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ABSTRACT

The draft-then-verify decoding paradigm, introduced by speculative decoding
methods, has demonstrated remarkable performance in alleviating the memory-
bound bottleneck and accelerating the inference speed of Large Language Mod-
els (LLMs) while maintaining the quality of generated content. Recent studies
show that the intrinsic robustness of LLMs can be exploited in a training-free
and architecture-agnostic manner, suggesting that auxiliary models or structural
modifications are not strictly necessary for draft generation. However, existing
methods fail to fully leverage this robustness, leading to substantial redundant
and repeated computations. Building on this insight, we propose Progressive
Tree Drafting (PTD), a new inference acceleration strategy that further extends
this line of work. PTD organizes the drafting process into a progressively up-
dated tree structure, where controlled perturbations are injected to guide genera-
tion and a stepwise pruning mechanism enabling the model to produce coherent
yet diverse drafts at manageable computational cost. By efficiently coordinating
the drafting and verification stages, PTD achieves up to 2× decoding speedup
across different open-source models and benchmarks. Our code is available at
https://anonymous.4open.science/r/PTD-D354.

1 INTRODUCTION

Large language models(LLMs) leverage parallel training on extensive datasets to enhance both train-
ing efficiency and text generation capabilities. However, during the autoregressive decoding process,
tokens are generated sequentially, requiring all model parameters to be loaded into the on-chip buffer
at each decoding step. As a result, the inference process often becomes constrained by GPU band-
width, putting the inference system in a memory-bound state.

To address this issue, speculative decoding transforms the token-by-token decoding strategy into a
candidate parallel verification process, introducing a new draft-then-verify decoding paradigm. The
key to speculative decoding lies in obtaining high-quality drafts. A common approach to generating
drafts is to employ smaller and faster draft models that condition on the current context (Xia et al.,
2023; Leviathan et al., 2023; Chen et al., 2023; Miao et al., 2024; Yang et al., 2024). These methods
often incur significant communication overhead and require substantial training effort to obtain and
align the draft models. To mitigate this issue, some methods retrieve drafts from a pre-constructed
corpus (He et al., 2023; Yang et al., 2023) but often face a trade-off between contextual relevance
and generality. An alternative line of work leverages the target LLM itself to produce drafts. Some
works attempt to sample features from intermediate layers of the target model (Li et al., 2024a;b)
or modify the output layer (Cai et al., 2024; Stern et al., 2018; Li et al., 2025), enabling the LLM
to generate multiple drafts or decode multiple tokens within a single forward pass. However, these
methods require modifications to the model architecture and parameters, and often involve additional
training for the modifications.

In fact, owing to their large parameter scale and extensive training data, LLMs often maintain seman-
tic coherence even when the input is perturbed (Zhu et al., 2024; Gao et al., 2025). This phenomenon
offer us an opportunity to break the strict sequential dependency of autoregressive decoding. Self-
Draft (Gao et al., 2025) takes an initial step in this direction by adopting a multi-branch drafting
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(a) (b)

Figure 1: A drafting example (a) and the branch similarity analysis (b) of Self-Draft (Gao et al.,
2025). Blue: proportion of steps with at least two branches above the similarity threshold; Orange:
overall proportion of such branches.

strategy that leverages LLM robustness to generate candidate drafts. Figure 1a presents a typical
drafting process of the Self-Draft, where different perturbations are introduced across branches to
promote diversity. However, our analysis of branch diversity reveals that the method still suffers
from excessively high similarity among branches. As shown in Figure 1b, more than half of the
decoding steps contain branches with over 80% similarity, leading to a substantial waste of compu-
tational resources.

To address this issue, we propose Progressive Tree Drafting (PTD), a novel training-free and
model-agnostic speculative decoding strategy. This approach modifies the decoding process by
introducing an additional drafting task guided by a progressive tree structure as an input perturba-
tion, thereby better leveraging the robustness of LLMs and eliminating the resource waste caused by
redundant drafting. Through the corresponding expansion and stepwise pruning algorithms, the tree
structure supports incremental expansion, prefix sharing, and adaptive pruning. These capabilities
not only enable coherent and diverse generation, but also facilitate computational reuse across de-
coding steps while keeping the additional overhead effectively controlled. Unlike other speculative
decoding methods, our approach requires neither auxiliary small models nor architectural modifica-
tions, making it readily applicable to most autoregressive LLMs.

The main contributions of this paper are summarized as follows:

• First, we identify a key bottleneck in existing linear branch perturbation–based methods:
the draft module fails to ensure sufficient diversity, leading to substantial waste of compu-
tational resources.

• Second, we introduce the progressive tree drafting strategy, which perturbs the input pro-
gressively to generate diverse and coherent drafts, fully exploiting the robustness of LLMs
while significantly reducing redundancy computation.

• Finally, experimental results demonstrate that our method outperforms state-of-the-art ap-
proaches across various models and benchmarks, exhibiting strong acceleration capabilities
and adaptation.

