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Abstract

In this paper, we study the scalability of model-based algorithms learning the optimal policy
of a discounted Markovian bandit problem with n arms. There are two categories of model-
based reinforcement learning algorithms: Bayesian algorithms (like PSRL), and optimistic
algorithms (like UCRL2 or UCBVI). While a naive application of these algorithms is not
scalable because the state-space is exponential in n, we construct variants specially tailored
to Markovian bandits (MB) that we call MB-PSRL, MB-UCRL2, and MB-UCBVI. They
all have a low regret in Õ(S

√
nK) – where K is the number of episodes, n is the number of

arms and S is the number of states of each arm. Up to a factor
√
S, these regrets match

the lower bound of Ω(
√
SnK) that we also derive.

Even if their theoretical regrets are comparable, the time complexity of these algorithms
varies greatly: We show that MB-UCRL2, as well as all algorithms that use bonuses on
transition matrices have a time complexity that grows exponentially in n. In contrast, MB-
UCBVI does not use bonuses on transition matrices and we show that it can be implemented
efficiently, with a time complexity linear in n. However, our numerical experiments show
that its empirical regret is large. Finally, our Bayesian algorithm, MB-PSRL, enjoys the
best of both worlds: its running time is linear in the number of arms and its empirical
regret is the smallest of all algorithms. This is a new confirmation of the power of Bayesian
algorithms, that can often be easily tailored to the structure of the problems to learn.

1 Introduction

Markov decision processes (MDPs) are a powerful model to solve stochastic optimization problems. They
suffer, however, from what is called the curse of dimensionality: the state size of a Markov process is
exponential in its number of dimensions, so that the complexity of computing an optimal policy is exponential
in the number of dimensions of the problem. The same holds for general purpose reinforcement learning
algorithm: they all have a regret and a runtime exponential in the number of dimensions, so they also suffer
from the same curse. Very few MDPs are known to escape from this curse of dimensionality. One of the
most famous examples is the markovian bandit problem for which an optimal policy and its value can be
computed in O(n), where n is the number of arms: The optimal policy can be computed by using the Gittins
indices (computed locally) and its value can be computed by using retirement values (see for example Whittle
(1996)).

In this paper, we study a specialization of PSRL (Osband et al., 2013) to markovian bandits, that we
call markovian bandit posterior sampling (MB-PSRL) that consists in using PSRL with a prior tailored to
markovian bandits. We show that the regret of MB-PSRL is sub-linear in the number of episodes and of arms.
We also provide a regret guarantee for two optimistic algorithms that we call MB-UCRL2 and MB-UCBVI,
and that are based respectively on UCRL2 (Auer et al., 2008) and UCBVI (Azar et al., 2017). They both
use modified confidence bounds adapted to markovian bandit problems. The upper bound for their regret
is similar to the bound for MB-PSRL. This shows that in terms of regret, the posterior sampling approach
(MB-PSRL) and the optimistic approach (MB-UCRL2 and MB-UCBVI) scale well with the number of arms.
We also provide a lower bound on the regret of any learning algorithm in markovian bandit problems, which
shows that the regret bounds that we obtain for all algorithms are close to optimal.
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The situation is radically different when considering the processing time: the runtime of MB-PSRL is linear
in the number of arms, while the runtime of MB-UCRL2 is exponential in n. We show that this is not an
artifact of our implementation of MB-UCRL2 by exhibiting a Markovian bandit problem for which being
optimistic in each arm is not optimistic in the global MDP. This implies that UCRL2 and its variants (Bourel
et al., 2020; Fruit et al., 2018; Talebi & Maillard, 2018; Filippi et al., 2010) cannot be adapted to have linear
runtime in Markovian bandit problem unless an oracle gives the optimal policy. We argue that this non-
scalability of UCRL2 and variants is not a limitation of all optimistic approach but comes from the fact that
UCRL2 relies on extended value iteration (Auer et al., 2008) needed to deal with upper confidence bounds
on the transition matrices. We show that MB-UCBVI, an optimistic algorithm that does not add bonus on
transition probabilities and hence does not rely on extended value iteration, does not suffer from the same
problem. Its regret is sub-linear in the number of episodes, and arms (although larger than the regret of
both MB-PSRL and MB-UCRL2), and its runtime is linear in the number of arms.

We also conduct a series of numerical experiments to compare the performance of MB-PSRL, MB-UCRL2
and MB-UCBVI. They confirm the good behavior of MB-PSRL, both in terms of regret and computational
complexity. These numerical experiments also show that the empirical regret of MB-UCBVI is larger than
the regret of MB-PSRL and MB-UCRL2, confirming the comparisons between the upper bounds derived in
Theorem 1. All this makes MB-PSRL the better choice between the three learning algorithms.

Related work In this paper, we focus on markovian bandit problem with discount factor β < 1 and all
reward functions and transition matrices (ra, Qa)a∈{1,...,n} are unknown. A possible approach to learn under
these conditions is to ignore the problem structure and view the markovian bandit problem as a generic
MDP. There are two main families of generic reinforcement learning algorithms with regret guarantees.
The first one uses the optimism in face of uncertainty (OFU) principle. OFU methods build a confidence
set for the unknown MDP and compute an optimal policy of the “best” MDP in the confidence set, e.g.,
Bourel et al. (2020); Fruit et al. (2017); Azar et al. (2017); Auer et al. (2008); Bartlett & Tewari (2012).
UCRL2 (Auer et al., 2008) is a well known OFU algorithm. The second family uses a bayesian approach, the
posterior sampling method introduced by Thompson (1933). Such algorithms keep a posterior distribution
over possible MDPs and execute the optimal policy of a sampled MDP, see e.g., Ouyang et al. (2017); Agrawal
& Jia (2017); Gopalan & Mannor (2015); Osband et al. (2013). PSRL (Osband et al., 2013) is a classical
example of bayesian learning algorithm. All these algorithms, based on OFU or on bayesian principles, have
sub-linear bounds on the regret, which means that they provably learn the optimal policy. Yet, applied as-is
to markovian bandit problems, these bounds grow exponentially with the number of arms.

Our work is not the first attempt to exploit the structure of a MDP to improve learning. Factored MDPs (the
state space can be factored into n components) are investigated in Guestrin et al. (2003), where asymptotic
convergence to the optimal policy is proved to scale polynomially in the number of components. The regret
of learning algorithms in factored MDP with a factored action space is considered by Tian et al. (2020);
Rosenberg & Mansour (2020); Xu & Tewari (2020); Osband & Van Roy (2014). Our work differs substantially
from these. First, the markovian bandit problem is not a factored MDP because the action space is global
and cannot be factored. Second, our reward is discounted over an infinite horizon while factored MDPs have
been analyzed with no discount. Finally, and most importantly, the factored MDP framework assumes that
the successive optimal policies are computed by an unspecified solver. There is no guarantee that the time
complexity of this solver scales linearly with the number of components, especially for OFU-based algorithms.
For markovian bandits, we get an additional leverage: when all parameters are known, the Gittins index
policy is known to be an optimal policy and its computational complexity is linear in the number of arms.
This reveals an interesting difference between bayesian and extended value based algorithms (the former
being scalable and not the latter), which is not present in the literature about factored MDPs because such
papers do not consider the time complexity.

Our markovian bandit setting is known in the literature as rested or restful bandit or a family of alternative
bandit processes. Tekin & Liu (2012) consider a non-discounted setting, β = 1, and provide algorithms with
logarithmic regret guarantee for rested as well as restless settings (a generalization of rested). However, they
consider a notion of regret known as weak regret that measures how fast the learning algorithm identifies
the best arm in stationary regime. So, it ignores the learning behavior at the beginning learning process.

2



Under review as submission to TMLR

In contrast, we consider the discounted rested bandit setting in which the regret of Tekin & Liu (2012)
makes no more senses due to the discount factor and we propose a regret definition that is frequently used
in reinforcement learning literature and captures the performance of a learning algorithm during the whole
learning process. In addition, Ortner et al. (2012); Jung & Tewari (2019); Wang et al. (2020) consider a
non-discounted restless bandit setting in which only the state of chosen arms are observed by the learner.
Ortner et al. (2012); Wang et al. (2020) propose optimistic algorithms for infinite-horizon setting and provide
regret bounds that are sub-linear in time. Again the discounted case is not considered in these papers while
it is particularly interesting because learning algorithms can leverage the optimal Gittins index policy. Jung
& Tewari (2019) propose a bayesian algorithm in the episodic finite-horizon setting and also provide a regret
bound that is sub-linear in the number of episodes. However, the computational complexity is not studied in
their work (the algorithm of Ortner et al. (2012) is intractable while the ones of Jung & Tewari (2019); Wang
et al. (2020) rely on the unspecified problem solver called oracle). Contrarily, we provide both performance
guarantee and computational complexity analysis of each algorithm that we consider in this paper. Finally,
Killian et al. (2021) consider a more general setting of restless bandits in which each arm is itself a MDP and
the learner has to decide which arms to choose and which action to execute on each chosen arm under a global
action constraint. The authors propose a Lagrangian suboptimal policy to solve the restless bandit problem
with known parameters and a sampling algorithm to learn their Lagrangian policy when the parameters are
unknown. Unfortunately, no performance guarantee is provided in their work.

Since index policies scale with the number of arms, using Q-learning approaches to learn such a policy is
also popular, see e.g., Avrachenkov & Borkar (2022); Fu et al. (2019); Duff (1995). Duff (1995) addresses the
same markovian bandit problem as we do: their algorithm learns the optimal value in the restart-in-state
MDP (Katehakis & Veinott Jr, 1987) for each arm and uses Softmax exploration to solve the exploration-
exploitation dilemma. As mentioned on page 250 of Auer et al. (2002), however, there exists no finite-time
regret bounds for this algorithm. Furthermore, tuning its hyperparameters (learning rate and temperature)
is rather delicate and unstable in practice.

2 Markovian bandit problem

In this section, we introduce the markovian bandit problem and recall the notion of Gittins index when the
parameters (ra, Qa) of all arms are known.

2.1 Definitions and main notations

We consider a markovian bandit problem with n arms. Each arm 〈Sa, ra, Qa〉 for a ∈ {1, . . . , n} =: [n]
is a Markov reward process with a finite state space Sa of size S. Each arm has a mean reward vector,
ra ∈ [0, 1]S , and a transition matrix Qa. When Arm a is activated in state xa ∈ Sa, it moves to state
ya ∈ Sa with probability Qa(xa, ya). This provides a reward whose expected value is ra(xa). Without loss
of generality, we assume that the state spaces of the arms are pairwise distinct: Sa ∩ Sb = ∅ for a 6= b. In
the following, the state of an arm a will always be denoted with an index a: we will denote such a state by
xa or ya. As state spaces are disjoint, this allows us to simplify the notation by dropping the index a from
the reward and transition matrix: when convenient, we will denote them by r(xa) instead of ra(xa) and by
Q(xa, ya) instead of Qa(xa, ya) since no confusion is possible.

At time 1, the global state X1 is distributed according to some initial distribution ρ over the global state
space X = S1× . . .×Sn. At time t, the decision maker observes the states1 of all arms, Xt = (Xt,1 . . . Xt,n),
and chooses which arm At to activate. This problem can be cast as a MDP – that we denote by M – with
state space E and action space [n]. Let a ∈ [n] and x,y ∈ E . If the state at time t is Xt = x, the chosen arm
is At = a, then the agent receives a random reward Rt drawn from some distribution on [0, 1] with mean
r(xa) and the MDP M transitions to state Xt+1 = y with probability P a(x,y) that satisfies:

P a(x,y) =
{
Q(xa, ya) if xb = yb for all b 6= a;
0 otherwise. (1)

1Throughout the paper, we use capital letters (like Xt) to denote random variables and small letter (like x) to denote their
realizations. Bold letters (Xt or x) design vectors. Normal letters (Xt,a or xa) are for scalar values.

3



Under review as submission to TMLR

That is, the active arm makes a transition while the other arms remain in the same state.

Let Π be the set of deterministic policies, i.e., the set of functions π : X 7→ [n]. For the MDP M , we denote
by V πM (x) the expected cumulative discounted reward of M under policy π starting from an initial state x:

V πM (x)=E

[ ∞∑
t=0

βtRt |X0=x, At=π(Xt)
]
.

An alternative definition of V is to consider a finite-horizon problem with a geometrically distributed length.
Indeed, let H be a time-horizon geometrically distributed with parameter 1− β > 0. We have

V πM (x)=E

[
H∑
t=1

Rt |X1=x, At=π(Xt)
]
. (2)

Problem 1. Given a markovian bandit M with n arms, each is a Markov reward process 〈Sa, ra, Qa〉 with
a finite state space of size S, find a policy π : S1× . . .×Sn 7→ [n] that maximizes V πM (x) for any state x
distributed according to initial global state distribution ρ.

A policy π∗ is optimal for Problem 1 if V π∗M (x) ≥ V πM (x) for all π ∈ Π and x ∈ E . By Puterman (2014),
such a policy exists and does not depend on x (or ρ). It is given by Gittins index policy, defined below.

2.2 Gittins index policy

It is possible to compute an optimal policy π∗ for Problem 1 in a reasonable amount of time using the so
called Gittins indices: Gittins (1979) defines the Gittins index for any arm a in state xa ∈ Sa as

GIndex(xa) = sup
τ>0

E
[∑τ−1

t=0 β
tra(Zt) | Z0 = xa

]
E
[∑τ−1

t=0 β
t | Z0 = xa

] , (3)

where Z is a Markov chain whose transitions are given by Qa and τ can be any stopping time adapted to
the natural filtration of (Zt)t≥0. So, Gittins index can be considered as the maximal reward density over
time of an arm at the given state.

