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Abstract

When an agent interacts with a complex environment, it receives a stream of percepts in
which it may detect entities, such as objects or people. To build up a coherent, low-variance
estimate of the underlying state, it is necessary to fuse information from multiple detections
over time. To do this fusion, the agent must decide which detections to associate with
one another. We address this data-association problem in the setting of an online filter,
in which each observation is processed by aggregating into an existing object hypothesis.
Classic methods with strong probabilistic foundations exist, but they are computationally
expensive and require models that can be difficult to acquire. In this work, we use the
deep-learning tools of sparse attention and representation learning to learn a machine that
processes a stream of detections and outputs a set of hypotheses about objects in the world.
We evaluate this approach on simple clustering problems, problems with dynamics, and
complex image-based domains. We find that it generalizes well from short to long observation
sequences and from a few to many hypotheses, outperforming other learning approaches and
classical non-learning methods.

1 Introduction

Consider a robot operating in a household, making observations of multiple objects as it moves around over
the course of days or weeks. The objects may be moved by the inhabitants, even when the robot is not
observing them, and we expect the robot to be able to find any of the objects when requested. We will call
this type of problem entity monitoring. It occurs in many applications, but we are particularly motivated by
the robotics applications where the observations are very high dimensional, such as images. Such systems
need to perform online data association, determining which individual objects generated each observation,
and state estimation, aggregating the observations of each individual object to obtain a representation that is
lower variance and more complete than any individual observation. This problem can be addressed by an
online recursive filtering algorithm that receives a stream of object detections as input and generates, after
each input observation, a set of hypotheses corresponding to the actual objects observed by the agent.

When observations are closely spaced in time, the entity monitoring problem becomes one of tracking and it
can be constrained by knowledge of the object dynamics. In many important domains, such as the household
domain, temporally dense observations are not available, and so it is important to have systems that do not
depend on continuous visual tracking.

A classical solution to the entity monitoring problem, developed for the tracking case but extensible to other
dynamic settings, is a data association filter (daf) (the tutorial of Bar-Shalom et al. (2009) provides a good
introduction). A Bayes-optimal solution to this problem can be formulated, but it requires representing a
number of possible hypotheses that grows exponentially with the number of observations. A much more
practical, though much less robust, approach is a maximum likelihood daf (ml-daf), which commits, on each
step, to a maximum likelihood data association: the algorithm maintains a set of object hypotheses, one for
each object (generally starting with the empty set) and for each observation it decides to either: (a) associate
the observation with an existing object hypothesis and perform a Bayesian update on that hypothesis with
the new data, (b) start a new object hypothesis based on this observation, or (c) discard the observation as
noise.
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The engineering approach to constructing a ml-daf requires many design choices, including the specification of
a latent state space for object hypotheses, a generative model relating observations to objects, and thresholds
or other decision rules for choosing, for a new observation, whether to associate it with an existing hypothesis,
use it to start a new hypothesis, or discard it. In any particular application, the engineer must tune all of
these models and parameters to build a daf that performs well. This is a time-consuming process that must
be repeated for each new application, and it is effectively impossible to do by hand when observations and
hypothesis are high dimensional.

A special case of entity monitoring is one in which the objects’ state is static, and does not change over
time. In this case, a classical solution is online (robust) clustering. Online clustering algorithms perform data
association (cluster assignment) and state estimation (computing a cluster center).

In this paper we explore dafs for dynamic entity monitoring and as online clustering methods for static
entity monitoring. Although it is possible to train an unstructured RNN to solve these problems, we believe
that building in some aspects of the structure of the daf will allow faster learning with less data and allow
the system to address problems with a longer horizon. We begin by briefly surveying the related literature,
particularly focused on learning-based approaches. We then describe a neural-network architecture that uses
self-attention as a mechanism for data association, and demonstrate its effectiveness in several illustrative
problems. We find that it outperforms a raw RNN as well as domain-agnostic online clustering algorithms, and
competitively with batch clustering strategies that can see all available data at once and with state-of-the-art
DAFs for tracking with hand-built dynamics and observation models. Finally, we illustrate its application to
problems with images as observations in which both data association and the use of an appropriate latent
space are critical.

2 Related Work

Online clustering methods The typical setting for clustering problems is batch, where all the data is
presented to the algorithm at once, and it computes either an assignment of data points to clusters or a
set of cluster means, centers, or distributions. We are interested in the online setting, with observations
arriving sequentially and a cumulative set of hypotheses output after each observation One of the most basic
online clustering methods is vector quantization, articulated originally by Gray (1984) and understood as a
stochastic gradient method by Kohonen (1995). It initializes cluster centers at random and assigns each new
observation to the closest cluster center, and updates that center to be closer to the observation. Methods
with stronger theoretical guaranteees, and those that handle unknown numbers of clusters have also been
developed. Charikar et al. (2004) formulate the problem of online clustering, and present several algorithms
with provable properties. Liberty et al. (2016) explore online clustering in terms of the facility allocation
problem, using a probabilistic threshold to allocate new clusters in data. Choromanska & Monteleoni (2012)
formulate online clustering as a mixture of separate expert clustering algorithms. Online clustering has also
been studied in the data stream community. Silva et al. (2013) provide a survey of clustering approachs for
data streams, which sometimes allow multiple passes through the data. Interesting variations construct a
core-set of points to be clustered Ackermann et al. (2012) and to maintain balanced trees online Kobren et al.
(2017).

Learning for clustering There is a great deal of work using deep-learning methods to find latent spaces
for clustering complex objects, particularly images. Min et al. (2018) provide an excellent survey, including
methods with auto-encoders, GANs, and VAEs. Relevant to our approach are amortized inference methods,
including set transformers (Lee et al., 2018) and its specialization to deep amortized clustering (Lee et al.,
2019), in which a neural network is trained to map directly from data to be clustered into cluster assignments
or centers. A related method is neural clustering processes (Pakman et al., 2019), which includes an online
version, and focuses on generating samples from a distribution on cluster assignments, including an unknown
number of clusters.

