
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

A GREAT ARCHITECTURE FOR EDGE-BASED GRAPH
PROBLEMS LIKE TSP

Anonymous authors
Paper under double-blind review

ABSTRACT

In the last years, many neural network-based approaches have been proposed to
tackle combinatorial optimization problems such as routing problems. Many of
these approaches are based on graph neural networks (GNNs) or related trans-
formers, operating on the Euclidean coordinates representing the routing prob-
lems. However, GNNs are inherently not well suited to operate on dense graphs,
such as in routing problems. Furthermore, models operating on Euclidean coor-
dinates cannot be applied to non-Euclidean versions of routing problems that are
often found in real-world settings. To overcome these limitations, we propose
a novel GNN-related edge-based neural model called Graph Edge Attention Net-
work (GREAT). We evaluate the performance of GREAT in the edge-classification
task to predict optimal edges in the Traveling Salesman Problem (TSP). We can
use such a trained GREAT model to produce sparse TSP graph instances, keep-
ing only the edges GREAT finds promising. Compared to other, non-learning-
based methods to sparsify TSP graphs, GREAT can produce very sparse graphs
while keeping most of the optimal edges. Furthermore, we build a reinforce-
ment learning-based GREAT framework which we apply to Euclidean and non-
Euclidean asymmetric TSP. This framework achieves state-of-the-art results.

1 INTRODUCTION

Graph neural networks (GNNs) have emerged as a powerful tool for learning on graph-structured
data such as molecules, social networks, or citation graphs (Wu et al., 2020). In recent years, GNNs
have also been applied in the setting of combinatorial optimization, especially routing problems
(Joshi et al., 2019; Hudson et al., 2021; Xin et al., 2021) since such problems can be interpreted
as graph problems. However, the graph representations of routing problems, which are typically
complete, dense graphs, are ill-suited for GNNs. This is because vanilla GNNs are not generally
suitable for learning on complete graphs. GNNs are related to the Weisfeiler Leman algorithm
which is known to exploit graph structure (Morris et al., 2019). Complete graphs feature no such
structure, resulting in poor GNN performance. Moreover, over-smoothing is a well-known problem
happening in (deep) GNNs which means that feature vectors computed for different nodes become
more and more similar with every layer (Rusch et al., 2023). Naturally, in dense or even complete
graphs this problem is even more present as all nodes share the same information leading to similar
encodings. Consequently, Lischka et al. (2024) showed that the performance of GNNs operating on
routing problems can be increased if graphs are made sparse in a preprocessing step. However, the
proposed sparsification methods of Lischka et al. (2024) rely on hand-crafted heuristics which goes
against the idea of data-driven, end-to-end machine learning frameworks.

In this paper, we overcome the limitations of regular GNNs by introducing the Graph Edge Attention
Network (GREAT). This results in the following contributions:

• Whereas traditional GNNs operate on a node-level by using node-based message pass-
ing operations, GREAT is edge-based, meaning information is passed along edges shar-
ing endpoints. This makes GREAT perfect for edge-level tasks such as routing problems
where the edges to travel along are selected. We note, however, that the idea of GREAT is
task-independent and it can potentially also be applied in other suitable settings, possibly
chemistry or road networks.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

• We evaluate GREAT in the task of edge classification, training the architecture to predict
optimal edges in a Traveling Salesman Problem (TSP) tour in a supervised setting. By
this, GREAT can be used as a learning-based and data-driven sparsification method for
routing graphs. The produced sparse graphs are less likely to delete optimal edges than
hand-crafted heuristics while being overall sparser.

• We build a reinforcement learning framework that can be trained end-to-end to predict
optimal TSP tours. As the inputs of GREAT are edge features (e.g., distances), GREAT
applies to all variants of TSP, including non-Euclidean variants such as the asymmetric TSP.
The resulting trained framework achieves state-of-the-art performance for two asymmetric
TSP distributions.

2 BASICS AND RELATED WORK

2.1 GRAPH NEURAL NETWORKS

Graph neural networks are a class of neural architectures that operate on graph-structured data. In
contrast to other neural architectures like MLPs where the connections of the neurons are fixed and
grid-shaped, the connections in a GNN reflect the structure of the input data.

In essence, GNNs are a neural version of the well-known Weisfeiler-Leman (WL) graph isomor-
phism heuristic (Morris et al., 2019; Xu et al., 2019). In this heuristic, graph nodes are assigned
colors that are iteratively updated. Two nodes share the same color if they shared the same color in
the previous iteration and they had the same amount of neighbors of each color in the last iteration.
When the test is applied to two graphs and the graphs do not have the same amount of nodes of
some color in some iteration, they are non-isomorphic. WL is only a heuristic, however, as there are
certain non-isomorphic graphs it can not distinguish. Examples are regular graphs (graphs where
all nodes have the same degree) (Kiefer, 2020). We note that complete graphs (that we encounter in
routing problems) are regular graphs.

GNNs follow a similar principle as the WL heuristic, but instead of colors, vector representations
of the nodes are computed. GNNs iteratively compute these node feature vectors by aggregating
over the node feature vectors of adjacent nodes and mapping the old feature vector together with
the aggregation to a new node feature vector. Additionally, the feature vectors are multiplied with
trainable weight matrices and non-linearities are applied to achieve actual learning. The node feature
vectors of a neighborhood are typically scaled in some way (depending on the respective GNN
architecture) and sometimes, edge feature vectors are also considered within the aggregations. An
example can be found in fig. 1. Its mathematical formulation might look like this:

hi
v = σ

(
W i

1h
i−1
v +

∑
u∈N(v)

(W i
2h

i−1
u +W i

3evu)
)

