methodology design, data analysis, experimental execution, or result interpretation. All
technical contributions, conceptual developments, and scientific claims are entirely the work of the
authors. The authors take full responsibility for the final content of the paper.

REFERENCES

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
models. arXiv preprint arXiv:2108.07732, 2021.

Gregor Bachmann, Sotiris Anagnostidis, Albert Pumarola, Markos Georgopoulos, Artsiom
Sanakoyeu, Yuming Du, Edgar Schönfeld, Ali Thabet, and Jonas Kohler. Judge decoding: Faster
speculative sampling requires going beyond model alignment. arXiv preprint arXiv:2501.19309,
2025.

Tianle Cai, Yuhong Li, Zhengyang Geng, Hongwu Peng, Jason D. Lee, Deming Chen, and Tri Dao.
Medusa: Simple llm inference acceleration framework with multiple decoding heads, 2024.

Charlie Chen, Sebastian Borgeaud, Geoffrey Irving, Jean-Baptiste Lespiau, Laurent Sifre, and John
Jumper. Accelerating large language model decoding with speculative sampling, 2023.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fo-
tios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex
Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders,
Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa, Alec
Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob Mc-
Grew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating large
language models trained on code, 2021.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. arXiv preprint arXiv:2110.14168,
2021.

Mostafa Elhoushi, Akshat Shrivastava, Diana Liskovich, Basil Hosmer, Bram Wasti, Liangzhen Lai,
Anas Mahmoud, Bilge Acun, Saurabh Agarwal, Ahmed Roman, et al. Layerskip: Enabling early
exit inference and self-speculative decoding. arXiv preprint arXiv:2404.16710, 2024.

Yichao Fu, Peter Bailis, Ion Stoica, and Hao Zhang. Break the sequential dependency of llm infer-
ence using lookahead decoding, 2024.

Zipeng Gao, Qingrong Xia, Tong Xu, Xinyu Duan, Zhi Zheng, Zhefeng Wang, and Enhong Chen.
Multi-branch self-drafting for llm inference acceleration. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 39, pp. 23942–23950, 2025.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Zhenyu He, Zexuan Zhong, Tianle Cai, Jason D Lee, and Di He. Rest: Retrieval-based speculative
decoding, 2023.

Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via speculative
decoding, 2023.

Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang Zhang. Eagle: speculative sampling requires
rethinking feature uncertainty. In Proceedings of the 41st International Conference on Machine
Learning, ICML’24. JMLR.org, 2024a.

Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang Zhang. Eagle-2: Faster inference of language
models with dynamic draft trees, 2024b. URL https://arxiv.org/abs/2406.16858.

Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang Zhang. Eagle: Speculative sampling requires
rethinking feature uncertainty, 2025. URL https://arxiv.org/abs/2401.15077.

Fangcheng Liu, Yehui Tang, Zhenhua Liu, Yunsheng Ni, Kai Han, and Yunhe Wang. Kangaroo:
Lossless self-speculative decoding via double early exiting. arXiv preprint arXiv:2404.18911,
2024.

Xupeng Miao, Gabriele Oliaro, Zhihao Zhang, Xinhao Cheng, Zeyu Wang, Zhengxin Zhang, Rae
Ying Yee Wong, Alan Zhu, Lijie Yang, Xiaoxiang Shi, Chunan Shi, Zhuoming Chen, Daiyaan
Arfeen, Reyna Abhyankar, and Zhihao Jia. Specinfer: Accelerating large language model serving
with tree-based speculative inference and verification. In Proceedings of the 29th ACM Interna-
tional Conference on Architectural Support for Programming Languages and Operating Systems,
Volume 3, ASPLOS ’24, pp. 932–949. ACM, April 2024. doi: 10.1145/3620666.3651335. URL
http://dx.doi.org/10.1145/3620666.3651335.

Mitchell Stern, Noam Shazeer, and Jakob Uszkoreit. Blockwise parallel decoding for deep autore-
gressive models. Advances in Neural Information Processing Systems, 31, 2018.

Heming Xia, Tao Ge, Peiyi Wang, Si-Qing Chen, Furu Wei, and Zhifang Sui. Speculative decoding:
Exploiting speculative execution for accelerating seq2seq generation. In Houda Bouamor, Juan
Pino, and Kalika Bali (eds.), Findings of the Association for Computational Linguistics: EMNLP
2023, pp. 3909–3925, Singapore, December 2023. Association for Computational Linguistics.
doi: 10.18653/v1/2023.findings-emnlp.257. URL https://aclanthology.org/2023.
findings-emnlp.257/.