Dynamic domains In the setting when the underlying entities have dynamics, such as airplanes observed
via radar, a large number of dafs have been developed. The most basic filter, for the case of a single
entity and no data association problem, is the Kalman filter (Welch & Bishop, 2006). In the presence of
data-association uncertainty the Kalman filter can be extended by considering assignments of observations to
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multiple existing hypotheses under the multiple hypothesis tracking (MHT) filter. A more practical approach
that does not suffer from the combinatorial explosion of the MHT is the joint probabilistic data association
(JPDA) filter, which keeps only one hypothesis but explicitly reasons about the most likely assignment of
observations to hypotheses. Bar-Shalom et al. (2009) provides a detailed overview and comparison of these
approaches, all of which require hand-tuned transition and observation models.

Visual data-association methods Data association has been explored in the context of visual object
tracking (Luo et al., 2014; Xiang et al., 2015; Brasó & Leal-Taixé, 2020; Ma et al., 2019; Sun et al., 2019;
Zhang et al., 2022). In these problems, there is typically a fixed visual field populated with many smoothly
moving objects. This is an important special case of the general data-association. It enables some specialized
techniques that take advantage of the fact that the observations of each object are typically smoothly varying
in space-time, and incorporate additional visual appearance cues. In contrast, we are interested in exploring
the general data-association problem where observations are not necessarily temporally correlated.

Learning for data association There is relatively little work in the area of generalized data association,
but Liu et al. (2019) provide a recent application of LSTMs to a rich version of the data association problem,
in which batches of observations arrive simultaneously, with a constraint that each observation can be assigned
to at most one object hypothesis. The sequential structure of the LSTM is used here not for recursive filtering,
but to handle the variable numbers of observations and hypotheses. It is assumed that Euclidean distance is
an appropriate metric and that the observation and state spaces are the same. Milan et al. (2017) combine a
similar use of LSTM for data association with a recurrent network that learns to track multiple targets. It
learns a dynamics model for the targets, including birth and death processes, but operates in simple state
and observation spaces.

Slot Based and Object Centric Learning Our approach to the dynamic entity monitoring task relies
on the use of attention over a set of object hypothesis slots. Generic architectures for processing such slots can
be found in (Vinyals et al., 2015; Lee et al., 2018), where we use (Lee et al., 2018) as a point of comparison
for DAF-Net. We note that these architectures provide generic mechanisms to process sets of inputs, and lack
the explicit structure from daf we build into our model. Our individual hypothesis slots correspond to beliefs
over object hypotheses, and thus also relates to existing work in object-centric scene learning. Such work has
explored the discovery of factorized objects from both static scenes (Burgess et al., 2019; Greff et al., 2019;
Locatello et al., 2020; Du et al., 2021; Kipf et al., 2022), but does not focus filtering and updating existing
object hypotheses.

Algorithmic priors for neural networks One final comparison is to other methods that integrate
algorithmic structure with end-to-end neural network training. This approach has been applied to sequential
decision making by Tamar et al. (2016), particle filters by Jonschkowski et al. (2018), and Kalman filters
by Krishnan et al. (2015), as well as to a complex multi-module robot control system by Karkus et al.
(2019). The results generally are much more robust than completely hand-built models and much more
sample-efficient than completely unstructured deep-learning. We view our work as an instance of this general
approach.

3 Problem formulation

The problem of learning to perform online data association requires careful formulation. When the daf is
executed online, it will receive a stream of input detections z1, . . . zT where zt ∈ Rdz , and after each input
zt, it will output two vectors, yt = [ytk]k∈(1..K) and ct = [ctk]k∈(1..K), where ytk ∈ Rdy , ctk ∈ (0, 1) and∑

k ctk = 1. The y values in the output represent the predicted properties of the hypothesized objects and
the c values represent a measure of confidence in the hypotheses, in terms of the proportion of data that
each one has accounted for. The maximum number of hypothesis “slots” is limited in advance to K. In
some applications, the z and y values will be in the same space with the same representation, but this is not
necessary.

We have training data representing N different data-association problems, D = {(z(i)
t , m

(i)
t )t∈(1..Li)}i∈(1..N),

where each training example is an input/output sequence of length Li, each element of which consists of a
pair of input z and m = {mj}

j∈(1..J
(i)
t ) which is a set of nominal object hypotheses representing the true
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current state of objects that have actually been observed so far in the sequence. It will always be true that
m

(i)
t ⊆ m

(i)
t+1 and J

(i)
t ≤ K.

Our objective is to train a recurrent computational model to perform daf effectively in problems that are
drawn from the same distribution as those in the training set. To do so, we formulate a model (described
in section 4) with parameters θ, which transduces the input sequence z1, . . . , zL into an output sequence
(y1, c1), . . . , (yL, cL), and train it to minimize the following loss function:

L(θ; D) =
N∑

i=1

Li∑
t=1

Lobj(y(i)
t , m

(i)
t ) + Lslot(y(i)

t , c
(i)
t , m

(i)
t ) + Lsparse(c(i)

t ) .

The Lobj term is a chamfer loss (Barrow et al., 1977), which looks for the predicted y that is closest to each
actual mk and sums their distances, making sure the model has found a good, high-confidence representation
for each true object:

Lobj(y, m) =
∑

j

min
k

1
ck + ϵ

∥yk − mj∥ .

The Lslot term is similar, but makes sure that each object the model has found is a true object, where we
multiply by ck to not penalize for predicted objects in which we have low confidence:

Lslot(y, c, m) =
∑

k

min
j

ck∥yk − mj∥ .

The sparsity loss discourages the model from using multiple outputs to represent the same true object:

Lsparse(c) = − log∥c∥ ,

and we theoretically show in Section 5 how this induces sparsity in confidences.