The structure of this paper is as follows: First, we review related works, followed by a detailed de-
scription of the proposed method. Then, we present experimental results to validate its effectiveness.
Finally, we conclude the paper and discuss potential directions for future research.

2 RELATED WORKS

Speculative decoding has emerged as a promising approach for accelerating autoregressive genera-
tion in LLMs without compromising output quality. The core idea is to generate candidate tokens
and then verify these candidates using the full target LLM. This paradigm was first formalized by
Xia et al. (2023), and later extended in various directions. For instance, Leviathan et al. (2023) ap-
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plied speculative decoding to Transformer-based models, demonstrating substantial speedups. Chen
et al. (2023) further refined this approach by introducing speculative sampling, which adds stochas-
ticity to candidate generation to increase diversity.

Subsequent efforts further optimized this paradigm. Recent works have extended the speculative
decoding paradigm to improve draft quality and verification efficiency. MCSD (Yang et al., 2024)
proposes decoding multiple candidate tokens at each step using a draft model, which are then verified
in parallel by the target model to increase acceptance rates. Ouroboros (Zhao et al., 2024) introduces
an additional candidate pool as a warm start to enhance the efficiency of the drafting model in
generating multiple candidate drafts. SpecInfer (Miao et al., 2024) further explores using multiple
draft models to generate diverse candidate sequences, which are merged before verification, also
aiming to boost acceptance.

The EAGLE series (Li et al., 2024a;b) departs from using traditional autoregressive draft models
and instead trains a prediction model that generates multiple future tokens conditioned on the hidden
states of the target model. This greatly reduces drafting time while maintaining semantic relevance.
In Judge Decoding (Bachmann et al., 2025), the authors introduce a learned judge head to relax the
strict alignment constraint during verification, allowing the target model to accept drafts that are not
fully aligned but still coherent. To further reduce the drafting cost and communication overhead
between models. REST (He et al., 2023) and LLMA (Yang et al., 2023) replace the drafting model
with a pre-constructed draft corpus, enabling retrieval-based draft generation with lower latency.

Furthermore, some works attempt to obtain drafts without relying on additional draft mod-
els or external corpora to further enhance the applicability of inference acceleration methods.
Draft&Verify (Zhang et al., 2023), LayerSkip (Elhoushi et al., 2024), and Kangaroo (Liu et al.,
2024) perform draft generation directly within the target LLM itself, leveraging intermediate layer
embeddings to train predictors for future tokens. Medusa (Cai et al., 2024) and Blockwise Decod-
ing (Stern et al., 2018) introduce additional output heads, each responsible for predicting several
future positions in parallel.

Some works go even further by modifying the decoding process to obtain drafts without any ad-
ditional training. LADE (Fu et al., 2024) adapts the Jacobi decoding algorithm for autoregres-
sive models, achieving inference acceleration without requiring external assistance or extra training.
Self-Draft (Gao et al., 2025) leverages the robustness of LLMs by multiple linear branches to extract
drafts, which are then validated for correctness, reducing reliance on separate draft models.

Figure 2: An overview of autoregressive decoding (a), vanilla speculative decoding (b), and PTD
(c).

3 METHOD

3.1 OVERVIEW OF TREE-DRAFT

Figure 2 presents a comparison of the progressive tree drafting inference method against autoregres-
sive decoding and vanilla speculative decoding. The conventional autoregressive decoding (Fig-
ure 2.a) process operates as follows. Given an input prompt consisting of t − 1 tokens, denoted as
X = [x1, x2, · · · , xt−1], the LLM computes the probability distribution of the next token, repre-
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sented as P (yt|X). The next token xt is then sampled from this distribution using a strategy S, such
as greedy decoding, Top-K, or Top-P sampling. Once generated, xt is appended to X, forming an
updated input sequence, and the process iterates until completion. This decoding mechanism can be
formally expressed as:

xt = S(P (yt|X))

In speculative decoding (Figure 2.b), the majority of the autoregressive generation is handled by a
lightweight draft model, which reduces communication overhead, while the target model is respon-
sible for verifying the outputs in parallel. Our approach (Figure 2.c) reformulates the conventional
autoregressive decoding process into a progressive tree drafting and candidate tree verification pro-
cess. In the following content of this section, we will elaborate on each of these processes in detail.

3.2 PROGRESSIVE TREE DRAFTING

Figure 3: Illustration of progressive tree drafting and its corresponding attention mask, which is
determined by the deep first traversal.The nodes in the upper part of the figure represent tokens, and
the edges between nodes indicate the partial order relations among tokens. The numbers above the
attention mask matrix are the relative positions.