Nan Yang, Tao Ge, Liang Wang, Binxing Jiao, Daxin Jiang, Linjun Yang, Rangan Majumder, and
Furu Wei. Inference with reference: Lossless acceleration of large language models, 2023. URL
https://arxiv.org/abs/2304.04487.

Sen Yang, Shujian Huang, Xinyu Dai, and Jiajun Chen. Multi-candidate speculative decoding. arXiv
preprint arXiv:2401.06706, 2024.

Jun Zhang, Jue Wang, Huan Li, Lidan Shou, Ke Chen, Gang Chen, and Sharad Mehrotra. Draft &
verify: Lossless large language model acceleration via self-speculative decoding, 2023.

Weilin Zhao, Yuxiang Huang, Xu Han, Chaojun Xiao, Zhiyuan Liu, and Maosong Sun. Ouroboros:
Speculative decoding with large model enhanced drafting, 2024.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric P. Xing, Hao Zhang, Joseph E. Gonzalez, and Ion Stoica.
Judging llm-as-a-judge with mt-bench and chatbot arena, 2023.

Kaijie Zhu, Jindong Wang, Jiaheng Zhou, Zichen Wang, Hao Chen, Yidong Wang, Linyi Yang,
Wei Ye, Yue Zhang, Neil Gong, and Xing Xie. Promptrobust: Towards evaluating the robustness
of large language models on adversarial prompts. In Proceedings of the 1st ACM Workshop
on Large AI Systems and Models with Privacy and Safety Analysis, LAMPS ’24, pp. 57–68,
New York, NY, USA, 2024. Association for Computing Machinery. ISBN 9798400712098. doi:
10.1145/3689217.3690621. URL https://doi.org/10.1145/3689217.3690621.

11

https://arxiv.org/abs/2406.16858
https://arxiv.org/abs/2401.15077
http://dx.doi.org/10.1145/3620666.3651335
https://aclanthology.org/2023.findings-emnlp.257/
https://aclanthology.org/2023.findings-emnlp.257/
https://arxiv.org/abs/2304.04487
https://doi.org/10.1145/3689217.3690621

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

A PROGRESSIVE TREE DRAFTING DECODING ALGORITHM

Algorithm 1 Progressive Tree Drafting Decoding Algorithm

1: Input: Prompt X = [x1, x2, ..., xt−1]; max tree depth dmax; initial tree T 0 = (V 0, E0); max
length N

2: while True do
3: {Step 1: Retrieve Candidate Tree}
4: Retrieve candidate tree CX ← RETRIEVECANDIDATETREE(X)
5: {Step 2: Generate Next Token(s) with Structural Guidance}
6: xt,D,V ← S

(
P (yt,yT ,yC |

[
X;T i−1; CX

]
)
)

7: {Step 3: Expand the Draft Tree}
8: V i ← V i−1 ∪ {dv | ∀v ∈ V i−1}
9: Ei ← Ei−1 ∪ {(v, dv) | ∀v ∈ V i−1}

10: if depth(T i) > dmax then
11: T i ← STEPANDPRUNE(T i)
12: end if
13: {Step 4: Merge Subtrees into Candidate Pool}
14: for each subtree T ′

s in T i do
15: Update candidate pool by merging trees usingM
16: end for
17: {Step 5: Obtain Eligible Edges}
18: if Using Greedy Decoding then
19: V ← argmax(PC)
20: E ← {(n,Vn) | Vn ∈ σ(n),∀n ∈ V i}
21: else if Using Sampling Decoding then
22: E ,Vnk

← CANDIDATETREERECURSIVESAMPLE(CX)
23: end if
24: {Step 6: Append Chosen Path}
25: X′ ← (n0, n1, ..., nk,Vnk

) s.t. ∀i < k, (ni, ni+1) ∈ E
26: Append X′ to X
27: if |X| > N then
28: break
29: end if
30: i← i+ 1
31: end while
32: Output: Generated sequence X

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

B CANDIDATE TREE RECURSIVE SAMPLING ALGORITHM

Algorithm 2 Candidate Tree Recursive Sampling

1: Input: A node v
2: Output: Obtain global eligible edges E
3: C ← σ(v) {Children of v}
4: while C is not empty do
5: for all n ∈ C do
6: Sample r ∼ U(0, 1)
7: if r < P (n) then
8: Append (v, n) to E
9: call Vnk

← TRAVERSAL(n)
10: return nk

11: else
12: P [n]← 0
13: Renormalize P over remaining nodes in C
14: end if
15: end for
16: end while
17: {If no child selected, sampling based on current node distribution}
18: return S (P (v))

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

C PROOF OF DISTRIBUTIONAL CONSISTENCY OF THE CANDIDATE TREE
RECURSIVE SAMPLING ALGORITHM

We aim to prove that the sampling algorithm described in Appendix A selects each candidate node
ni with probability equal to its original probability Pi.

