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Abstract

Recent studies on contrastive learning have achieved remarkable performance solely
by leveraging few labels in the context of medical image segmentation. Existing meth-
odsmainly focus on instance discrimination and invariant mapping (i.e., pulling positive
samples closer and negative samples apart in the feature space). However, they face three
common pitfalls: (1) tailness: medical image data usually follows an implicit long-tail
class distribution. Blindly leveraging all pixels in training hence can lead to the data im-
balance issues, and cause deteriorated performance; (2) consistency: it remains unclear
whether a segmentation model has learned meaningful and yet consistent anatomical
features due to the intra-class variations between different anatomical features; and (3)
diversity: the intra-slice correlations within the entire dataset have received significantly
less attention. This motivates us to seek a principled approach for strategically making
use of the dataset itself to discover similar yet distinct samples from different anatomical
views. In this paper, we introduce a novel semi-supervised medical image segmentation
framework termed Mine yOur owN Anatomy (MONA), and make three contributions.
First, prior work argues that every pixel equally matters to the model training; we ob-
serve empirically that this alone is unlikely to define meaningful anatomical features,
mainly due to lacking the supervision signal. We show two simple solutions towards
learning invariances – through the use of stronger data augmentations and nearest neigh-
bors. Second, we construct a set of objectives that encourage the model to be capable of
decomposing medical images into a collection of anatomical features in an unsupervised
manner. Lastly, our extensive results on three benchmark datasets with different labeled
settings validate the effectiveness of our proposed MONAwhich achieves new state-of-the-
art under different labeled settings. Perhaps most impressively, MONA trained with 10%
labeled – for the first time – outperforms the supervised counterpart on all three datasets.
MONAmakes minimal assumptions on domain expertise, and hence constitutes a practical
and versatile solution in medical image analysis. Codes will be available to public.
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(1) ACDC (2) LiTS

(1) ACDC (2) LiTS (3) MMWHS

Figure 1: Examples of three benchmarks (i.e., ACDC, LiTS, MMWHS) with large intra-class
variances.
1 Introduction

With the advent of deep learning, medical image segmentation has drawn great attention
and substantial research efforts in recent years. Traditional supervised training schemes
coupled with large-scale annotated data can engender remarkable performance. However,
training with massive high-quality annotated data is infeasible in clinical practice since a
large amount of expert-annotated medical data often incurs considerable clinical expertise
and time. Under such a setting, this poses the question of how models benefit from a large
amount of unlabelled data during training. Recently emerged methods based on contrastive
learning (CL) significantly reduce the training cost by learning strong visual representations
in an unsupervised manner [87, 64, 41, 18, 38, 40, 60, 36, 35, 20, 12]. A popular way of for-
mulating this idea is through imposing feature consistency to differently augmented views
of the same image - which treats each view as an individual instance.
Despite great promise, themain technical challenges remain: (1) How far is CL from becom-
ing a principled framework for medical image segmentation? (2) Is there any better way to
implicitly learn some intrinsic properties from the original data (i.e., the inter-instance rela-
tionships and intra-instance invariance)? (3) What will happen if models can only access a
few labels in training?
To address the above challenges, we outline three principles below: (1) tailness: existing
approaches inevitably suffer from class collapse problems – wherein similar pairs from the
same latent class are assumed to have the same representation [2, 21, 49]. This assumption,
however, rarely holds for real-world clinical data. We observe that the long-tail distribution
problem has received increasing attention in the computer vision community [46, 110, 23, 93,
44]. In contrast, there have been a few prior long-tail works for medical image segmentation.
For example, as illustrated in Figure 1, most medical image images follow a Zipf long-tail
distribution where various anatomical features share very different class frequencies, which
can result in worse performance; (2) consistency: considering the scarcity of medical data
in practice, augmentations are a widely adopted pre-text task to learn meaningful represen-
tations. Intuitively, the anatomical features should be semantically consistent across differ-
ent transformations and deformations. Thus, it is important to assess whether the model is
robust to diverse views of anatomy; (3) diversity: recent work [107, 3, 81] pointed out that
going beyond simple augmentations to createmore diverse views can learnmore discrimina-
tive anatomical features. At the same time, this is particularly challenging to both introduce
sufficient diversity and preserve the anatomy of the original data, especially in data-scarce
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clinical scenarios. To deploy into the wild, we need to quantify and address three research
gaps from different anatomical views.
In this paper, wepresentMine yOur owNAnatomy (MONA), a novel contrastive semi-supervised
medical segmentation framework, based on different anatomical views. The workflow of
MONA is illustrated in Figure 2. The key innovation in MONA is to seek diverse views (i.e.,
augmented/mined views) of different samples whose anatomical features are homogeneous
within the same class type, while distinctive for different class types. We make the following
contributions. First, we consider the problem of tailness. An issue is that label classes within
medical images typically exhibit a long-tail distribution. Another one, technically more chal-
lenging, is the fact that there is only a few labeled data and large quantities of unlabeled ones
during training. Intuitively we would like to sample more pixel-level representations from
tail classes. Thus, we go beyond the naïve setting of instance discrimination in CL [18, 38, 35]
by decomposing images into diverse and yet consistent anatomical features, each belonging
to different classes. In particular, we propose to use pseudo labeling and knowledge distilla-
tion to learn better pixel-level representations within multiple semantic classes in a training
mini-batch. Considering performing pixel-level CL with medical images is impractical for
both memory cost and training time, we then adopt active sampling strategies [55] such as
in-batch hard negative pixels, to better discriminate the representations at a larger scale.
We further address the two other challenges: consistency and diversity. The success of the
common CL theme is mainly attributed to invariant mapping [36] and instance discrimina-
tion [87, 18]. Starting from these two key aspects, we try to further improve the segmentation
quality. More specifically, we suggest that consistency to transformation (equivariance) is an
effective strategy to establish the invariances (i.e., anatomical features and shape variance) to
various image transformations. Furthermore, we investigate two ways to include diversity-
promoting views in sample generation. First, we incorporate a memory buffer to alleviate
the demand for large batch size, enabling much more efficient training without inhibiting
segmentation quality. Second, we leverage stronger augmentations and nearest neighbors to
mine views as positive views for more semantic similar contexts.
Extensive experiments are conducted on a variety of datasets and the latest CL frameworks
(i.e., MoCo [38], SimCLR [18], BYOL [35], and ISD [78]), which consistently demonstrate the
effectiveness of our proposed MONA. For example, our MONA establishes the new state-of-the-
art performance, compared to both the state-of-the-art semi-supervised and fully-supervised
approaches with 10% label ratio. We also present a systematic evaluation for analyzing why
our approach performs so well and how different factors contribute to the final performance.
We hope our findings will provide useful insights on medical image segmentation to other
researchers.