The progressive tree drafting decoding strategy leverages the context-relative and potentially usable
parse generated by the LLM under perturbation. Figure 3 shows an illustration of the initialization
and progressive updating of the progressive drafting tree. In the diagram, the blue nodes represent
the decoded tokens, while the gray nodes represent randomly initialized perturbation tokens, which
are used to initialize the progressive draft tree to ensure the draft content diversity as it grows. The
gradient green nodes illustrate the incremental expansion of the draft tree, and the connecting lines
between nodes denote partial order relationships, which represent the receptive field of each draft
token. We next provide a detailed description of the draft tree expansion process and the extraction
of draft sequences from it.

In decoder-only Transformer architectures, the attention mask is typically implemented as a lower
triangular matrix, ensuring that each token can only attend to preceding tokens in the sequence. To
enable large language models to reason correctly over more complex data structures, such as the
tree-structured inputs introduced in this work, the attention mask must be adapted accordingly.

Specifically, given a randomly initialized shallow tree T 0 = (V 0, E0), which V 0 means the random
initialized nodes and E0 are the edges between them. To ensure semantic consistency, each node in
the tree should be only aware of tokens that precede it along its branch and should remain unaware
of tokens from other branches. Formally, for each node v in the draft tree, we can determine its
aware nodes π(v) as:

π(v) = {v} ∪ π(P(v)),
where P(v) = {u ∈ V |(u, v) ∈ E}, stand for the parent node of the node v. We can also determine
the positional encoding of node v based on π(v).

Thus, the inference on the draft tree can be formulated as:

xt,D = S
(
P
(
yt,yT |[X;T i−1]

))
,
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where D means all draft tokens that are generated by the draft tree T i−1. The main experiments in
this paper adopt a greedy strategy to obtain these tokens, and we also examine alternative approaches
in experiments. Then we can obtain the i-th progressive drafting tree T i by expanding the previous
iteration draft tree T i−1 based on D, that is:

V i = V i−1 ∪ {dv|∀v ∈ V i−1}

Ei = Ei−1 ∪ {(v, dv)|∀v ∈ V i−1}
where dv ∈ D is the draft token of node v under the current context with prefix πv .

Generally, the number of nodes in the draft tree ensures the diversity of the drafts it generates,
and the expansion process maintains the semantic coherence between the adjacent nodes in the
tree. However, the computational overhead introduced by the draft tree increases progressively as it
grows. Hence, it is necessary to impose constraints on its growth to prevent excessive size, which
could otherwise degrade the overall decoding speed.

Specifically, we constrain the size of the draft tree along two dimensions: width and depth. For
width, we limit the number of child nodes per node to prevent low-confidence draft tokens from
frequently altering the tree structure, which could compromise the overall quality and coherence of
the generated content by the draft tree.

For depth, we adopt a stepping mechanism to regulate the expansion of the tree. As illustrated in
Figure 3, when the immediate sub-tree Ts of the root r exceeds a predefined depth threshold, only
the earliest-added child node and its descendants are retained. This retained branch is then treated
as the new sub-tree replacing Ts, while all other branches are pruned. This inheritance mechanism
helps preserve the semantic coherence and contextual relevance of the draft tree.

Through progressive updates and a stepping mechanism, the draft tree enables the extraction of draft
content based on the current context and perturbations of the draft tree. Specifically, any subtree T ′

in the draft tree T i will be merged with the cached candidate tree T that shares the same root node
value. We define the following recursive merging functionM for any two trees T and T ′ with same
root r:

M(T, T ′) =

{
(V ∪ v,E ∪ (r, v)) ,∀v ∈ σ(T ′)− σ(T )

M(Tv, T
′
v),∀v ∈ σ(T ′) ∩ σ(T )

,

where σ(T ) means the direct child nodes of the root r of tree T , and Tv is the subtree with root of v
in tree T .

3.3 CANDIDATE VERIFICATION

Alongside the autoregressive decoding process and the drafting process, a candidate tree valida-
tion process is concurrently executed during the forward pass. Given the partially decoded token
sequence X, we retrieve corresponding drafts from the draft pool, forming the candidate tree CX.

To verify this candidate tree, we apply the same attention mask and positional encoding strategy as
used in the drafting process. Consequently, after a forward pass through the LLM, each node in CX
produces a verification token conditioned on its prefix. Together with the autoregressive decoding
process and the progressive tree drafting process, we formulate the overall model forward process
as follows:

xt,D,V = S
(
P (yt,yT ,yC |[X;T i−1; CX])

)
,

where V denotes the verification tokens that are generated by each node and its prefix in the candidate
tree.

Finally, the accepted tokens X′ can be obtained by identifying all eligible edges E in the candi-
date tree. Under the greedy decoding strategy, the verification tokens V for all nodes VCX

of the
candidate tree CX are selected based on the model’s highest-probability predictions. Eligible edges
are identified recursively by verifying whether a node’s verification token appears among its child
nodes. That is:

E = {(n,Vn)|Vn ∈ σ(n),∀n ∈ VCX
}.