(1)

here W i
1,W

i
2,W

i
3 are trainable weight matrices of suitable sizes, σ is a non-linear activation func-

tion, hi
u denotes the feature vector of a node u in the ith update of the GNN and euv denotes an edge

feature of the edge (u, v) in the input graph. Sometimes, the edge features are also updated. The
node feature vectors of the last layer of the GNN can be used for node-level classification or regres-
sion tasks. They can also be summarized (e.g. by aggregation) and used as a graph representation in
graph-level tasks. Referring back to the WL algorithm, we note how the node colors there can also
be considered as node classes. Furthermore, comparing the colors of different graphs to determine
isomorphism can be considered a graph-level task. While GNNs are bounded in their expressiveness
by the WL algorithm (Morris et al., 2019; Xu et al., 2019) and can therefore not distinguish regular
graphs (e.g., complete graphs), we acknowledge that these limitations of GNNs can be mitigated
by assigning unique “node identifiers” (like unique node coordinates) to graphs passed to GNNs
(Abboud et al., 2021). However, over-smoothing (Rusch et al., 2023) is still a problem, especially
in dense graphs. This results in a need for better neural encoder architectures in settings such as the
routing problem.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2.2 ATTENTION-BASED GRAPH NEURAL NETWORKS

Graph Attention Networks (GATs (Velickovic et al., 2017)) are a variety of GNNs. They leverage
the attention mechanism (Vaswani et al., 2017) to determine how to scale the messages sent between
the network nodes. Overall, the node features are computed as follows:

x′
i =

∑
j∈N(i)∪{i}

αi,jΘtxj (2)

where αi,j is computed as

αi,j =
exp(LeakyReLU(a⊤s Θsxi + a⊤t Θtxj + a⊤e Θeei,j))∑

k∈N(i)∪{i} exp(LeakyReLU(a⊤s Θsxi + a⊤t Θtxk + a⊤e Θeei,k))
(3)

and Θe,Θs,Θt.a
⊤
e ,a

⊤
s ,a

⊤
t are learnable parameters. We note that GAT uses the edge features only

to compute the attention scores but does not update them nor uses them in the actual message
passing.

Variations of the original GAT also use edge features in the message-passing operations. For ex-
ample, Chen & Chen (2021) propose Edge-Featured Graph Attention Networks (EGAT) which uses
edge features by applying a GAT not only on the input graph itself but also its line graph represen-
tation (compare Chen et al. (2017) as well) and then combining the computed features.

Another work incorporating edge features in an attention-based GNN is Shi et al. (2020) who use a
“Graph Transformer” that incorporates edge and node features for a semi-supervised classification
task.

Jin et al. (2023a) introduce “EdgeFormers” an architecture operating on Textual-Edge Networks
where they combine the success of Transformers in LLM tasks and GNNs. Their architecture also
augments GNNs to utilize edge (text) features.

Figure 1: Classical GNN: Node attends to
neighboring nodes (+ optionally to adjacent
edges)

Figure 2: GREAT (node-free): Edge attends
to adjacent edges

2.3 LEARNING TO ROUTE

In recent years, many studies have tried to solve routing problems such as the Traveling Salesmen
Problem or the Capacitated Vehicle Routing Problem (CVRP).

Popular approaches for solving routing problems with the help of machine learning include rein-
forcement learning (RL) frameworks, where encodings for the problem instances are computed.
These encodings are then used to incrementally build solutions by selecting one node in the problem
instance at a time. Successful works in this category include Deudon et al. (2018); Nazari et al.
(2018); Kool et al. (2019); Kwon et al. (2020); Jin et al. (2023b).

Another possibility to use machine learning for solving routing problems is to predict edge probabil-
ities or scores which are later used in search algorithms such as beam search or guided local search.
Examples for such works are Joshi et al. (2019); Fu et al. (2021); Xin et al. (2021); Hudson et al.
(2021); Kool et al. (2019); Min et al. (2024).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

A further possibility is iterative methods where a solution to a routing problem is improved over
and over until a stopping criterion (e.g., convergence) is met. Possibilities for such improvements
are optimizing subproblems or applying improvement operators such as k-opt. Examples for such
works are da Costa et al. (2021); Wu et al. (2021); Cheng et al. (2023); Lu et al. (2019); Chen &
Tian (2019); Li et al. (2021).

2.3.1 NON-EUCLIDEAN ROUTING PROBLEMS

Many of the mentioned works, especially in the first two categories, use GNNs or transformer mod-
els (which are related to GNNs via GATs (Joshi, 2020)) to capture the structure of the routing
problem in their neural architecture. This is done by interpreting the coordinates of Euclidean rout-
ing problem instances as node features. These node features are then processed in the GNN or
transformer architectures to produce encodings of the overall problem. However, this limits the
applicability of such works to Euclidean routing problems. This is unfortunate, as non-Euclidean
routing problems are highly relevant in reality. Consider, e.g., one-way streets which result in un-
equal travel distances between two points depending on the direction one is going. Another example
is variants of TSP that consider energy consumption as the objective to be minimized. If point A is
located at a higher altitude than point B, traveling from A to B might require less energy than the
other way around.

So far, only a few studies have also investigated non-Euclidean versions of routing problems, such as
the asymmetric TSP (ATSP). One such study is Gaile et al. (2022) where they solve synthetic ATSP
instances with unsupervised learning, reinforcement learning, and supervised learning approaches.
Another study is Wang et al. (2023) that uses online reinforcement learning to solve ATSP instances
of TSPLIB (Reinelt, 1991). Another successful work tackling ATSP is Kwon et al. (2021). There,
the Matrix Encoding Network (MatNet) is proposed, a neural model suitable to operate on matrix en-
codings representing combinatorial optimization problems such as the distance matrices of (A)TSP.
Their model is trained using RL.

