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Abstract

While most continual learning algorithms have focused on
tackling the stability-plasticity dilemma, they have over-
looked the effects of the knowledge transfer when the dataset
is biased — namely, when some unintended spurious corre-
lations, not the true causal structures, of the tasks are learned
from the biased dataset. In that case, how would they affect
learning future tasks or the knowledge already learned from
the past tasks? In this work, we design systematic experi-
ments with a synthetic biased dataset and try to answer the
above question from our empirical findings. Namely, we first
show that standard continual learning methods that are un-
aware of dataset bias can transfer biases from one task to an-
other, both forward and backward. In addition, we find that
naively using existing debiasing methods after each continual
learning step can lead to significant forgetting of past tasks
and reduced overall continual learning performance. These
findings highlight the need for a causality-aware design of
continual learning algorithms to prevent both bias transfers
and catastrophic forgetting.

Introduction
Continual learning (CL) is essential for a system that needs
to learn (potentially increasing number of) tasks from se-
quentially arriving data. The main challenge of CL is
to overcome the stability-plasticity dilemma (Mermillod,
Bugaiska, and Bonin 2013). Namely, when a CL model fo-
cuses too much on the stability, it would suffer from low
plasticity for learning a new task (and vice versa). Recent
deep neural networks (DNNs) based CL methods (Kirk-
patrick et al. 2017; Jung et al. 2020; Li and Hoiem 2017)
attempted to address the dilemma by devising mechanisms
to attain stability while improving plasticity thanks to the
knowledge transferability (Tan et al. 2018), which is one
of standout properties of DNNs. Namely, while maintain-
ing the learned knowledge, the performance on a new task
(resp. past tasks) is improved by transferring of knowledge
of past tasks (resp. a new task). Such phenomena are called
the forward and backward transfer, respectively.
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While such DNNs based approaches for CL have been
successful to some extent, they have not explicitly consid-
ered a more realistic and challenging setting in which the
dataset bias (Torralba and Efros 2011) exists; i.e., a distri-
bution of test dataset could be different from that of train-
ing dataset for each task. In such a case, it is widely known
that DNNs often dramatically fail to generalize to the out-of-
distribution test data due to learning some unintended spuri-
ous correlations, not the true causal relations (Sagawa et al.
2020; Bahng et al. 2020). For instance, a DNN that classi-
fies birds in the sky perfectly may fail on classifying im-
ages in which birds are outside the typical sky background
when the model has learned a shortcut strategy relying on
the background (Geirhos et al. 2020). There have been many
attempts to address this issue, with earlier approaches (Nam
et al. 2020; Liu et al. 2021) often based on empirical findings
about DNNs, resulting in suboptimal results. More recently,
there have been efforts to address the bias issue in a more
principled way by using a structural causal model (SCM) to
clarify the causal relationship between input, label, bias, and
context priors (Liu et al. 2022; Seo, Lee, and Han 2022). By
obtaining direct causal effects from inputs without the con-
founding influence of bias, these approaches have shown im-
proved performance on various vision tasks, including ob-
ject classification (Liu et al. 2022), semantic segmentation
(Zhang et al. 2020) and few-shot learning (Yue et al. 2020),
highlighting the importance of causal learning in solving the
bias problem.

Now, we claim that the issue of learning spurious correla-
tions, not the true causal relations, in the context of CL can
be a significant problem because it can lead to the transfer
of bias from one task to another. In a recent study (Salman
et al. 2022), it is shown that the transfer of bias can even
occur when fine-tuning pre-trained models on downstream
tasks. In CL, this issue can be potentially exacerbated since
it involves learning a sequence of tasks, and the transferred
bias can affect not only the future tasks, but also the past
tasks. Additionally, the severity of bias transfer in CL may
be greater depending on how the learned knowledge is uti-
lized. However, to the best of our knowledge, there is a lack
of research that is carefully investigating this issue for CL.