Gittins (1979) shows that activating the arm having the largest current index is an optimal policy. Such a
policy can be computed very efficiently: The computation of the indices of an arm with S states can be done
in O(S3) arithmetic operations, which means that the computation of the Gittins index policy is linear in
the number of arms as it takes O(nS3) arithmetic operations. For more details about Gittins indices and
optimality, we refer to Gittins et al. (2011); Weber (1992). For a survey on how to compute Gittins indices,
we refer to Chakravorty & Mahajan (2014), and to Gast et al. (2022) for a recent paper that shows how to
compute Gittins index in subcubic time (i.e., o(S3)) for each of the n arms).

3 Online learning and episodic regret

We now consider an extension of Problem 1 in which the decision maker does not know the transition matrices
nor the rewards. Our goal is to design a reinforcement learning algorithm that learns the optimal policy
from past observations. Similarly to what is done for finite-horizon reinforcement learning with deterministic
horizon – see e.g., Jin et al. (2018); Azar et al. (2017); Osband et al. (2013) – we consider a decision maker
that faces a sequence of independent replicas of the same markovian bandit problem, where the transitions
and the rewards are drawn independently for each episode. What is new here is that the time horizon H
is random and has a geometric distribution. It is drawn independently for each episode. This implies that
Gittins index policy is optimal for a decision maker that would know the transition matrices and rewards.

In this paper, we consider episodic learning algorithms. Let H1, . . . ,Hk be the sequence of random
episode lengths and let tk := 1+

∑k−1
i=1 Hi be the starting time of the kth episode. Let Ok−1 :=

(X1, A1, R1, . . . ,Xtk−1, Atk−1, Rtk−1) denote the observations made prior and up to episode k. An Episodic
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Learning Algorithm L is a function that maps observations Ok−1 to L(Ok−1), a probability distribution over
all policies. At the beginning of episode k, the algorithm samples πk ∼ L(Ok−1) and uses this policy during
the whole kth episode. Note that one could also design algorithms where learning takes place inside each
episode. We will see later that episodic learning as described here is enough to design algorithms that are
essentially optimal, in the sense given by Theorem 1 and Theorem 2.

For an instance M of a markovian bandit problem and a total number of episodes K, we denote by
Reg(K,L,M) the regret of a learning algorithm L, defined as

Reg(K,L,M) :=
K∑
k=1

V π∗M (Xtk)− V πkM (Xtk). (4)

It is the sum over all episodes of the value of the optimal policy π∗ minus the value obtained by applying the
policy πk chosen by the algorithm for episode k. In what follows, we will provide bounds on the expected
regret.

A no-regret algorithm is an algorithm L such that its expected regret E [Reg(K,L,M)] grows sub-linearly
in the number of episodes K. This implies that the expected regret over episode k converges to 0 as k goes
to infinity. Such an algorithm learns an optimal policy of Problem 1.

Note that, for discounted MDPs, an alternative regret definition (used for instance by He et al. (2021)) is to
use the non-episodic version

∑T
t=1(V π∗M (Xt)−V πtM (Xt)). In our definition at Equation 4, we use an episodic

approach where the process is restarted according to ρ after each episode of geometrically distributed length
Hk.

4 Learning algorithms for markovian bandits

In what follows, we present three algorithms having a regret that grows like Õ(S
√
nK), that we call MB-

PSRL, MB-UCRL2 and MB-UCBVI. As their names suggest, these algorithms are adaptation of PSRL,
UCRL2 and UCBVI to markovian bandit problems that intend to overcome the exponentiality in n of their
regret. The structure of the three MB-* algorithm is similar and is represented in Algorithm 1. All algorithms
are episodic learning algorithms. At the beginning of each episode, a MB-* learning algorithm computes a
new policy πk that will be used during an episode of geometrically distributed length. The difference between
the three algorithms lies in the way this new policy πk is computed. MB-PSRL uses posterior sampling while
MB-UCRL2 and MB-UCBVI use optimism. We detail the three algorithms below.

Algorithm 1 Pseudo-code of the three MB-* algorithms.
input Discount factor β, initial distribution ρ (and a prior distribution (φa)a∈[n] for MB-PSRL)

1: for episodes k = 1, 2, . . . do
2: Compute a new policy πk (using posterior sampling or optimism).
3: Set tk ← 1 +

∑k−1
i=1 Hi, sample Xtk ∼ ρ and Hk ∼ Geom(1− β).

4: for t← tk to tk +Hk − 1 do
5: Activate arm At = πk(Xt).
6: Observe Rt and Xt+1.
7: end for
8: end for

4.1 MB-PSRL

MB-PSRL starts with a prior distribution φa over the parameters (ra, Qa). At the start of each episode k,
MB-PSRL computes a posterior distribution of parameters φa(· | Ok−1) for each arm a ∈ [n] and samples
parameters (rak , Qak) from φa(· | Ok−1) for each arm. Then, MB-PSRL uses (rak , Qak)a∈[n] to compute the
Gittins index policy πk that is optimal for the sampled problem. The policy πk is then used for the whole
episode k. Note that as πk is a Gittins index policy, it can be computed efficiently.
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The difference between PSRL and MB-PSRL is mostly that MB-PSRL uses a prior distribution tailored
to markovian bandit. The only hyperparameter of MB-PSRL is the prior distribution φ. As we see in
Appendix E, MB-PSRL seems robust to the choice of the prior distribution, even if a coherent prior gives
a better performance than a misspecified prior, similarly to what happens for Thompson’s sampling (Russo
et al., 2018).

4.2 MB-UCRL2

At the beginning of each episode k, MB-UCRL2 computes the following quantities for each state xa ∈ Sa:
Nk−1(xa) the number of times that Arm a is activated before episode k while being in state xa, and
r̂k−1(xa), and Q̂k−1(xa, ·) are the empirical means of r(xa) and Q(xa, ·). We define the confidence bonuses
brk−1(xa) =

√
log(2SnKtk)

2 max{1,Nk−1(xa)} and bQk−1(xa) =
√

2 log(SnK2Stk)
max{1,Nk−1(xa)} . This defines a confidence set Mk as

follows: a markovian bandit problem M ′ is in Mk if for all a ∈ [n] and xa ∈ Sa:

|r′(xa)− r̂k−1(xa)| ≤ brk−1(xa) and ‖Q′(xa, ·)− Q̂k−1(xa, ·)‖1 ≤ bQk−1(xa). (5)

MB-UCRL2 then chooses a policy πk that is optimal for the most optimistic problem Mk ∈Mk:

πk ∈ arg max
π

max
M ′∈Mk

V πM ′(ρ). (6)

Note that as we explain later in Section 6.1, we believe that there is no efficient algorithm to compute the
best optimistic policy πk of Equation 6.

Compared to a vanilla implementation of UCRL2, MB-UCRL2 uses the structure of the markovian bandit
problem: The constraints Equation 5 are on Q whereas vanilla UCRL2 uses constraints on the full matrix P
(defined in Equation 1). This leads MB-UCRL2 to use the bonus term that scales as

√
S/Nk−1(xa) whereas

vanilla UCRL2 would use the term in
√
Sn/Nk−1(x, a).

4.3 MB-UCBVI

At the beginning of episode k, MB-UCBVI uses the same quantities Nk−1(xa), r̂k−1(xa), and Q̂k−1(xa, ·) as
MB-UCRL2. The difference lies in the definition of the bonus terms. While MB-UCRL2 uses a bonus on the
reward and on the transition matrices, MB-UCBVI defines a bonus bk−1(xa):= 1

1−β

√
log(2SnKtk)

2 max{1,Nk−1(xa)} that
is used on the reward only. MB-UCBVI computes the Gittins index policy πk that is optimal for the bandit
problem (r̂ak−1+bak−1, Q̂

a
k−1)a∈[n].

Similarly to the case of UCRL2, a vanilla implementation of UCBVI would use a bonus that scales exponen-
tially with the number of arms. MB-UCBVI makes an even better use of the structure of the learned problem
because the optimistic MDP (r̂ak−1+bak−1, Q̂

a
k−1)a∈[n] is still a markovian bandit problem. This implies that

the optimistic policy πk is a Gittins index policy, and that can therefore be computed efficiently.

5 Regret analysis

In this section, we first present upper bounds on the expected regret of the three learning algorithms. These
bounds are sub-linear in the number of episodes (hence the three algorithms are no-regret algorithms) and
sub-linear in the number of arms. We then derive a minimax lower bound on the regret of any learning
algorithm in the markovian bandit problem.

5.1 Upper bounds on regret

The theorem below provides upper bounds on the expected regret of the three algorithms presented in
Section 4. Note that since MB-PSRL is a bayesian algorithm, we consider its bayesian regret, that is
the expectation over all possible model. More precisely, if the unknown MDP M is drawn from a prior
distribution φ, the bayesian regret of a learning algorithm L is BayReg(K,L, φ) = E[Reg(K,L,M)], where
the expectation is taken over all possible values of M ∼ φ and all possible runs of the algorithm. The
expected regret E [Reg(K,L,M)] is defined by taking the expectation over all possible runs of the algorithm.
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Theorem 1. Let f(S, n,K, β) = Sn (logK/(1−β))2 +
√
SnK (logK/(1−β))3/2. There exists universal

constants C,C ′ and C ′′ independent of the model (i.e., that do not depend on S, n, K and β) such that:

• For any prior distribution φ:

BayReg(K,MB-PSRL, φ) ≤ C
(√

S+ log SnK logK
1− β

)
f(S, n,K, β),

• For any markovian bandit model M :

E [Reg(K,MB-UCRL2,M)] ≤ C ′
(√

S+ log SnK logK
1− β

)
f(S, n,K, β),

E [Reg(K,MB-UCBVI,M)] ≤ C ′′
( √

S

1− β

)(
log SnK logK

1− β

)
f(S, n,K, β),

We provide a sketch of proof below. The detailed proof is provided in Appendix A in the supplementary
material.

This theorem calls for several comments. First, it shows that when K ≥ Sn/(1−β), the regret of MB-PSRL
and MB-UCRL2 is smaller than

Õ

(
S
√
nK

(1− β)3/2

)
, (7)

where the notation Õ means that all logarithmic terms are removed. The regret of MB-UCBVI has an extra
1/(1− β) factor.

Hence, the regret of the three algorithms is sub-linear in the number of episodes K which means that they all
are no-regret algorithms. This regret bound is sub-linear in the number of arms which is very significant in
practice when facing a large number of arms. Note that directly applying PSRL, UCRL2 or UCBVI would
lead to a regret in Õ

(
Sn
√
nK
)
or Õ

(√
nSnK

)
, which is exponential in n.

Second, the upper bound on the expected regret of MB-UCRL2 (and of MB-UCBVI) is a guarantee for a
specific problem M while the bound on bayesian regret of MB-PSRL is a guarantee in average overall the
problems drawn from the prior φ. Hence, the bounds of MB-UCRL2 and MB-UCBVI are stronger guarantee
compared to the one of MB-PSRL. Yet, as we will see later in the numerical experiments reported in Section
7, MB-PSRL seems to have a smaller regret in practice, even when the problem does not follow the correct
prior.

Finally, our bound Equation 7 is linear in S, the state size of each arm. Having a regret bound linear in the
state space size is currently state-of-the-art for bayesian algorithms, see e.g., Agrawal & Jia (2017); Ouyang
et al. (2017). For optimistic algorithms, the best regret bounds are linear in the square root of the state size
because they use Bernstein’s concentration bounds instead of Weissman’s inequality (Azar et al., 2017), yet
this approach does not work in the discounted case because of the random length of episodes. UCBVI has
also been studied in the discounted case by He et al. (2021). However they use with a different definition of
regret, making their bound on the regret hard to compare with ours.

Sketch of proof

A crucial ingredient of our proof is to work with the value function over a random finite time horizon (W
defined below), instead of working directly with the discounted value function V . For a given model M , and
a stationary policy π, a horizon H and a time step h ≤ H, we define by Wπ

M,h:H(x) the value function of a
policy π over the finite time horizon H − h+ 1 when starting in x at time h. It is defined as

Wπ
M,h:H(x) = rπ(x)+

∑
y∈E

Pπ(x,y)Wπ
M,h+1:H(y), (8)
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withWπ
M,H:H(x) = rπ(x) and where rπ and Pπ are reward vector and state transition matrix when following

policy π.

By definitions of W in Equation 8 and V in Equation 2, for a fixed model M , a policy π and a state x, and
a time horizon H that is geometrically distributed, one has V πM (x) = E

[
Wπ
M,1:H(x)

]
.

This characterization is important in our proof. Since the episode length Hk is independent of the observa-
tions available before episode k, Ok−1, for any policy πk that is independent of Hk, one has

E [V πkM (Xtk) | Ok−1, πk] = E
[
Wπk
M,1:Hk(Xtk) | Ok−1, πk

]
. (9)

In the above Equation 9, the expectation is taken over all initial state Xtk and all possible horizon Hk.