3 GRAPH EDGE ATTENTION NETWORK

Existing GNNs are based on node-level message-passing operations, making them perfect for node-
level tasks as is also underlined by their connection to the WL heuristic. In contrast, we propose
an edge-level-based GNN where information is passed along neighboring edges. This makes our
model perfect for edge-level tasks such as edge classification (e.g., in the context of routing prob-
lems, determining if edges are “promising” to be part of the optimal solution or not). Our model is
attention-based, meaning the “focus” of an edge to another, adjacent edge in the update operation is
determined using the attention mechanism. Consequently, similar to the Graph Attention Network
(GAT) we call our architecture Graph Edge Attention Network (GREAT). A simple visualization
of the idea of GREAT is shown in fig. 2. In this visualization, edge e14 attends to all other edges
it shares an endpoint with. While GREAT is a task-independent framework, it is suited perfectly
for routing problems: Consider TSP as an example. There, we do not have any node features, only
edge features given as distances between nodes. A normal GNN would not be suitable to process
such information well. Existing papers use coordinates of the nodes in the Euclidean space as node
features to overcome this limitation. However, this trick only works for Euclidean TSP and not other
symmetric or asymmetric TSP adaptations. GREAT, however, can be applied to all these variants.

Instead of purely focusing on edge features and ignoring node features, it would also be possible to
transform the graph in its line graph and apply a GNN operating only on node features on this line
graph. In the line graph, each edge ei,j of the original graph is a node ni,j and two nodes ni,j , nk,m

in the line graph are connected if the corresponding edges ei,j and ek,m in the original graph share
an endpoint. However, a TSP instance of n cities contains n2 many edges. Therefore, the line graph
of this instance would have O(n2) many nodes. Furthermore, as the original TSP graph is complete,
each of the endpoints {i, j} of an edge in the original graphs is part of n many edges. This means
that in the line graph, each node has 2n many connections to other nodes. In other words, each of
the O(n2) nodes has O(n) edges leading to O(n3) many edges in the line graph. This implies that
the line graph has one order of magnitude more edges and nodes than the original graph.

We note that GREAT can be applied to extensions of the TSP such as the CVRP or TSP with time
windows (TSPTW) as well: even though capacities and time windows are node-level features, we

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

can easily transform them into edge features. Consider CVRP where a node j has a demand cj . We
can simply add demand cj to all edges ei,j in the graph. This is because we know that if we have an
edge ei,j in the tour, we will visit node j in the next step and therefore need a free capacity in our
vehicle big enough to serve the demand of node j which is cj . An analogous extension works for
TSPTW.

We further note that even though GREAT has been developed in the context of routing problems, it
generally is a task-oblivious architecture and it might be useful in completely different domains as
well such as chemistry, road, or flow networks.

3.1 ARCHITECTURE

In the following, we provide the mathematical model defining the different layers of a GREAT
model. In particular, we propose two versions of GREAT.

The first version is purely edge-focused and does not have any node features. Here, each edge
exchanges information with all other edges it shares at least one endpoint with. The idea essentially
corresponds to the visualization in fig. 2. In the following, we refer to this variant as “node-free”
GREAT.

The second version is also edge-focused but has intermediate, temporary node features. This essen-
tially means that nodes are used to save all information on adjacent edges. Afterward, the features
of an edge are computed by combining the temporary node features of their respective endpoints.
These node features are then deleted and not passed on to the next layer, only the edge features are
passed on. The idea of this GREAT variant is visualized in fig. 3 and fig. 4 In the remainder of this
study, we refer to this GREAT version as “node-based”.

Figure 3: GREAT (node-based): compute
temporary node features

Figure 4: GREAT (node-based): combine
temporary node features

3.2 MATHEMATICAL FORMULATIONS

We now describe the mathematical formulas defining the internal operations of GREAT. We note
that, inspired by the original transformer architecture of Vaswani et al. (2017), GREAT consists of
two types of sublayers: attention sublayers and feedforward sublayers. We always alternate between
attention and feedforward sublayers. The attention sublayers can be node-based (with temporary
nodes features) or completely node-free. Using the respective sublayers leads to overall node-based
or node-free GREAT. A visualization of the architecture can be found in fig. 5.

Node-Based GREAT, Attention Sublayers: For each node in the graph, we compute a temporary
node feature

xi =
∑

j∈N(i)

(α′
i,jW

′
1ei,j ||α′′

i,jW
′′
1 ej,i) (4)

with

α′
i,j = softmax

((W ′
2ei,j)

⊤W ′
3ei,j√

d

)
, α′′

i,j = softmax
((W ′′

2 ej,i)
⊤W ′′

3 ej,i√
d

)
(5)

Note that we compute two attention scores and concatenate the resulting values to form the tempo-
rary node feature. This allows GREAT to differentiate between incoming and outgoing edges which,
e.g. in the case of asymmetric TSP, can have different values. If symmetric graphs are processed
(where ei,j = ej,i for all nodes i, j) we can simplify the expression to only one attention score.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Edge Feature Inputs

GREAT Sublayer

Add & Norm

Feed Forward

Add & Norm

Edge Embeddings

G
R

E
AT

L
ay

er
×
n

Figure 5: A GREAT layer with sublayers and normalizations

The temporary node features are concatenated and mapped to the hidden dimension again to com-
pute the actual edge features of the layer.

e′i,j = W4(xi||xj) (6)

We note that W ′
1,W

′′
1 ,W

′
2,W

′′
2 ,W

′
3,W

′′
3 ,W

′
4,W

′′
4 are trainable weight matrices of suitable dimen-

sion. d is the hidden dimension and || denotes concatenation. W ′
1ei,j ,W

′
2ei,j and W ′

3ei,j correspond
to the “values”, “keys” and “queries” of the original transformer architecture.

Node-Free GREAT, Attention Sublayers: Here, edge features are computed directly as
ei,j = (α′

i,jW
′
1ei,j ||α′

j,iW
′
1ej,i||α′′

i,jW
′′
1 ei,j ||α′′

j,iW
′′
1 ej,i) (7)

Note that the edge feature consists of four individual terms that are concatenated. Due to the attention
mechanism, these terms summarize information on all edges outgoing from node i, ingoing to node
i, outgoing from node j, and ingoing to node j. The differentiation between in- and outgoing edges
is again necessary due to asymmetric graphs. The α′ and α′′ scores are computed as for the node-
based GREAT variant.