4 DAF-Nets

Inspired by the the basic form of classic daf algorithms and the ability of modern neural-network techniques
to learn complex models, we have designed the DAF-Net architecture for learning dafs and a customized
procedure for training it from data, inspired by several design considerations. First, because object hypotheses
must be available after each individual input and because observations will generally be too large and the
problem too difficult to solve from scratch each time, the network will have the structure of a recursive filter,
with new memory values computed on each observation and then fed back for the next. Second, because the
loss function is set based, that is, it doesn’t matter what order the object hypotheses are delivered in, our
memory structure should also be permutation invariant, and so the memory processing is in the style of an
attention mechanism. Finally, because in some applications the observations z may be in a representation not
well suited for hypotheses representation and aggregation, the memory operates on a latent representation
that is related to observations and hypotheses via encoder and decoder modules.

Figure 1 shows the architecture of the DAF-Net model and an illustration of its similarity to existing daf
approaches. The memory of the system is stored in s, which consists of K elements, the K hypotheses in daf,
each in Rds ; the length-K vector n of positive values encodes how many observations have been assigned to
each slot during the execution so far. New observations are combined with the memory state, and the state is
updated to reflect the passage of time by a neural network constructed from seven modules with trainable
weights.

When an observation z arrives, it is immediately encoded into a vector e in Rds , which is fed into subsequent
modules. First, attention weights w are computed for each hypothesis slot, using the encoded input and the
existing content of that slot, representing the degree to which the current input “matches” the current value
of each hypothesis in memory, mirroring the hypothesis matching procedure in dafs. Since an observation
typically matches only a limited number of hypotheses in dafs, we force the network to commit to a sparse
assignment of observations to object hypotheses while retaining the ability to effectively train with gradient
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Algorithm 1 DAF-Net execution.
Input: input observations z1, . . . , zT , count n ∈ RK ,
state s ∈ RK×D

for timestep t = 1 to T do
e← encode(zt)
r ← relevance(e, s, n)
for slot k = 1 to K do

ak ← suppress(attend(sk, nk, e))
uk ← update(sk, nk, e)
s′

k ← (1− rak)sk + rakuk

nk ← nk + ak

yk ← decode(s′
k)

ck ← nk/(
∑

i
ni)

sk ← transition(s′
k)

end for
end for

Figure 1: Architecture and pseudocode of DAF-Net. DAF-Net serves as a learned analogue of a daf filter.
The traditional hypothesis representation hk in a daf-filter is replaced with a latent representation sk. Hypothesis
matching is replaced by sparse attention operators suppress and attend. Hypothesis updating is replaced by a
update operator and dynamics simulation is replaced by a learned transition operators. Output decoding is replaced
by a learned decode operator.

descent, the suppress module sets all but the top M values in w to 0 and renormalizes, to obtain the vector
a of M values that sum to 1:

wk = exp(attend(sk, nk, e))∑n
j=0 exp(attend(sj , nk, e)) ; a = suppress(w) .

The a vectors are integrated to obtain n, which is normalized to obtain the output confidence c.

Mirroring hypothesis updates in dafs, the update module also operates on the encoded input and the
contents of each hypothesis slot, producing a hypothetical update of the hypothesis in that slot under the
assumption that the current z is an observation of the object represented by that slot; so for all slots k,

uk = update(sk, nk, e) .

To enable the rejection of outlier observations, a scalar relevance value, r ∈ (0, 1), is computed from s and e;
this value modulates the degree to which slot values are updated, and gives the machine the ability to ignore
or downweight an input. It is computed as

r = relevance(e, s, n) = NN2( Kavg
k=1

NN1(e, sk, nk)) ,

where NN1 is a fully connected network with the same input and output dimensions and NN2 is a fully
connected network with a single sigmoid output unit. The attention output a and relevance r are now used
to decide how to combine all possible slot-updates u with the old slot values st using the following fixed
formula for each slot k:

s′
tk = (1 − rak)stk + rakuk .

Because most of the ak values have been set to 0, this results in a sparse update which will ideally concentrate
on a single slot to which this observation is being “assigned”.

To obtain outputs, slot values s′
t are then decoded into the outputs, y, using a fully connected network:

yk = decode(s′
tk) .

Finally, to simulate transition updates in dafs and to handle the setting in which object state evolves over
time, we add a transition module, which computes the state st+1 from the new slot values s′

t using an
additional neural network:

st+1k = transition(s′
t)k .
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These values are then fed back, recurrently, as inputs to the overall system.

Given a data set D, we train the DAF-Net model end-to-end to minimize loss function L, with a slight
modification. We find that including the Lsparse term from the beginning of training results in poor learning,
but adopting a training scheme in which the Lsparse is first omitted then reintroduced over training epochs,
results in reliable training that is efficient in both time and data.

5 Theoretical Analysis

In this section, we study the extent to which DAF-Net may learn to construct an optimal daf. First, we
illustrate how our underlying slot-based architectures enables more efficient learning under the framework
of algorithmic alignment introduced by Xu et al. (2019). We further illustrate how Lsparse induces sparsity
across slot values.

First we analyze the underlying sample complexity of learning DAF-Net, which represents a set of belief states
as a set of slots, compared to a network which explicitly represents intermediate beliefs as a single flattened
vector. We use the notion of sample complexity analysis introduced by Xu et al. (2019). For simplicity, we
consider the online data-association problem of clustering, where each network takes as input an observation
z and a set of K previously predicted cluster centers yk, and must correctly predict the updated state of each
observed cluster center. In addition, we assume for purposes of applying existing theoretical results that the
system is supervised with the ground-truth clusters at each step.
Proposition 1. Consider the problem of performing one step of an online clustering algorithm, in which K
current cluster centers, y1, . . . yK and a new element x are the inputs and the updated cluster centers y′

1, . . . y′
K

are the outputs. We consider two different architectures: (1) a generic MLP, which we denote as f(x), in
which the inputs y1, . . . , yK , x are simply concatenated into an input vector, and the outputs y′

1, . . . y′
K are an

output vector and (2) an instance of DAF-Net with no transition module which we denote as g(x). The sample
complexity of learning the MLP for K clusters is K times the sample complexity for learning the DAF-Net.