2 Related work

Medical image segmentation Medical image segmentation aims to assign a class label to
each pixel in an image, and plays amajor role in real-world applications, such as assisting the
radiologists for better disease diagnosis and reduced cost. With sufficient annotated train-
ing data, significant progress has been achieved with the introduction of Fully convolutional
networks (FCN) [56] and UNet [70]. Follow-upworks can be categorized into twomain direc-
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tions. One direction is to improve modern segmentation network design. Many CNN-based
[74, 39] and Transformer-like [82, 26] model variants [59, 16, 1, 63, 17, 86, 85, 15, 10, 91, 37,
79, 25, 43, 97] have been proposed since then. For example, some works [16, 17, 24] pro-
posed to use dilated/atrous/deformable convolutions with larger receptive fields for more
dense anatomical features. Other works [15, 10, 91, 37, 79, 97] include Transformer blocks
to capture more long-range information, achieving the impressive performance. A paral-
lel direction is to select proper optimization strategies, by designing loss functions to learn
meaningful representations [54, 92, 73, 96, 95, 94, 103, 76]. However, those methods assume
access to a large, labeled dataset. This restrictive assumption makes it challenging to deploy
in most real-world clinical practices. In contrast, our MONA is more robust as it leverages only
a few labeled data and large quantities of unlabeled one in the learning stage.
Semi-supervised learning (SSL) The goal in robust SSL is to improve the medical seg-
mentation performance by taking advantage of large amounts of unlabelled data during
training. It can be roughly categorized into three groups: (1) self-training by generating un-
reliable pseudo-labels for performance gains, such as pseudo-label estimation [48, 4, 27, 19],
model uncertainty [100, 33, 45, 58, 102, 61, 9, 11], confidence estimation [7, 31, 47], and noisy
student [89]; (2) consistency regularization [8, 22, 108, 29, 28] by integrating consistency
corresponding to different transformation, such as pi-model [72], co-training [68, 109], and
mean-teacher [77, 52, 69]; (3) other training strategies such as adversarial training [104, 62,
105, 106, 50, 80] and entropyminimization [34]. In contrast to theseworks, we do not explore
more advanced pseudo-labelling strategy to learn spatially structured representations. In
this work, we are the first to explore a novel direction for discovering distinctive and seman-
tically consistent anatomical features without image-level or region-level labels. Further, we
expect that our findings can be relevant for other medical image segmentation frameworks.
Contrastive learning CL has recently emerged as a promising paradigm for medical im-
age segmentation via exploiting abundant unlabeled data, leading to state-of-the-art results
[13, 90, 98, 14, 42, 88, 101, 99]. The high-level idea of CL is to pull closer the different aug-
mented views of the same instance but pushes apart all the other instances away. Intuitively,
differently augmented views of the same image are considered positives, while all the other
images serve as negatives. The major difference between different CL-based frameworks lies
in the augmentation strategies to obtain positives and negatives. A few very recent studies
[46, 44] confirm the superiority of CL of addressing imbalance issues in image classification.
Moreover, existing CL frameworks [13, 98, 42] mainly focus on the instance level discrimi-
nation (i.e., different augmented views of the same instance should have similar anatomical
features or clustered around the class weights). However, we argue that not all negative
samples equally matter, and the above issues have not been explored from the perspective
of medical image segmentation, considering the class distributions in the medical image are
perspectives diverse and always exhibit long tails [32, 71]. Inspired by the aforementioned,
we address these two issues in medical image segmentation - two appealing perspectives
that still remain under-explored.
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(1) Relational Semi-supervised Pre-training (2) Anatomical Contrastive Reconstruction Fine-tuning

Figure 2: Overview of the MONA framework including two stages: (1) relational semi-
supervised pre-training, (2) our proposed anatomical contrastive reconstruction fine-tuning.
Note that U and L denote unlabeled and labeled data.

3 Mine yOur owN Anatomy (MONA)

3.1 Framework

Overview. We introduce our contrastive learning framework (See Figure 2), which includes
(1) relational semi-supervised pre-training, and (2) anatomical contrastive reconstruction
fine-tuning. The key idea is to seek diverse yet semantically consistent views whose anatom-
ical features are homogeneouswithin the same class type, while distinctive for different class types.
In this paper, our pre-training stage is built upon ISD [78] - a competitive framework for
image classification. The main differences between ISD and MONA are: MONA is more tailored to
medical image segmentation, i.e., considering the dense nature of this problem both in global
and local manner, and can generalize well to those long-tail scenarios. Also, our principles
are expected to apply to other CL framework ((i.e., MoCo [38], SimCLR [18], BYOL [35]). More
detailed analysis can be found in the Appendix C.
Pre-training preliminary. Let (X, Y) be our dataset, including training images x ∈ X and
their corresponding C-class segmentation labels y ∈ Y, where X is composed of N labeled
and M unlabeled slices. Note that, for brevity, y can be either sampled from Y or pseudo-
labels. The student and teacher networks F , parameterized by weights θ and ξ, each consist
of a encoder E and a decoderD (i.e., UNet [70]). Concretely, given a sample s from our unla-
beled dataset, we have two ways to generate views: (1) we formulate augmented views (i.e.,
x, x′) through two different augmentation chains; and (2) we create d mined views (i.e., xr,i)
by randomly selecting from the unlabeled dataset followed by additional augmentation.1 We
then fed the augmented views to both Fθ and Fξ , and the mined views to Fξ . Similar to [13],
we adopt the global and local instance discrimination strategies in the latent and output fea-