Sampling Procedure. Given a set of candidate nodes {n1, n2, . . . , nk} and associated probabili-
ties Pi, the algorithm iteratively samples a random variable r ∼ U(0, 1) and accepts the first node
ni such that r < Pi (after re-normalization, if any earlier nodes have been rejected). If ni is not
accepted, its probability is set to 0, and the remaining probabilities are re-normalized.

Objective. Let Ai denote the event that node ni is selected. We aim to prove:

P(Ai) = Pi, ∀i ∈ {1, 2, . . . , k}.

Base Case (i = 1). Node n1 is the first candidate considered. Since no re-normalization has
occurred yet, its acceptance probability is:

P(A1) = P(r < P1) = P1.

Inductive Step. Suppose that for each j < i, the probability of selecting node nj is exactly Pj ,
and the algorithm correctly rejects n1 through ni−1 with total probability Ri−1 =

∑i−1
j=1 Pj .

After rejecting n1, . . . , ni−1, the remaining unnormalized probability is:

Si−1 = 1−
i−1∑
j=1

Pj .

The normalized probability of ni in this residual distribution becomes:

P̂i =
Pi

Si−1
.

The probability of reaching ni without accepting any of the previous i− 1 nodes is:

P(reaching ni) =

i−1∏
j=1

(1− P̂j).

However, since:
i−1∏
j=1

(1− P̂j) =

i−1∏
j=1

(
1− Pj

Sj−1

)
=

S1

S0
· S2

S1
· · · Si−1

Si−2
=

Si−1

S0
= Si−1,

and S0 = 1, this implies:
P(reaching ni) = Si−1.

Therefore, the total probability of accepting ni is:

P(Ai) = P(reaching ni) · P̂i = Si−1 ·
Pi

Si−1
= Pi.

Conclusion. By induction, for every i ∈ {1, . . . , k}, the probability of node ni being selected is
exactly Pi. Hence, the sampling algorithm yields a sample from the original distribution P :

P(Ai) = Pi ∀i.

This proves that the sequential rejection-normalization sampling procedure preserves the target dis-
tribution.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

D GENERATION QUALITY EVALUATION: A COMPARISON BETWEEN PTD
AND AUTOREGRESSIVE DECODING UNDER THE SAMPLING STRATEGY

Benchmark Model Rouge-1 Rouge-2 Rouge-L BLEU

MT-Bench

L-7B 50 32 34 17
L-13B 51 34 36 19
Q-7B 42 20 24 21
Q-14B 48 22 24 18
Q-32B 48 24 26 22

GSM-100

L-7B 68 53 55 39
L-13B 65 50 53 36
Q-7B 49 31 34 26
Q-14B 52 29 31 28
Q-32B 58 40 41 38

HumanEval CL-7B 48 38 40 26
CL-13B 48 40 43 21

MBPP-100 CL-7B 82 77 80 77
CL-13B 82 78 80 76

Table 2: Comparison of generated content between PTD and autoregressive decoding under the
sampling strategy. All experimental settings are consistent with Table 1.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

E ACCELERATION PERFORMANCE OF GREEDY DECODING STRATEGY

Benchmark Model AR SpeDe LADE Self-Draft PTD
TP(Std) TP(Std) Imp. TP(Std) Imp. TP(Std) Imp. TP(Std) Imp.