Proof. The sample complexity of learning to approximate a function h : Rd → Rm, where h(i)(x) =∑
j α

(i)
j (β(i)

j x)p
(i)
j with MLP to error less than ϵ with probability 1 − δ is asymptotically given by (Xu et al.,

2019):

C(h, ϵ, δ) = O

maxi

∑K
j=1 p

(i)
j ∥α

(i)
j ∥∥β

(i)
j ∥

p
(i)
j

2 + log(m/δ)
(ϵ/m)2

 . (1)

The above expression implies that the sample complexity of learning a neural network to approximate a
function h(x) is proportional to the underlying number of polynomial terms needed to represent h(x).

A sketch of our proof is that the number of polynomial terms necessary to accurately represent the clustering
procedure, using a MLP f(x), is K times more than the number of terms using DAF-Net g(x). This statement
is true because g(x) only needs to learn the clustering operation per slot as the underlying computation is
replicated across slots, while f(x) needs to learn the clustering operation for all slots simultaneously.

Concretely, consider learning a simplified cluster-update function, h(z, yk) = (1 − wk) ∗ yk + wk ∗ z, for each
cluster center k, where wk is a constant wk = 1/∥z−yk∥∑

k
1/∥z−yk∥

predicted by a fixed network, determining the
extent to which z should be assigned to yk. The DAF-Net architecture, operates independently on each
cluster, and is required to approximate a function h consisting of two polynomial terms. However, the MLP
architecture operates jointly on all of the clusters, without any parameter tying, and would require 2K
polynomial terms, as it needs to jointly approximate the function h across all cluster centers. Thus it is more
sample efficient to learn DAF-Net.

Our previous result illustrates the benefits of learning filters using the architecture of DAF-Net. Next, we
illustrate that our proposed sparsity loss accurately induces sparsity in the assignment of each object to
potential clusters.
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Proposition 2. The sparsity loss
Lsparse(c) = − log∥c∥ , (2)

where
∑

i ci = 1, ci ≥ 0 is minimized when a particular element ck = 1 and maximized when individual
confidences are equal.

Proof. Recall that ∥c∥ is a convex function. The confidence vector c defines a simplex, with each element
being non-negative, and whose elements sum up to one. The maximum of a convex function over a simplex
must occur at the vertices. Each vertex in this simplex is symmetric, and corresponds to a value of c with
hypothesis k having confidence ck = 1 and other confidences corresponding to 0. In contrast, the minimum
corresponds to a stationary point at the Lagrangian of the loss. The Lagrangian of the loss L(c, λ) is

L(c, λ) =
∑

i

c2
i + λ(

∑
i

ci − 1). (3)

By taking the gradient of the above expression, we find that the stationary value corresponds to each ci being
equal. Since the function is convex, this corresponds to the minimum of ∥c∥. Thus Lsparse(c) is maximized
when individual confidences are equal and minimized when individual confidences are sparse.

6 Empirical Results

We evaluate DAF-Net on several different data association tasks. First, we consider a simple online clustering
task and validate the underlying machinery of DAF-Net as well as its ability to generalize at inference time
to differences in (a) the number of actual objects, (b) the number of hypothesis slots and (c) the number
of observations. Next, we evaluate the performance of DAF-Net on dynamic domains. Finally, we evaluate
the performance of DAF-Net on an image domain in which the underlying observation space is substantially
different from the hypothesis space.

• DAF-Net outperforms non-learning clustering methods, even those that operate in batch mode rather
than online, because those methods cannot learn from experience to take advantage of information about
the distribution of observations and true object properties (Tables 1, 1 and 6).

• DAF-Net outperforms clustering methods that can learn from previous example problems when data is
limited, because it provides useful structural bias for learning (Table 1, 1 and 6).

• DAF-Net generalizes to differences between training and testing in (a) the numbers of actual objects
(Figure 6 and 3), (b) the numbers of hypothesis slots (Table 2) and (c) the number of observations
(Figure 3).

• DAF-Net works when significant encoding and decoding are required (Table 6).
• DAF-Net is able to learn dynamics models and observation functions for the setting when the entities

are moving over time (Table 5), nearly matching the performance of strong data association filters with
known ground-truth models.

Baselines and Metrics In each domain, we compare DAF-Net to online learned baselines of LSTM (Hochre-
iter & Schmidhuber, 1997) and Set Transformer (Lee et al., 2018) (details in A.3), as well as to task-specific
baselines. All learned network architectures are structured to use ∼ 50000 parameters. Unless otherwise
noted, models except DAF-Net are given and asked to predict the ground truth number of components K,
while DAF-Net uses 10 hypothesis slots. Results are reported in terms of MSE error 1

K minj∥yk − mj∥ (with
respect to the most confident K hypotheses for DAF-Net).

6.1 Online Clustering

Setup. To check the basic operation of the model and understand the types of problems for which it
performs well, we tested in simple clustering problems with the same input and output spaces, but different
types of data distributions, each a mixture of three components. We train on 1000 problems with observation
sequences of length 30 drawn from each problem distribution and test on 5000 from the same distribution. In
every case, the means of the three components are drawn at random for each problem. We provide precise
details about distributions in Section A.1.
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Model Online Learned Normal Elongated Mixed Angular Noise

DAF-Net + + 0.157 0.191 0.184 0.794 0.343
Set Transformer + + 0.407 0.395 0.384 0.794 0.424
LSTM + + 0.256 0.272 0.274 0.799 0.408
VQ + - 0.173 0.195 0.191 0.992 0.947

Set Transformer - + 0.226 0.248 0.274 0.816 0.406
Slot Attention - - 0.254 0.267 0.268 0.823 0.504
K-means++ - - 0.103 0.139 0.135 0.822 1.259
GMM - - 0.113 0.141 0.136 0.865 1.207

Table 1: Quantitative Results on Online Clustering. Comparison of performance on clustering performance
across different distributions. Reported error is the L2 distance between predicted and ground truth means. Methods
in the bottom half of table operate on observations in a single batch and thus are not directly comparable.