For the sampling decoding strategy, we determine whether each token is accepted using a without-
replacement sampling method based on normalized probabilities, following an approach similar to
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LADE (Fu et al., 2024) and SpecInfer (Miao et al., 2024). Specifically, starting from the root node
of the candidate draft tree, the LLM produces a probability distribution Pv over the next token at
each node v. Each node may have multiple successor nodes [c1, c2, ..., ck], and a sampling process
is iteratively applied to these k candidates.

At each iteration, a random number r ∼ U(0, 1) is drawn, and the candidates are traversed in order.
If r ≤ Pi, the candidate ci is selected, and the edge between ci and its parent node is marked
as eligible and appended to the eligible edge set E . If not, Pi is set to zero, and the remaining
probabilities are renormalized. This process continues until a candidate satisfies r ≤ Pi, ensuring
that the final selection remains faithful to the original distribution. We provide the PTD decoding
strategy algorithm and the formal proof of the consistency of the decoding distribution under this
candidate tree sampling strategy in Appendices A, B and C.

The final accepted sequence is the path formed by eligible edges starting from the root node n0.
That is,

X′ = (n0, n1, ...nk,Vnk
)

where ∀i < k, (ni, ni+1) ∈ E and X′ are the tokens we decoded in a single model forward pass.

4 EXPERIMENTS

4.1 SETTINGS

Benchmarks. We selected various benchmark datasets to evaluate the performance of our decoding
method across different scenarios. First, we used MT-Bench (Zheng et al., 2023) to assess the
overall effectiveness of our approach. This benchmark comprises eight distinct types of tasks, each
comprising 10 test problems. Additionally, we randomly sampled 100 questions from the GSM-
8k (Cobbe et al., 2021) dataset to evaluate our method’s performance in mathematical problem-
solving tasks. For code completion evaluation, we sampled 100 problems from the test set of the
MBPP (Austin et al., 2021) dataset and used the entire HumanEval (Chen et al., 2021) dataset.

Baselines. We adopt the autoregressive decoding (AR) method, the speculative decoding
(SpeDe) (Leviathan et al., 2023) method (with the draft model of LLaMA-68M (Miao et al., 2024)).
Lookahead Decoding (LADE) (Fu et al., 2024) and Self-Draft (Gao et al., 2025) (without pre-built
cache) method, which requires neither an auxiliary model nor additional training, as our baselines,
all parameters of this method are set with default values.

Models. We selected the LLaMA2-7B/13B-Chat (L-7B/13B) and Qwen2.5-7B/14B/32B-Instruct
(Q-7B/14B/32B) models for general generation tasks (MT-Bench) and mathematical reasoning
(GSM-100), while CodeLLaMA-7B/13B-Instruct (CL-7B/13B) models were used for code gen-
eration tasks (HumanEval, MBPP-100).

Metrics. We evaluate decoding strategies using five metrics: throughput (TP), decoding efficiency
(DE), hit rate (HR), accept length (AL), and computational overhead. TP measures tokens generated
per second. Computational overhead is the average extra tokens decoded per step during drafting
(Dft) and verification (Ver). DE measures generated tokens per forward pass, influenced by HR and
AL, which reflect the diversity and coherence of the draft, respectively. The relationship among DE,
AL, and HR can be expressed by the following equation:

DE = HR · AL + (1− HR).

All experiments were conducted on NVIDIA L20 GPUs (48 GB RAM) using BF16 precision to
enhance computational efficiency. Inference was performed consistently with a batch size of one
throughout. Unless otherwise specified, all draft tokens are obtained using the greedy method.

4.2 RESULTS

4.2.1 MAIN RESULTS

Table 1 presents the throughput improvements achieved by different methods on different bench-
marks under the sampling decoding strategy, and we also provided the greedy decoding strategy in
Appendix E. We set the maximum depth of the draft tree to 6 and the maximum number of children
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Benchmark Model AR SpeDe LADE Self-Draft PTD
TP(Std) TP(Std) Imp. TP(Std) Imp. TP(Std) Imp. TP(Std) Imp.

MT-Bench

L-7B 39±3.9 52±7.0 32% 58±9.8 49% 60±12.1 54% 65±11.1 66%
L-13B 24±1.7 36±5.8 39% 33±4.9 39% 37±6.6 54% 40±5.8 65%
Q-7B 36±4.3 \ \ 51±8.8 43% 53±12.5 48% 61±15.4 71%
Q-14B 20±1.9 \ \ 29±5.0 45% 30±6.6 52% 35±7.6 76%
Q-32B 10±0.6 \ \ 16±3.0 56% 16±3.3 63% 19±3.9 86%

GSM-100

L-7B 43±0.9 58±4.7 35% 73±5.6 68% 74±6.2 70% 82±7.5 88%
L-13B 26±0.4 36±2.9 39% 41±3.3 59% 44±4.5 72% 48±4.2 86%
Q-7B 39±1.9 \ \ 61±6.3 55% 61±7.4 56% 73±13.3 87%
Q-14B 22±0.5 \ \ 34±3.8 59% 35±4.2 63% 41±5.9 92%
Q-32B 10±0.2 \ \ 18±1.5 76% 19±1.6 84% 23±2.1 118%