1Note that the subscript i is omitted for simplicity in following contexts.
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ture spaces.2 Specifically, the encoders generate global features zg = Eθ(x), z′g = Eξ(x′), and
zr,g = Eξ(xr), which are then fed into the nonlinear projection heads to obtain vg = hθ(zg),
v′g = hξ(z′g), and wg = hξ(zr,g). The augmented embeddings from the student network are
further projected into secondary space, i.e., ug = h′θ(vg). We calculate similarities across
mined views and augmented views from the student and teacher in both global and local man-
ners. Then a softmax function is applied to process the calculated similarities, whichmodels
the relationship distributions:

sθ = log exp(sim(u, w
)
/τθ

)
∑k

j=1 exp
(sim(u, wj

)
/τθ

) , sξ = log exp(sim(v′, w
)
/τξ

)
∑k

j=1 exp
(sim(v′, wj

)
/τξ

) , (1)

where τθ and τξ are different temperature parameters, and sim(·, ·) denotes cosine similarity.
The unsupervised instance discrimination loss (i.e., Kullback-Leibler divergenceKL) can be
defined as:

Linst = KL(sθ ||sξ). (2)
The parameters ξ of Fξ is updated as: ξ = tξ + (1 − t)θ with t = 0.99 as a momentum
hyperparameter. In our pre-training stage, the total loss is the sum of global and local in-
stance discrimination loss Linst (on pseudo-labels), and supervised segmentation loss Lsup
(i.e., equal combination of dice loss and cross-entropy loss on ground-truth labels): Lgloabl

inst +
Llocal
inst + Lsup.

Principles. As shown in Figure 2, the principles behind MONA (i.e., the second anatomical con-
trastive reconstruction stage) aim to ensure tailness, consistency, and diversity. Concretely,
tailness is for actively samplingmore tail class hard pixels; consistency ensures the feature in-
variances; and diversity further encourages to discover more anatomical features in different
images.

3.2 Anatomical Contrastive Reconstruction

Tailness. Motivated by the observations (Figure 1), our primary cue is that medical images
naturally exhibit an imbalanced or long-tailed class distribution, wherein many class labels
are associated with only a few pixels. To generalize well on such imbalanced setting, we pro-
pose to use anatomical contrastive formulation (ACF).
Here we additionally attach the representation heads to fuse the multi-scale features with
the feature pyramid network (FPN) [53] structure and generate the m-dimensional represen-
tations with consecutive convolutional layers. The high-level idea is that the features should
be very similar among the same class type, while very dissimilar across different class types.
Particularly for long-tail medical data, a naïve application of this idea would require sub-
stantially computational resources proportional to the square of the number of pixels within
the dataset, and naturally overemphasize the anatomy-rich head classes and leaves the tail
classes under-learned in learning invariances, both of which suffer performance drops.

2Here we omit details of local instance discrimination strategy for simplicity because the global and local
instance discrimination experimental setups are similar.
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To this end, we address this issue by actively
sampling a set of pixel-level anchor representa-
tions rq ∈ Rc

q (queries), pulling them closer to
the class-averaged mean of representations rc,+

k
within this class c (positive keys), and pushing
away from representations r−k ∈ Rc

k from other
classes (negative keys). Formally, the contrastive
loss is defined as:

Lcontrast = ∑
c∈C

∑
rq∼Rc

q

− log
exp(rq · rc,+

k /τ)

exp(rq · rc,+
k /τ) + ∑r−k ∼R

c
k

exp(rq · r−k /τ)
,

(3)
where C denotes a set of all available classes for each mini-batch, and τ is a temperature
hyperparameter. Suppose A is a collection including all pixel coordinates within x, these
representations are:

Rc
q =

⋃
[m,n]∈A

1(y[m,n]= c) r[m,n], Rc
k =

⋃
[m,n]∈A

1(y[m,n] 6= c) r[m,n], rc,+
k =

1
|Rc

q|
∑

rq∈Rc
q

rq . (4)

We then note that CLmight benefit more, where the instance discrimination task is achieved
by incorporatingmore positive and negative pairs. However, naively unrolling CL to this set-
ting is impractical since it requires extra memory overheads that grow proportionally with
the amount of instance discrimination tasks. To this end, we adopt a random set (i.e., the
mini-batch) of other images. Intuitively, we would like to maximize the anatomical simi-
larity between all the representations from the query class, and analogously minimize all
other class representations. We then create a graph G to compute the pair-wise class rela-
tionship: G[p, q] =

(
rp,+

k · rq,+
k

)
, ∀p, q ∈ C, and p 6= q, where G ∈ R|C|×|C|. Here finding the

accurate decision boundary can be formulated mathematically by normalizing the pair-wise
relationships among all negative class representations via the softmax operator. To address
the challenge in imbalanced medical image data, we define the pseudo-label (i.e., easy and
hard queries) based on a defined threshold as follows:

Rc, easy
q =

⋃
rq∈Rc

q

1(ŷq > δθ)rq, Rc,hard
q =

⋃
rq∈Rc

q

1(ŷq ≤ δθ)rq, (5)

where ŷq is the cth-class pseudo-label corresponding to rq, and δθ is the user-defined thresh-
old. For further improvement in long-tail scenarios, we construct a class-awarememory bank
[38] to store a fixed number of negative samples per class c.
Consistency. The proposed ACF is designed to address imbalanced issues, but anatomical
consistency remains to be weak in the long-tail medical image setting since medical segmen-
tation should be robust to different tissue types which show different anatomical variations.
We hence construct a random image transformation T and define the equivariance loss on
both labeled and unlabeled data bymeasuring the feature consistency distance between each
original segmentation map and the segmentation map generated from the transformed im-
age:

Leqv(x, T (x)) = ∑
x∈X
KL (T (Fθ(x)),Fθ(T (x))) +KL (Fθ(T (x)), T (Fθ(x))) . (6)
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Here we define T on both the input image x andFθ(x), via the random transformations (i.e.,
affine, intensity, and photo-metric augmentations), since themodel should learn to be robust
and invariant to these transformations.
Diversity. Oversampling too many images from the random set would create extra mem-
ory overhead, and more importantly, our finding also uncovers that a large number of ran-
dom images might not necessarily help impose additional invariances between neighboring
samples since redundant images might introduce additional noise during training (see the
Appendix D). Therefore, we formulate our insight as an auxiliary loss that regularizes the
representations - keeping the anatomical contrastive reconstruction task as the main force.
In practice, we first search for K-nearest neighbors from the first-in-first-out (FIFO) mem-
ory bank [38], and then use the nearest neighbor loss Lnn based on the Mean Squared Error
(MSE), to exploit the inter-instance relationship.
Setup. The total lossLtotal is the sum of contrastive lossLcontrast (on both ground-truth labels
and pseudo-labels), equivariance lossLeqv (on both ground-truth labels and pseudo-labels),
nearest neighbors loss Lnn (on both ground-truth labels and pseudo-labels), unsupervised
cross-entropy loss Lunsup (on pseudo-labels) and supervised segmentation loss Lsup (on
ground-truth labels): Lsup + λ1Lcontrast + λ2Leqv + λ3Lunsup + λ4Lnn. See the Appendix D
for an ablation study of hyperparameters.