10 Observations 30 Observations 50 Observations 100 Observations

Figure 2: Qualitative Visualization of DAF-Net. Illustration of DAF-Net execution on the Normal distribution
setting. Decoded value of hypothesis (with size corresponding to confidence) shown in red, with ground truth clusters
in black. Observations are shown in blue.

1. Normal: Each component is a 2D Gaussian with fixed identical variance across each individual dimension
and across distributions. This is a basic “sanity check.”

2. Elongated: Each component is a 2D Gaussian, where the variance along each dimension is drawn from a
uniform distribution, but fixed across distributions.

3. Mixed: Each component is a 2D Gaussian, with fixed identical variance across each individual dimension,
but with the variance of each distribution drawn from a uniform distribution.

4. Angular: Each component is a 2D Gaussian with identical variance across dimension and distribution,
but points above π are wrapped around to −π and points below −π wrapped to π

5. Noise: Each component has 2 dimensions parameterized by Gaussian distributions, but with the values
of the remaining 30 dimensions drawn from a uniform centered at 0.

Results. We compare our approach to each of the baselines for the five problem distributions in Table 1.
The results in this table show that on Normal, Mixed, and Elongated tasks, DAF-Net performs better than

10 30 50 100
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E
rr
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Error vs Test Time Observations
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Set Transformer
OBM-Net

Figure 3: Generalization with Increased
Observations. Plot of LSTM, Set Transformer
and DAF-Net errors when executed at test time
on different number of observations from the
Normal distribution. With increased obser-
vations, DAF-Net error continues to decrease
while other approaches obtain higher error.

Model Slots Ground Truth Clusters

3 5 7

DAF-Net
10 0.162 0.214 0.242
20 0.175 0.195 0.213
30 0.188 0.197 0.205

Set Transformer - 0.261 0.279 0.282

Vector Quantization - 0.171 0.199 0.205

Table 2: Generalization with Different Hypothesis Slots.
Error of DAF-Net, when executed at test time with a different
number of hypothesis slots on test distributions with different
numbers of ground true components. In all cases, DAF-Net is
trained on 3-component problems with 10 slots. DAF-Net achieves
good performance with novel number of hypothesis slots, and
outperforms different instances of the Set Transformer trained
with the ground truth number of cluster components as well as
vector quantization.
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Figure 4: Visualization of Attention Weights. Plot
of decoded values of slots (in red) with confidence shown
by the size of dot (left), and what slot each input assigns
the highest attention towards (right) (each slot is colored
differently, with assigned inputs colored in the same way).
Note alignment of regions on the right with the decoded
value of a slot on the left.
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Figure 5: Visualization of
Relevance Weights. Plots
of the magnitude of relevance
weights with increased observa-
tion number on different distri-
butions with differing standard
deviation (noise).

learned and constructed online clustering algorithms, but does slightly worse than offline clustering algorithms.
Such discrepancy in performance is to be expected due to the fact that DAF-Net is running and being
evaluated online. On the Angular and Noise tasks, DAF-Net is able to learn a useful metric for clustering
and outperforms both offline and online alternatives.

Next, we provide a qualitative illustration of execution of DAF-Net on the Normal clustering task in Figure 2
as a trajectory of observations are seen. We plot the decoded values of hypothesis slots in red, with size
scaled according to confidence, and ground-truth cluster locations in black. DAF-Net is able to selectively
refine slot clusters to be close to ground truth cluster locations even with much longer observation sequences
than it was trained on.

Baselines. In addition to baselines discussed earlier, we further compare with clustering specific baselines
of Batch, non-learning: K-means++ (Arthur & Vassilvitskii, 2007) and expectation maximization (EM)
(Dempster et al., 1977) on a Gaussian mixture model (SciKit Learn implementation); Online, non-learning:
vector quantization (Gray, 1984). We further provide a comparison to a recent concurrent work (Locatello
et al., 2020) which also utilizes attention to obtains slots of objects.

Generalization. We next assess the ability of DAF-Net to generalize at inference time to differences in
the number of input observations as well as differences in the underlying number of hypothesis slots used
on the Normal distribution. In Figure 3, we plot the error of LSTM, Set Transformer, and DAF-Net as
a function of the number observations seen at inference time. We find that when DAF-Net is given more
observations then seen during training time (all models are trained with observations of length 30), it is able
to further improve its performance, while both LSTM and Set Transformer results suffer. We believe that
such generalization ability is due to the inductive bias added to DAF-Net. We provide additional analysis of
this generalization across all distributions in Table 7 and find similar results.

In Table 2, we investigate the ability of DAF-Net to generalize at inference time to increases in both the
number of hypothesis slots and the underlying number of mixture components from which observations
are drawn. We compare to the Set Transformer and to VQ, both of which know the correct number of
components at inference time. We find that DAF-Net generalizes well to increases in hypothesis slots, and
exhibits improved performance with large number of underlying components, performing comparably to or
better than the VQ algorithm. We further note that none of the learning baselines can adapt to different
numbers cluster components at inference time, but find that DAF-Net outperforms the Set Transformer even
when it is trained on the ground truth number of clusters in the test.