Equation 9 will be very useful in our analysis as it allows us to work with either V or W interchangeably.
While the proof of MB-PSRL could be done by only studying the function W , the proof of MB-UCRL2
and MB-UCBVI will use the expression of the regret as a function of V to deal with the non-determinism.
Indeed, at episode k, all algorithms compare the optimal policy π∗ (that is optimal for the true MDP M)
and a policy πk chosen by the algorithm (that is optimal for a MDPMk that is either sampled by MB-PSRL
or chosen by an optimistic principle). The quantity ∆k := Wπ∗

M,1:Hk(Xtk)−Wπk
M,1:Hk(Xtk) equals:

Wπ∗
M,1:Hk(Xtk)−Wπk

Mk,1:Hk(Xtk)︸ ︷︷ ︸
(A)

+Wπk
Mk,1:Hk(Xtk)−Wπk

M,1:Hk(Xtk)︸ ︷︷ ︸
(B)

. (10)

The analysis of the term (B) is similar for the three algorithms: it is bounded by the distance between the
sampled MDP Mk and the true MDP M that can in turn be bounded by using a concentration argument
(Lemma 1) based on Hoeffding’s and Weissman’s inequalities. Compared with the literature (Azar et al.,
2017; Ouyang et al., 2017), our proof leverages on taking conditional expectations, making all terms whose
conditional expectation is zero disappear. One of the main technical hurdle is to deal with the K random
episodes H1, . . . ,Hk. This is also new in our approach compared to the classical analysis of finite horizons
regrets.

The analysis of (A) depends heavily on the algorithm used. The easiest case is PSRL: As our setting is
bayesian, the expectation of the first term (A) with respect to the model is zero (see Lemma 5). The case of
MB-UCRL2 and MB-UCBVI are harder. In fact, our bonus terms are specially designed so that V πkMk

(x) is
an optimistic upper bound of the true value function with high probability, that is:

V πkMk
(x) = max

π
max
M ′∈Mk

V πM ′(x) ≥ V π∗M (x). (11)

This requires the use of V and not W and it is used to show that the expectation of the term (A) of
Equation 10 cannot be positive.

5.2 Minimax lower bound

After obtaining upper bounds on the regret, a natural question is: can we do better? Or in other terms,
does there exist a learning algorithm with a smaller regret? To answer this question, the metric used in
the literature is the notion of minimax lower bound: for a given set of parameters (S, n,K, β), a minimax
lower bound is a lower bound on the quantity infL supM Reg(K,L,M), where the supremum is taken among
all possible models that have parameters (S, n,K, β) and the infimum is taken over all possible learning
algorithms. The next theorem provides a lower bound on the bayesian regret. It is therefore stronger than a
minimax bound for two reasons: First, the bayesian regret is an average over models, which means that there
exists at least one model that has a larger regret than the bayesian lower bound; And second, in Theorem 2,
we allow the algorithm to depend on the prior distribution φ and to use this information.
Theorem 2 (Lower bound). For any state size S, number of arms n, discount factor β and number
of episodes K ≥ 16S, there exists a prior distribution φ on markovian bandit problems with parameters
(S, n,K, β) such that, for any learning algorithm L:

BayReg(K,L, φ) ≥ 1
60

√
SnK

(1− β) . (12)
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The proof is given in Appendix B and uses a counterexample inspired by the one of Auer et al. (2008). Note
that for general MDPs, the minimax lower bound obtained by Osband & Van Roy (2016); Auer et al. (2008)
says that a learning algorithm cannot have a regret smaller than Ω

(√
S̃ÃT̃

)
, where S̃ is the number of states

of the MDP, Ã is the number of actions and T̃ is the number of time steps. Yet, the lower bound of Osband
& Van Roy (2016); Auer et al. (2008) is not directly applicable to our case with S̃ = Sn because markovian
bandit problems are very specific instances of MDPs and this can be exploited by the learning algorithm.
Also note that this lower bound on the bayesian regret is also a lower bound on the expected regret of any
non-bayesian algorithm for any MDP model M .

Apart from the logarithmic terms, the lower bound provided by Theorem 2 differs from the bound of
Theorem 1 by a factor

√
S/(1−β). This factor is similar to the one observed for PSRL and UCRL2 (Osband

et al., 2013; Auer et al., 2008). There are various factors that could explain this. We believe that the extra
factor 1/(1− β) might be half due to the episodic nature of MB-PSRL and MB-UCRL2 (when 1/(1− β) is
large, algorithms with internal episodic updates might have smaller regret) and half due to the fact that the
lower bound of Theorem 2 is not optimal and could include a term 1/

√
1− β (similar to the term O(

√
D) of

the lower bound of Osband & Van Roy (2016); Auer et al. (2008)). The factor
√
S between our two bounds

comes from our use of Weissman’s inequality. It might be possible that our regret bounds are not optimal
with respect to this term although such an improvement cannot be obtained using the same approach of
Azar et al. (2017).

6 Scalability of learning algorithms for markovian bandits

Historically, Problem 1 was considered unresolved until Gittins (1979) proposed Gittins indices. This is
because previous solutions were based on Dynamic Programming in the global MDP which are computa-
tionally expensive. Hence, after establishing regret guarantees, we are now interested in the computational
complexity of our learning algorithms, which is often disregarded in the learning literature.

6.1 MB-PSRL and MB-UCBVI are scalable

If one excludes the simulation of the MDP, the computational cost of MB-PSRL and MB-UCBVI of each
episode is low. For MB-PSRL, its cost is essentially due to three components: Updating the observations,
sampling from the posterior distribution and computing the optimal policy. The first two are relatively fast
when the conjugate posterior has a closed form: updating the observation takes O(1) at each time, and
sampling from the posterior can be done in O(nS2) – more details on posterior distributions are given in
Appendix D. When the conjugate posterior is implicit (i.e., under the integral form), the computation can
be higher but remains linear in the number of arms. For MB-UCBVI, the cost is due to two components:
computing the bonus terms and computing the Gittins policy for the optimistic MDP. Computing the bonus
is linear in the number of bandits and the length of the episode. As explained in Section 2.2, the computation
of the Gittins index policy for a given problem can be done in O(nS3). Hence, MB-PSRL and MB-UCBVI
successfully escape from the curse of dimensionality.

6.2 MB-UCRL2 is not scalable because it cannot use an Index Policy

While MB-UCRL2 has a regret equivalent to the one of MB-PSRL, its computational complexity, and in
particular the complexity of computing an optimistic policy that maximizes Equation 6 does not scale with
n. Such a policy can be computed by using extended value iteration (Auer et al., 2008). This computation
is polynomial in the number of states of the global MDP and is therefore exponential in the number of
arms, precisely O(nS2n). For MB-PSRL (or MB-UCBVI), the computation is easier because the sampled
(optimistic) MDP is a markovian bandit problem. Hence, using Gittins Theorem, computing the optimal
policy can be done by computing local indices. In the following, we show that it is not possible to solve
Equation 6 by using local indices. This suggests that MB-UCRL2 (nor any of the modifications of UCRL2’s
variants that would use extended value iteration) cannot be implemented efficiently.

More precisely, to find an optimistic policy (that satisfies Equation 11), UCRL2 and its variants, e.g., KL-
UCRL (Filippi et al., 2010), compute a policy πk that is optimal for the most optimistic MDP in Mk. This

9
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can be done by using extended value iteration. We now show that this cannot be replaced by the computation
of local indices.

Let us consider that the estimates and confidence bounds for a given arm a are B̂a = (r̂a, Q̂a, bra, bQa ). We
say that an algorithm computes indices locally for Arm a if for each xa ∈ Sa, it computes an index IB̂a(xa)
by using only B̂a but not B̂b for any b 6= a. We denote by πI(B̂) the index policy that uses index IB̂a for arm
a and by M(B̂) the set of markovian bandit problems M ′ that satisfy Equation 5.
Theorem 3. For any algorithm that computes indices locally, there exists a markovian bandit problem M ,
an initial state x and estimates B̂a = (r̂a, Q̂a, bra, bQa ) such that M ∈M(B̂) and

sup
M ′∈M(B̂)

V π
I(B̂)

M ′ (x) < sup
π
V πM (x).

Proof. The proof presented in Appendix C is obtained by constructing a set M and two MDPs M1 and M2
in M such that Equation 11 cannot hold simultaneously for both M1 and M2.

This theorem implies that one cannot define local indices such that Equation 11 holds for all bandit problems
M ∈Mk. Yet, the use of this inequality is central in the regret analysis of UCRL2 (see the proof of UCRL2
(Auer et al., 2008)). This implies that the current methodology to obtain regret bounds for UCRL2 and its
variants, e.g., Bourel et al. (2020); Fruit et al. (2018); Talebi & Maillard (2018); Filippi et al. (2010), that
use Extended Value Iteration is not applicable to bound the regret of their modified version that computes
indices locally.

Note that for any set M such that M ∈ M, there still exists an index policy πind that is optimistic because
all MDPs in M are markovian bandit problems. This optimistic index policy satisfies

sup
M ′∈M

V π
ind

M ′ ≥ sup
π
V πM .

This means that restricting to index policies is not a restriction for optimism. What Theorem 3 shows is
that an optimistic index policy can be defined only after the most optimistic MDP M ∈M is computed and
computing optimistic policy and M simultaneously depends on the confidence sets of all arms.

Therefore, we believe that UCRL2 and its variants cannot compute optimistic policy locally: they should
all require the joint knowledge of all (B̂a)a∈[n].

7 Numerical experiments

In complement to our theoretical analysis, we report, in this section, the performance of our three algorithms
in a model taken from the literature. The model is an environment with 3 arms, all following a Markov
chain that is obtained by applying the optimal policy on the river swim MDP. A detailed description is
given in Appendix D, along with all hyperparameters that we used. Our numerical experiments suggest that
MB-PSRL outperforms other algorithms in term of average regret and is computationally less expensive
than other algorithms. To ensure reproducibility, the code and data of our experiments are available (link
to GitHub repository hidden for double blind review).

Performance result We investigate the average regret and policy computation time of each algorithm.
To do so, we run each algorithm for 80 simulations and for K = 3000 episodes per simulation. We arbitrarily
choose the discount factor β = 0.99. In Figure 1(a), we show the average cumulative regret of the 3
algorithms. We observe that the average regret of MB-UCBVI is larger than those of MB-PSRL and MB-
UCRL2. Moreover, we observe that MB-PSRL obtains the best performance and that its regret seems to
grow slower than O(

√
K). This is in accordance to what was observed for PSRL (Osband et al., 2013). Note

that the expected number of time steps after K episodes is K/(1− β) which means that in our setting with
K = 3000 episodes there are 300 000 time steps in average. In Figure 1(b), we compare the computation time
of the various algorithms. We observe that the computation time (the y-axis is in log-scale) of MB-PSRL

10
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(a) Average cumulative regret in function of the number of
episodes.

(b) Average runtime per episode. The vertical axis is in log-
scale.

Figure 1: Experimental result for the three 4-state random walk arms given in Table 1. The x-axis is the
number of episodes. Each algorithm is identified by a unique color for all figures.

and MB-UCBVI, the index-based algorithms, are the fastest by far. Moreover, the computation time of
these algorithms seem to be independent of the number of episodes. These two figures show that MB-PSRL
has the smallest regret and computation time among all compared algorithms.

Robustness (larger models and different priors) To test the robustness of MB-PSRL, we conduct two
more sets of experiments that are reported in Appendix E. They confirm the superiority of MB-PSRL. The
first experiment is an example from Duff (1995) with 9 arms each having 11 states. This model illustrates
the effect of the curse of dimensionality: the global MDP has 119 states which implies that the runtime of
MB-UCRL2 makes it impossible to use, while MB-PSRL and MB-UCBVI take a few minutes to complete
3000 episodes. Also in this example, MB-PSRL seems to converge faster to the optimal policy than MB-
UCBVI. The second experiment tests the robustness of MB-PSRL to the choice of prior distribution. We
provide numerical evidences that show that, even when MB-PSRL is run with a prior φ that is not the one
from which M is drawn, the regret of MB-PSRL remains acceptable (around twice the regret obtained with
a correct prior).

8 Conclusion

In this paper, we present MB-PSRL, a modification of PSRL for markovian bandit problems. We show
that its regret is close to the lower bound that we derive for this problem while its runtime scales linearly
with the number of arms. Furthermore, and unlike what is usually the case, MB-PSRL does not have an
optimistic counterpart that scales well: we prove that MB-UCRL2 also has a sub-linear regret but has a
computational complexity exponential in the number of arms. This result generalizes to all the variants
of UCRL2 that rely on extended value iteration. We nevertheless show that OFU approach may still be
pertinent for markovian bandit problem: MB-UCBVI, a version of UCBVI can use Gittins indices and does
not suffer from the dimensionality curse: it has a sub-linear regret in terms of the number of episodes and
number of arms as well as a linear time complexity. However its regret remains larger than with MB-PSRL.
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All appendix are given in the supplementary material.

The appendix are organized as follows:

• In Appendix A, we prove Theorem 1.

• In Appendix B, we obtain a lower bound of the regret of any reinforcement learning algorithm for
markovian bandits (Theorem 2).

• In Appendix C, we show that Equation 6 cannot be solved by local indices (Theorem 3).

• In Appendix D, we provide a detailed description of the algorithms that we use in our numerical
comparisons.

• In Appendix E, we provide additional numerical experiments that show the good behavior of MB-
PSRL.