Feedforward (FF) Subayer: Like in the original transformer architecture, the FF layer has the
following form.

e′i,j = W2ReLU(W1ei,j + b1) + b2 (8)
where W1, b1,W2, b2 are trainable weight matrices and biases of suitable sizes. Moreover, again like
in Vaswani et al. (2017), the feedforward sublayers have internal up-projections, which temporarily
double the hidden dimension before scaling it down to the original size.

We further note that we add residual layers and normalizations to each sublayer (Attention and FF).
Therefore the output of each sublayer is (like in the original transformer architecture):

e′i,j = LayerNorm(ei,j + Sublayer(ei,j)) (9)

4 EXPERIMENTS

We evaluate the performance of GREAT in two types of experiments. First, we train GREAT in
a supervised fashion to predict optimal TSP edges. Secondly, we train GREAT in a reinforcement
learning framework to construct TSP solutions incrementally directly. Our code was implemented
in Python using PyTorch (Paszke et al., 2019) and Pytorch Geometric (Fey & Lenssen, 2019). The
code for our experiments, trained models, and test datasets will be publicly available after the paper
is accepted.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 1: Precision and recall determining optimal TSP edges

p or k Precision Recall # edges
GREAT node-free

p = 0.00001 38.39% 99.95% 52 077
p = 0.5 54.95% 99.4% 36 179
p = 0.999 64.32% 98.06% 30 491

GREAT node-based
p = 0.00001 36.22% 99.95% 55 196
p = 0.5 59.86% 99.38% 33 203
p = 0.999 70.66% 97.48% 27 594

1-Tree
k = 10 19.99% 99.97% 100 000
k = 5 39.65 % 99.13% 50 000
k = 3 63.79% 95.69% 30 000

k-nn
k = 10 19.84% 99.22% 100 000
k = 5 37.34 % 93.34% 50 000
k = 3 54.66% 81.98% 30 000

4.1 LEARNING TO SPARSIFY

In this experiment, we demonstrate GREAT’s capability in edge-classification tasks. In particular,
we train the network to predict optimal TSP edges for Euclidean TSP of size 100. The predicted
edges obtained from this network could later on be used in beam searches to create valid TSP
solutions, or, alternately for TSP sparsification as done in Lischka et al. (2024). Therefore, we
will evaluate the capability of the trained network for sparsifying TSP graphs and, while doing so,
keeping optimal edges.

The hyperparameters in this setting are as follows. We train a node-based and a node-free version
of GREAT. For both models, we choose 10 hidden layers. The hidden dimension is 64 and each
attention layer has 4 attention heads. Training is performed for 200 epochs and there are 50,000
training instances in each epoch. Every 10 epochs, we change the dataset to a fresh set of 50,000
instances (meaning 200 × 50, 000 = 10, 000, 000 instances in total). We used the Adam optimizer
with a constant learning rate of 0.0001 and weighted cross-entropy as our loss function to account
for the fact that there is an unequal number of optimal and non-optimal edges in a TSP graph. Targets
for the optimal edges were generated using the LKH algorithm.

The evaluation of the trained networks is done on 100 instances. The performance of the network
is benchmarked against the results of the “classical” algorithms 1-Tree and k-nn used in the graph
sparsification task of Lischka et al. (2024). The results are shown in table 1. For the “classical”
sparsification methods, we can set a hyperparameter k specifying that the k most promising outgoing
edges of each node in the graph are kept in the sparsified instance. This parameter k allows us to
perfectly influence how many edges will be part of the sparse graph (k × n, where n is the TSP
size). We chose three different values of k, i.e., k = 3, 5, 10. For GREAT, there is no such a
hyperparameter. We can, instead, set different thresholds for the probability p that the network
predicts an edge to be part of the optimal solution. For this, we chose 0.00001, 0.5, and 0.999. We
can see that choosing p = 0.999 results in a similar number of edges as k = 3. In this setting, the
precision and recall of both GREAT versions are significantly better than the scores achieved by the
“classical” algorithms. Here, by precision, we quantify the performance of only keeping edges that
are indeed optimal. Recall refers to the ability of the approach to keep all optimal edges in the sparse
graph. The result indicates that GREAT can produce very sparse graphs while missing relatively few
optimal edges. Overall, however, we can see that for the classical algorithms, it is easier to just make
the graphs less sparse and by this prevent deleting optimal edges. For GREAT, this is not possible,
as lowering p further to increase recall leads to prohibitively low precision.

Overall, we summarize that GREAT is a very powerful technique for creating extremely sparse
TSP graphs while deleting only a small number of optimal edges. We hypothesize that creating such

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

very sparse but “optimal” graphs can be beneficial for the ensemble methods of Lischka et al. (2024)
where sparse graphs of the most promising edges are combined with dense graphs to prevent deleting
optimal edges completely. We further observe that node-free and node-based GREAT achieve rather
similar results in this experiment.

4.2 LEARNING TO SOLVE NON-EUCLIDEAN TSP

In this task, we train GREAT in a reinforcement learning framework to construct TSP solutions
incrementally by adding one node at a time to a partial solution. Our framework follows the encoder-
decoder approach (where GREAT serves as the encoder and a multi-pointer network as the decoder)
and is trained using POMO (Kwon et al., 2020). We focus on three different TSP variants, and by
this aim to demonstrate GREAT’s versatility to also apply to non-Euclidean TSP:

1. Euclidean TSP where the coordinates are distributed uniformly at random in the unit square.
2. Asymmetric TSP with triangle inequality (TMAT) as was used in Kwon et al. (2021). We

use the code of Kwon et al. (2021) to generate instances. However, we normalize the
distance matrices differently: Instead of a fixed scaling value, we normalize each instance
individually such that the biggest distance is exactly 1. By this, we ensure that the distances
use the full range of the interval (0,1) as well as possible.