To that end, we show that when a certain task in a CL
scenario contains a dataset bias, applying naive CL methods
to learn such a task would be problematic since they can



maintain unwarranted knowledge (e.g., background bias)
and transfer it to future or past tasks. To test this, we con-
struct a synthetic dataset with color bias, and systematically
conduct extensive experiments on various two task scenar-
ios with varying levels of bias. We quantitatively identify
that the forward and backward transfer of bias indeed exist
when naive CL methods are applied. More specifically, we
show that a typical CL method preserves the knowledge such
that the bias of the knowledge learned from the past task is
reused to train on a new task (i.e., forward transfer of bias),
resulting in severer bias for the new task. Furthermore, it is
shown that the biased knowledge learned from the current
task also affects the decision rules for the past tasks to be bi-
ased (i.e., backward transfer of bias), and a naive debiasing
for the current task could also cause the catastrophic forget-
ting of the past task. Our results clearly call for a principled,
novel approach for taking the causal learning into account
while continual learning from potentially biased datasets, in
order to prevent both bias transfers and forgetting.

Case Studies of Bias Transfer in CL
Experimental Settings
Dataset. We use Split CIFAR-100 (Zenke, Poole, and
Ganguli 2017; Chaudhry et al. 2019; van de Ven, Siegel-
mann, and Tolias 2020), which divides CIFAR-100 into 10
tasks with 10 distinct classes. To study bias transfer, we
modify Split CIFAR-100, such that half of the classes in
each task are skewed toward the grayscale domain and the
other half toward the color domain. Namely, given a skew-
ratio α ≥ 0.5, the training images of each class are split into
α and 1− α ratios for each domain. We set 6 bias levels by
dividing the range from 0.5 to 0.99 evenly on a log scale for
systematic control of the degree of bias.

CL Scenario. We consider a task-incremental learning
scenario (Van de Ven and Tolias 2019) in which a task iden-
tifier t ∈ T ≜ {1, 2, 3, · · · } is given during inference time
and further assumes the domain of an input image is known.
For simplicity, we only considered the scenario of incremen-
tally learning two tasks; we randomly chose 2 out of 10 tasks
in every run and reported the averaged results over 4 differ-
ent runs. We denote the t-th task as Tt with t ∈ {1, 2}.

Baselines. We adopt fine-tuning without any considera-
tion of CL and three representative CL methods: LWF (Li
and Hoiem 2017), EWC (Kirkpatrick et al. 2017), and ER
(Chaudhry et al. 2019). LWF and EWC add regularization
terms in their training objectives to penalize deviation from
the past model and balance the stability-plasticity trade-
off by controlling the regularization hyperparameter. On the
other hand, ER stores some data from past tasks in a small
exemplar memory and replays them while learning current
task. For ER, we store 500 samples, which are 10% of a task
data. Finally, as a model debiasing technique, we employ
MFD (Jung et al. 2021), a state-of-the-art method that trains
a domain-independent model using a MMD-based feature
distillation method.

Metrics. We consider two metrics, average accuracy and
the difference of classwise accuracy (DCA) (Berk et al.

2021), as evaluation metrics for CL performance and bias
for each task, respectively. The concrete definition of DCA
is given below. Let Dt = {(x(i)

t , a
(i)
t , y

(i)
t )}Nt

i=1 be a test
dataset for task Tt, where a

(i)
t ∈ A is the color domain of

the input x(i)
t ∈ X , and y

(i)
t ∈ Yt is the class label where Yt

is the set of classes of Tt. Given a classifier h and a dataset
Dt for task Tt, DCA is defined as below:
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1[h(x(i)
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in which Dy,a
t is the subset of Dt that is confined to the

samples with class-domain label pair (y, a). We note that
A(h,Dy,a

t ) is the accuracy of samples with class y and do-
main a, and DCA means the average (over class) of per-
class maximum accuracy difference between domains. Thus,
a large DCA corresponds to h possessing large bias between
different domains.

In addition, we compute forgetting (F) and intransigence
(I) measures (Chaudhry et al. 2018; Cha et al. 2021) for
evaluating stability and plasticity of a CL method, respec-
tively, and use Normalized F −I as a metric for the relative
weight on plasticity and stability. To be specific, let ht and
h∗
t be the classifiers learned up to Tt tasks which are trained

by a CL method and the fine-tuning method, respectively. In
our two task learning scenario, the forgetting and intransi-
gence measures are defined as follows:

F = A(h1,D1)−A(h2,D1) (1)
I = A(h∗

2,D2)−A(h2,D2). (2)

Then, for each CL scenario, the differences between two
measures are normalized by the maximum and minimum
possible values of F−I, which are obtained by A(h1,D1)−
A(h∗

2,D2)+1 and A(h1,D1)−1−A(h∗
2,D2), respectively.