4 Experiments

In this section, we evaluate our proposed MONA on three popular medical image segmenta-
tion datasets under varying labeled ratio settings: the ACDC dataset [5], the LiTS dataset
[6], and the MMWHS dataset [111] (See Appendix B). Moreover, to further validate our
approach’s unsupervised imbalance handling ability, we consider a more realistic and more
challenging scenario, wherein the models would only have access to the extremely limited
labeled data (i.e., 1% labeled ratio) and large quantities of unlabeled one in training. For all
experiments, we follow the same training and testing protocol. See the Appendix A for more
implementation details used in the experiments.

4.1 Main Results

We show the effectiveness of ourmethod under three different label ratios (i.e., 1%, 5%, 10%).
We also compare MONA with various state-of-the-art SSL and fully-supervised methods on
three datasets: ACDC [5], LiTS [6], MMWHS [111]. We choose 2D UNet [70] as backbone,
and compare against SSL methods including UNet trained with full/limited supervisions
(UNet-F/UNet-L), EM [84], CCT [65], DAN [104], URPC [57], DCT [68], ICT [83], MT [77], UAMT
[100], CPS [19], SCS [42], GCL [13], and PLC [14]. We report quantitative comparisons on
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Table 1: Comparison of segmentation performance (DSC[%]/ASD[mm]) on ACDC and
LiTS under three labeled ratio settings (1%, 5%, 10%). The best results are indicated in bold.

ACDC LiTS
1% Labeled 5% Labeled 10% Labeled 1% Labeled 5% Labeled 10% Labeled

Method DSC ↑ ASD ↓ DSC ↑ ASD ↓ DSC ↑ ASD ↓ DSC ↑ ASD ↓ DSC ↑ ASD ↓ DSC ↑ ASD ↓
UNet-F [70] 89.9 0.621 89.9 0.621 89.9 0.621 68.2 16.9 68.2 16.9 68.2 16.9

UNet-L 14.5 19.3 51.7 13.1 74.4 2.20 57.0 34.6 60.4 30.4 61.6 28.3
EM [84] 21.1 21.4 59.8 5.64 75.7 2.73 56.6 38.4 61.2 33.3 62.9 38.5
CCT [65] 30.9 28.2 59.1 10.1 75.9 3.60 52.4 52.3 60.6 48.7 63.8 31.2
DAN [104] 34.7 25.7 56.4 15.1 76.5 3.01 57.2 27.1 62.3 25.8 63.2 30.7
URPC [57] 32.2 26.9 58.9 8.14 73.2 2.68 55.5 34.6 62.4 37.8 63.0 43.1
DCT [68] 36.0 24.2 58.5 10.8 78.1 2.64 57.6 38.5 60.8 34.4 61.9 31.7
ICT [83] 35.8 21.3 59.0 4.59 75.1 0.898 58.3 32.2 60.1 39.1 62.5 32.4
MT [77] 36.8 19.6 58.3 11.2 80.1 2.33 56.7 34.3 61.9 40.0 63.3 26.2

UAMT [100] 35.2 24.3 61.0 7.03 77.6 3.15 57.8 41.9 61.0 47.0 62.3 26.0
CPS [19] 37.1 30.0 61.0 2.92 78.8 3.41 57.7 39.6 62.1 36.0 64.0 23.6
GCL [13] 59.7 14.3 70.6 2.24 87.0 0.751 59.3 29.5 63.3 20.1 65.0 37.2
SCS [42] 59.4 12.7 73.6 5.37 84.2 2.01 57.8 39.6 61.5 28.8 64.6 33.9
PLC [14] 58.8 15.1 70.6 2.67 87.3 1.34 56.6 41.6 62.7 26.1 68.2 16.9

• MONA (ours) 82.6 2.03 88.8 0.62 90.7 0.864 64.1 20.9 67.3 16.4 69.3 18.0
ACDC and LiTS in Table 1, and average all our results over three independent runs. (More
results on MMWHS in the Appendix B.)

(3) CPS(2) Ground Truth (4) GCL (5) SCS (6) MONA (our)(1) Input Image (5) PCL

Figure 3: Visualization of segmentation results on ACDC with 5% label ratio. As is shown,
MONA consistently yieldsmore accurate predictions and better boundary adherence compared
to all other SSLmethods. Different anatomical classes are shown in different colors (RV:

(3) CPS(2) Ground Truth (4) GCL (5) SCS (6) MONA (our)(1) Input Image (5) PCL

;
Myo:

(3) CPS(2) Ground Truth (4) GCL (5) SCS (6) MONA (our)(1) Input Image (5) PCL

; LV:

(3) CPS(2) Ground Truth (4) GCL (5) SCS (6) MONA (our)(1) Input Image (5) PCL

).
ACDC.We benchmark performances on ACDCwith respect to different amounts of labeled
ratios (i.e., 1%, 5%, 10%). The following observations can be drawn: First, our proposed MONA
significantly outperforms all other SSLmethods under three different label ratios. Especially,
with only extremely limited labeled data available (e.g., 1%), our method obtains massive
gains of 82.6% and 2.03 in Dice and ASD (i.e., dramatically improving the performance from
59.4% to 82.6%). Second, our method achieves consistently improved performance, and per-
forms better or on par with the fully-supervised approach under all three different label
ratios. In particular, MONA with limited labeled training data available (e.g., 10%) – for the
first time – surpasses the fully supervised counterparts. For example, the best Dice score on
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(3) CPS(2) Ground Truth (4) GCL (5) SCS (6) MONA (our)(1) Input Image (5) PCL

Figure 4: Visualization of segmentation results on LiTS with 5% labeled ratio. As is shown,
MONA consistently produces sharp and accurate object boundaries compared to all other SSL
methods. Different anatomical classes are shown in different colors (Liver:

(3) CPS(2) Ground Truth (4) GCL (5) SCS (6) MONA (our)(1) Input Image (5) PCL

; Tumor:

(3) CPS(2) Ground Truth (4) GCL (5) SCS (6) MONA (our)(1) Input Image (5) PCL

).
ACDC rises from 89.9% to 90.7%. Third, as shown in Figure 3, we can see the clear advantage
of MONA, where the anatomical boundaries of different tissues are clearly more pronounced
such as RV andMyo regions. As seen, ourmethod is capable of producing consistently sharp
and accurate object boundaries across various challenge scenarios.
LiTS.We then evaluate MONA on LiTS, using 1%, 5%, 10% labeled ratios. The results are sum-
marized in Table 1 and Figure 4. The conclusions we can draw are highly consistent with the
above ACDC case: First, at the different label ratios (i.e., 1%, 5%, 10%), MONA consistently out-
performs all the other SSL methods, which again demonstrates the effectiveness of learning
representations for the inter-class correlations and intra-class invariances under imbalanced
class-distribution scenarios. In particular, our MONA, trained on a 1% labeled ratio (i.e., ex-
tremely limited labels), dramatically improves the previous best averaged Dice score from
59.3% to 64.1% by a large margin, and even performs on par with previous SSL methods
using 10% labeled ratio. Second, the most impressive results come from MONA at 10% label
ratio. To the best of our knowledge, this is the first time in the literature that SSL schemes
trained at 10% label ratio outperform the fully-supervised model by 1.1% improvements in
Dice (i.e., from 68.2% to 69.3%). Third, as shown in Figure 4, we observe that MONA is able to
produce more accurate results compared to the previous best schemes.
Overall, we conclude that MONA provides robust performance on all the medical datasets we
evaluated, exceeding that of the fully-supervised baseline, and outperforming all other SSL
methods.

4.2 Ablation Study

In this subsection, we conduct comprehensive analyses to understand the inner workings
of MONA on ACDC under 5% labeled ratio. Note that for reproducibility, we report the aver-
age performance of three independent runs with different random seeds. More results and
details about our case study are referred to the Appendix C and D.
Effects of Different Components. Our key observation is that it is crucial to build mean-
ingful anatomical representations for the inter-class correlations and intra-class invariances
under imbalanced class-distribution scenarios can further improve performance. Upon our
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choice of architecture, we first consider a naïve baseline (ISD). To validate this, we experi-
mentwith the key components in MONA onACDC, including: (1) tailness, (2) consistency, and
(3) diversity. The results are in Table 2. As is shown, each key component makes a clear dif-
ference and leveraging all of them contributes to the remarkable performance improvements.
This suggests the importance of learningmeaningful representations for the inter-class corre-
lations and intra-class invariances within the entire dataset. The intuitions behind each con-
cept are as follows: (1) Only tailness: many anatomy-rich head classes would be sampled;
(2)Only consistency: it would lead to object collapsing due to the different anatomical vari-
ations; (3)Only diversity: oversampling too many negative samples often comes at the cost
of performance degradation. By combining tailness, consistency, and diversity, our method
confers a significant advantage at representation learning in imbalanced feature similarity,
semantic consistency and anatomical diversity, which further highlights the superiority of
our proposed MONA.
Table 2: Ablation on model component: (1)
tailness; (2) consistency; (3) diversity, com-
pared to the Vanilla and our proposed MONA.

Method Metrics
Dice[%] ↑ ASD[mm] ↓

Vanilla 67.4 6.53
w/ tailness 87.1 1.02
w/ consistency 74.1 11.8
w/ diversity 74.3 10.9
w/ tailness + consistency 88.1 0.864
w/ consistency + diversity 80.2 6.11
w/ tailness + diversity 88.0 1.13
• MONA (ours) 88.8 0.62

Table 3: Ablation on augmentation strategies
for MONA on the ACDC and LiTS dataset un-
der 5% labeled ratio.

Dataset Student Teacher Metrics
Aug. Aug. Dice[%] ↑ ASD[mm] ↓

ACDC

Weak Weak 86.0 1.02
Weak Strong 88.8 0.62
Strong Weak 86.4 2.83
Strong Strong 88.8 2.07

LiTS

Weak Weak 62.3 26.5
Weak Strong 67.3 16.4
Strong Weak 64.3 34.7
Strong Strong 66.5 21.1

Effects of Different Augmentations. In addition to further improving the quality and sta-
bility in anatomical representation learning, we claim that MONA also gains robustness using
augmentation strategies. For augmentation strategies, previous works [78, 107, 75] show
that composing the weak augmentation strategy for the “pivot-to-target” model (i.e., trained
with limited labeled data and a large number of unlabeled data) is helpful for anatomical
representation learning since the standard contrastive strategy is too aggressive, intuitively
leading to a “hard” task (i.e., introducing too many disturbances and yielding model col-
lapses). Here we examine whether and how applying different data augmentations helps
MONA. In this work, we implement the weak augmentation to the student’s input as random
rotation, random cropping, horizontal flipping, and strong augmentation to the teacher’s
input as random rotation, random cropping, horizontal flipping, random contrast, CutMix
[30], brightness changes [67], morphological changes (diffeomorphic deformations). We
summarize the results in Table 3, and list the following observations: (1) weak augmenta-
tions benefits more: composing the weak augmentation for the student model and strong
augmentation for the teacher model significantly boosts the performance across two bench-
mark datasets. (2) same augmentation pairs do not make more gains: interestingly, ap-
plying same type of augmentation pairs does not lead to the best performance compared
to different types of augmentation pairs. We postulate that composing different augmenta-
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tions can be considered as a harder albeit more useful strategy for anatomical representation
learning, making feature more generalizable.

5 Conclusion

In this paper, we have presented MONA, a semi-supervised contrastive learning method for
medical image segmentation. We start from the observations that medical image data al-
ways exhibit a long-tail class distribution, and the same anatomical objects (i.e., liver regions
for two people) are more similar to each other than different objects (e.g.liver and tumor
regions). We further expand upon this idea by introducing anatomical contrastive formu-
lation, as well as equivariance and invariances constraints. An extensive empirical study
shows that we can formulate a generic set of perspectives that allows us to learn meaning-
ful representations across different anatomical features, which can dramatically improve the
segmentation quality and alleviate the training memory bottleneck. Extensive experiments
on three datasets demonstrate the state-of-the-art performance of our proposed framework
in the long-tailed medical data regimes with extremely limited labels. We believe our re-
sults contribute to a better understanding of medical image segmentation and point to new
avenues for long-tailed medical image data in realistic clinical applications.
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Appendix to
Mine yOur owN Anatomy: Revisiting Medical Image

Segmentation with Extremely Limited Labels
Sec. A provides additional training details.
Sec. B provides more experimental results on MMWHS.
Sec. C compares to existing state-of-the-art contrastive learning (CL) frameworks.
Sec. D provides more ablations on anatomical contrastive reconstruction.