• In Appendix F, we provide details about the experimental environment and the computation time
needed.
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A Proof of Theorem 1

The proof of the regret bounds for our three algorithms share a common structure but with different technical
details. In this section, we do a detailed proof of the three algorithms by factorizing as much as possible
what can be factorized in the different proofs. This proof is organized as follows:

• In Section A.1, we give an overview of the proof that is common to all algorithms.

• In Section A.2, we provide technical lemmas that are used in the detailed proofs of each algorithms.

• In Section A.3, A.4 and A.5, we provide detailed analysis of MB-PSRL, MB-UCRL2, and MB-
UCBVI.

A.1 Overview of the Proof

Let π∗ be the optimal policy of the true MDP M and πk the optimal policy for Mk, the sampled MDP at
episode k. Recall that the expected regret is

∑K
k=1 E [∆k], where ∆k=Wπ∗

M,1:Hk(Xtk)−Wπk
M,1:Hk(Xtk). For

each of the three algorithms, we will define an event EAlgo
k−1 that is Ok−1-measurable. EAlgo

k−1 is true with high
probability and guarantees that M and Mk are close. We have:

E [∆k] = E
[
∆kI{¬EAlgo

k−1 }
+ ∆kI{EAlgo

k−1 }

]
≤ E [Hk]P

(
¬EAlgo

k−1

)
+ E

[
∆kI{EAlgo

k−1 }

]
(13)

because ∆k ≤ Hk and the random variables Hk and I{EAlgo
k−1 }

are independent. For each of the three algo-
rithms, the policy πk used at episode k is optimal for a model Mk, that is either sampled from the posterior
distribution for MB-PSRL, or computed by extended value iteration for MB-UCRL2, or equal to the model
with the bonus for MB-UCBVI. We have

∆k = Wπ∗
M,1:Hk(Xtk)−Wπk

Mk,1:Hk(Xtk)︸ ︷︷ ︸
:=∆model

k

+Wπk
Mk,1:Hk(Xtk)−Wπk

M,1:Hk(Xtk)︸ ︷︷ ︸
:=∆conc

k

.

As we deal with the expected regret and Hk is independent of the model Mk and of the policy πk, we have:

E
[
∆model
k

]
= V π∗M (Xtk)− V πkMk

(Xtk) (14)

As we see later, the above equation can be used to show that E
[
∆model
k I{EAlgo

k−1 }

]
is either 0 (for MB-PSRL)

or non-positive (for MB-UCRL2 or MB-UCBVI).

We are then left with E
[
∆conc
k I{EAlgo

k−1 }

]
. To do so, we use Lemma 2 to show that there exists a constant Bk

(equal to Hk for MB-PSRL and MB-UCRL2 and HkLk−1/(2(1− β)) for MB-UCBVI) such that

E
[
∆conc
k I{EAlgo

k−1 }

]
= E

[
I{EAlgo

k−1 }

(
Wπk
Mk,1:Hk(Xtk)−Wπk

M,1:Hk(Xtk)
)]

≤E

[
I{EAlgo

k−1 }

tk+1−1∑
t=tk

|rk(Xt,At)−r(Xt,At)|+Bk ‖Qk(Xt,At , ·)−Q(Xt,At , ·)‖1

]
(15)

where ‖Qk(xa, ·)−Q(xa, ·)‖1 =
∑
ya
|Qk(xa, ya)−Q(xa, ya)|. For an arm a and a state xa ∈ Sa, we denote2

by Nk−1(xa)=
∑tk−1
t=1 I{Xt,At=xa} the number of times that Arm a is activated before episode k while being

in state xa. Equation 15 relates the performance gap to the distance between the reward functions and
2In the paper, we use the notation I{E} to denote a random variable that equals 1 if E is true and 0 otherwise. For instance,

I{Yi=y} = 1 if Yi = y and 0 otherwise.
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transition matrices of the MDPs M and Mk. With LK=
√

2 log 4SnK2 logK
1−β , the event EAlgo

k−1 guarantees that
for all a, xa and k ≥ 1,

|rk(xa)−r(xa)| ≤ LK√
max{1, Nk−1(xa)}

and ‖Qk(xa, ·)−Q(xa, .)‖1≤
2LK+3

√
S√

max{1, Nk−1(xa)}
(16)

We use this with Equation 15 to show that:

K∑
k=1

E
[
∆conc
k I{EAlgo

k−1 }

]
≤ E

[
CAlgo
K

K∑
k=1

tk+1−1∑
t=tk

1√
max{1, Nk−1(xa)}

]
, (17)

where CAlgo
K is a random variable that depends on the algorithm studied.

The final analysis takes care of the right term of Equation 17 and is more technical. It uses the fact that there
cannot be too many large terms in this sum because if an arm is activated many times, then 1/

√
Nk−1(Xt,At)

is small. The main technical hurdle here is to deal with the K random episodes H1, . . . ,HK . This is specific
to our approach compared to the analysis of finite horizons. To bound this, one needs to bound terms of
the form E [max1≤k≤K(Hk)α] with α ∈ {1.5, 2} (see Equation 32). To bound this, we use the geometric
distribution of Hk to show that E [max1≤k≤K(Hk)α] = O(( logK

1−β )α) (see Lemma 4).

A.2 Technical lemmas common to the three algorithms

In this section, we establish a series of lemmas that are true for any learning algorithm used. They show
that:

• The estimates r̂ and Q̂ concentrates on their true values (Lemma 1);

• One can transform ∆conc
k into Equation 15 (Lemma 2);

• The sum Equation 17 can be analyzed (Lemma 3).

A.2.1 High Probability Events

Recall that Ok−1 are the observations collected by the decision maker before episode k. Based on Ok−1, we
compute the empirical estimators of reward vector and transition matrix as the following: For all a ∈ [n] and
any xa ∈ Sa, let Nk−1(xa) =

∑tk−1
t=1 I{Xt,At=xa} be the number of times so far that an arm a was activated in

state xa (at episode 1, we have N0(xa) = 0). Recall that tk:=1+
∑k−1
i=1 Hi, and that r̂k−1 and Q̂k−1 are the

empirical mean reward vector and transition matrix. More precisely, r̂k−1(xa) is the empirical mean reward
earned when arm a is chosen while being in state xa:

r̂k−1(xa) = 1
Nk−1(xa)

tk−1∑
t=1

RtI{At=a∧Xt,At=xa},

and Q̂k−1(xa, ya) is the fraction of times that arm a moved from xa to ya:

Q̂k−1(xa, ya) = 1
Nk−1(xa)

tk−1∑
t=1

I{At=a∧Xt,At=xa∧Xt+1,At=ya}.

We design confidence sets similar to Auer et al. (2008); Bartlett & Tewari (2012).

17



Under review as submission to TMLR

Lemma 1. For any k ≤ K, let Lk−1 =
√

2 log( 2SnK(k−1) log(K(k−1))
1−β ). Let

EHk−1 :=
{
∀k′ ≤ k−1:Hk′ ≤

log(K(k − 1))
1− β

}
(18)

Erk−1 :=
{
∀a ∈ [n], xa ∈ Sa, k′ ≤ k−1: |r̂k′(xa)−r(xa)| ≤ Lk−1

2
√

max{1, Nk′(xa)}

}
(19)

EQk−1 :=
{
∀a ∈ [n], xa ∈ Sa, k′ ≤ k−1:

∥∥∥Q̂k′(xa, ·)−Q(xa, ·)
∥∥∥

1
≤ Lk−1+1.5

√
S√

max{1, Nk′(xa)}

}
. (20)

EVk−1 :=
{
∀a ∈ [n],x ∈ X , k′ ≤ k−1:|r̂k′(xa)−r(xa)

+ β
∑

y

(P̂ ak′(x,y)−P a(x,y))V π∗M (y)| ≤ Lk−1

2(1− β)
√

max{1, Nk′(xa)}

}
(21)

Then, the above events are all Ok−1-measurable. Moreover:

P
(
¬EHk−1

)
≤ 1/K

P
(
¬Erk−1

)
≤ 2/K

P
(
¬EQk−1

)
≤ 2/K

P
(
¬EVk−1

)
≤ 2/K.

Proof. For event EHk−1, since {Hk′}k′≤k−1 are i.i.d. and geometrically distributed with parameter (1 − β),
we have that

P (∃k′ ≤ k − 1 : Hk′ > ε) ≤
k−1∑
k′=1

P (Hk′ > ε) = (k − 1)βbεc.

Then, with ε = log(1/(K(k−1)))
log(β) , we get P (∃k′ ≤ k−1 : Hk′ > ε) ≤ 1/K. Moreover,

ε = log(1/(K(k − 1)))
log(β) = log(K(k − 1))

log(1/β) <
log(K(k − 1))

1− β .

Then, P
(
∃k′ ≤ k−1 : Hk′ >

log(K(k−1))
1−β

)
≤ 1/K.

Let τk = (k−1) log(K(k−1))
1−β . Under event EHk−1, the random variable tk is upper bounded by the deterministic

quantity τk. In what follows, we assume that event EHk−1 holds.

For event Erk−1, let r̃`(xa) be a random variable that is the empirical mean of ` i.i.d. realization of the reward
when the arm in state xa is chosen. In particular, r̂k−1(xa) = r̃Nk−1(xa)(xa). By Hoeffding’s inequality, for
any ε > 0, one has:

P (|r̃`(xa)− r(xa)| ≥ ε) ≤ 2e−2`ε2
.

18
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In particular, this holds for ε =
√

log(2SnKτk)
2` . As Nk−1(xa) < τk, by using the union-bound, this implies

that:

P

(
EHk−1 ∧ ∃a, xa, k′ ≤ k−1 : |r̂k′(xa)− r(xa)| ≥

√
log(2SnKτk)

2Nk′(xa)

)
(22)

≤
∑
a

∑
xa

P

(
∃` ∈ {1, . . . , τk − 1} : |r̃`(xa)− r(xa)| ≥

√
log(2SnKτk)

2`

)

≤
τk∑
`=1

∑
a

∑
xa

P

(
|r̃`(xa)− r(xa)| ≥

√
log(2SnKτk)

2`

)

≤ nS
τk∑
`=1

2e−2` log(2SnKτk)
2` = 1/K,

where the second and third line is the union on all possible events Nk′(xa)=` for all `∈{1, . . . , τk − 1}. In
total this says P

(
EHk−1 ∧ ¬Erk−1

)
≤ 1/K. Now, ¬Erk−1=(EHk−1∧¬Erk−1)∨ (¬EHk−1∧¬Erk−1). Then, using union

bound,

P
(
¬Erk−1

)
≤ P

(
¬Erk−1 ∧ EHk−1

)
+ P

(
¬Erk−1 ∧ ¬EHk−1

)
≤ P

(
¬Erk−1 ∧ EHk−1

)
+ P

(
¬EHk−1

)
≤ 2/K

The event EQk−1 is similar but by using Weissman’s inequality (Weissman et al., 2003) instead of Hoeffding’s
bound. Indeed, by using Equation (8) in Theorem 2.1 of Weissman et al. (2003), if Nk−1(xa) was not a
random variable, one would have

P
(∥∥∥Q̂k−1(xa, ·)−Q(xa, ·)

∥∥∥
1
≥ ε
)
≤ 2Se−Nk−1(xa)ε2/2.

Following the same approach as for Equation 22 with ε =
√

2 log(SnKτk2S)/Nk−1(xa), we use the union-
bound to show that:

P

(
EHk−1 ∧ ∃a, xa, k′≤k−1 :

∥∥∥Q̂k′(xa, ·)−Q(xa, ·)
∥∥∥

1
≥

√
2 log(SnKτk2S)

Nk′(xa)

)

≤ τknS2Se−Nk′ (xa) 2 log(SnKτk2S)
2N
k′ (xa) = 1/K.

By definition of Lk−1 =
√

2 log(2SnKτk) and since √x+ y ≤
√
x+√y, we have√

2 log(SnKτk2S) =
√

2 log(2SnKτk)+2(S − 1) log 2

≤ Lk−1 +
√

2(S − 1) log 2 ≤ Lk−1 + 1.5
√
S.

Hence:

P

(
EHk−1 ∧ ∃a, xa, k′ ≤ k−1 :

∥∥∥Q̂k′(xa, ·)−Q(xa, ·)
∥∥∥

1
≥ Lk−1 + 1.5

√
S√

Nk′(xa)

)
≤ 1/K.

As done for Erk−1, we have ¬EQk−1=(EHk−1 ∧ ¬E
Q
k−1) ∨ (¬EHk−1 ∧ ¬E

Q
k−1). With the same process, we get

P
(
¬EQk−1

)
≤ 2/K.

For event EVk−1, we have that r̂k−1 + P̂k−1V
π∗
M is the empirical mean of r + PV π∗M . This is because V π∗M is

deterministic and r̂k−1 and P̂k−1 are empirical mean of r and P respectively. Using Hoeffding’s inequality
and following the same approach above, we have P

(
¬EVk−1

)
≤ 2/K.