3. Extremely asymmetric TSP (XASY) where all pairwise distances are sampled uniformly
at random from the interval (0,1). The same distribution was used in Gaile et al. (2022).
Here, the triangle inequality does generally not hold.

The exact setting in this experiment is the following. For each distribution, we train three versions of
GREAT. A node-based and a node-free network with hidden dimension 128 as well as a node-free
network with hidden dimension 256. All networks have 5 hidden layers and 8 attention heads. Train-
ing is done for 400 epochs and there are 25,000 instances in each epoch. Again, every 10 epochs,
we change the dataset to a fresh set of 25,000 instances (meaning 400× 25, 000 = 10, 000, 000 in-
stances in total). We evaluate the model after each epoch and save the model with the best validation
loss during these 400 epochs for testing. Furthermore, while training, the distances of all instances
in the current data batch were multiplied by a factor in the range (0.5, 1.5) to ensure the models
learn from a more robust data distribution. This allows us to augment the dataset at inference by a
factor of ×8 like was done in Kwon et al. (2020). However, we want to note that while augment-
ing the data by this factor at inference time improves performance, using even bigger augmentation
factors like ×128 in Kwon et al. (2021) does not lead to much better results (especially considering
the enormous blowup in runtime). We suppose that this is due to our augmentation implementation
having a disadvantage. While the augmentation method in, e.g., Kwon et al. (2020) which works
by rotating coordinates, does not alter the underlying distribution much, our method by multiplying
distances does change the distribution considerably. We note that instances multiplied with values
close to 1 are favored in the end, compared to instances multiplied with values close to the borders
0.5 and 1.5.

The overall framework to construct solutions, as well as the decoder to decode the encodings pro-
vided by GREAT and the loss formulation, are adapted from Jin et al. (2023b). We note that in this
setting of incrementally building TSP solutions with an encoder-decoder approach, we would like
to have node encodings as input for the decoder and not edge encodings like they are produced by
GREAT. This is because we want to iteratively select the next node to visit, given a partial solution.
As GREAT is generally used to compute edge encodings, all GREAT architectures in this experi-
ment (node-free and node-based) have a final node-based layer where the results of the temporary
node features (compare fig. 3) are returned instead of processing them further to obtain edge embed-
dings again. By this, we can provide the decoder architecture with node encodings, despite having
operated on edge-level during the internal operations of GREAT. A visualization of the framework
can be found in fig. 6.

In the following, we provide an overview of the performance of our models in table 2 table 3 and
table 4. Optimality gaps of our approaches are computed w.r.t. the optimal solver Gurobi (Gurobi
Optimization, LLC, 2024). These (average) optimality gaps indicate how much worse the found
solutions are in percent compared to the optimal solutions. When interpreting these results, we also
point out the significant differences in the number of model parameters and the number of training
instances.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

For Euclidean TSP, we observe that our model does not quite achieve the performance of existing
architectures. However, we note that MatNet, which operates on distance matrices, also seems
to struggle, compared to the models operating on coordinates like the attention model (AM) with
POMO. MatNet still performs somewhat better than GREAT, however, we attribute this mainly to
the fact that MatNet has more parameters and, moreover, has been trained on a dataset more than 10
times larger than ours. Within the different GREAT architectures, the node-free versions perform
better than the node-based model. Furthermore, the GREAT with the most parameters, performs
best.

The TMAT distribution has several differences compared to the Euclidean distribution. Simple
heuristics like nearest insertion (NI), farthest insertion (FI), and nearest neighbor (NN) perform
considerably worse compared to the Euclidean case. Moreover, on TMAT, the only other avail-
able neural solver is MatNet. We note that for MatNet different distances are reported because the
distances in the MatNet framework have been normalized differently (indicated with an asterisk).
The optimality gaps can still be compared, however, since both models (MatNet and GREAT) have
been evaluated w.r.t. an optimal solver. We see that the node-free GREAT network with 1.26M
parameters achieves better performance than MatNet (which has ∼ 5 times more parameters and
is trained on a dataset over 10 times larger) when no data augmentation is performed. MatNet has
also been evaluated with a ×128 data augmentation which then leads to better results. However, the
runtime of MatNet in this setting is considerably worse. Within the different GREAT versions, we
can see that the node-free versions perform considerably better than the node-based version. How-
ever, the node-free model with only 1.26M parameters performs better than the model with 5.00M
parameters.

In the extremely asymmetric distribution (XASY) case, we note that all simple heuristics (nearest
insertion, farthest insertion, and nearest neighbor) perform very poorly, achieving gaps of 185% -
310%. The node-based GREAT, however, achieves gaps of 21.51% (no augmentation) and 13.24%
(×8 augmentation). Node-free GREAT versions achieve gaps between 30% and 40% without aug-
mentation, which is, contrary to the other distributions, worse than the node-based GREAT. No other
neural solvers have been evaluated on this distribution with 100 nodes. However, Gaile et al. (2022)
deployed a neural model on the same distribution for instances of 50 cities. A small comparison
between Gaile et al. (2022) and GREAT can be found in appendix A.

Overall, we summarize that GREAT achieves state-of-the-art performance on the asymmetric TSP
distributions, despite often having fewer parameters than other architectures and being trained on
smaller datasets (we expect GREAT to have an even better performance when being trained on big-
ger datasets). On the Euclidean distribution, node-free and node-based GREAT achieve comparable
performance. However, on the TMAT distribution, node-free GREAT yields better performance
while node-based GREAT leads the ranking for XASY distribution.