A More Training Details

The ACDC dataset was hosted in MICCAI 2017 ACDC challenge [5], which includes 200
3D cardiac cine MRI scans with expert annotations for three classes (i.e., left ventricle (LV),
myocardium (Myo), and right ventricle (RV)). We divide the dataset into splits of 120, 40
and 40 scans for training, validation, and testing with a random order. For pre-processing,
we adopt the similar setting in [13] by normalizing the intensity of each 3D scan (i.e., us-
ing min-max normalization) into [0, 1], and re-sampling all 2D scans and the corresponding
segmentation maps into a fixed spatial resolution of 256× 256 pixels.
The LiTS dataset was hosted in MICCAI 2017 Liver Tumor Segmentation Challenge [6],
which includes 131 contrast-enhanced 3D abdominal CT volumes with expert annotations
for two classes (i.e., liver and tumor). We divide the dataset into splits of 100 and 31 scans for
training and testing with a random order. For pre-processing, we adopt the similar setting in
[51] by truncating the intensity of each 3D scan into [−200, 250] HU for removing irrelevant
and redundant details, normalizing each 3D scan into [0, 1], and re-sampling all 2D scans
and the corresponding segmentation maps into a fixed spatial resolution of 256× 256 pixels.
The MMWHS dataset was hosted in MICCAI 2017 challenge [111], which includes 20 3D
cardiac MRI scans with expert annotations for seven classes: left ventricle (LV), left atrium
(LA), right ventricle (RV), right atrium (RA), myocardium (Myo), ascending aorta (AAo),
and pulmonary artery (PA). We divide the dataset into splits of 15 and 5 scans for training
and testing with a random order. For pre-processing, we normalize the intensity of each 3D
scan (i.e., using min-max normalization) into [0, 1], and re-sampling all 2D scans and the
corresponding segmentation maps into a fixed spatial resolution of 256× 256 pixels.
Implementation details. We implement all the evaluatedmodels using PyTorch library [66].
All the models are trained using Stochastic Gradient Descent (SGD) (i.e., initial learning rate
= 0.01, momentum= 0.9, weight decay = 0.0001) with batch size of 6, and the initial learning
rate is divided by 10 every 2500 iterations. All of our experiments are conducted on NVIDIA
GeForce RTX 3090 GPUs. We first train our model with 100 epochs during the pre-training,
and then retrain the model for 300 epochs during the fine-tuning. We set the temperature
τξ , τθ , τ as 0.01, 0.1, 0.5. The size of the memory bank is 36. During the pre-training, we
follow the settings of ISD, including global projection head setting, and predictors with the
512-dimensional output embedding, and adopt the setting of local projection head in [42].
More specifically, given the predicted logits ŷ ∈ RC×H×W , we create 36 different views (i.e.,
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random crops at the same location) of ŷ and ŷ′ with the fixed size 64× 64, and then project
all pixels into 512-dimensional output embedding space, and the output feature dimension
of h′θ is also 512. An illustration of our representation head is presented in Figure 5. We then
actively sample 256 query embeddings and 512 key embeddings for eachmini-batch, and the
confidence threshold δθ is set to 0.97. When fine-tuning we use an equally sized pool of can-
didates K = 5, as well as λ1 = 0.01, λ2 = 1.0, λ3 = 1.0, and λ4 = 1.0. For different augmenta-
tion strategies, we implement the weak augmentation to the student’s input as random rota-
tion, random cropping, horizontal flipping, and strong augmentation to the teacher’s input
as random rotation, random cropping, horizontal flipping, random contrast, CutMix [30],
brightness changes [67], morphological changes (diffeomorphic deformations). We adopt
two popular evaluationmetrics: Dice coefficient (DSC) and Average Symmetric Surface Dis-
tance (ASD) for 3D segmentation results. Of note, the projection heads, the predictor, and
the representation head are only used in training, and will be discarded during inference.

B More Experiments Results - MMWHS

Lastly, we validate MONA on MMWHS, under 1%, 5%, 10% labeled ratios. The results are
provided in Table 4 and Figure 6. Again, we found that MONA consistently outperforms all
other SSLmethodswith a significant performancemargin, and achieves the highest accuracy
among all the SSL and fully supervised approaches under three labeled ratios. As is shown,
MONA trained at the 1% labeled ratio significantly outperforms all other methods trained at
the 1% labeled ratio, even over the 5% labeled ratio. Concretely, MONA trained at only 1% la-
beled ratio outperforms the second-best method (i.e., GLCon) both at the 1% and 5% labeled,
yielding 12.3% and 0.4% gains in Dice. We also observe the similar patterns that, MONA per-
forms better or on par with all the other methods at 10% labeled. Particularly, MONA trained at
both 5% and 10% labeled ratio surpasses the fully-supervised scheme by 0.6% and 1.8% im-
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Figure 6: Visualization of segmentation results on MMWHS with 5% labeled ratio. As is
shown, MONA consistently generates more accurate predictions compared to all other SSL
methods with a significant performance margin. Different anatomical classes are shown in
different colors (LV:
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provements in Dice, which again demonstrates the superiority of MONA in extremely limited
labeled data regimes.