Note that Lemma 1 is about the statistical properties of the observations Ok−1 in the observation space.
These properties are true for any learning algorithms. In fact, we will combine different events of this lemma
to bound the regret of our algorithm accordingly.
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A.2.2 Concentration Gap

At episode k, our algorithms believe that the unknown MDP M is the MDP Mk. For bayesian algorithms,
Mk is sampled from posterior distribution while for optimistic algorithms, Mk is chosen with respect to
optimism principle. The algorithms follow the policy πk that is optimal for Mk. Recall that Wπk

M,1:Hk(x) is
the expected reward of the MDP M under policy πk, starts in state x and lasts for Hk time steps and the
expected cumulative discounted reward inM starting from state x under policy πk is V πkM (x)=E[Wπk

M,1:Hk(x)]
where Hk ∼ Geom(1− β) is the horizon of episode k.
Lemma 2. For episode k, let Bk ∈ R+ be an upper bound3 of Wπk

Mk,1:Hk(x), i.e., a constant Bk such that
for any x ∈ X , Wπk

Mk,1:Hk(x) ≤ Bk. We have,

E [∆conc
k |Ok−1, Hk,Mk,M ] =E

[
Wπk
Mk,1:Hk(Xtk)−Wπk

M,1:Hk(Xtk)|Ok−1, Hk,Mk,M
]

≤E
[ tk+1−1∑

t=tk

|rk(Xt,At)−r(Xt,At)|+Bk ‖Qk(Xt,At , ·)−Q(Xt,At , ·)‖1 |Ok−1, Hk,Mk,M

]
(23)

Proof. From Equation 8 with a = πk(x),

Wπk
M,1:Hk(x) = r(xa) +

∑
y

Pπk(x,y)Wπk
M,2:Hk(y) (24)

where Pπk is the state transition dynamic of the system when following the policy πk. Comparing the
sampled MDP Mk with the original M and using Equation 24, one has

Wπk
Mk,1:Hk(x)−Wπk

M,1:Hk(x) = rk(xa)−r(xa)

+
∑

y

Pπkk (x,y)Wπk
Mk,2:Hk(y)−

∑
y

Pπk(x,y)Wπk
M,2:Hk(y).

Note that in the above equation, the last term is of the form Pπkk Wπk
Mk
−PπkWπk

M , which is equal to
(Pπkk −Pπk)Wπk

Mk
+Pπk(Wπk

Mk
−Wπk

M ). Moreover, Wπk
Mk

is less than Bk. Plugging this to the above equation
shows that:

Wπk
Mk,1:Hk(x)−Wπk

M,1:Hk(x)

≤ |rk(xa)−r(xa)|+Bk
∑

y

|Pπkk (x,y)−Pπk(x,y)|

+
∑

y

Pπk(x,y)(Wπk
Mk,2:Hk(y)−Wπk

M,2:Hk(y))

= |rk(xa)−r(xa)|+Bk ‖Pπkk (x, ·)−Pπk(x, ·)‖1 +DMk,M
Hk

(x)
+Wπk

Mk,2:Hk(X1)−Wπk
M,2:Hk(X1)

where DMk,M
Hk

(x):=
∑

y P
πk(x,y)(Wπk

Mk,2:Hk(y)−Wπk
M,2:Hk(y))−(Wπk

Mk,2:Hk(X1)−Wπk
M,2:Hk(X1)). Note that

in the equation above, DMk,M
Hk

(x) is a martingale difference with X1 ∼ Pπk(x, ·). Hence, the ex-
pected value of the martingale difference sequence is zero. As only arm a makes a transition, we have
‖Pπkk (x, ·)− Pπk(x, ·)‖1 = ‖Qk(xa, ·)−Q(xa, ·)‖1. Hence, a direct induction shows that Equation 23
holds.

A.2.3 Bound on the double sum

Recall that for k ≤ K, any a ∈ [n] and any xa ∈ Sa, Nk−1(xa) =
∑tk−1
t=1 I{Xt,At=xa} is the number of times

so far that an arm a was activated in state xa (at episode 1, we have N0(xa) = 0) and {Hk}k≤K be the
sequence of episode horizons.

3We will use Bk = Hk for MB-PSRL and MB-UCRL2 and Bk = HkLk−1/(2(1 − β)) for MB-UCBVI.
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Lemma 3. For any learning algorithms, we have

K∑
k=1

tk+1−1∑
t=tk

1√
max{1, Nk−1(Xt,At)}

≤ Snmax
k≤K

Hk + 2
√
SnK max

k≤K
Hk

Proof. Let Ñt(xa) be the number of times that arm a has been activated before time t while being in state
xa. By definition, Ñtk(xa) = Nk−1(xa). Moreover, if t ∈ {tk, . . . , tk+1 − 1}, then Ñt(xa) ≤ Nk−1(xa) +Hk.
This shows that

K∑
k=1

tk+1−1∑
t=tk

1√
max{1, Nk−1(Xt,At)}

≤
K∑
k=1

tk+1−1∑
t=tk

1√
max{1, Ñt(Xt,At)−Hk}

≤
tK+1−1∑
t=1

1√
max{1, Ñt(Xt,At)−maxkHk}

.

The above sum can be reordered to group terms by state: The above sum equals

∑
a,xa

ÑtK+1 (xa)∑
m=1

1√
max{1,m−maxkHk}

≤
∑
a,xa

max
k

Hk +
max{1,ÑtK+1 (xa)−maxkHk}∑

m=1

1√
m

 ,
≤ Snmax

k
Hk +

∑
a,xa

ÑtK+1 (xa)∑
m=1

1√
m
,

≤ Snmax
k

Hk + 2
∑
a,xa

√
ÑtK+1(xa),

where the last inequality holds because
∑tK+1
m=1 1/

√
m ≤

∫ tK+1
1 1/

√
xdx ≤ 2√tK+1.

Now, by Cauchy-Schwartz inequality, and because
∑
a,xa

ÑtK+1(xa) = tK+1 − 1=
∑K
k=1Hk, we have:

∑
a,xa

√
ÑtK+1(xa) ≤

(∑
a,xa

ÑtK+1(xa)
)1/2(∑

a,xa

1
)1/2

=

√√√√Sn

K∑
k=1

Hk ≤
√
SnK max

k≤K
Hk.

A.2.4 Bound on the expectation of E [maxk≤K Hk]

Lemma 4. Let α ∈ [1, 2.5]. Then,

E
[
max
k≤K

(Hk)α
]
≤ 5 + 5

(
logK
1− β

)α
. (25)

Proof. By definition, we have

E
[
max
k≤K

(Hk)α
]

=
∞∑
i=1

P
(

max
k≤K

(Hk)α ≥ i
)

≤
∞∑
i=1

min(1,KP ((Hk)α ≥ i))

=
∞∑
i=1

min(1,Kβi
1/α

),
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where the inequality comes from the union bound and the last equality is because the random variables Hk

are geometrically distributed.

Let A = min{i : Kβi1/α ≤ 1}. Decomposing the above sum by group of size A, we have

∞∑
i=1

min(1,Kβi
1/α

) =
∞∑
j=0

A(j+1)∑
i=Aj+1

min(1,Kβi
1/α

)

≤
∞∑
j=0

Amin(1,Kβ(Aj)1/α
)

= A+A

∞∑
j=1

K(βA
1/α

)j
1/α
, (26)

where the inequality holds because βi1/α is decreasing in i.

By definition of A, we have βA1/α ≤ 1/K. This implies that the second term of Equation 26 is smaller than∑∞
j=1K(1/K)j1/α =

∑∞
j=1K

1−j1/α . As α ≤ 2.5, if K ≥ 5, this is smaller than
∑∞
j=1 51−j1/2.5 ≈ 3.92 < 4.

This shows that for K ≥ 5, we have:

E
[
max
k≤K

(Hk)α
]
≤ 5A,

where A = d(− logK/ log β)αe ≤ 1 + (logK/(1− β))α.

As for the case where K ≤ 4, we have E [maxk≤K(Hk)α] ≤ KE [Hα
1 ] ≤ K

(1−β)α . This term is smaller than
Equation 25 for K ≤ 4.

A.3 Detailed analysis of MB-PSRL

We decompose the analysis of PSRL in three steps:

• We define the high-probability event EPSRL
k−1 .

• We analyze
∑K
k=1 E

[
∆model
k I{EPSRL

k−1 }

]
(which equals 0 here because of posterior sampling).

• We analyze
∑K
k=1 E

[
∆conc
k I{EPSRL

k−1 }

]
.

We will use the same proof structure for MB-UCRL2 and MB-UCBVI.

Before doing the proof, we start by a first lemma that that essentially formalizes the fact that the distribution
of M given Ok−1 is the same as the distribution of the sampled MDP Mk conditioned on Ok−1.
Lemma 5. Assume that the MDP M is drawn according to the prior φ and that Mk is draw according to
the posterior φ(· | Ok−1). Then, for any Ok−1-measurable function g, one has:

E [g(M)] = E [g(Mk)] . (27)

Proof. At the start of each episode k, MB-PSRL computes the posterior distribution of M conditioned on
the observations Ok−1, and draws Mk from it. This implies that M and Mk are identically distributed
conditioned on Ok−1. Consequently, if g is a Ok−1-measurable function, one has:

E [g(M) | Ok−1] = E [g(Mk) | Ok−1] .

Equation 27 then follows from the tower rule.
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A.3.1 Definition of the high-probability event EPSRLk−1

Lemma 6. At episode k, the event

EPSRL
k−1 =

{
∀a∈[n], xa∈Sa, k′ ≤ k−1: |rk′+1(xa)−r(xa)| ≤ Lk−1√

max{1, Nk′(xa)}
,

‖Qk′+1(xa, ·)−Q(xa, ·)‖1 ≤
2Lk−1+3

√
S√

max{1, Nk′(xa)}
, and Hk′ ≤

log(K(k − 1))
1− β

}
is Ok−1-measurable and true with probability at least 1− 9/K.

Proof. Recall that for MB-PSRL, at the beginning of episode k, we sample a MDP Mk. We define the two
events that are the analogue of the events Equation 19 and Equation 20 of Lemma 1 but replacing the true
MDP M by the sampled MDP Mk:

Ẽrk−1 :=
{
∀a ∈ [n], xa ∈ Sa, k′ ≤ k−1: |r̂k′(xa)−rk′+1(xa)| ≤ Lk−1

2
√

max{1, Nk′(xa)}

}
ẼQk−1 :=

{
∀a ∈ [n], xa ∈ Sa, k′ ≤ k−1:

∥∥∥Q̂k′(xa, ·)−Qk′+1(xa, ·)
∥∥∥

1
≤ Lk−1+1.5

√
S√

max{1, Nk′(xa)}

}

These events are Ok−1-measurable. Hence, Lemma 5, combined with Lemma 1 implies that P
(
¬Ẽrk−1

)
=

P
(
¬Erk−1

)
≤ 2/K and P

(
¬ẼQk−1

)
= P

(
¬EQk−1

)
≤ 2/K. Since the complement of EPSRL

k−1 is the union of
¬Erk−1,¬Ẽrk−1,¬E

Q
k−1,¬Ẽ

Q
k−1 and ¬EHk−1, the union bound implies that P

(
EPSRL
k−1

)
≥ 1− 9/K.

A.3.2 Analysis of E
[
∆model
k I{EPSRL

k−1 }

]
for MB-PSRL.

Lemma 5 implies that for MB-PSRL, E
[
∆model
k I{EPSRL

k−1 }

]
=0 because EPSRL

k−1 , πk and Mk are Ok−1-
measurable.

A.3.3 Analysis of E [∆conc
k ] for MB-PSRL.

Following Equation 13, the bayesian regret can be written as:

BayReg(K,MB-PSRL, φ) =
K∑
k=1

E [∆k] ≤
K∑
k=1

E [Hk]P
(
¬EPSRL

k−1
)

+E
[
∆kI{EPSRL

k−1 }

]
≤ 9

(1− β)+
K∑
k=1

E
[
∆model
k I{EPSRL

k−1 }

]
+E

[
∆conc
k I{EPSRL

k−1 }

]
(28)

where the last inequality holds due to Lemma 6. By the previous section, the second term of Equation 28 is
zero. As all rewards are bounded by 1, Wπk

Mk,1:Hk(Xtk) ≤ Hk. Hence, by applying Lemma 2 with the upper
bound Bk = Hk, and because I{EPSRL

k−1 }
is deterministic given Ok−1, we have

E
[
∆conc
k I{EPSRL

k−1 }

]
= E

[
E
[
∆conc
k I{EPSRL

k−1 }
| Ok−1, Hk,Mk,M

]]
≤ E

[
I{EPSRL

k−1 }

tk+1−1∑
t=tk

|rk(Xt,At)−r(Xt,At)|

+Hk ‖Qk(Xt,At , ·)−Q(Xt,At , ·)‖1
]
. (29)
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Let Rk :=
∑tk+1−1
t=tk |rk(Xt,At)−r(Xt,At)|+Hk ‖Qk(Xt,At , ·)−Q(Xt,At , ·)‖1. By using the definition of EPSRL

k−1 ,
we have:

I{EPSRL
k−1 }

Rk ≤ I{EPSRL
k−1 }

tk+1−1∑
t=tk

Lk−1+(2Lk−1+3
√
S)Hk√

max{1, Nk−1(Xt,At)}

≤
tk+1−1∑
t=tk

Lk−1+(2Lk−1+3
√
S)Hk√

max{1, Nk−1(Xt,At)}
(30)

Hence, summing over all K episodes gives us:

K∑
k=1

I{EPSRL
k−1 }

Rk ≤
(
LK+(2LK+3

√
S) max

k≤K
Hk

) K∑
k=1

tk+1−1∑
t=tk

1√
max{1, Nk−1(Xt,At)}

≤ 3(LK +
√
S) max

k≤K
Hk

K∑
k=1

tk+1−1∑
t=tk

1√
max{1, Nk−1(Xt,At)}

, (31)

where the first inequality holds because Lk ≤ LK and maxk≤K Hk ≥ 1. Note that the last inequality leads
to a slightly worst bound but simplifies the expression. By Lemma 3, we get

K∑
k=1

I{EPSRL
k−1 }

Rk ≤ 3(LK +
√
S) max

k≤K
Hk(Snmax

k≤K
Hk + 2

√
SnK max

k≤K
Hk)

= 3(LK +
√
S)(Snmax

k≤K
(Hk)2 + 2

√
SnK max

k≤K
(Hk)3/2)

Then,

K∑
k=1

E
[
∆conc
k I{EPSRL

k−1 }

]
≤3(LK+

√
S)
(
SnE

[
max
k≤K

(Hk)2
]

+2
√
SnKE

[
max
k≤K

(Hk)3/2
])

(32)

≤3(LK+
√
S)
(
Sn

(
5+5

(
logK
1− β

))2
+
√
SnK

(
5+5

(
logK
1− β

))3/2)
where the last inequality is true due to Lemma 4. With LK=

√
2 log 4SnK2 logK

1−β , this implies that there
exists a constant C independent of all problem’s parameters such that:

BayReg(K,MB-PSRL, φ)≤C
(√

S+ log
(
SnK logK

1− β

))(
Sn

(
logK
1− β

)2
+
√
SnK

(
logK
1− β

)3/2
)
.