Table 2: Euclidean TSP

Method Params Train Set EUC100
Len. Gap Time

Gurobi Optimization, LLC (2024) - - 7.76 - -
LKH3 Helsgaun (2017) - - 7.76 0.0% -

Nearest Insertion - - 9.45 21.8% -
Farthest Insertion - - 8.36 7.66% -
Nearest Neighbor - - 9.69 24.86% -
GREAT NB x1 926k 10M 7.88 1.55% 48s
GREAT NB x8 926k 10M 7.85 1.09% 7m
GREAT NF x1 1.19M 10M 7.87 1.46% 61s
GREAT NF x8 1.19M 10M 7.84 1.02% 9m
GREAT NF x1 4.74M 10M 7.85 1.21% 2m
GREAT NF x8 4.74M 10M 7.82 0.81% 18m

AM + POMO x1 Kwon et al. (2020) 1.27M 200M 7.80 0.46% 11s
AM + POMO x8 Kwon et al. (2020) 1.27M 200M 7.77 0.14% 1m

MatNet x1 Kwon et al. (2021) 5.60M 120M 7.83 0.94% 34s
MatNet x8 Kwon et al. (2021) 5.60M 120M 7.79 0.41% 5m

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 3: TMAT TSP

Method Params Train Set TMAT100
Len. Gap Time

Gurobi Optimization, LLC (2024) - - 10.69 - -
LKH3 Helsgaun (2017) - - 10.69 0.0% -

Nearest Insertion - - 14.09 31.8% -
Farthest Insertion - - 13.25 23.92 % -
Nearest Neighbor - - 14.55 36.04% -
GREAT NB x1 1.26M 10M 11.65 8.97% 61s
GREAT NB x8 1.26M 10M 11.41 6.7% 9m
GREAT NF x1 1.26M 10M 11.03 3.12% 62s
GREAT NF x8 1.26M 10M 10.93 2.25% 9m
GREAT NF x1 5.00M 10M 11.04 3.22% 2m
GREAT NF x8 5.00M 10M 10.96 2.46% 18m

MatNet x1 Kwon et al. (2021) 5.60M 120M 1.62* 3.24% 34s
MatNet x128 Kwon et al. (2021) 5.60M 120M 1.59* 0.93% 1h

* used different normalization method for absolute distance

Table 4: XASY TSP

Method Params Train Set XASY100
Len. Gap Time

Gurobi Optimization, LLC (2024) - - 1.64 - -
LKH3 Helsgaun (2017) - - 1.64 0.01% -

Nearest Insertion - - 6.60 301.65% -
Farthest Insertion - - 6.75 310.98 % -
Nearest Neighbor - - 4.69 185.26% -
GREAT NB x1 1.26M 10M 2.00 21.53% 61s
GREAT NB x8 1.26M 10M 1.86 13.25% 9m
GREAT NF x1 1.26M 10M 2.13 29.42% 62s
GREAT NF x8 1.26M 10M 1.98 20.64% 9m
GREAT NF x1 5.00M 10M 2.29 39.49% 2m
GREAT NF x8 5.00M 10M 2.10 27.76% 18m

5 CONCLUSION

In this work, we introduce GREAT, a novel GNN-related neural architecture for edge-based graph
problems. While for previous GNN architectures it was necessary to transform graphs into their
line graph representation to operate in purely edge-focused settings, GREAT can directly be ap-
plied in such contexts. We evaluate GREAT in an edge-classification task to predict optimal TSP
edges. In this task, GREAT is able to produce very sparse TSP graphs while deleting relatively
few optimal edges compared to heuristic methods. Furthermore, we develop a GREAT-based RL
framework to directly solve TSP. Compared to existing frameworks, GREAT offers the advantage
of directly operating on the edge distances, overcoming the limitation of previous Transformer and
GNN-based models that operate on node coordinates which essentially limits these architectures to
Euclidean TSP. This limitation is rather disadvantageous in real-life settings, however, as distances
(and especially other characteristics like time and energy consumption) are often asymmetric due
to topography (e.g., elevation) or traffic congestion. GREAT achieves promising performance on
several TSP variants (Euclidean, asymmetric with triangle inequality, and asymmetric without tri-
angle inequality). We postpone it to future work to adapt GREAT to other routing problems such as
CVRP (by translating node demands to edge demands). Furthermore, we aim to develop better data-
augmentation methods for GREAT, allowing us to increase optimality at inference time by solving
each instance multiple times. We further believe that GREAT could be useful in edge-regression
tasks (e.g., in the setting of Hudson et al. (2021)) and, possibly, beyond routing problems.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Ralph Abboud, İsmail İlkan Ceylan, Martin Grohe, and Thomas Lukasiewicz. The surprising power
of graph neural networks with random node initialization. In Zhi-Hua Zhou (ed.), Proceedings of
the Thirtieth International Joint Conference on Artificial Intelligence, IJCAI-21, pp. 2112–2118.
International Joint Conferences on Artificial Intelligence Organization, 8 2021. doi: 10.24963/
ijcai.2021/291. URL https://doi.org/10.24963/ijcai.2021/291. Main Track.

Jun Chen and Haopeng Chen. Edge-featured graph attention network. arXiv preprint
arXiv:2101.07671, 2021.

Xinyun Chen and Yuandong Tian. Learning to perform local rewriting for combinatorial optimiza-
tion. Advances in neural information processing systems, 32, 2019.

Zhengdao Chen, Xiang Li, and Joan Bruna. Supervised community detection with line graph neural
networks. arXiv preprint arXiv:1705.08415, 2017.

Hanni Cheng, Haosi Zheng, Ya Cong, Weihao Jiang, and Shiliang Pu. Select and optimize: Learn-
ing to solve large-scale tsp instances. In International Conference on Artificial Intelligence and
Statistics, pp. 1219–1231. PMLR, 2023.

Paulo da Costa, Jason Rhuggenaath, Yingqian Zhang, Alp Akcay, and Uzay Kaymak. Learning
2-opt heuristics for routing problems via deep reinforcement learning. SN Computer Science, 2:
1–16, 2021.