Submodule Visualization. We find that individual modules learned by DAF-Net are interpretable.
We visualize the attention weights of each hypothesis slot in Figure 4 and find that each hypothesis slot
learns to attend to a local region next to the value it decodes to. We further visualize a plot of relevance
weights in Figure 5 across an increasing number of observations where individual observations are drawn
from distributions with different levels of noise with respect to cluster centers. We find that as DAF-Net sees
more observations, the relevance weight of new observations decreases over time, indicating that DAF-Net

9
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Sparsity Learned Supression Relevance Observations
Memory

10 30 50 100

– – – – 0.382 0.452 0.474 0.487
+ – – – 0.384 0.412 0.423 0.430
+ + – – 0.335 0.357 0.366 0.387
+ + + – 0.279 0.274 0.278 0.282
+ + + + 0.238 0.157 0.137 0.131

Table 3: Abalation Analysis. We ablate each component of DAF-Net on the Normal distribution . When learned
memory is ablated, DAF-Net updates states based on observed values (appropriate in the Normal distribution dataset).
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Figure 6: Generalization to Increased Cluster Number. Plots of inferred number of components using a
confidence threshold in DAF-Net compared to the ground truth number of clusters (DAF-Net is trained on only 3
clusters). We consider two scenarios, a noisy scenario where cluster centers are randomly drawn from -1 to 1 (left)
and a scenario where all added cluster components are well seperated from each other (right). DAF-Net is able to
infer more clusters in both scenarios, with better performance when cluster centers are more distinct from each other.

learns to pay the most attention towards the first set of observations it sees. In addition, we find that in
distributions with higher variance, the relevance weight decreases more slowly, as later observations are now
more informative in determining cluster centers.

Ablation. We ablate each component of DAF-Net and present results in Table 3 on the Normal distribution.
We test removing Lsparse (sparsity), removing learned slot embeddings (learned memory) — where instead,
in individual hypothesis slots, we store the explicit values of inputs, removing the suppress modules
(suppression) and removing the relevance module (relevance). We find that each of our proposed components
enables better performance on the underlying clustering task. Interestingly, we further find that the addition
of relevance enables our approach to generalize at test time to larger numbers of observations.

Inferring Object Number. In contrast to other algorithms, DAF-Net learns to predict both a set of
object properties yk of objects and a set of confidences ck for each object. This corresponds to the task of
both predicting the number of objects in a set of observations, as well as the associated object properties.
We evaluate the ability of DAF-Net to regress object number at test time in scenarios where the number of
objects (underlying clusters) is different than that of training. We evaluate on the Normal distribution with a
variable number of component distributions, and measure inferred components through a threshold confidence.
DAF-Net is trained on a dataset with 3 underlying components. We find in Figure 6 that DAF-Net is able to
infer the presence of more component distributions (as they vary from 3 to 6), with improved performance
when cluster centers are sharply separated (right figure of Figure 6).

Performance on More Clusters. We find DAF-Net also exhibits good performance when trained and
tested on domains with a larger number of slots/clusters. To test this, we utilize the Normal distribution
setting, but generate underlying training input observations from a total of 30 difference components, and
train DAF-Net with a total of 30 slots. We train DAF-Net with 50 observations, and measure performance at
inferring cluster centers with between 50 to 100 observations. We report performance in Table 4 and find
that DAF-Net obtains good performance in this setting, out-performing the strong online baseline VQ, and
performing similarly to K-means++ which directly operates on all input observations at once.

10
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Model Online Observations

50 65 80 100

DAF-Net + 0.158 0.154 0.151 0.147
VQ + 0.162 0.157 0.153 0.148

K-means++ - 0.155 0.151 0.148 0.146
GMM - 0.156 0.151 0.149 0.147

Table 4: Performance on Large Number of Clusters. Comparison of performance on Normal distribution,
when underlying distributions have a large number of components. We use 30 components, and train models with 50
observations. Each cluster observation and center is drawn between -1 and 1, with reported error as the L2 distance
between predicted and ground truth means.

Model Observations

10 20 30 40

DAF-Net 0.415 0.395 0.382 0.394
Set Transformer 0.699 0.701 0.854 1.007
LSTM 0.422 0.400 0.445 0.464

JPDA (ground truth) 0.683 0.372 0.362 0.322

Table 5: Performance on Dynamic Objects. Comparison of different methods on estimating the state of 3
dynamically moving objects. All learning models are trained with 1000 sequences of 30 observations. We report MSE
error. JPDA uses the ground-truth observation and dynamics models. JPDA is outperformed by learned approaches
with 10 observations, as these approaches are able to average over possible outputs to minimize MSE error.

6.2 Dynamic Domains

Now we study the ability of DAF-Net to perform data association in a dynamic setting and compare its
performance with that of a classical data-association filter.

Setup. We evaluate performance of data association monitoring using moving 2D objects. A problem
involves a trajectory of observations z of the K dynamically moving objects, with desired y values being the
underlying object positions. Objects evolve under a linear Gaussian dynamics model, with a noisy observation
of a single object observed at each step (details in Appendix A.1). This task is typical of tracking problems
considered by daf. All learning-based models are trained on observation sequences of length 30. To perform
well in this task, a model must discover that it needs to estimate the latent velocity of each object, as well as
learn the underlying dynamics and observation models. We utilize K = 3 for our experiments.

Baselines. We compare with the de-facto standard method, Joint Probabilistic Data Association (JPDA)
(Bar-Shalom et al., 2009), which uses hand-built ground-truth models (serving as an oracle). We further
compare with our learned online baselines of Set Transformer (Lee et al., 2018) and LSTM (Hochreiter &
Schmidhuber, 1997) methods.

Result. Quantitative performance, measured in terms of prediction error on true object locations, is
reported in Table 5. We can see that the Set Transformer cannot learn a reasonable model at all. The LSTM
performs reasonably well for short (length 30) sequences but quickly degrades relative to DAF-Net and JPDA
as sequence length increases. We note that DAF-Net performs comparably to, but just slightly worse than,
JPDA. This is strong performance because DAF-Net is generic and can be adapted to new domains given
training data without the need to hand-design the models in JPDA. We believe that these gains are due to the
inductive biases built into our architecture.