A.3.4 Remark on the dependence on S

Our bound is linear in S, the state size of each arm, because our proof follows the approach used in Osband
et al. (2013). Using another proof methodology, it is argued in Osband & Van Roy (2017) that the regret
of PSRL grows as the square root of the state space size and not linearly. In our paper, we choose to use
the more conservative approach of Osband et al. (2013) because we believe that the proof used in Osband
& Van Roy (2017) is not correct (in particular the use of a deterministic v in Equation (16) of the proof of
Lemma 3 in Appendix A in the arXiv version of Osband & Van Roy (2017) seems incompatible with the use
of Lemma 4 of the same paper). In fact, when considering the worst case realization of v, the concentration
bound in Equation (16) of the paper is equivalent to the (scaled) L1 norm of transition concentration. We
are not alone to point out this error. Effectively, Agrawal & Jia (2017) used Lemma C.1 and Lemma C.3
(equivalence of Lemma 3 of Osband & Van Roy (2017)) to get a bound in square root of the state space
size. But both lemmas are erroneous as mentioned in the latest arXiv version of Agrawal & Jia (2017). The
validity of Lemma 3 is also questioned on page 87 of Fruit (2019). While it is informal, the recent work of
Qian et al. (2020) also theoretically contradicts the lemma.
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A.4 Case of MB-UCRL2

The proof follows the same steps as for MB-PSRL. While the high probability event is simpler, the additional
complexity is to show that

∑K
k=1 E

[
∆model
k

]
≤ 0 by using the optimism principle.

A.4.1 Definition of the high probability event

Lemma 7. At episode k, the event

EUCRL2
k−1 =

{
∀a∈[n], xa∈Sa, k′ ≤ k−1: |r̂k′(xa)−r(xa)| ≤ Lk−1

2
√

max{1, Nk′(xa)}
,

∥∥∥Q̂k′(xa, ·)−Q(xa, ·)
∥∥∥

1
≤ Lk−1+1.5

√
S√

max{1, Nk′(xa)}
, and Hk′ ≤

log(K(k − 1))
1− β

}
is Ok−1-measurable and true with probability at least 1− 5/K.

Proof. The complement of EUCRL2
k−1 is the union of ¬Erk−1,¬E

Q
k−1 and ¬EHk−1. We conclude the proof by using

the union bound and P
(
¬Erk−1

)
≤ 2/K, P

(
¬EQk−1

)
≤ 2/K and P

(
¬EHk−1

)
≤ 1/K.

A.4.2 Analysis of E
[
∆model
k I{EUCRL2

k−1 }

]
– Optimism of MB-UCRL2

Recall that π∗ is the optimal policy of the unknown MDP M and that πk is the policy used in episode k.
πk is optimal for the optimistic MDP that is chosen from the plausible MDP set Mk:

πk ∈ arg max
π

max
M ′∈Mk

V πM ′ .

For each episode k, the plausible MDP set Mk is defined by

Mk =
{

(r′, Q′) : ∀a, xa, |r′(xa)− r̂k−1(xa)| ≤ Lk−1

2
√

max{1, Nk−1(xa)}
, and

∥∥∥Q′(xa, ·)− Q̂k−1(xa, .)
∥∥∥

1
≤ Lk−1 + 1.5

√
S√

max{1, Nk−1(xa)}

}
. (33)

As Auer et al. (2008), we argue that there exists a MDP Mk ∈Mk such that πk is an optimal policy for Mk.
Moreover, under event EUCRL2

k−1 , one has M ∈ Mk, which implies that maxπ maxM ′∈Mk V πM ′(x) ≥ V π∗M (x).
By Equation 14, we get E

[
∆model
k

]
≤0. If EUCRL2

k−1 does not hold, we simply have ∆model
k I{EUCRL2

k−1 } = 0. We

conclude that: E
[
∆model
k I{EUCRL2

k−1 }

]
≤0.

A.4.3 Analysis of E
[
∆conc
k I{EUCRL2

k−1 }

]
for MB-UCRL2

Following Equation 13, the expected regret can be written as:

E [Reg(K,MB-UCRL2,M)] =
K∑
k=1

E [∆k] ≤
K∑
k=1

E [Hk]P
(
¬EUCRL2

k−1
)

+E
[
∆kI{EUCRL2

k−1 }

]
≤ 5

1− β+
K∑
k=1

E
[
∆model
k I{¬EUCRL2

k−1 }

]
+E

[
∆conc
k I{¬EUCRL2

k−1 }

]
(34)

where the last inequality holds due to Lemma 7. By the previous section, the second term of Equation 34 is
non-positive. In the following, we therefore analyze the last term whose analysis is then similar to the one
for MB-PSRL. Indeed, with Bk = Hk and definition of EUCRL2

k−1 , the use of Lemma 2 shows that one has

E
[
∆conc
k I{EUCRL2

k−1 }

]
≤ E

[
1
2

tk+1−1∑
t=tk

Lk−1+(2Lk−1+3
√
S)Hk√

max{1, Nk−1(Xt,At)}

]
.
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Up to a factor 1/2, the expression inside the expectation is the same as Equation 30 of MB-PSRL. Hence,
one can use Lemma 3 the same way to show that

K∑
k=1

E
[
∆conc
k I{EPSRL

k−1 }

]
≤ 3

2(LK +
√
S)
(
SnE

[
max
k≤K

H2
k

]
+ 2
√
SnKE

[
max
k≤K

H
3/2
k

])
.

Up to a factor 1/2, the right term of the above equation is equal to the right term of Equation 32. Following
the same process done for the later, we can conclude that there exists a constant C ′ independent of all
problem’s parameters such that:

Reg(K,MB-UCRL2,M) ≤ C ′
(√

S+ log
(
SnK logK

1− β

))(
Sn

(
logK
1− β

)2
+
√
SnK

(
logK
1− β

)3/2
)

A.5 Case of MB-UCBVI

We start by defining the high probability event. Then, we prove the optimistic property of MB-UCBVI.
Finally, we bound its expected regret.

A.5.1 Definition of the high-probability event

Lemma 8. The event

EUCBVI
k−1 =

{
∀a∈[n],x∈X , k′ ≤ k−1: |r̂k′(xa)−r(xa)| ≤ Lk−1

2
√

max{1, Nk′(xa)}
,

∥∥∥Q̂k′(xa, ·)−Q(xa, ·)
∥∥∥

1
≤ Lk−1+1.5

√
S√

max{1, Nk′(xa)}
, Hk′ ≤

log(K(k − 1))
1− β ,

and
∣∣∣∣∣r̂k′(xa)−r(xa)+β

∑
y

(P̂ ak′(x,y)−P a(x,y))V π∗M (y)
∣∣∣∣∣ ≤ Lk−1

2(1−β)
√

max{1, Nk′(xa)}

}

is Ok−1-measurable and true with probability at least 1− 7/K.

Proof. The complement of EUCBVI
k−1 is the union of ¬Erk−1,¬E

Q
k−1,¬EHk−1 and ¬EVk−1. We conclude the proof

by using the union bound and P
(
¬Erk−1

)
≤ 2/K, P

(
¬EQk−1

)
≤ 2/K, P

(
¬EVk−1

)
≤ 2/K and P

(
¬EHk−1

)
≤

1/K

A.5.2 Analysis of E
[
∆model
k I{EUCBVI

k−1 }

]
– Optimism of MB-UCBVI

The following lemma guarantees that E
[
∆model
k I{EUCBVI

k−1 }

]
≤ 0. Indeed, as EUCBVI

k−1 is Ok−1-measurable, one
has

E
[
∆model
k I{EUCBVI

k−1 }

]
= E

[
E
[
∆model
k | Ok−1

]
I{EUCBVI

k−1 }

]
= E

[
(V π∗M (Xtk)− V πkMk

(Xtk))I{EUCBVI
k−1 }

]
≤ 0.

Lemma 9. If EUCBVI
k−1 is true, then, for any x ∈ X , we have

V πkMk
(x) ≥ V π∗M (x)

Proof. Recall that at episode k, we define the optimistic MDP of MB-UCBVI byMk in which the parameters
of any arm a ∈ [n] are (r̂ak−1 + bak−1, Q̂

a
k−1) with bk−1(xa)= Lk−1

2(1−β)
√

max{1,Nk−1(xa)}
for any xa ∈ Sa. The
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Gittins index policy πk is optimal for MDP Mk. For any state x, let a = πk(x) and a∗ = π∗(x). Then,

V πkMk
(x)− V π∗M (x) = bk−1(xa) + r̂k−1(xa) + β

∑
y

P̂ ak−1(x,y)V πkMk
(y)− V π∗M (x)

≥ bk−1(xa∗) + r̂k−1(xa∗) + β
∑

y

P̂ a∗k−1(x,y)V πkMk
(y)

− r(xa∗)− β
∑

y

P a∗(x,y)V π∗M (y)

= bk−1(xa∗)+r̂k−1(xa∗)−r(xa∗)+β
∑

y

(P̂ a∗k−1(x,y)−P a∗(x,y))V π∗M (y)

+ β
∑

y

P̂ a∗k−1(x,y)(V πkMk
(y)− V π∗M (y))

In matrix form, we have

V πkMk
− V π∗M ≥ bπ∗k−1 + r̂π∗k−1 − r

π∗+β(P̂π∗k−1−P
π∗)V π∗M + βP̂π∗k−1(V πkMk

− V π∗M )

Under event EUCBVI
k−1 , bπ∗k−1 + r̂π∗k−1 − rπ∗+β(P̂π∗k−1−Pπ∗)V

π∗
M ≥ 0. This implies that:

(I − βP̂π∗k−1)(V πkMk
− V π∗M ) ≥ 0.

As (I −βP̂π∗k−1)−1 = I + (I −βP̂π∗k−1) + (I −βP̂π∗k−1)2 + . . . is a matrix whose coefficients are all non-negative,
this implies that V πkMk

− V π∗M ≥ 0.

A.5.3 Analysis of E
[
∆conc
k I{EUCBVI

k−1 }

]
for MB-UCBVI

Following Equation 13, the expected regret can be written similarly to Equation 34 for MB-UCRL2, one can
write that

E [Reg(K,MB-UCBVI,M)] ≤ 7
1− β+

K∑
k=1

E
[
∆model
k I{EUCBVI

k−1 }

]
+E

[
∆conc
k I{EUCBVI

k−1 }

]
.

The same as MB-UCRL2, the second term is non-positive. We are therefore left with the last term. Using
Lemma 2 with Bk = HkLk−1

2(1−β) and the definition of Mk for MB-UCBVI, we have:

K∑
k=1

E
[
I{EUCBVI

k−1 }∆conc
k

]
≤

K∑
k=1

E
[
I{EUCBVI

k−1 }

tk+1−1∑
t=tk

|bk−1(Xt,At)+r̂k−1(Xt,At)−r(Xt,At)|

+HkLk−1

2(1− β)

∥∥∥Q̂k−1(Xt,At , ·)−Q(Xt,At , ·)
∥∥∥

1

]
≤ E

[
K∑
k=1

tk+1−1∑
t=tk

(2− β)Lk−1 +HkLk−1(Lk−1 + 1.5
√
S)

2(1− β)
√

max{1, Nk−1(Xt,At)}

]

≤ E

[
2LK(LK +

√
S) maxk≤K Hk

1− β

K∑
k=1

tk+1−1∑
t=tk

1√
max{1, Nk−1(Xt,At)}

]

≤ E

[
2LK(LK +

√
S) maxk≤K Hk

1− β

(
Snmax

k≤K
Hk + 2

√
SnK max

k≤K
Hk

)]
where the second inequality holds due to the definition of EUCBVI

k−1 and the last one holds due to Lemma 3.
With LK=

√
2 log 4SnK2 logK

1−β , we have

K∑
k=1

E
[
I{EUCBVI

k−1 }∆conc
k

]
≤ 2(1+

√
S)

1− β 2 log
(

4SnK2 logK
1− β

)(
SnE

[
max
k≤K

H2
k

]
+2
√
SnKE

[
max
k≤K

H
3/2
k

])
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The last term of the right side above can be analyzed exactly the same as what is done for Equation 32 using
Lemma 4. This concludes the proof.