Michel Deudon, Pierre Cournut, Alexandre Lacoste, Yossiri Adulyasak, and Louis-Martin
Rousseau. Learning heuristics for the tsp by policy gradient. In Integration of Constraint
Programming, Artificial Intelligence, and Operations Research: 15th International Conference,
CPAIOR 2018, Delft, The Netherlands, June 26–29, 2018, Proceedings 15, pp. 170–181. Springer,
2018.

Matthias Fey and Jan E. Lenssen. Fast graph representation learning with PyTorch Geometric. In
ICLR Workshop on Representation Learning on Graphs and Manifolds, 2019.

Zhang-Hua Fu, Kai-Bin Qiu, and Hongyuan Zha. Generalize a small pre-trained model to arbitrarily
large tsp instances. In Proceedings of the AAAI conference on artificial intelligence, volume 35,
pp. 7474–7482, 2021.

Elı̄za Gaile, Andis Draguns, Emı̄ls Ozoliņš, and Kārlis Freivalds. Unsupervised training for neural
tsp solver. In International Conference on Learning and Intelligent Optimization, pp. 334–346.
Springer, 2022.

Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2024. URL https://www.
gurobi.com.

Keld Helsgaun. An extension of the lin-kernighan-helsgaun tsp solver for constrained traveling
salesman and vehicle routing problems: Technical report. 2017.

Benjamin Hudson, Qingbiao Li, Matthew Malencia, and Amanda Prorok. Graph neural network
guided local search for the traveling salesperson problem. arXiv preprint arXiv:2110.05291,
2021.

Bowen Jin, Yu Zhang, Yu Meng, and Jiawei Han. Edgeformers: Graph-empowered transformers for
representation learning on textual-edge networks. arXiv preprint arXiv:2302.11050, 2023a.

Yan Jin, Yuandong Ding, Xuanhao Pan, Kun He, Li Zhao, Tao Qin, Lei Song, and Jiang Bian.
Pointerformer: Deep reinforced multi-pointer transformer for the traveling salesman problem. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 37, pp. 8132–8140, 2023b.

Chaitanya Joshi. Transformers are graph neural networks. The Gradient, 2020.

Chaitanya K. Joshi, Thomas Laurent, and Xavier Bresson. An efficient graph convolutional network
technique for the travelling salesman problem, 2019.

11

https://doi.org/10.24963/ijcai.2021/291
https://www.gurobi.com
https://www.gurobi.com

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Sandra Kiefer. Power and limits of the Weisfeiler-Leman algorithm. PhD thesis, Dissertation, RWTH
Aachen University, 2020, 2020.

Wouter Kool, Herke van Hoof, and Max Welling. Attention, learn to solve routing problems! In
International Conference on Learning Representations, 2019. URL https://openreview.
net/forum?id=ByxBFsRqYm.

Yeong-Dae Kwon, Jinho Choo, Byoungjip Kim, Iljoo Yoon, Youngjune Gwon, and Seungjai Min.
Pomo: Policy optimization with multiple optima for reinforcement learning. Advances in Neural
Information Processing Systems, 33:21188–21198, 2020.

Yeong-Dae Kwon, Jinho Choo, Iljoo Yoon, Minah Park, Duwon Park, and Youngjune Gwon. Ma-
trix encoding networks for neural combinatorial optimization. In A. Beygelzimer, Y. Dauphin,
P. Liang, and J. Wortman Vaughan (eds.), Advances in Neural Information Processing Systems,
2021. URL https://openreview.net/forum?id=C__ChZs8WjU.

Sirui Li, Zhongxia Yan, and Cathy Wu. Learning to delegate for large-scale vehicle routing. Ad-
vances in Neural Information Processing Systems, 34:26198–26211, 2021.

Attila Lischka, Jiaming Wu, Rafael Basso, Morteza Haghir Chehreghani, and Balázs Kulcsár. Less
is more – on the importance of sparsification for transformers and graph neural networks for tsp,
2024.

Hao Lu, Xingwen Zhang, and Shuang Yang. A learning-based iterative method for solving vehicle
routing problems. In International conference on learning representations, 2019.

Yimeng Min, Yiwei Bai, and Carla P Gomes. Unsupervised learning for solving the travelling
salesman problem. Advances in Neural Information Processing Systems, 36, 2024.

Christopher Morris, Martin Ritzert, Matthias Fey, William L Hamilton, Jan Eric Lenssen, Gaurav
Rattan, and Martin Grohe. Weisfeiler and leman go neural: Higher-order graph neural networks.
In Proceedings of the AAAI conference on artificial intelligence, volume 33, pp. 4602–4609, 2019.

Mohammadreza Nazari, Afshin Oroojlooy, Lawrence Snyder, and Martin Takác. Reinforcement
learning for solving the vehicle routing problem. Advances in neural information processing
systems, 31, 2018.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance
deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,
E. Fox, and R. Garnett (eds.), Advances in Neural Information Processing Systems 32, pp.
8024–8035. Curran Associates, Inc., 2019. URL http://papers.neurips.cc/paper/
9015-pytorch-an-imperative-style-high-performance-deep-learning-library.
pdf.

Gerhard Reinelt. Tsplib—a traveling salesman problem library. ORSA journal on computing, 3(4):
376–384, 1991.

T. Konstantin Rusch, Michael M. Bronstein, and Siddhartha Mishra. A survey on oversmoothing in
graph neural networks, 2023.

Yunsheng Shi, Zhengjie Huang, Shikun Feng, Hui Zhong, Wenjin Wang, and Yu Sun. Masked label
prediction: Unified message passing model for semi-supervised classification. arXiv preprint
arXiv:2009.03509, 2020.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, Yoshua Ben-
gio, et al. Graph attention networks. stat, 1050(20):10–48550, 2017.

12

https://openreview.net/forum?id=ByxBFsRqYm
https://openreview.net/forum?id=ByxBFsRqYm
https://openreview.net/forum?id=C__ChZs8WjU
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Jiaying Wang, Chenglong Xiao, Shanshan Wang, and Yaqi Ruan. Reinforcement learning for the
traveling salesman problem: Performance comparison of three algorithms. The Journal of Engi-
neering, 2023(9):e12303, 2023.