6.3 Image-based domains

Finally, we validate the ability of DAF-Net to perform data association on image inputs, which requires
DAF-Net to synthesize a latent representation for slots, and learn to perform association, update, and
transition operations in that space.

Setup. We experiment with two separate image-based domains, each consisting of a set of similar entities
(2D digits or 3D airplanes). We construct data association problems by selecting K objects in each domain,

11
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Ground Truth Objects Decoded Slots

Training ObservationsTraining Objects

Decoded SlotsGround Truth Objects Decoded Slots

Training ObservationsTraining Objects

Figure 7: Qualitative Visualization of DAF-Net Execution on Images. Qualitative visualization of two
image-based association tasks (left: MNIST, right: airplanes). At the top of each is an example training problem,
illustrated by the true objects and an observation sequence. Each of the next rows shows an example test problem,
with the ground truth objects and decoded slot values. The three highest-confidence hypotheses for each problem are
highlighted in red, and correspond to ground-truth objects.

Model Learned MNIST Airplanes

Observations 10 30 50 100 10 30 50 100

DAF-Net + 7.143 5.593 5.504 5.580 4.558 4.337 4.331 4.325
LSTM + 9.980 9.208 9.166 9.267 5.106 4.992 4.983 4.998
K-means + 13.596 12.505 12.261 12.021 7.246 6.943 6.878 6.815

Table 6: Quantitative Results on Image Domain. Comparison of entity-monitoring performance on MNIST
and Airplane datasets across 10, 30, 50, 100 observations. For DAF-Net, LSTM and K-means we use a convolutional
encoder/decoder trained on the data. We train models with 30 observations and report MSE error.

with the desired y values being images of those objects in a canonical viewpoint. An input observation sequence
is generated by randomly selecting one of those K objects, and generating an observation z corresponding to
a random viewpoint of the object. Our two domains are: (1) MNIST: Each object is a random image in
MNIST, with observations corresponding to rotated images, and the desired outputs being the un-rotated
images; (2) Airplane: Each object is a random object from the Airplane class in ShapeNet (Chang et al.,
2015), with observations corresponding to airplane renderings (using Blender) at different viewpoints and
the desired outputs the objects rendered in a canonical viewpoint. For MNIST, we use the training set to
construct the training problems, and the images in the non-overlaping test set to construct the test problems.
For the Airplane dataset, we use 1895 airplanes to construct the training problems, and 211 different airplanes
to construct the test problems. Each airplane is rendered with 300 viewpoints.

Baselines. In addition to our learned baselines, we compare with a task specific baseline, batch K-means,
in a latent space that is learned by training an autoencoder on the observations. In this setting, we were
unable to train the Set Transformer stably and do not report results for it.

Results. In Table 6, we find that our approach significantly outperforms other comparable baselines in
both accuracy and generalization. We further visualize qualitative predictions from our model in Figure 7.
We find that our highest confidence decoded slots correspond to ground truth objects.

7 Conclusion

This work has demonstrated that using algorithmic bias inspired by a classical solution to the problem of
filtering to estimate the state of multiple objects simultaneously, coupled with modern machine-learning
techniques, we can arrive at solutions that learn to perform and generalize well from a comparatively small
amount of training data.
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We further provide experimental and architecture details of DAF-Net in Section A. We further provide full
clustering results in Table 7.

A Experimental Details

In this section, we provide details of our experimental approach. We first discuss the details of datasets used
in Section A.1. Next, we provide the model architectures used in Section A.2. Finally, we provide details on
the baselines we compare with in Section A.3.

A.1 Dataset Details

We first provide detailed experimental settings for each of the datasets considered in the paper.

Online Clustering. In online clustering, we utilize observations drawn from the following distributions,
where Gaussian centers are drawn uniformly from -1 to 1.

1. Normal: Each 2D Gaussian has standard deviation 0.2. The normal setting is illustrated in Figure ??.
2. Mixed: Each distribution is a 2D Gaussian, with fixed identical variance across each individual dimension,

but with the standard deviation of each distribution drawn from a uniform distribution from (0.04, 0.4).
3. Elongated: Each distribution is a 2D Gaussian, where the standard deviation along each dimension is

drawn from a uniform distribution from (0.04, 0.4), but fixed across distributions.
4. Angular: Each distribution is a 2D Gaussian with identical standard deviation across dimension and

distribution, but points above π are wrapped around to −π and points below −π wrapped to π. Gaussian
means are selected between (−π, −2π/3) and between (2π/3, π). The standard deviation of distributions
is 0.3 ∗ π.

5. Noise: Each distribution has 2 dimensions parameterized by Gaussian distributions with standard
deviation 0.5, but with the values of the remaining 30 dimensions drawn from a uniform distribution
from (−1, 1).

Dynamic Domains. Next, in the dynamics domain, we implement our dataset using the StoneSoup
library∗. We initialize the location of each cluster from a Gaussian distribution with standard deviation 1.5
and initialize velocity in each directory from a Gaussian distribution with standard deviation of 0.02. At
each timestep, Gaussian noise is added to velocities with magnitude 1e-4. Our JPDA implementation is also
from the StoneSoup library.

Image Domains. In the image domain, for MNIST, we use the 50000 images in the training set to
construct the training problems, and the 10000 images in the non-overlaping test set to construct the test
problems. For the Airplane dataset, we use 1895 airplanes to construct the training problems, and 211
different airplanes to construct the test problems. Each airplane is rendered with 300 viewpoints.

A.2 Model/Baseline Architectures

We provide the overall architecture details for the LSTM in Figure 8a, for the Set Transformer in Figure 8b
and DAF-Net in Figure 9a. For image experiments, we provide the architecture of the encoder in Figure 10a
and decoder in Figure 10b. Both LSTM, DAF-Net, and autoencoding baselines use the same image encoder
and decoder. For robotics experiments, we provide the architecture of the shape decoder in Figure ??.