B Proof of Theorem 2

To prove the lower bound, we consider a specific markovian bandit problem that is composed of S independent
stochastic bandit problems. This allows us to reuse the existing minimax lower bound for stochastic bandit
problems. This existing result can be stated as follows: let Lstoc.pb be a learning algorithm for the stochastic
bandit problem. It is shown in Theorem 3.1 of Bubeck et al. (2012) that for any number of arms n and any
number of time steps τ , there exists parameters for a stochastic bandit problem M stoc.pb with n arms such
that the regret of the learning algorithm over τ time steps is at least (1/20)

√
nτ .

Regstoc.pb(τ,Lstoc.pb,M stoc.pb) ≥ 1
20
√
nτ. (35)

This lower bound (Theorem 3.1 of Bubeck et al. (2012)) is constructed by considering n stochastic bandit
problems M stoc.pb,j for j ∈ [n] with parameters that depend on τ and n. In the problem M stoc.pb,j , all
arms have a reward γ(τ, n) except arm j that has a reward γ′(τ, n) > γ(τ, n). It is shown in Theorem 3.1 of
Bubeck et al. (2012) that a learning algorithm cannot perform uniformly well on all problems because it is
impossible to distinguish them a priori. More precisely, in the proof of Lemma 3.2 of Bubeck et al. (2012),
it is shown that if the best arm is chosen at random, then the expected (bayesian) regret of any learning
algorithm is at least (1/20)

√
nτ .

As for our problem, let K be a number of episodes, β a discount factor, n a number of arms, S a number of
states per arm and set τ = K/(2S(1− β)). We consider a random markovian bandit model M constructed
as follows. Each arm a has S states with the state space Sa = {1a, 2a, . . . , Sa}. The transition matrix Qa
is the identity matrix. For each state i ∈ {1 . . . S}, we choose the best arm a∗i uniformly at random among
the n arms, independently for each i. The rewards of a state ia are i.i.d. Bernoulli rewards with mean
γ(τ, n) if a 6= a∗i and γ′(τ, n) if a = a∗i . The initial distribution ρ couples the initial states of all arms for all
i ∈ {1 . . . S},

P (∀a ∈ [n] : x0,a = ia) = 1
S
.

In this case, the markovian bandit problem becomes a combination of S independent stochastic bandit
problems with n arms each. We denote by M stoc.pb

i the random stochastic bandit problem for the initial
state i = (ia)a∈[n]. As the a∗i are chosen independently, a learning algorithm L cannot use the information
for M stoc.pb

i to perform better on M stoc.pb
j , j 6= i.

Let φ be the distribution of the random markovian bandit model M defined above and let Ti be the number
of time steps spent in state i by the learning algorithm L.

BayReg(K,L, φ) ≥
S∑
i=1

E
[
Regstoc.pb(Ti,Lstoc.pb

i ,M stoc.pb
i )

]
≥

S∑
i=1

E
[
Regstoc.pb(τ,Lstoc.pb

i ,M stoc.pb
i )I{Ti≥τ}

]
(36)

≥ S

20
√
nτP (Ti ≥ τ) (37)

= 1
20
√

2
P (Ti ≥ τ)

√
SnK

1− β , (38)

where Equation 36 is true because the expected regret is non-decreasing function of the number of episodes,
Equation 37 comes from Equation 35 and Equation 38 from the definition of τ .

We show in the Lemma 10 below that P (Ti ≤ K/(2S(1− β))) ≤ 8S/K. This shows that for K ≥ 16S, one
has P (Ti ≥ τ) ≥ 1/2. This concludes the proof as 40

√
2 ≤ 60.
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Lemma 10. Recall that Ti is the number of time steps that the MDP is in state i for the MDP model above.
Let Gk be a sequence of i.i.d. Bernoulli random variable of mean 1/S and let Hk be an independent i.i.d.
sequence of geometric random variable of parameter 1− β. Then:

(i) Ti ∼
∑K
k=1GkHk,

(ii) E [Ti] = K/(S(1− β)),

(iii) P (Ti ≥ E [Ti] /2) ≥ 1− 8S/K.

Proof. Let Gk be a random variable that equals 1 if the initial state i is chosen at the beginning of episode k
and recall that Hk is the episode length. By definition, the variables Gk and Hk are independent and follow
respectively Bernoulli and geometric distribution. This shows (i).

Let Wk = GkHk. As the Wk are i.i.d. and Gk and Hk are independent, we have:

E [Ti] = KE [H1G1] = K

S(1− β) .

This shows (ii).

Moreover, var [Ti] = Kvar [H1G1]. Hence, by using Chebyshev’s inequality, one has:

P
(
Ti ≤

E [Ti]
2

)
≤ P

(
|Ti − E [Ti]| ≥

E [Ti]
2

)
≤ 4var [Ti]

(E [Ti])2

= 4
K

var [H1G1]
(E [H1G1])2 .

Concerning the variance, the second moment of a geometric random variable of parameter 1 − β is (1 +
β)/(1− β)2. This shows that E

[
(H1G1)2] = (1 + β)/(S(1− β)2) ≤ 2S(E [H1G1])2. This implies:

var [H1G1] ≤ (2S − 1)(E [H1G1])2 ≤ 2S(E [H1G1])2.

This implies (iii).

C Proof of Theorem 3

A1 A2 A3

+3 +4 +0

0.5

0.5 1

1

B1 B2 B3

+3.21 +0 +3.21

1

1 1

C1

+µ

1

(a) Q̂a and r̂a = ra. (b) Q̂b = Qb and r̂b = rb. (c) Q̂c = Qc and r̂c = rc.

Figure 2: Counterexample for OFU indices: B̂a, B̂b = Bb, B̂c = Bc.

In this proof, we reason by contradiction and assume that there exists a procedure that computes local
indices such that the obtained policy is such that for any estimate B̂ and any initial condition ρ, then if
M ∈M(B̂), one has

sup
M∈M(B̂)

V π
IB̂

M (ρ) ≥ sup
π
V πM (ρ). (39)
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In the remaining of this section, we set the discount factor to β = 0.5. For a given state xa, we denote by
I(xa) the local index of state xa computed by this hypothetically optimal algorithm.

We first consider a markovian bandit problem with two arms {b, c}. We consider that these two arms are
perfectly estimated (i.e., εrb(xb) = εQb (xb) = εrc(xc) = εQc (xc) = 0). The Markov chains for these arms are
depicted in Figure 2. Their transitions matrices and rewards are

Qb =

 0 1 0
0 1 0
0 0 1

 and rb = [3.21, 0, 3.21]; Qc = [1] and rc = [µ].

As the markovian bandit are perfectly known, the indices I(B1), I(B2), I(B3) and I(C1) must be such that
the obtained priority policy is optimal for the true MDP, that is: states B1 and B3 should have priority over
C1 (i.e., I(B1) > I(C1) and I(B3) > I(C1)) if and only if µ < 3.21, and state B2 should have priority over C1
(i.e., I(B2) > I(C1)) if and only if µ < 0. This implies that the local indices defined by our hypothetically
optimal algorithm must satisfy

I(B1) = I(B3) > I(B2).

Now, we consider markovian bandit problems with two arms {a, b}, where Arm b is as before. For Arm a,
we consider a confidence set B̂a = (Q̂a, r̂a, εra, εQa ) where (Q̂a, r̂a) are depicted in Figure 2(a) and where
εra(xa) = 0 and εQa (xa) = 0.2:

Q̂a =

 0.5 0.5 0
0 0 1
0 0 1

 and r̂a = ra = [3, 4, 0] εQa = [0.1, 0.1, 0.1] and εra = [0, 0, 0].

We consider two possible instances of the “true” markovian bandit problem, denoted M1 and M2. For M1,
the transition matrix and reward function of the first arm are depicted in Figure 3(a). For M2, they are
depicted in Figure 3(b). In both cases, (Qb, rb) are as in Figure 2(b). It should be clear that M1 ∈ M and
M2 ∈M.

A1 A2 A3

+3 +4 +0

0.4

0.6 1

1

A1 A2 A3

+3 +4 +0

0.6

0.4

0.1
0.9

0.9
0.1

(a) (Qa, ra) for M1 (b) (Qa, ra) for M2

Figure 3: The two instances of B1
a and B2

a

If there exist indices that can be computed locally, then the indices for an arm should not depend on the
confidence that one has on the other arms. The indices I(A1), I(A2) and I(A3) must satisfy the following
facts:

• I(A3) ∈ (I(B2), I(B3)) because for all markovian bandit M ∈M, state A3 should have priority over
state B2 and should not have priority over state B3 (because of the discount factor β = 1/2).

• I(A2) > I(B1) = I(B3) because for all markovian bandit M ∈ M, state A2 will give a higher
instantaneous reward than state B1 or B3. It should therefore have a higher priority.

This leaves two possibilities for I(A1):

• If I(A1) > I(B1) = I(B3), then state A1 has priority over both B1 and B3. We denote the
corresponding priority policy π1.
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• If I(A1) < I(B1) = I(B3), then state B1 and B3 have a higher priority than state A1. We denote
the corresponding priority policy by π2.

We use a numerical implementation of extended value iteration (available in the supplementary material) to
find that:

sup
M∈M

V π
2

M (A1, B3) ≈ 6.42 < sup
π
V πM1(A1, B3) ≈ 6.47 (40)

sup
M∈M

V π
1

M (A1, B1) ≈ 5.96 < sup
π
V πM2(A1, B1) ≈ 6.00

This implies that there does not exist any definition of indices such that Equation 11 holds regardless of M
and x.

D Description of the Algorithms and Choice of Hyperparameter

In this section, we provide a detailed description of the simulation environment used in the paper. We first
describe the Markov chain used in our example. Then, we describe all algorithms that we compare in the
paper. For each algorithm, we give some details about our choice of hyperparameters. Last, we also describe
the experimental methodology that we used in our simulations.

D.1 Description of the example

We design an environment with 3 arms, all following a Markov chain represented in Table 1. This Markov
chain is obtained by applying the optimal policy on the river swim MDP of Filippi et al. (2010). In each
chain, there are 2 rewarding states: state 1 with low mean reward rL, and state 4) with high mean reward
rR, both with Bernoulli distributions. At the beginning of each episode, all chains start in their state 1.
Each chain is parametrized by the values of pL, pR, pRL, rL, rR that are given in Table 1 along with the
corresponding Gittins indices of each chain.

Gittins index for each state
pL pR pRL rL rR 1 2 3 4
0.1 0.2 0.3 0.2 1.0 0.276 0.2894 0.392 1.0
0.1 0.5 0.7 0.35 0.7 0.35 0.256 0.2892 0.7
0.1 0.4 0.5 0.4 0.65 0.4 0.250 0.286 0.65

Table 1: The random walk chain with 4 states. In state 4, the chain has an average reward rR. For state 2
and 3, the chain gives zero reward. In state 1, the mean reward is rL. This chain is obtained by applying
the optimal policy on the 4-state river swim MDP of Filippi et al. (2010). The table contains the parameters
that we used, along with Gittins indices of all states when the discount factor is β = 0.99.

D.2 MB-PSRL

MB-PSRL, the adaption from PSRL, puts prior distribution on the parameters (ra, Qa) of each Arm a,
draws a sample from the posterior distribution and uses it to compute the Gittins indices at the start of
each episode. We implement two posterior updates for the mean reward vector ra: Beta and Gaussian-
Gamma. The second posterior, Gaussian-Gamma, will be used in prior choice sensitivity tests. For the
transition matrix Qa, we implemented Dirichlet posterior update because Dirichlet distribution is the only
natural conjugate prior for categorical distribution. Beta, Gaussian-Gamma and Dirichlet distributions
can be easily sampled using the numpy package of Python. This greatly contributes to the computational
efficiency of MB-PSRL.

We give more details on this prior distribution and their conjugate posterior in the subsections below.
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D.2.1 Bayesian Updates: Conjugate Prior and Posterior Distributions

MB-PSRL is a bayesian learning algorithm. As such, it samples reward vectors and transition matrices
at the start each episode. We would like to emphasize that neither the definition of the algorithm nor its
performance guarantees that we prove in Theorem 1 depend on a specific form of the prior distribution φ.
Yet, in practice, some prior distributions are more preferable because their conjugate distributions are easy
to implement. In the following, we give concrete examples on how to update the conjugate distribution given
the observations.

For a ∈ [n] and xa ∈ Sa, let Nk−1(xa) be the number of activations of arm a while in state xa up to episode
k. For this state xa, the number of samples of the reward and of transitions from xa are equal to Nk−1(xa).
To ease the exposition, we drop the label a and assume that we are given:

• Nk−1(x) i.i.d. samples {Y1, . . . , YNk−1(x)} of next states to which the arm transitioned from x.

• Nk−1(x) i.i.d. samples {R1, . . . , RNk−1(x)} of random immediate rewards earned while the arm was
activated in state x

Each Yi is such that P (Yi = y) = Q(x, y) and each Ri is such that E [Ri] = r(x). In what follows, we describe
natural priors that can be used to estimate the transition matrix and the reward vector.