We note that this Normalized F − I indicates the model fo-
cuses more on stability as the value becomes lower and on
plasticity as it becomes higher.

Study 1: Forward Transfer of Bias
To investigate the influence of bias captured from T1 in a CL
scenario, we evaluated baseline methods by varying the bias
level of T1, while that of T2 is fixed to level 2. Figure 1 shows
DCA of T2 along with Normalized F − I after learning T2

with two different bias levels of T1, i.e., level 0 & 6. The
figure plots the results of LWF and EWC with various regu-
larization strengths; namely, the upper the point is, the lower
the regularization strength is. From the gap of blue triangles
in the figure, we first observe that bias of T1 adversely affects
the bias of T2, i.e., forward transfer of bias exists, even with
simple fine-tuning, which is consistent with (Salman et al.
2022). Second, we observe that when applying CL meth-
ods, the gaps between connected points get larger than fine-
tuning. Moreover, when the bias level of T1 is 6, DCA of T2

for EWC and LWF increases more drastically as the focus



Plasticity↑

Stability↓

Figure 1: Forward transfer of bias. The higher DCA indi-
cates a model is more biased. The y-axis shows the level
of focus on plasticity or stability. Dashed lines connect the
points with the same learning strategy (hyperparameters).

Figure 2: Backward transfer of bias. Blue arrows indicate
the sequence of stages. Since all baselines are trained in the
same way on T1, we report the results with one cross marker.

on stability is larger. Thus, these results imply that CL meth-
ods promote the forward transfer of bias since they tend to
remember the knowledge of past tasks for stability. Finally,
we clearly observe that DCA of T2 is always better when
learned after T1 with bias level 0 than with bias level 6, for
similar Normalized F − I. Therefore, we argue that when-
ever a given task has a bias in CL scenario, its bias should
be mitigated for learning future tasks.

Study 2: Backward Transfer of Bias
Here, we set the bias level of T1 and T2 as 0 and 6 and
assume a scenario that a bias is detected after learning T1

(stage 1) and continually learning T2 (stage 2) by a CL
method. In this situation, one may naively consider apply-
ing a debiasing method (stage 3), e.g., MFD, to the model
obtained after learning T2 to remove the bias.

Figure 2 shows the accuracy and DCA of T1 and T2 on
each stage for each baseline. In the right plot, we observe
that points shift to the bottom left as they progress from
stage 1 to stage 2. This means that as the stability gets less

focus, the bias obtained from T2 is more transferred to T1,
i.e., the backward transfer of bias occurs. Moreover, from
the results of stage 3 in the left plot, we show that DCA of
T2 can be successfully reduced by employing a debiasing
technique of a model with similar accuracy. However, we
also identify that the accuracy of T1 significantly drops after
stage 3, which suggests that serious forgetting of T1 hap-
pens when naively debiasing the model for T2. This result
suggests that just applying canonical debiasing of the model
after learning each task, in order not to forward transfer the
bias to the future tasks (as seen in Study 1), can cause se-
rious forgetting of the past task. Hence, we argue that it is
necessary to develop a novel continual learning method that
takes causal learning into account to prevent the bias trans-
fer while maintaining the stability of the model to mitigate
forgetting.

Concluding Remark
With systematical analyses for two task CL scenarios using
a synthetic dataset containing the color bias, we showed the
bias can be transferred both forward and backward by typ-
ical CL methods that are oblivious to the dataset bias. Fur-
thermore, we also showed that naively applying the exist-
ing debiasing technique inevitably leads to catastrophic for-
getting, which strongly appeals for devising a new method
that achieves objectives of CL and causal learning simulta-
neously. For future work, we will investigate the bias trans-
fer in a more realistic scenario with natural biases such as
gender bias or with a longer sequence of tasks. It would also
be interesting research direction how the bias transfer mat-
ters when there is multiple sources of, possibly unknown,
bias.
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