HumanEval CL-7B 42±1.6 \ \ 61±5.7 45% 68±7.4 61% 71±7.4 70%
CL-13B 25±0.7 \ \ 36±4.6 45% 42±5.4 68% 43±5.6 73%

MBPP-100 CL-7B 44±0.8 \ \ 75±7.5 70% 82±6.7 87% 90±8.9 105%
CL-13B 26±0.3 \ \ 43±4.1 65% 49±4.3 90% 54±5.4 107%

Table 1: Throughput and Improvement (Imp.) under sample decoding(temperature=0.5) for PTD,
Auto-Regressive decoding (AR), the vanilla Speculative Decoding (SpeDe) using a LLaMA-
68M (Miao et al., 2024) draft model, Lookahead decoding (LADE) (Fu et al., 2024), and Self-
Draft (Gao et al., 2025).

L-7
B
L-1

3B Q-7
B
Q-1

4B
Q-3

2B L-7
B
L-1

3B Q-7
B
Q-1

4B
Q-3

2B
CL-

7B
CL-

13B CL-
7B
CL-

13B
1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

3.00

DE

MT-Bench GSM-100 HumanEval MBPP-100

LADE
Self-Draft
PTD

(a) Decoding Efficiency(DE) comparison by method.

L-7
B

L-1
3B Q-7

B
Q-1

4B
Q-3

2B L-7
B

L-1
3B Q-7

B
Q-1

4B
Q-3

2B
CL-

7B
CL-

13B CL-
7B
CL-

13B
1.0

1.5

2.0

2.5

3.0

3.5

AL

MT-Bench GSM-100 HumanEval MBPP-100

LADE
Self-Draft
PTD

(b) Accept Length(AL) comparison by method.

L-7
B

L-1
3B Q-7

B
Q-1

4B
Q-3

2B L-7
B

L-1
3B Q-7

B
Q-1

4B
Q-3

2B
CL-

7B
CL-

13B CL-
7B
CL-

13B
0.0

0.2

0.4

0.6

0.8

1.0

HR

MT-Bench GSM-100 HumanEval MBPP-100

LADE
Self-Draft
PTD

(c) Hit Rate(HR) comparison by method.

L-7
B

L-1
3B Q-7

B
Q-1

4B
Q-3

2B L-7
B

L-1
3B Q-7

B
Q-1

4B
Q-3

2B
CL-

7B
CL-

13B CL-
7B

CL-
13B

0

20

40

60

80

Ov
er

he
ad

 (D
ft 

+ 
Ve

r)

MT-Bench GSM-100 HumanEval MBPP-100

LADE (Ver)
LADE (Dft)

Self-Draft (Ver)
Self-Draft (Dft)

PTD (Ver)
PTD (Dft)

(d) Dft&Ver comparison by method.

Figure 4: Draft content quality analysis.

per node to 4, which will be further discussed in the next section. As can be observed, compared
to existing inference acceleration techniques, our proposed PTD method consistently achieves more
significant speedups across various tasks and models. Notably, our method achieves more substantial
improvements on the mathematical reasoning benchmark, GSM-100, and the Python coding bench-
mark, MBPP-100. This is because the tasks in both benchmarks are well-defined, and the search
space for generation is relatively small. As a result, our drafting strategy can produce coherent drafts
with high coverage, leading to significant acceleration in reasoning.

Figure 4 provides a more in-depth analysis of decoding efficiency(DE), hit rate(HR), candidate draft
acceptance length(AL), and overhead(Dft/Ver), which reveals the underlying causes of speed dif-
ferences among the methods. The DE metric reflects overall decoding efficiency, consisting of two
components: Accept Length and Hit Rate. On this metric, PTD demonstrates a comprehensive ad-
vantage. More specifically, although our method lags slightly behind Self-Draft in Hit Rate—mainly
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Figure 5: The impact of the maximum number
of child nodes (top) and maximum depth (bot-
tom) of the draft tree on throughput, hit rate, and
accept length (offset by -2 for visualization) of
LLaMA-7b on MT-Bench.

Figure 6: Draft efficiency for LLaMA-7b(top)
and LLaMA-13b(bottom) LADE and PTD on
MT-bench.

because Self-Draft leverages additional external corpora to improve its hit probability—it achieves
a significant lead in Accept Length. This indicates that the drafts generated by PTD are of higher
quality and exhibit much stronger contextual coherence compared to those from Self-Draft. At the
same time, the additional overhead of PTD is comparable to that of Self-Draft and generally superior
to LADE, implying that PTD does not introduce noticeable forward latency during model inference.

4.2.2 DRAFT TREE ANALYSIS

A key factor influencing the performance of our approach is the overhead introduced by the drafting
tree. To control its complexity, we constrain the number of child nodes and the overall depth of the
tree. In this section, we analyze how these two parameters affect the acceleration performance and
determine their optimal configuration.