D.2.2 Transition Matrix

If no information is known about the arm, the natural prior distribution is to consider the lines Q(x, ·) of the
matrix as independent multivariate random variables uniformly distributed among all non-negative vectors
of length S that sum to 1. This corresponds to a Dirichlet distribution of parameters α = (1, . . . , 1). For a
given x, the variables {Y1, . . . , YNk−1(x)} are generated according to a categorical distribution Q(x, ·). The
Dirichlet distribution is self-conjugate with respect to the likelihood of a categorical distribution. So, the
posterior distribution φ(Q(x, ·)|Y1, . . . , YNk−1(x)) is a Dirichlet distribution with parameters c = (c1 . . . cS)
where cy = 1 +

∑Nk−1(x)
i=1 I{Yi=y}.

D.2.3 Reward Distribution

As for the reward vector, the choice of a good prior depends on the distribution of rewards. We consider
two classical examples: Bernoulli and Gaussian.

Bernoulli distribution A classical case is to assume that the reward distribution of a state x is Bernoulli
with mean value r(x). A classical prior in this case is to consider that {r(x)}{x∈S} are i.i.d. random variables
following a uniform distribution whose support is [0, 1]. The posterior distribution of r(x) at time t is the
distribution of r(x) conditional to the reward observations from state x gathered up to time t. The posterior
distribution φ(r(x) | R1, . . . , RNk−1(x)) is then a Beta distribution with parameters (1+

∑Nk−1(x)
i=1 I{Ri=1}, 1+∑Nk−1(x)

i=1 I{Ri=0}). Recall that the Beta distribution is a special case of the Dirichlet distribution in the same
way as the Bernoulli distribution is a special case of the Categorical distribution.

Gaussian distribution We now consider the case of Gaussian rewards and we assume that the immediate
rewards earned in state x are i.i.d. Gaussian random variables of mean and variance (r(x), σ2(x)). A natural
prior for Gaussian rewards is to consider that {(r(x), 1

σ2(x) )}{x∈S} are i.i.d. bivariate random variables
where the marginal distribution of each 1

σ2(x) is a Gamma distribution (it is a natural belief since the
empirical variance of Gaussian has a chi-square distribution which is a special case of Gamma distribution).
Conditioned on 1

σ2(x) , r(x) follows a Gaussian distribution of variance σ2(x). We say that (r(x), 1
σ2(x) )

has a Gaussian-Gamma distribution, which is self-conjugate with respect to a Gaussian likelihood (i.e., the
likelihood of Gaussian rewards). So, given the reward observations, the marginal distribution of 1

σ2(x) is still
a Gamma distribution. r(x) has Gaussian distribution conditioned on the reward observations and 1

σ2(x) .
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Indeed, let r̂(x) = 1
Nk−1(x)

∑Nk−1(x)
i=1 Ri and σ̂2(x) = 1

Nk−1(x)
∑Nk−1(x)
i=1 (Ri − r̂(x))2 be the empirical mean

and empirical variance of Ri. Then it can be shown that the posterior distribution of 1
σ2(x) and r(x) are:

1
σ2(x) | R1, . . . , RNk−1(x)∼Gamma

(
Nk−1(x)+1

2 ,
1
2+Nk−1(x)σ̂2(x)

2 + Nk−1(x)r̂2(x)
2(Nk−1(x)+1)

)
r(x) | 1

σ2(x) , R1, . . . , RNk−1(x)∼N
(
Nk−1(x)r̂(x)
Nk−1(x) + 1 ,

σ2(x)
Nk−1(x) + 1

)
.

For more details about the analysis of conjugate prior and posterior presented above as well as more conjugate
distributions, we refer the reader to Fink (1997); Murphy (2007).

Notice that a reward that has a Gaussian distribution violates the property that all rewards are in [0, 1].
This could invalidate the bound on the regret of our algorithm proven in Theorem 1. Actually, it is possible
to correct the proof to cover the Gaussian case by replacing the Hoeffding’s inequality used in Lemma 1 by a
similar inequality, also valid for sub-Gaussian random variables, see Vershynin (2018). In the experimental
section (see E.3), we also show that a bad choice for the prior distribution of the reward (assuming a Gaussian
distribution while the rewards are actually Bernoulli) does not alter too much the performance of the learning
algorithm.

D.3 Experimental Methodology

In our numerical experiment, we did 3 scenarios to evaluate the algorithms (scenario 2 and 3 are given in
Appendix E). In each scenario, we choose the discount factor β = 0.99 (which is classical) and we compute
the regret over K = 3000 episodes. The number of simulations varies over scenario depending on how the
regret is computed. For each run, we draw a sequence of horizons {Hk}k∈[3000] from a geometric distribution
of parameter 0.01 and we run all algorithms for this sequence of time-horizons to remove a source of noise
in the comparisons.

For a given sequence of policies πk, following Equation 4, the expected regret is E
[∑K

k=1 ∆k(Xtk)
]
where

∆k(Xtk) is the expected regret over episode k. To reduce the variance in the numerical experiment, we
compute ∆k(Xtk) = V π∗M (Xtk) − V πkM (Xtk). For a given markovian bandit problem and state x, the value
V π∗M (x) can be computed by using the retirement evaluation presented in Page 272 of Whittle (1996). It
seems, however, that the same methodology is not applicable to compute the value function of an index
policy that is not the Gittins policy. This means that while the policy πk is easily computable, we do not
know of an efficient algorithm to compute its value V πkM (x). Hence, in our simulations, we will use two
methods to compute the regret, depending on the problem size:

1. (Exact method) Let (rπ, Pπ) be the reward vector and transition matrix under policy π (i.e. ∀x,y ∈
E , rπ(x) = r(x, π(x)), Pπ(x,y) = Pπ(x)(x,y)). Using the Bellman equation, the value function
under policy π is computed by

V πM = (111− βPπ)−1rπ. (41)

The matrix inversion can be done efficiently with the numpy package of Python. However, this takes
S2n + 2Sn of memory storage. Hence, when the number of states and arms are too large, the exact
computation method cannot be performed.

2. (Monte Carlo method) In Scenario 2, the model has n = 9 arms with S = 11 states each, which
makes the exact method inapplicable. In this case, it is still possible to compute the optimal policy
and to apply Gittins index based algorithms but computing their value is intractable. In such a
case, to measure the performance, we do 240 simulations for each algorithm and try to approximate
∆k by

∆̂k = 1
#replicas

#replicas∑
j=1

H
(j)
k
−1∑

t=0

[
r(X∗,(j)

t,A
∗,(j)
t

)− r(X(j)
t,A

(j)
t

)
]
, (42)
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where H(j)
k is the horizon of the kth episode of the jth simulation and {X∗,(j)

t,A
∗,(j)
t

} and {X(j)
t,A

(j)
t

} are
the trajectories of the oracle and the agent respectively. The term oracle refers to the agent that
knows the optimal policy.

Note that the expectation of Equation 42 is equal to the value given in Equation 41 but Equation 42 has
a high variance. Hence, when applicable (Scenario 1 and 3) we use Equation 41 to compute the expected
regret.

E Additional Numerical Experiments

E.1 Scenario 1: Small Dimensional Example (Random Walk chain)

This scenario is explained in Appendix D.1 and the main numerical results are presented in Section 7. Here,
we provide the result with error bars with respect to the random seed. The error bar size equals twice the
standard deviation over 80 samples (each sample is a simulation with a given random seed and the random
seeds are different for different simulations).

Figure 4: Average cumulative regret in function of the number of episodes. Result from 80 simulations in a
markovian bandit problem with three 4-state random walk chains given in Table 1. The horizontal axis is
the number of episodes. The size of the error bar equals twice the standard deviation over 80 simulations.

E.2 Scenario 2: Higher Dimensional Example (Task Scheduling)

We now study an example that is too large to apply MB-UCRL2 . Hence, here we only compare MB-PSRL
and MB-UCBVI.

We implement the environment proposed on page 19 of Duff (1995) that was used as a benchmark for the
algorithm in the cited paper. Each chain represents a task that needs to be executed, and is represented
in Figure 5(a). Each task has 11 states (including finished state ? that is absorbing). For a given chain
a ∈ {1, . . . , 9} and a state i ∈ {1, . . . , 10}, the probability that a task a ends at state i is ρ(a)

i = P(τ (a) = i |
τ (a) ≥ i) where τ (a) is the execution time of task a. We choose the same values of the parameters as in Duff
(1995): ρ(a)

1 = 0.1a for a ∈ {1, . . . , 9}, λ = 0.8, β = 0.99 and for i ≥ 2,

P{xa = i} = {1− [1− ρ(a)
1 ]λi−1}[1− ρ(a)

1 ]i−1λ
(i−1)(i−2)

2 .
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Hence, the hazard rate ρ(a)
i is increasing with i. The reward in this scenario is deterministic: the agent

receives 1 if the task is finished (i.e., under the transition from any state i to state ?) and 0 otherwise (i.e.,
any other transitions including the one from state ? to itself). For MB-PSRL, we use a uniform prior for the
expected rewards and consider that the rewards are Bernoulli distributed.

(a) In state i, the task is finished with probability ρi
or transitions to state i + 1 with probability 1 − ρi.
For i = 1, . . . , 10, the transition from state i to state
? provides 1 as the immediate reward. Otherwise, the
agent always receives 0 reward.

(b) Average cumulative regret over 240
simulations.

Figure 5: Task Scheduling with 11 states including the absorbing state (finished state).

The average regret of the two algorithms is displayed in Figure 5(b). As before, MB-PSRL outperforms MB-
UCBVI. Note that we also studied the time to run one simulation for 3000 episodes. This time is around 1
min for MB-PSRL and MB-UCBVI.

E.3 Scenario 3: Bayesian Regret and Sensitivity to the Prior

In this section, we study how robust the two implementations of PSRL are, namely MB-PSRL and vanilla
PSRL (to simplify, we will just call the later PSRL), to a choice of prior distributions. As explained in
Appendix D.2.3, the natural conjugate prior for Bernoulli reward is the Beta distribution. In this section,
we simulate MB-PSRL and PSRL in which the rewards are Bernoulli but the conjugate prior used for the
rewards are Gaussian-Gamma which is incorrect for Bernoulli random reward. In other words, MB-PSRL
and PSRL have Gaussian-Gamma prior belief while the real rewards are Bernoulli random variables.

To conduct our experiments, we use a markovian bandit problem with three 4-state random walk chains
represented in Table 1. We draw 16 models by generating 16 pairs of (rL, rR) from U [0, 1], 16 pairs of
(pL, pR) from Dirichlet(3,(1,1,1)) and 16 values of pRL from Dirichlet(2, (1,1)) for each chain. Each model
is an unknown MDP that will be learned by MB-PSRL or PSRL. For each of these 16 models, we simulate
MB-PSRL and PSRL 5 times with correct priors and 5 times with incorrect priors. The result can be found
in Figure 6 which suggests that MB-PSRL performs better when the prior is correct and is relatively robust
to the choice of priors in term of bayesian regret. This figure also shows that PSRL seems more sensitive to
the choice of prior distribution. Also note that for both MB-PSRL and PSRL, some trajectories deviate a
lot from the mean, under correct priors but even more so with incorrect priors. This illustrates the general
fact that learning can go wrong, but with a small probability.

F Experimental environment

The code of all experiments is given in a separated zip file that contains all necessary material to reproduce
the simulations and the figures.
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Figure 6: Bayesian regret of MB-PSRL and vanilla PSRL in 3 4-state Random Walk chains. For each chain,
we draw 16 random models and run the algorithms for 5 simulations in each model (there are 80 simulations
in total). In panels (a) and (b), we plot 16 dotted lines that correspond to the average cumulative regret
over 5 simulations in the 16 samples. The solid and dash-dot lines are the average regret each over 80
simulations (the estimated bayesian regret). Figure 6(a) shows the performance when reward prior is well
chosen (namely, U([0, 1])). Figure 6(b) is when the reward prior is incorrectly chosen (namely Gaussian-
Gamma distribution). Figure 6(c) compares the bayesian regret of the correct prior with the incorrect one
(dash-dot line). In both case, the prior of next state transition is well chosen (namely, Dirichlet distribution).
Y-axis range changes for each figure.

Our experiments were run on HPC platform with 1 node of 16 cores of Xeon E5. The experiments were
made using Python 3 and Nix and submitted as supplementary material and will be made publicly available
with the full release of the paper. The package requirement are detailed in README.md. Using only 1
core of Xeon E5, the Table 2 gives some orders of duration taken by each experiment (with discount factor
β = 0.99, and 3000 episodes per simulation). We would like to draw two remarks. First, the duration reported
in Figure 1(b) is the time for policy computation (algorithm’s parameters update and policy computation).
The duration reported in Table 2 include this plus the computation time for oracle (because we track the
regret), the state transition time along the trajectories of oracle and of each algorithm, resetting time... This
explains why the duration reported in Table 2 cannot be compared to the duration reported in Figure 1(b).
Second, the duration shown in Table 2 are meant to be a rough estimation of the computation time (we only
ran the simulation once and the average duration might fluctuate).

Experiment MB-PSRL PSRL MB-UCRL2 MB-UCBVI Total
Scenario 1 40 min - 3days 50 min 3days
Scenario 2 200 min - - 200 min 400 min
Scenario 3 90 min 260 min - - 350 min

Table 2: Approximative execution time for simulating each algorithm and tracking its regret in each scenario.
This time includes the time given in Figure 1(b) and the computation time needed by oracle (because we
track the regret), the state transition time along the trajectories of oracle and each algorithm, etc. In each
scenario, we set the discount factor β = 0.99 and run the algorithms for 3000 episodes per simulation.
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