Yaoxin Wu, Wen Song, Zhiguang Cao, Jie Zhang, and Andrew Lim. Learning improvement heuris-
tics for solving routing problems. IEEE transactions on neural networks and learning systems,
33(9):5057–5069, 2021.

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and S Yu Philip. A
comprehensive survey on graph neural networks. IEEE transactions on neural networks and
learning systems, 32(1):4–24, 2020.

Liang Xin, Wen Song, Zhiguang Cao, and Jie Zhang. Neurolkh: Combining deep learning model
with lin-kernighan-helsgaun heuristic for solving the traveling salesman problem. Advances in
Neural Information Processing Systems, 34:7472–7483, 2021.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations, 2019. URL https:
//openreview.net/forum?id=ryGs6iA5Km.

A XASY50

Table 5: XASY50 TSP

Method Params Train Set XASY50
Len. Gap Time

Gurobi Optimization, LLC (2024) - - 1.64 - -
LKH3 Helsgaun (2017) - - 1.64 0.0% -

Nearest Insertion - - 4.63 181.76% -
Farthest Insertion - - 4.76 190.1% -
Nearest Neighbor - - 4.0 143.47% -
GREAT NB x1 1.26M 10M 1.80 9.35% 17s
GREAT NB x8 1.26M 10M 1.73 5.48 % 2m
GREAT NF x1 1.26M 10M 1.88 14.74% 17s
GREAT NF x8 1.26M 10M 1.79 9.31% 2m

USL Gaile et al. (2022) 355K 12.8M - 32.7%* 9s*
SL Gaile et al. (2022) 355K 1.28M - 83.38%* 9s*
RL Gaile et al. (2022) 355K 12.8M - 1439.01%* 9s*

* evaluated on 1280 instances only

To compare our approach to Gaile et al. (2022), we also train a node-based and node-free GREAT
model on this distribution with 50 nodes only and report the results. We report the different results
of Gaile et al. (2022) using the different learning paradigms as well as our own results in table 5.
Compared to the best result of Gaile et al. (2022), where a GNN-based architecture was trained
using USL, our model achieves 3 − 6× better gaps depending on whether we use ×8 instance
augmentation or no augmentation at all. We also point out that the RL-based approach of Gaile et al.
(2022) was unable to provide meaningful solutions (considering the gap of over 1400%) compared
to our GREAT model which was also trained using RL.

B GREAT-BASED ENCODER-DECODER FRAMEWORK

A visualization for the framework used in the experiments in section 4.2 is shown in fig. 6. For
the sake of simplicity, we illustrate the idea of the framework for an Euclidean TSP instance. Non-
Euclidean instances can be processed in the same way. The input to the framework is the TSP graph
with the corresponding edge weights. GREAT first produces edge encodings from these inputs. In
the last GREAT layer, however, the intermediate, internal node encodings of GREAT are returned
instead of the edge encodings. This is because the subsequent decoder (adapted from Jin et al.

13

https://openreview.net/forum?id=ryGs6iA5Km
https://openreview.net/forum?id=ryGs6iA5Km

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

GREAT
Input

GREAT
Edge Encodings

Transformed
Node Encodings

Decoder
Solution Generation

Figure 6: A visualization of our GREAT-based encoder-decoder framework

(2023b)) requires node encodings to iteratively select the next node to add to a partial solution in
order to construct a tour.

We visualize in fig. 6 how GREAT potentially learns and passes on information: We imagine that the
edge encodings produced by GREAT reflect how promising edges are to be part of the TSP solution.
This thought is supported by the fact that GREAT can successfully learn which edges are optimal
and which are not as can be seen in section 4.1. In the visualization, we assign darker colors to
the encodings of such promising edges. Then, when transformed into node encodings, we assume
that the edge information gets passed on and node encodings reflect which nodes are connected by
important edges. Our assumption that nodes connected by important edges have similar encodings
is backed up by the heatmap visualization in fig. 7. The visualization shows Euclidean distances and
cosine similarities between the vector encodings for the nodes in the TSP instance that are returned
by the GREAT encoder to be passed on to the decoder. Red frames around a tile in the heatmaps
signal that there is an edge between the two nodes in the optimal TSP solution. We can see that for
the cosine similarity, the red frames are mostly around tiles with high cosine similarity. Analogously,
for the Euclidean distance heatmaps, we can see that the red frames are mostly around tiles with low
distances. For generating these heatmaps, we used the node-based GREAT encoder for Euclidean
TSP from section 4.2. Even though the model is trained on TSP instances of size 100, we can see
that the heatmaps indicate similar patterns for TSP instances of size 50 and 30. In fig. 6, we assign
similar colors to nodes that are connected by edges deemed promising by GREAT to visualize the
effect shown in the heatmaps. In the last step of our encoder-decoder framework, we hypothesize
that the decoder can construct solutions from these embeddings by iteratively selecting similar node
encodings.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

(a) Cosine similarity node encodings TSP30 (b) Euclidean distance node encodings TSP30

(c) Cosine similarity node encodings TSP50 (d) Euclidean distance node encodings TSP50

(e) Cosine similarity node encodings TSP100 (f) Euclidean distance node encodings TSP100

Figure 7: Vector similarities for node encodings returned by the GREAT encoder in the encoder-
decoder framework

15

	Introduction
	Basics and Related Work
	Graph Neural Networks
	Attention-based Graph Neural Networks
	Learning to Route
	Non-Euclidean Routing Problems

	Graph Edge Attention Network
	Architecture
	Mathematical Formulations

	Experiments
	Learning to Sparsify
	Learning to Solve non-Euclidean TSP

	Conclusion
	XASY50
	GREAT-Based Encoder-Decoder Framework