MT-Bench

L-7B 40±4.1 56±8.9 40% 59±9.4 47% 62±11.4 56% 67±10.8 68%
L-13B 24±1.7 36±5.8 51% 34±4.8 41% 37±6.7 54% 40±6.4 67%
Q-7B 36±4.4 \ \ 59±12.2 65% 55±13.4 52% 70±20.0 93%
Q-14B 20±2.0 \ \ 31±5.3 57% 31±6.3 56% 36±6.8 81%
Q-32B 10±0.6 \ \ 16±2.7 57% 16±3.3 62% 19±3.6 88%

GSM-100

L-7B 44±1.0 64±5.5 45% 74±5.9 66% 75±6.7 68% 85±7.2 91%
L-13B 26±0.4 39±3.4 49% 41±3.3 58% 44±4.6 67% 49±4.3 89%
Q-7B 40±2.1 \ \ 72±8.2 80% 65±8.8 62% 86±16.4 116%
Q-14B 22±0.6 \ \ 37±3.7 67% 37±4.6 69% 44±5.2 99%
Q-32B 11±0.2 \ \ 19±1.6 81% 19±1.2 82% 24±2.2 125%

HumanEval CL-7B 43±1.7 53±6.5 24% 62±6.8 45% 62±7.6 45% 74±8.5 74%
CL-13B 25±0.7 34±5.3 34% 37±4.5 45% 39±5.3 55% 44±5.8 74%

MBPP-100 CL-7B 45±0.8 62±5.9 39% 77±6.4 71% 73±7.2 62% 93±9.9 108%
CL-13B 26±0.3 39±3.9 48% 43±4.1 64% 48±4.5 82% 55±5.4 107%

Table 3: Throughput and Improvement (Imp.) under greedy decoding for PTD, Auto-Regressive
decoding (AR), the vanilla Speculative Decoding (SpeDe) method with draft model of LLaMA-
68M (Miao et al., 2024), the Lookahead decoding (LADE) (Fu et al., 2024), and Self-Draft Gao
et al. (2025).

Benchmark Model LADE Self-Draft PTD
DE HR AL Dft/Ver DE HR AL Dft/Ver DE HR AL Dft/Ver

MT-Bench

L-7B 1.95 0.69 2.39 59/23 1.96 0.95 2.02 30/30 2.23 0.71 2.74 35/23
L-13B 1.83 0.67 2.26 39/17 1.96 0.95 2.02 30/30 2.20 0.71 2.70 34/22
Q-7B 2.20 0.78 2.55 59/31 2.03 0.92 2.12 31/26 2.58 0.80 2.99 40/29
Q-14B 2.01 0.76 2.31 39/21 1.97 0.92 2.05 31/26 2.40 0.80 2.76 42/29
Q-32B 1.87 0.72 2.21 27/15 2.02 0.92 2.11 31/25 2.43 0.77 2.86 37/27

GSM-100

L-7B 2.23 0.72 2.72 58/22 2.29 0.94 2.38 30/32 2.52 0.73 3.09 32/21
L-13B 2.06 0.70 2.53 38/16 2.29 0.94 2.38 30/32 2.48 0.72 3.05 31/20
Q-7B 2.44 0.83 2.75 59/35 2.25 0.95 2.32 31/28 2.90 0.84 3.26 37/31
Q-14B 2.16 0.80 2.45 39/23 2.19 0.95 2.25 31/28 2.68 0.84 3.00 41/32
Q-32B 2.16 0.80 2.46 27/17 2.34 0.96 2.40 31/29 2.91 0.84 3.28 35/30

HumanEval CL-7B 1.96 0.67 2.44 58/20 2.15 0.94 2.24 30/30 2.35 0.69 2.97 33/19
CL-13B 1.95 0.66 2.45 38/15 2.23 0.93 2.33 30/29 2.35 0.68 3.00 31/17

MBPP-100 CL-7B 2.29 0.71 2.82 58/23 2.47 0.94 2.57 30/30 2.75 0.74 3.36 33/20
CL-13B 2.13 0.69 2.63 38/16 2.48 0.94 2.59 30/30 2.72 0.74 3.34 32/19

Table 4: Decoding Efficiency (DE), hit rate (HR), Accept Length (AL) and overheads (Dft/Ver) of
PTD, LADE (Fu et al., 2024), and Self-Draft (Gao et al., 2025) under greedy decoding strategy.

16

	Introduction
	Related Works
	Method
	Overview of Tree-Draft
	Progressive Tree Drafting
	Candidate Verification

	Experiments
	Settings
	Results
	Main Results
	Draft Tree Analysis
	Draft efficiency
	Sample Strategy for the Draft Tree Expansion
	Overhead Analysis

	Conclusion
	Progressive Tree Drafting Decoding Algorithm
	Candidate Tree Recursive Sampling Algorithm
	Proof of Distributional Consistency of the Candidate Tree Recursive Sampling Algorithm
	Generation Quality Evaluation: A Comparison Between PTD and Autoregressive Decoding under the Sampling Strategy
	Acceleration Performance of Greedy Decoding Strategy