C Generalization Study of Contrastive Learning Pre-training

As discussed in Section 3.1, our motivation comes from the observation that there are only
very limited labeled data and a large amount of unlabeled data in real-world clinical prac-
tice. As the fully-supervised methods generally outperform all other SSL methods by clear
margins, we postulate that leveraging massive unlabeled data usually introduces additional
noise during training, leading to degraded segmentation quality. To address this challenge,
“contrastive learning” is a straightforward way to leverage existing unlabeled data in the
learning procedure. As supported in Section 4 and Appendix B, our findings have shown
that MONA generalizes well across different benchmark datasets (i.e., ACDC, LiTS, MMWHS)
with diverse labeled settings (i.e., 1%, 5%, 10%). In the following subsection, we further
demonstrate that our proposed principles (i.e., tailness, consistency, diversity) are beneficial
to various state-of-the-art CL-based frameworks (i.e., MoCov2 [20], kNN-MoCo [81], SimCLR
[18], BYOL [35], and ISD [78]) with different label settings. More details about these three
principles can be found in Section 3.2. Of note, to the best of our knowledge, MONA is the first
SSL training scheme that consistently outperforms the fully-supervised method on diverse
benchmark datasets with only 10% labeled ratio.
Training details of competing CLmethods. We identically follow the default setting in each
CL framework [20, 81, 18, 35, 78] except the epochs number. We train eachmodel in the semi-
supervised setting. For labeled data, we follow the same training strategy in Section 3.1. As
for unlabeled data, we strictly follow the default settings in each baseline. Specifically, for
fair comparisons, we pre-train each CL baseline and our proposed CL pre-trained method
(i.e., GLCon) for 100 epochs in all our experiments. Then we fine-tune each CL model with
our proposed principles with the same setting, as provided in Appendix A. For kNN-MoCo
[81], given the following ablation study we set the number of neighbors k as 5, and further
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Table 4: Comparison of segmentation performance (DSC[%]/ASD[mm]) on MMWHS un-
der three labeled ratio settings (1%, 5%, 10%). On all three labeled settings, MONA significantly
outperforms all the state-of-the-art methods by a significant margin. The best results are in
bold.

1% Labeled 5% Labeled 10% Labeled
Method DSC ↑ ASD ↓ DSC ↑ ASD ↓ DSC ↑ ASD ↓

UNet-F [70] 85.8 8.01 85.8 8.01 85.8 8.01
UNet-L 58.3 33.9 77.8 24.4 82.7 13.5
EM [84] 54.5 41.1 80.6 17.3 82.1 15.1
CCT [65] 62.8 27.5 79.0 21.9 79.4 16.3
DAN [104] 52.8 48.4 79.4 22.7 80.2 15.0
URPC [57] 65.7 29.7 73.7 20.5 81.9 12.3
DCT [68] 62.7 27.5 80.8 23.0 82.8 12.4
ICT [83] 59.9 32.8 76.5 15.4 82.2 12.0
MT [77] 58.8 35.6 76.5 15.5 79.4 19.8

UAMT [100] 61.1 37.6 76.3 20.9 83.7 14.2
CPS [19] 58.8 33.6 78.3 22.5 82.0 13.1
GCL [13] 71.6 20.3 83.5 7.41 86.7 8.76
SCS [42] 71.4 19.3 81.1 11.5 82.6 9.68
PLC [14] 71.5 19.8 83.4 10.7 86.0 9.65

• MONA (ours) 83.9 9.06 86.3 8.22 87.6 6.83

compare different settings of k in kNN-MoCo [81] in the following subsection. All the experi-
ments are run with three different random seeds, and the results we present are calculated
from the validation set.
Comparisons with CL-based frameworks. Table 5 presents the comparisons between our
proposed methods (i.e., GLCon and MONA) and various CL baselines. After analyzing these
extensive results, we can draw several consistent observations. First, we can observe that
our proposed GLCon achieves performance gains under all the labeled ratios, which not only
demonstrates the effectiveness of our method, but also further verifies this argument us-
ing “global-local” strategy [13]. The average improvement in Dice obtained by GLCon could
reach up to 2.53%, compared to the second best scores at different labeled ratios. Second,
we can find that incorporating our proposed three principles significantly outperforms the
CL baselines without fine-tuning, across all frameworks and different labeled ratios. These
experimental findings suggest that our proposed three principles can further improve the
generalization across different labeled ratios. On the ACDC dataset at the 1% labeled ratio,
the backbones equipped with all three principles all obtain promising results, improving the
performance of MoCov2, kNN-MoCo, SimCLR, BYOL, ISD, and our GLCon by 39.1%, 38.5%, 40.9%,
41.2%, 34.3%, 34.0%, respectively. The ACDC dataset is a popular multi-class medical image
segmentation dataset, with massive imbalanced or long-tailed class distribution cases. The
imbalanced or long-tailed class distribution gap could result in the vanilla models overfitting
to the head class, and generalizing very poorly to the tail class. With the addition of under-
sampling the head classes, the principle – tailness – can be deemed as the prominent strategy
to yield better generalization and segmentation performance of the models across different
labeled ratios. Similar results are found under 5% and 10% labeled ratios. Third, over a wide
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Table 5: Ablation study of different contrastive learning frameworks on ACDC under three
labeled ratio settings (1%, 5%, 10%). We compare two settings: with or without fine-tuning
on the segmentation performance (DSC[%]/ASD[mm]). We denote ‘without fine-tuning” to
only pretaining. On all three labeled settings, our methods (i.e., GLCon and MONA) significantly
outperform all the state-of-the-art methods by a significant margin. All the experiments are
run with three different random seeds. The best results are in bold.

1% Labeled 5% Labeled 10% Labeled
Framework Method DSC ↑ ASD ↓ DSC ↑ ASD ↓ DSC ↑ ASD ↓

only pretaining

MoCov2 [20] 38.6 22.4 56.2 17.9 81.0 5.36
kNN-MoCo [81] 39.5 22.0 58.3 15.7 83.1 7.18
SimCLR [18] 34.8 24.3 51.7 19.9 80.3 4.16
BYOL [35] 35.9 7.25 65.9 9.15 85.6 2.51
ISD [78] 45.8 17.2 71.0 4.29 85.3 2.97

◦ GLCon (ours) 49.3 7.11 74.2 3.89 86.5 1.92

w/ fine-tuning

MoCov2 [20] 77.7 4.78 85.4 1.52 86.7 1.74
kNN-MoCo [81] 78.0 4.28 85.9 1.51 86.9 1.61
SimCLR [18] 75.7 4.33 83.2 2.06 86.1 2.25
BYOL [35] 77.1 4.84 85.3 2.06 88.1 0.99
ISD [78] 80.1 3.00 83.8 1.95 88.6 1.20