In DAF-Net memory, the function update(sk, nk, e) is implemented by applying a 2 layer MLP with hidden
units h which concatenates the vectors sk, nk, e as input and outputs a new state uk of dimension h. The
value nk is encoded using the function 1

1+nk
, to normalize the range of input to be between 0 and 1. The

function attend(sk, nk, e) is implemented in an analogous way to update, using a 2 layer MLP that outputs a
single real value for each hypothesis slot.

For the function relevance(sk, nk, e), we apply NN1 per hypothesis slot, which is implemented as a 2 layer
MLP with hidden units h that outputs a intermediate state of dimension h. (sk, nk, e) is fed into NN1 in an

∗https://stonesoup.readthedocs.io/en/v0.1b3/stonesoup.html
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analogous manner to update. NN2 is applied to average of the intermediate representations of each hypothesis
slot and is also implemented as a 2 layer MLP with hidden unit size h, followed by a sigmoid activation. We
use the ReLU activation for all MLPs. NN3 is represented is GRU, which operates on the previous slot value.

A.3 Baseline Details

All baseline models are trained using prediction slots equal to the ground truth of components. To train the
Set Transformer to act in an online manner, we follow the approach in (Santoro et al., 2018) and we apply the
Set Transformer sequentially on the concatenation of an input observation with the current set of hypothesis
slots. Hypothesis slots are updated based off the new values of the slots after applying self-attention (Set
Transformer Encoder). Hypothesis slots are updated based off the new values of the slots after applying
self-attention (Set Transformer Encoder). We use the Chamfer loss to train baseline models, with confidence
set to 1.
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Dense → h
Dense → h
LSTM(h)

Dense → h
Dense → output

(a) The model architecture of the LSTM baseline. The
hidden dimension h used is 96 for synthetic Gaussian
distributions and 128 for Image datasets. For image
experiments, the first 2 and last 2 fully connected layers
are replaced with image encoders and decoders.

Dense → h
Dense → h

Set Transformer Encoder
Set Transformer Decoder

(b) The model architecture of the Set Transformer base-
line. The hidden dimension h is 48 for the synthetic
Gaussian distributions. We use the encoder and decoder
defined in (Lee et al., 2018) with 4 heads and hidden
dimension h.

Figure 8: Architecture of baseline models.

Dense → h
Dense → h

DAF-Net Memory
Dense → h

Dense → output

(a) The model architecture of DAF-Net. The hidden
dimension h is 64 is for synthetic Gaussian distributions
and 128 for the image/robotics experiments. For image
experiments, the first and last 2 linear layers are replaced
with convolutional encoders and decoders.

Figure 9: Architecture of DAF-Net.

5x5 Conv2d, 32, stride 2, padding 2
3x3 Conv2d, 64, stride 2, padding 1
3x3 Conv2d, 64, stride 2, padding 1
3x3 Conv2d, 64, stride 2, padding 1
3x3 Conv2d, 128, stride 2, padding 1

Flatten
Dense → h

(a) The model architecture of the convolutional en-
coder for image experiments.

Dense → 4096
Reshape (256, 4, 4)

4x4 Conv2dTranspose, 128, stride 2, padding 1
4x4 Conv2dTranspose, 64, stride 2, padding 1
4x4 Conv2dTranspose, 64, stride 2, padding 1
4x4 Conv2dTranspose, 64, stride 2, padding 1

3x3 Conv2d, 3, stride 1, padding 1

(b) The model architecture of the convolutional decoder for
image experiments.

Figure 10: The model architecture of the convolutional encoder and decoder for image experiments.
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Type Model Online Observations

10 30 50 100

Normal

DAF-Net + 0.235 0.162 0.146 0.128
Set Transformer + 0.390 0.388 0.388 0.389

LSTM + 0.288 0.260 0.269 0.288
VQ + 0.246 0.172 0.147 0.122

Set Transformer + 0.295 0.261 0.253 0.247
K-means++ - 0.183 0.107 0.086 0.066

GMM - 0.189 0.118 0.087 0.067

Mixed

DAF-Net + 0.255 0.184 0.164 0.147
LSTM + 0.306 0.274 0.284 0.290

Set Transformer + 0.415 0.405 0.407 0.408
VQ + 0.262 0.192 0.169 0.145

Set Transformer - 0.309 0.274 0.266 0.261
K-means++ - 0.206 0.135 0.105 0.088

GMM - 0.212 0.136 0.105 0.079

Enlongated

DAF-Net + 0.258 0.192 0.173 0.161
LSTM + 0.314 0.274 0.288 0.300

Set Transformer + 0.394 0.391 0.394 0.394
VQ + 0.265 0.194 0.172 0.149

Set Transformer - 0.309 0.244 0.240 0.232
K-means++ - 0.213 0.139 0.113 0.092

GMM - 0.214 0.141 0.112 0.086

Rotation

DAF-Net + 0.892 0.794 0.749 0.736
LSTM + 0.799 0.796 0.795 0.794

Set Transformer + 0.793 0.794 0.782 0.782
VQ + 0.956 1.000 1.000 0.984

Set Transformer - 0.815 0.784 0.779 0.772
K-means++ - 0.827 0.834 0.823 0.802

GMM - 0.842 0.875 0.867 0.848

Noise

DAF-Net + 0.375 0.343 0.338 0.334
LSTM + 0.419 0.406 0.405 0.407

Set Transformer + 0.434 0.424 0.425 0.424
VQ + 1.479 0.948 0.826 0.720

Set Transformer - 0.436 0.407 0.398 0.394
K-means++ - 1.836 1.271 1.091 0.913

GMM - 1.731 1.215 1.056 0.856

Table 7: Generalization with Increased Observations. Error of different models when executed at test
time on different number of observations across different distributions. We train models with 3 components
and 30 observations.
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