We first evaluate the impact of the maximum number of child nodes on the acceleration performance.
In this experiment, the maximum depth of the drafting tree is fixed at 6, and the maximum number
of child nodes per node is varied. As shown in the top part of Figure 5, increasing the child node
limit initially leads to improvements in both draft hit rate and accepted length, which then plateau.
Meanwhile, the overall decoding speed increases at first but eventually decreases. This is because the
benefit gained from a larger drafting tree can no longer offset the additional computational overhead
it introduces, resulting in a decline in overall decoding throughput.

Based on the previous results, we analyze the impact of varying the drafting tree depth by fixing
the maximum number of child nodes per node at 4 and gradually increasing the tree depth limit.
As shown in the bottom part of Figure 5, throughput also exhibits a rise-then-fall trend due to the
overhead of deeper trees. The accepted length, however, shows a steady increase. This suggests
that increasing the tree depth moderately can improve the coherence of generated drafts, thereby
allowing longer segments to be accepted when a draft is successfully matched. In contrast, the
hit rate remains relatively stable, with no clear trend, indicating that the depth of the tree has no
significant correlation with the hit rate.

Overall, the experimental results show that our method demonstrates a significant improvement in
decoding acceleration across a wide range of tree depth and child number settings, exhibiting strong
robustness. Based on the results, in this paper, unless otherwise specified, we set the child number
to 4 and the maximum tree depth to 6.
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4.2.3 DRAFT EFFICIENCY

Additionally, we analyzed the drafting efficiency of our method, especially comparing its inference
acceleration performance with LADE under the same computational overhead introduced by the
drafting and verification phases. As shown in Figure 6, we can observe that our method outperforms
LADE overall, achieving a decoding speed improvement comparable to that of LADE with only
about half of the additional computational overhead for the 7B model, and only one-third of the
additional overhead for the 13B models, respectively. Even with little additional overhead, our ap-
proach achieves significant acceleration, demonstrating the efficiency and advantages of our drafting
method compared to LADE in large-scale inference services.

Figure 7: Sample-based tree updating method. Figure 8: Run time analysis for Qwen models.

4.2.4 SAMPLE STRATEGY FOR THE DRAFT TREE EXPANSION

We also analyzed the impact of draft tree expansion under different sampling strategies. Specifically,
in addition to the previously discussed greedy method, we further analyzed the top-k and top-p sam-
pling methods. We first obtain the top-k or top-p distribution for each node, then we sample draft
tokens according to their corresponding probabilities and extend the draft tree. Figure 7 shows the
results of LLaMA-13b on MT-Bench. Regarding the sampling strategy, we observed that the over-
head is larger than that of the greedy strategy (top-k with k = 1) on average. This is because under
these decoding strategies, the draft tree tends to exhibit greater diversity and uncertainty, which leads
to faster tree growth. However, the increased overhead did not bring significant improvements in
decoding throughput and efficiency.

4.2.5 OVERHEAD ANALYSIS

Compared to autoregressive decoding, PTD introduces the following additional overhead. Before
the model’s forward pass, we need to retrieve the candidate tree. During the forward pass, we per-
form parallel inference to generate additional draft tokens and verification results. After the forward
pass, the candidate pool and draft tree need to be updated. Figure 8 shows the comparison between
autoregressive decoding and PTD with different model sizes. Compared to autoregressive meth-
ods, the PTD method incurs the most significant additional computational overhead in the model’s
forward pass. This is because we need to perform extra inference on both the draft tree and the
candidate tree, but the overhead of updating and retrieving is negligible.

5 CONCLUSION

In this paper, we introduce the Progressive Tree Drafting method for LLM inference acceleration. By
incorporating incremental expansion and stepwise pruning mechanisms, our approach ensures both
the coherence and diversity of drafts while effectively controlling additional overhead, thereby sig-
nificantly improving overall inference speed. There are also several avenues for further optimization.
First, although tree-based perturbations can reduce overhead to some extent via prefix sharing, there
exist more dense and semantically structured perturbation methods—such as semantic graphs—that
we could leverage in the future for more guided and efficient draft generation. Furthermore, the draft
generation process proposed in this paper remains tightly coupled with the decoding process, which
may incur excessive overhead when dealing with long texts. Therefore, future work will focus on
decoupling these two processes to enhance overall system efficiency.
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A PROGRESSIVE TREE DRAFTING DECODING ALGORITHM

Algorithm 1 Progressive Tree Drafting Decoding Algorithm

1: Input: Prompt X = [x1, x2, ..., xt−1]; max tree depth dmax; initial tree T 0 = (V 0, E0); max
length N

2: while True do
3: {Step 1: Retrieve Candidate Tree}
4: Retrieve candidate tree CX ← RETRIEVECANDIDATETREE(X)
5: {Step 2: Generate Next Token(s) with Structural Guidance}
6: xt,D,V ← S

(
P (yt,yT ,yC |

[
X;T i−1; CX

]
)
)