• MONA (ours) 83.3 1.98 89.1 0.784 90.8 0.736

range of labeled ratios, MONA can establish the new state-of-the-art performance bar for semi-
supervised medical image segmentation. Particularly, MONA – for the first time – boots the
segmentation performance with 10% labeled ratio over the fully-supervised method while
significantly outperforming all the other semi-supervised methods by a large margin. In
summary, our proposed methods (i.e., GLCon and MONA) obtain remarkable performance on
all labeled settings. The results verify the superiority of our proposed three principles (i.e.,
tailness, consistency, diversity) jointly, which makes the model well generalize to different
labeled settings, and can be easily and seamlessly plugged into all other CL frameworks
[20, 81, 18, 35, 78] adopting the two-branch design, demonstrating that these concepts con-
sistently help the model yield extra performance boosts for them all.
Does k-nearest neighbour in global feature space help? Prior work suggests that the use of
stronger augmentations and nearest neighbour can be the very effective tools in learning ad-
ditional invariances [81]. That is, both the specific number of nearest neighbours and specific
augmentation strategies are necessary to achieve superior performance. In this subsection,
we study the relationship of k-nearest neighbour in global feature space and the behavior of
our GLCon for the downstream medical image segmentation. Here we first follow the same
augmentation strategies in [81] (More analysis on data augmentation can be found in Sec-
tion 4.2), and then conduct ablation studies on how the choices of k-nearest neighbour can
influence the performance of GLCon. Specifically, we run GLCon on the ACDC dataset at the
5% labeled ratio with a range of k ∈ {3, 5, 7, 10, 12}. Figure 7(a) shows the ablation study
on k-nearest neighbour in global feature on the segmentation performance. As is shown, we
find that GLCon at k = 5, 7, 10 have almost identical performance (k = 5 has slightly better
performance compared to other two settings), and all have superior performance compared
to all others. In contrast, GLCon – through the use of randomly selected samples – is capable
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(a) (b)

(c)

Figure 7: Effects of k-nearest neighbour in global feature space, mined view-set size, and
mined view patch size. We report Dice and ASD of GLCon on the ACDC dataset at the 5%
labeled ratio. All the experiments are run with three different random seeds.

of finding diverse yet semantically consistent anatomical features from the entire dataset,
which at the same time gives better segmentation performance.
Ablation study ofmined view-set size. We then conduct ablation studies on how themined
view-set size in GLCon can influence the segmentation performance. We run GLCon on the
ACDCdataset at 5% labeled ratiowith a range of theminedview-set size∈ {12, 18, 24, 30, 36, 42, 48}.
The results are summarized in Figure 7(b). As is shown, we find that GLCon trained with
view-set size 36 and 42 have similar or superior performance compared to all other settings,
and our model with view-set size of 36 achieves the highest performance.
Ablation study ofmined view size. Lastly, we study the influence of mined view size on the
segmentation performance. Specifically, we run GLCon on theACDCdataset at the 5% labeled
ratiowith a range of themined view size∈ {8, 16, 32, 64, 128}. Figure 7(c) shows the ablation
study of mined view size on the segmentation performance. As is shown, we observe that
GLCon trained with mined view size of 32 and 64 have similar segmentation abilities, and
both achieve superior performance compared to other settings. Here the mined view size of
64 works the best for GLCon to yield the superior segmentation performance.
Conclusion. Given the above ablation study, we set k, mined view-set size, patch size as 5,
36, 64× 64 in our experiments, respectively. This can contribute to satisfactory segmentation
performance.
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D Ablation Study of Anatomical Contrastive Reconstruction

In this section, we give a detailed analysis on the choice of the parameters in the anatomi-
cal contrastive reconstruction fine-tuning, and take a deeper look and understand how they
contribute to the final segmentation performance. All the hyperparameters in training are
the same across three benchmark datasets. All the experiments are run with three different
random seeds, and the experimental results we report are calculated from the validation set.
Ablation study of total loss Ltotal. Proper choices of hyperparameters in total loss Ltotal
(See Section 3.2) play a significant role in improving overall segmentation quality. We hence
conduct the fine-grained analysis of the hyperparameters in Ltotal. In practice, we fine-
tune the models with three independent runs, and grid search to select multiple hyper-
parameters. Specifically, we run MONA on the ACDC dataset at the 5% labeled ratio with a
range of different hyperparameters λ1 ∈ {0.005, 0.001, 0.05, 0.01, 0.05, 0.1}, and λ2, λ3, λ4 ∈
{0.1, 0.2, 0.5, 1.0, 2.0, 10.0}. We summarize the results in Figure 8, and take the best setting
λ1=0.01, λ2=1.0, λ3=1.0, λ4=1.0.

(a) (b)

(c) (d)

Figure 8: Effects of hyperparameters λ1, λ2, λ3, λ4. We report Dice and ASD of MONA on the
ACDC dataset at the 5% labeled ratio. All the experiments are run with three different ran-
dom seeds.

Ablation study of confidence threshold δθ . We then assess the influence of δθ on the seg-
mentation performance. Specifically, we run MONA on the ACDC dataset at the 5% labeled
ratio with a range of the confidence threshold δθ ∈ {0.85, 0.88, 0.91, 0.94, 0.97, 1.0}. Figure
9(a) shows the ablation study of δθ on the segmentation performance. As we can see, MONA
on δθ = 0.97 has superior performance compared to other settings.
Ablation study of K-nearest neighbour constraint. Next, we conduct ablation studies on
how the choices of K in K-nearest neighbour constraint can influence the segmentation per-
formance. Specifically, we run MONA on the ACDC dataset at the 5% labeled ratio with a range
of the choices K ∈ {3, 5, 7, 10, 12}. Figure 9(b) shows the ablation study of K choices on the
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Figure 9: Effects of confidence threshold δθ , K-nearest neighbour constraint, and output em-
bedding dimension. We report Dice and ASD of MONA on the ACDC dataset at the 5% labeled
ratio. All the experiments are run with three different random seeds.

segmentation performance. As we can see, MONA on K = 5 achieves the best performance
compared to other settings.
Ablation study of output embedding dimension. Finally, we study the influence of the out-
put embedding dimension on the segmentation performance of MONA. Specifically, we run
MONA on the ACDC dataset at the 5% labeled ratio with a range of output embedding dimen-
sion ∈ {64, 128, 256, 512, 768}. Figure 9(c) shows the ablation study of output embedding
dimension on the segmentation performance. As we can see, MONA with output embedding
dimension of 512, can be trained to outperform other settings.
Conclusion. Given the above ablation study, we select λ1 = 0.01, λ2 = 1.0, λ3 = 1.0, λ4 = 1.0,
δθ = 0.97, K = 5, output embedding dimension = 512 in our experiments. This can provide
the optimal segmentation performance across different labeled ratios.
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