7: {Step 3: Expand the Draft Tree}
8: V i ← V i−1 ∪ {dv | ∀v ∈ V i−1}
9: Ei ← Ei−1 ∪ {(v, dv) | ∀v ∈ V i−1}

10: if depth(T i) > dmax then
11: T i ← STEPANDPRUNE(T i)
12: end if
13: {Step 4: Merge Subtrees into Candidate Pool}
14: for each subtree T ′

s in T i do
15: Update candidate pool by merging trees usingM
16: end for
17: {Step 5: Obtain Eligible Edges}
18: if Using Greedy Decoding then
19: V ← argmax(PC)
20: E ← {(n,Vn) | Vn ∈ σ(n),∀n ∈ V i}
21: else if Using Sampling Decoding then
22: E ,Vnk

← CANDIDATETREERECURSIVESAMPLE(CX)
23: end if
24: {Step 6: Append Chosen Path}
25: X′ ← (n0, n1, ..., nk,Vnk

) s.t. ∀i < k, (ni, ni+1) ∈ E
26: Append X′ to X
27: if |X| > N then
28: break
29: end if
30: i← i+ 1
31: end while
32: Output: Generated sequence X

12
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B CANDIDATE TREE RECURSIVE SAMPLING ALGORITHM

Algorithm 2 Candidate Tree Recursive Sampling

1: Input: A node v
2: Output: Obtain global eligible edges E
3: C ← σ(v) {Children of v}
4: while C is not empty do
5: for all n ∈ C do
6: Sample r ∼ U(0, 1)
7: if r < P (n) then
8: Append (v, n) to E
9: call Vnk

← TRAVERSAL(n)
10: return nk

11: else
12: P [n]← 0
13: Renormalize P over remaining nodes in C
14: end if
15: end for
16: end while
17: {If no child selected, sampling based on current node distribution}
18: return S (P (v))

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

C PROOF OF DISTRIBUTIONAL CONSISTENCY OF THE CANDIDATE TREE
RECURSIVE SAMPLING ALGORITHM

We aim to prove that the sampling algorithm described in Appendix A selects each candidate node
ni with probability equal to its original probability Pi.

Sampling Procedure. Given a set of candidate nodes {n1, n2, . . . , nk} and associated probabili-
ties Pi, the algorithm iteratively samples a random variable r ∼ U(0, 1) and accepts the first node
ni such that r < Pi (after re-normalization, if any earlier nodes have been rejected). If ni is not
accepted, its probability is set to 0, and the remaining probabilities are re-normalized.

Objective. Let Ai denote the event that node ni is selected. We aim to prove:

P(Ai) = Pi, ∀i ∈ {1, 2, . . . , k}.

Base Case (i = 1). Node n1 is the first candidate considered. Since no re-normalization has
occurred yet, its acceptance probability is:

P(A1) = P(r < P1) = P1.

Inductive Step. Suppose that for each j < i, the probability of selecting node nj is exactly Pj ,
and the algorithm correctly rejects n1 through ni−1 with total probability Ri−1 =

∑i−1
j=1 Pj .

After rejecting n1, . . . , ni−1, the remaining unnormalized probability is:

Si−1 = 1−
i−1∑
j=1

Pj .

The normalized probability of ni in this residual distribution becomes:

P̂i =
Pi

Si−1
.

The probability of reaching ni without accepting any of the previous i− 1 nodes is:

P(reaching ni) =

i−1∏
j=1

(1− P̂j).

However, since:
i−1∏
j=1

(1− P̂j) =

i−1∏
j=1

(
1− Pj

Sj−1

)
=

S1

S0
· S2

S1
· · · Si−1

Si−2
=

Si−1

S0
= Si−1,

and S0 = 1, this implies:
P(reaching ni) = Si−1.

Therefore, the total probability of accepting ni is:

P(Ai) = P(reaching ni) · P̂i = Si−1 ·
Pi

Si−1
= Pi.

Conclusion. By induction, for every i ∈ {1, . . . , k}, the probability of node ni being selected is
exactly Pi. Hence, the sampling algorithm yields a sample from the original distribution P :

P(Ai) = Pi ∀i.

This proves that the sequential rejection-normalization sampling procedure preserves the target dis-
tribution.
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D GENERATION QUALITY EVALUATION: A COMPARISON BETWEEN PTD
AND AUTOREGRESSIVE DECODING UNDER THE SAMPLING STRATEGY

Benchmark Model Rouge-1 Rouge-2 Rouge-L BLEU

MT-Bench

L-7B 50 32 34 17
L-13B 51 34 36 19
Q-7B 42 20 24 21
Q-14B 48 22 24 18
Q-32B 48 24 26 22

GSM-100

L-7B 68 53 55 39
L-13B 65 50 53 36
Q-7B 49 31 34 26
Q-14B 52 29 31 28
Q-32B 58 40 41 38

HumanEval CL-7B 48 38 40 26
CL-13B 48 40 43 21

MBPP-100 CL-7B 82 77 80 77
CL-13B 82 78 80 76

Table 2: Comparison of generated content between PTD and autoregressive decoding under the
sampling strategy. All experimental settings are consistent with Table 1.
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E ACCELERATION PERFORMANCE OF GREEDY DECODING STRATEGY

Benchmark Model AR SpeDe LADE Self-Draft PTD
TP(Std) TP(Std) Imp. TP(Std) Imp. TP(Std) Imp. TP(Std) Imp.

MT-Bench

L-7B 40±4.1 56±8.9 40% 59±9.4 47% 62±11.4 56% 67±10.8 68%
L-13B 24±1.7 36±5.8 51% 34±4.8 41% 37±6.7 54% 40±6.4 67%
Q-7B 36±4.4 \ \ 59±12.2 65% 55±13.4 52% 70±20.0 93%
Q-14B 20±2.0 \ \ 31±5.3 57% 31±6.3 56% 36±6.8 81%
Q-32B 10±0.6 \ \ 16±2.7 57% 16±3.3 62% 19±3.6 88%

GSM-100

L-7B 44±1.0 64±5.5 45% 74±5.9 66% 75±6.7 68% 85±7.2 91%
L-13B 26±0.4 39±3.4 49% 41±3.3 58% 44±4.6 67% 49±4.3 89%
Q-7B 40±2.1 \ \ 72±8.2 80% 65±8.8 62% 86±16.4 116%
Q-14B 22±0.6 \ \ 37±3.7 67% 37±4.6 69% 44±5.2 99%
Q-32B 11±0.2 \ \ 19±1.6 81% 19±1.2 82% 24±2.2 125%

HumanEval CL-7B 43±1.7 53±6.5 24% 62±6.8 45% 62±7.6 45% 74±8.5 74%
CL-13B 25±0.7 34±5.3 34% 37±4.5 45% 39±5.3 55% 44±5.8 74%

MBPP-100 CL-7B 45±0.8 62±5.9 39% 77±6.4 71% 73±7.2 62% 93±9.9 108%
CL-13B 26±0.3 39±3.9 48% 43±4.1 64% 48±4.5 82% 55±5.4 107%

Table 3: Throughput and Improvement (Imp.) under greedy decoding for PTD, Auto-Regressive
decoding (AR), the vanilla Speculative Decoding (SpeDe) method with draft model of LLaMA-
68M (Miao et al., 2024), the Lookahead decoding (LADE) (Fu et al., 2024), and Self-Draft Gao
et al. (2025).

Benchmark Model LADE Self-Draft PTD
DE HR AL Dft/Ver DE HR AL Dft/Ver DE HR AL Dft/Ver

MT-Bench

L-7B 1.95 0.69 2.39 59/23 1.96 0.95 2.02 30/30 2.23 0.71 2.74 35/23
L-13B 1.83 0.67 2.26 39/17 1.96 0.95 2.02 30/30 2.20 0.71 2.70 34/22
Q-7B 2.20 0.78 2.55 59/31 2.03 0.92 2.12 31/26 2.58 0.80 2.99 40/29
Q-14B 2.01 0.76 2.31 39/21 1.97 0.92 2.05 31/26 2.40 0.80 2.76 42/29
Q-32B 1.87 0.72 2.21 27/15 2.02 0.92 2.11 31/25 2.43 0.77 2.86 37/27

GSM-100

L-7B 2.23 0.72 2.72 58/22 2.29 0.94 2.38 30/32 2.52 0.73 3.09 32/21
L-13B 2.06 0.70 2.53 38/16 2.29 0.94 2.38 30/32 2.48 0.72 3.05 31/20
Q-7B 2.44 0.83 2.75 59/35 2.25 0.95 2.32 31/28 2.90 0.84 3.26 37/31
Q-14B 2.16 0.80 2.45 39/23 2.19 0.95 2.25 31/28 2.68 0.84 3.00 41/32
Q-32B 2.16 0.80 2.46 27/17 2.34 0.96 2.40 31/29 2.91 0.84 3.28 35/30

HumanEval CL-7B 1.96 0.67 2.44 58/20 2.15 0.94 2.24 30/30 2.35 0.69 2.97 33/19
CL-13B 1.95 0.66 2.45 38/15 2.23 0.93 2.33 30/29 2.35 0.68 3.00 31/17

MBPP-100 CL-7B 2.29 0.71 2.82 58/23 2.47 0.94 2.57 30/30 2.75 0.74 3.36 33/20
CL-13B 2.13 0.69 2.63 38/16 2.48 0.94 2.59 30/30 2.72 0.74 3.34 32/19

Table 4: Decoding Efficiency (DE), hit rate (HR), Accept Length (AL) and overheads (Dft/Ver) of
PTD, LADE (Fu et al., 2024), and Self-Draft (Gao et al., 2025) under greedy decoding strategy.
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